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Wold Representation Theorem

We have discussed a class of ARMA models and derived restrictions which ensure they
are models for covariance stationary time series. We have shown that these ARMA models
imply the data are a linear combination of current and past one-step-ahead forecast errors,
with weights that decay at a geometric rate.1 Here, we consider the class of covariance
stationary processes and ask whether ARMA models are a strict subset of that class. We
start from the assumption that a process is covariance stationary and we study the projection
of the process onto its current and past one-step-ahead forecast errors. This decomposition
of a covariance stationary process into a projection onto current and past one-step-ahead
forecast errors (the ‘purely indeterministic part’ of the process) and a projection error (the
‘purely deterministic part’) is called the Wold Representation Theorem.
We conclude that there are two ways in which ARMAmodels represent a restriction on the

class of covariance stationary processes. First, in an ARMA model the purely deterministic
part is absent. That is, a researcher working with an ARMA model implicitly assumes both
that the process is covariance stationarity and that the process is purely indeterministic.
Second, according to the Wold Representation Theorem, covariance stationarity implies that
the weights on current and past one-step-ahead forecast errors are square summable. This
is weaker than the geometric decay property implied by ARMA models.
The first section below states the Wold Representation Theorem, and then provides an

informal proof using the argument in Sargent (1979). I then summarize the implications of
the theorem for the ARMA models that we study.

1. The Wold Theorem

Theorem 1.1. Suppose that {xt} is a covariance stationary process with Ext = 0 and
covariance function, γ (j) = Extxt−j, ∀j. Then

xt =
∞X
j=0

djεt−j + ηt

where

d0 = 1,
∞X
j=0

d2j < 0, Eε
2
t = σ2ε, Eεtεs = 0 for t 6= s, (1.1)

Eεt = 0, Eηtεs = 0 for all t, s, (1.2)

P
£
ηt+s|xt−1, xt−2, ...

¤
= ηt+s, s ≥ 0. (1.3)

1This linear combination is derived by recursive substitution. Before doing this, one has to make sure
that the ARMA model error is the one-step-ahead forecast error, if necessary by ‘flipping’ moving average
roots.



The first part of the representation of xt looks just like the MA(∞) with square summable
moving average terms that we have worked with, while the second part, ηt, is something new.
That part is called the deterministic part of xt because ηt is perfectly predictable based on
past observations on xt.
The style of proof is constructive. We will show that given only covariance stationarity,

we can build the Wold representation with the indicated properties. We will not provide a
fully rigorous proof and a key result will simply be assumed. The proof is an application of
linear projections, and the orthogonality and recursive properties of projections. The proof
style follows that in Sargent (1979).
We first find the dj’s and εt and establish the required properties. Then, we find the

projection error, ηt.
We begin with a preliminary result. Let xt be a covariance stationary process. Let

x̂
(n)
t = P [xt|xt−1, ..., xt−n] ,

and write
xt = x̂

(n)
t + ε

(n)
t .

From the orthogonality property of projections we know that

ε
(n)
t ⊥ (xt−1, ..., xt−n)

Eε
(n)
t = σ2(n).

We assume, without proof, the following result:

x̂
(n)
t → x̂ = P [xt|xt−1, xt−2, ...] (1.4)

xt = x̂t + εt, Eε
2
t = σ2 (1.5)

εt⊥ (xt−1, xt−2, ...) . (1.6)

The disturbance, εt, is known as the ‘innovation’ in xt or its ‘one-step-ahead forecast error’.
It is easy to see that εt is a serially uncorrelated process. In particular,

εt = xt − P [xt|xt−1, xt−2, ...] ,

so that it is a linear combination of current and past xt’s. It follows that since εt is orthogonal
to past xt’s, it is also orthogonal to past εt’s.

1.1. Projection of xt onto current and past εt’s

We now consider the projection of xt on current and past εt’s:

x̃mt =
mX
j=0

djεt−j.

The notation, x̃mt , is intended to signal that the projection used here is different from the one
used to define the εt’s. The lack of autocorrelation between the εt’s makes the analysis of
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the projection coefficients particularly simple. The orthogonality condition associated with
the projection is:

E

Ã
xt −

mX
j=0

djεt−j

!
εt−k = 0, k = 0, ...,m,

which, by the lack of correlation in the εt’s, reduces to:

Extεt−k − dkEε
2
t−k = 0,

so that

dk =

½
Extεt−k

σ2
, k = 1, 2, ...,m
1, k = 0

That Extεt = σ2 follows from (1.5):

Extεt = E (x̂t + εt) εt = σ2,

because x̂t is a linear function of past xt’s and εt is orthogonal to those xt’s. A key property
of the projection is that dk is not a function of m. This reflects the lack of serial correlation
in the εt’s.
We now establish the square summability of the dj’s. Any variance must be non-negative,

and this is true of the error in the projection of xt onto εt, ..., εt−m :

E

Ã
xt −

mX
j=0

djεt−j

!2
≥ 0,

or,

Ex2t − 2
mX
j=0

djExtεt−j +
mX
j=0

d2jσ
2

= Ex2t − σ2
mX
j=0

d2j ≥ 0.

