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1 Introduction

Stochastic dynamic models pervade many areas of economics, since time and uncertainty
are basic considerations in most economic decisions. A typical situation in the analysis
of these models is portrayed in Figure 1. A researcher is interested in the predictions or
long-run behavior of a stochastic dynamic model. These predictions are often summa-
rized by the moments and other statistics of its invariant distributions, and may form
a basis for the calibration, estimation, and testing of the model. Most often the model
∗We have benefitted form several discussions with participants at the seminars of Arizona State
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does not admit an analytical equilibrium solution, and hence it is approximated by nu-
merical methods. Also, numerical simulations may be needed to compute the moments
of an invariant distribution and for the study of further quantitative properties of the
equilibrium solution. But in spite of the widespread use of numerical methods, there
is not a well established theory for the simulation of stochastic dynamic models and
most available results in probability theory cannot be readily applied to the analysis
and computation of non-linear economic models.

This paper presents several results on accuracy properties of statistics derived from
numerical simulations. Our analysis rests upon a continuity property of the correspon-
dence of invariant distributions and a generalized law of large numbers. The continuity
property of the correspondence of invariant distributions is shown to hold under gen-
eral assumptions, and it implies that the moments of invariant distributions generated
by a sufficiently good numerical approximation remain close to those generated by the
original model. This result justifies the use of numerical methods to approximate quan-
titative properties of invariant distributions in stochastic dynamic models. Furthermore,
under a certain contractivity property of the equilibrium solution, we provide an upper
bound for the errors of the moments of invariant distributions generated by a numerical
approximation. We establish that the errors are of the same order of magnitude as
that of the computed solution. Some simple examples below illustrate that the con-
stants bounding these orders of convergence are reasonably tight and can be explicitly
computed.

The moments of an invariant distribution are generally hard to compute because
of lack of information about the domain and form of the probability measure. Hence,
laws of large numbers are ordinarily invoked to recover such statistics from numerical
simulations. Available laws of large numbers for non-linear dynamical systems, however,
are based upon some technical conditions [cf. Doob (1953, Ch. V)] that are difficult to
check for both the economic model and the numerical approximation. We shall establish
a generalized law of large numbers that builds upon some methods developed by Crauel
(2002). This generalized law dispenses completely with the aforementioned technical
conditions, and is valid for all initial values of the state variables.

Combining all these results we obtain that the average behavior of a typical sample
path generated by a good enough numerical solution must be close to the correspond-
ing expected value of some invariant distribution of the original model. Therefore, the
moments computed from simulations of numerical solutions converge to the true mo-
ments as the approximation errors of the numerical solutions converge to zero. This
proposition is at the foundations of statistical inference –and related empirical work– for
non-linear dynamic models. It is worth pointing out that the main assumptions lead-
ing to these results are compactness of the domain and continuity of the equilibrium
solution. These assumptions are usually derived from primitive conditions of economic
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models. Under certain regularity properties the compactness of the domain may be
weakened, but some examples below illustrate that the continuity of the equilibrium
solution is indispensable.

A considerable part of the literature in computational economics has focussed on the
performance of numerical algorithms [e.g., see Taylor and Uhlig (1990), Judd (1998),
Santos (1999), and Aruoba, Fernandez-Villaverde and Rubio-Ramirez (2003)]. These
algorithms are evaluated in some test cases or under some accuracy checks [e.g., den
Haan and Marcet (1994) and Santos (2000)]. But given the complex dynamic behavior
involved in random sample paths, error bounds on the computed solution are generally
not operative to assess steady-state predictions of stochastic dynamic models. What it
seems missing is a theory that links the approximation error of the numerical solution
with the corresponding error in the statistics generated by this solution. In the absence
of this theory, error bounds or accuracy checks on the numerical solution fall short of
what it is required for the calibration, estimation and testing of an economic model.
To accomplish these tasks a researcher usually defines a notion of distance in which a
selected set of statistics is compared with its data counterparts. In the business cycle
literature, for instance, this notion of distance is determined by second-order moments
[e.g., Cooley and Prescott (1995)]. In the finance literature, measures of skewness and
kurtosis are typically invoked. These exercises are only meaningful if the statistics
computed from numerical approximations are sufficiently close to the true ones. We are
not aware of any previous theoretical work concerned with accuracy properties of the
simulated moments from numerical approximations.

Christiano and Eichenbaum (1992) develop a general framework for the calibration
of dynamic models that takes account of the sampling error from time series data. These
authors provide confidence intervals for the model’s parameters, and consequently for
the moments of the corresponding invariant distributions. Using the present results,
some other sources of error may be integrated in this analysis. Rust (1994) presents
several methods for the estimation and testing of structural dynamical systems in the
presence of measurement and numerical errors and under some other misspecifications
of the model. Such theories of estimation and testing will have to confront the issues
addressed in this paper regarding sensitivity properties of invariant distributions.