This must be true for all m. Since Ex2t is a fixed number by covariance stationarity, it follows
that

lim
m→∞

mX
j=0

d2j <∞.

In addition the sum is a non-decreasing sequence because each term (being a square) is
non-negative. From this we conclude that the above sum converges to some finite number:

mX
j=0

d2j →
∞X
j=0

d2j .

Given the square summability of the dj’s, it follows that x̃mt forms a Cauchy sequence,
so that

x̃mt =
mX
j=0

djεt−j → x̃t =
∞X
j=0

djεt−j.
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To verify that x̃mt is Cauchy, we establish that for each e > 0, there exists an n such that for
all m > n

E (x̃mt − x̃nt )
2 =

Ã
mX

j=n+1

d2j

!
σ2 < e.

1.2. Constructing the ηt’s

We define ηt as the difference between xt and its projection onto the current and past εt’s:

ηt = xt − x̃t. (1.7)

We first establish that
Eηtεs = 0 for all t, s.

That Eηtεs = 0 for s > t is obvious because ηt is a linear function of xt and past εt’s, and εs
is orthogonal to all these things, s > t. That Eηtεs = 0 for s ≤ t follows from the fact that
ηt is the error in the projection of xt on current and past εt’s. In particular,

Eηtεt−k = Extεt−k − dkσ
2 = dkσ

2 − dkσ
2 = 0.

Next we establish that ηt is perfectly predictable from past xt’s. Note

P [ηt|xt−1, xt−2, ...] = P [xt|xt−1, xt−2, ...]−
∞X
j=0

djP [εt−j|xt−1, xt−2, ...] , (1.8)

where we have used the linearity of projections, P [A+B|Ω] = P [A|Ω] +P [B|Ω] . Consider
the last term, involving the projections of the εt’s. In the case, j = 0 :

P [εt|xt−1, xt−2, ...] =
∞X
j=1

ψjxt−j.

The ψj’s satisfy the orthogonality conditions:

E

Ã
εt −

∞X
j=1

ψjxt−j

!
xt−k = 0, k = 1, 2, 3, ... .

Recall that εt is orthogonal to (xt−1, xt−2...) so that ψj = 0 satisfies the orthogonality con-
ditions. Sufficiency of the orthogonality conditions guarantees that

P [εt|xt−1, xt−2, ...] = 0.

Now consider
P [εt|xt, xt−1, ...]

Recall, that εt is a linear function of current and past xt’s:

εt = xt − P [xt|xt−1, xt−2, ...] ,
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so that
P [εt|xt, xt−1, ...] = εt.

To see why this is so, consider the optimization problem that defines a projection:

min
{ψj}∞j=0

E

Ã
εt −

∞X
j=0

ψjxt−j

!2
.

By choosing the ψj’s to coincide with the linear function, xt − P [xt|xt−1, xt−2, ...] , this
criterion can be set to zero, which cannot be improved upon. A similar argument establishes

P [εt|xt+j, xt+j−1, ...] = εt, j ≥ 0.

With the previous result, we can write (1.8) as follows:

P [ηt|xt−1, xt−2, ...] = P [xt|xt−1, xt−2, ...]−
∞X
j=1

djεt−j.

Subtract this from (1.7):

ηt − P [ηt|xt−1, xt−2, ...]
= xt − P [xt|xt−1, xt−2, ...]

−

⎛⎜⎜⎜⎝
x̃tz }| {

∞X
j=0

djεt−j −
∞X
j=1

djεt−j

⎞⎟⎟⎟⎠
= εt − d0εt = 0.

This establishes the s = 0 part of (1.3). Now consider s = 1 :

P [ηt|xt−2, xt−3, ...] = P [xt|xt−2, xt−3, ...]−
∞X
j=0

djP [εt−j|xt−2, xt−3, ...]

= P [xt|xt−2, xt−3, ...]−
∞X
j=2

djεt−j,

by an argument similar to the one for s = 0. Subtract the above expression from (1.7):

ηt − P [ηt|xt−2, xt−3, ...]

= xt − P [xt|xt−2, xt−3, ...]−
Ã ∞X

j=0

djεt−j −
∞X
j=2

djεt−j

!
= xt − P [xt|xt−2, xt−3, ...]− (εt + d1εt) .