Another application of our results is in the area of comparative statics analyses.
Continuity properties of invariant distributions are a prerequisite to evaluate the effects
of small changes in fiscal and monetary policies and in the model’s parameters. Also,
the continuity of the moments of the invariant distribution over a vector of parameters is
assumed in proofs of consistency and asymptotic normality of simulation-based estima-
tors [e.g., Duffie and Singleton (1993)]. It is then instructive to tie down this continuity
condition to assumptions on the model’s primitives. Moreover, building upon the re-
sults of this paper Santos (2003) proves various consistency properties of a simulated
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estimator for a class of monotone Markov processes.

2 Stochastic Dynamics

Computable dynamic models are often characterized by equilibrium solutions that take
the form of a Markov stochastic process or a stochastic difference equation. In most
economic applications the solution system cannot be written explicitly, and hence the
model is often simulated by numerical methods. Of course, the problem is that the
stochastic dynamics may be substantially affected by the numerical approximation.

2.1 Random Dynamical Systems

In several economic models [e.g., Stokey, Lucas and Prescott (1989)] the equilibrium law
of motion of the state variables can be specified by a dynamical system of the following
form

zn+1 = Ψ(zn, εn+1)
kn+1 = g(kn, zn, εn+1), n = 0, 1, 2, . . . . (2.1)

Here, z may represent a vector made up of stochastic exogenous variables such as some
indices of factor productivity or market prices. This random vector lies in a space Z, and
it evolves according to a function Ψ and an iid shock ε in a set of “events” E governed
by a probability measure Q. Vector k represents the endogenous state variables which
may correspond to several types of capital stocks and measures of wealth. The evolution
of k is determined by an equilibrium decision rule g taking values in a set K. Hence,
s = (k, z) is the vector of state variables that belongs to the set S = K × Z. Let (S, S)
denote a measurable space.

For expository purposes, let us express (2.1) in the more compact form

sn+1 = ϕ(sn, εn+1) n = 0, 1, 2, . . . . (2.2)

Assumption 1 The set S = K × Z ⊂ Rl × Rm is compact, and S is the Borel σ-field.
(E,E, Q) is a probability space.

Assumption 2 Function ϕ : S×E → S is bounded. Moreover, for each ε the mapping
ϕ(·, ε) is continuous, and for each s the mapping ϕ(s, ·) is measurable.
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It follows from a standard result in measure theory [cf., Futia (1982, Sect. 5)] that
function ϕ is measurable on the product space (S ×E,S×E). Therefore, this mapping
gives rise to a transition function P : S × S → [0, 1] that defines a time homogenous
Markov process, such that P (s, ·) is a probability on S for each given s in S and P (·, A)
is a measurable function for each Borel set A in S. The transition function P is defined
as

P (s,A) = Q({ε|ϕ(s, ε) ∈ A}) (2.3)

for every s ∈ S and A ∈ S. Function P characterizes the dynamics in the space of
distributions on S. Thus, for any initial probability measure µ0 on S, the evolution of
future probabilities is determined by the recursion law

µn+1(A) =
∫
P (s,A)µn(ds) (2.4)

for all A ∈ S and n ≥ 0.
An invariant probability measure or invariant distribution µ∗ is a fixed point of

system (2.4). More precisely,

µ∗(A) =
∫
P (s,A)µ∗(ds) (2.5)

for all A ∈ S. Hence, an invariant distribution is a stationary solution of the original
system (2.1). The analysis of invariant distributions seems then a very first step to
investigate the dynamics of the system. Further, uniqueness of the invariant distribution
is a highly desirable property, since the model may have sharper predictions.

2.2 Numerical Approximations

In many economic applications an explicit solution for the equilibrium function ϕ is
not available. Then, the most one can hope for is to get a numerical approximation
ϕ̂. Moreover, using some accuracy checks [cf., Santos (2000)] we may be able to bound
the distance between functions ϕ and ϕ̂. Every numerical approximation ϕ̂ satisfying
Assumptions 1-2 will give rise to a transition probability P̂ on (S, S). But even if ϕ̂ is
an arbitrarily good approximation of function ϕ, the following questions may come to
the fore:

• How different are the dynamics under transition functions P and P̂?

• More specifically, do both functions generate the same number of invariant distri-
butions?

5



• How close are the statistics defined over these invariant distributions?

As the following simple examples illustrate, without further regularity assumptions
we cannot expect good stability properties.

EXAMPLE 2.1: Let g be the real-valued function depicted in Figure 2. This function
has three interior steady states kl, km, kh. Consider now a downward vertical shift
of the graph of this function so as to get the neighboring function ĝ. Observe that
steady states km and k̂m are unstable. Hence, any initial condition over the interval
(km, k̂m) will converge to point kh under g, but will converge to point k̂l under ĝ.
Consequently, a small perturbation on function g will not generally have good stability
properties near the stationary solution km. From these functions we can now construct a
random dynamical system under the following iid process. At each date n = 0, 1, 2, . . .
let the system move by function g with probability 0.5, and by function ĝ with the
remaining equal probability. One readily sees that the resulting random dynamical
system has two ergodic invariant distributions 1 whose supports are the intervals [k̂l, kl]
and [k̂h, kh]. Points over the interval [km, k̂m] will leave this domain with probability
one, and so this interval no longer will contain a stationary solution. As a matter of
fact, Kolmogorov has been credited as one of the first to stress that adding a small
stochastic perturbation to a deterministic dynamical system may lead to substantial
discrepancies in the long-run dynamics of the system.