We use the recursive property of projections to evaluate the two-step-ahead forecast error in
xt :

P [xt|xt−1, xt−2, ...] = P [xt|xt−2, xt−3, ...]
+P [xt − P (xt|xt−2, xt−3...) |xt−1 − P (xt−1|xt−2, ...)] .
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In words, the projection of xt onto xt−1 and earlier xt’s is the projection of xt onto xt−2 and
earlier plus the best (linear) guess of what that projection error is, given the new information
in xt−1. Write the last term in the recursive representation as:

P [xt − P (xt|xt−2, xt−3...) |xt−1 − P (xt−1|xt−2, ...)] = αεt−1,

since εt−1 = xt−1 − P (xt−1|xt−2, ...) . Then,

α =
E [xt − P (xt|xt−2, xt−3...)] εt−1

Eε2t−1

=
Extεt−1
Eε2t−1

= d1.

because εt−1 is orthogonal to xt−2, xt−3, ... . So,

P [xt|xt−1, xt−2, ...] = P [xt|xt−2, xt−3, ...] + d1εt−1

and

xt − P [xt|xt−2, xt−3, ...] = xt − P [xt|xt−1, xt−2, ...] + d1εt−1

= εt + d1εt.

We conclude that

ηt − P [ηt|xt−2, xt−3, ...]
= xt − P [xt|xt−2, xt−3, ...]− (εt + d1εt)

= 0.

A continuation of this line of argument establishes that

ηt+s = P
£
ηt+s|xt−2, xt−3, ...

¤
, s > 0.

2. Discussion

The Wold representation says that a covariance stationary process can be represented in the
following form:

xt =
∞X
j=0

djεt−j| {z }
part of xt that is impossible to predict perfectly

+ ηt|{z}
part of xt that is perfectly predictable

The two parts of this representation are called the ‘purely indeterministic’ and the ‘deter-
ministic’ parts, respectively. It is interesting to evaluate the meaning of ηt. It is not a time
trend, for example, because the assumption of covariance stationarity of xt rules out a time
trend.2 Here is an example of what ηt could be:

ηt = a cos (λt) + b sin (λt) ,

2The presence of a time trend would imply that the mean of xt is a function of t.
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where λ is a fixed number and

Ea = Eb = Eab = 0, a, b⊥ {εt} .

To understand this stochastic process for xt, think of how each realization is constructed.
First, draw a and b. Then draw and infinite sequence of εt’s and generate a realization of ηt
and xt. For the second realization, draw a new a and b, and a new sequence of εt’s. In this
way, all the realizations of the stochastic process may be drawn. Under this representation,
the mean and autocovariance function of xt are not a function of time, and so xt is covariance
stationary.
The idea that ηt is perfectly predictable can be seen as follows. First, a and b can be

recovered given only two observations on ηt. Once a and b for a given realization of the
stochastic process are in hand, all the ηt’s in that realization can be computed. But, how to
get the two ηt’s? According to the argument in the proof, ηt can be recovered without error
from a suitable linear combination of xt−1, xt−2, ... and ηt+1 can be recovered from a suitable
linear combination of xt, xt−1, ... .
It is interesting to compare the purely indeterministic part of the Wold representation

with the MA(∞) representations we have discussed in class. The models of MA(∞) repre-
sentations are in their most general form, ARMA(p,q) representations:

yt = φ1yt−1 + ...+ φpyt−p + νt + θ1νt−1 + ...+ θqνt−q,

where νt is an iid process. As long as the roots of the autoregressive part of this process are
less than unity in absolute value, yt has an MA(∞) representation with square summable
moving average terms. Still, there are two possible differences between this and a Wold
representation. First, only if the roots of the moving average part, i.e., the zeros of

λq + θ1λ
q−1 + ...+ θq

are less than unity in absolute value is νt the one-step-ahead forecast error in yt (to see this,
note than only in this case can recursive substitution be done to represent νt as a function
of current and all past yt’s).
Second, the ARMA(p,q) form, while it generates an MA(∞) with square summable

weights, it is not the only form that does this. This is perhaps obvious when we observe
that the rate of decay of the moving average coefficients in the models we have considered
is geometric. This is a faster rate of decay than is required for square summability. For
example, with geometric decay absolute and square summability are the same thing. But,
in general, a process that is square summable is not necessarily absolutely summable.3

We can think of the weight on distant past εt’s of the MA(∞) representation as corre-
sponding to the amount of ‘memory’ in the process. Thus, the ARMA(p,q) models have
‘short memory’ relative to the entire class representations envisioned by the Wold represen-
tation. It has been argued that there is evidence of long-memory in economic time series, and
that this warrants investigating a class of time series models different from ARMA models.
See, for example, Parke (1999). 4 We will not be studying long memory processes in this
course.

3For example, consider ψj = 1/j. The rate of decay of ψ2j is fast enough that
©
ψj
ª
satisfies square

summability, but
©
ψj
ª
does not satisfy absolute summability.

4Here are some sources cited in Parke (1999), footnote 2. Evidence of long memory has been found in
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