EXAMPLE 2.2: This example contains an analogous perturbation on the transition
probability P . The state space S is a discrete set with three possible states, s1, s2, s3.
Transition probability P is defined by the following Markov matrix

Π =

 1 0 0
0 1/2 1/2
0 1/2 1/2

 .
Each row i specifies the probability of moving from state si to any state in S, so that an
element πij corresponds to the value P (si, {sj}), for i, j = 1, 2, 3. Note that Πn = Π for
all n ≥ 1. Hence, p = (1, 0, 0), and p = (0, 1/2, 1/2) are invariant distributions under Π,
and {s1} and {s2, s3} are the ergodic sets. All other invariant distributions are convex
combinations of these two probabilities.

1We say that a set A ∈ S is invariant if P (s,A) = 1 for all s in A. An invariant set A is called ergodic
if there is no other invariant subset B ⊂ A. The support σ(µ∗) of a probability measure µ∗ is the
smallest closed set such that µ∗(σ(µ∗)) = 1. An invariant distribution µ∗ is called ergodic if µ∗(A) = 0
or µ∗(A) = 1 for every invariant set A.
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Let us now perturb Π slightly so that the new stochastic matrix is the following

Π̂ =

 1− 2α α α
0 1/2 1/2
0 1/2 1/2

 for 0 < α < 1/2.

As n→∞, the sequence of stochastic matrices {Π̂n} converges to

 0 1/2 1/2
0 1/2 1/2
0 1/2 1/2

 .
Hence, p = (0, 1/2, 1/2) is the only possible long-run distribution for the system. More-
over, {s1} is a transient state, and {s2, s3} is the only ergodic set. Consequently, a
small perturbation on a transition probability P may lead to a pronounced change in
its invariant distributions. Indeed, small errors may propagate over time and alter the
existing ergodic sets.

If we consider the correspondence from Π to the set of invariant distributions
{p|pΠ = p}, then the present example shows that such correspondence fails to be
lower semicontinuous. (A similar result was obtained under the stochastic perturbation
in Example 2.1.) A key step below is to establish that this correspondence is upper
semicontinuous for Markov processes generated by a general class of random dynamical
systems.

A further fundamental issue in stochastic dynamics is the convergence of the se-
quence of transition functions {Πn}. This sequence may not always converge, and
hence for certain distributions the system may not settle down to a stationary invari-
ant probability. There are situations in which laws of large numbers fail to exist, and
hence statistical inference may lose its full strength. For some important purposes it is
sufficient to establish a weak notion of convergence for operators AN (Π) = 1

N

∑N
n=1 Πn.

For discrete state spaces, {AN (Π)} always converges to an invariant stochastic matrix,
but further regularity conditions are required for more general state spaces [cf. Doob
(1953, Ch. V)].

3 Main Results

This section contains our main analytical results that include an upper semicontinuity
property of the invariant distributions correspondence and a generalized law of large
numbers. These results entail that the moments computed from numerical simulations
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converge to the moments of the model’s invariant distributions as the approximation
errors of the computed solutions converge to zero. Moreover, under a contractivity
property on the equilibrium law of motion, we establish error bounds for the moments
generated by numerical approximations.

3.1 Upper Semicontinuity of the Invariant Distributions Correspon-
dence

We begin with some basic definitions in probability theory. Let B(S) be the set of
all bounded, S-measurable, real-valued functions on S. Then, B(S) is a Banach space
when endowed with the norm ‖f‖ = sups∈S |f(s)|. A transition function P on (S, S)
defines a Markov operator T from B(S) to itself via the following integration operation

(Tf)(s) =
∫
f(s′)P (s, ds′) all s ∈ S. (3.1)

Each operator T can be associated with its adjoint T ∗ so that if we write 〈f, µ〉 =∫
f(s)µ(ds), then 〈Tf, µ〉 = 〈f, T ∗µ〉 for all f and µ. Moreover, T ∗ is given by

(T ∗µ)(A) =
∫
P (s,A)µ(ds) all A ∈ S. (3.2)

The adjoint operator T ∗ maps the space of probability measures on S to itself.
Let C(S) be the space of all continuous real-valued functions f on S. The weak

topology is the coarsest topology such that every linear functional in the set {µ →∫
f(s)µ(ds), f ∈ C(S)} is continuous. Then, a sequence {µj} of probability measures on

S is said to converge weakly to a probability measure µ if
∫
f(s)µj(ds)→j

∫
f(s)µ(ds)

for every f ∈ C(S). The weak topology is metrizable [e.g., see Billingsley (1968)].
Hence, every weakly convergent sequence {µj} of probability measures has a unique
limit point.

Theorem 3.1 Under Assumptions 1-2, there exists a probability measure µ∗ such that
µ∗ = T ∗µ∗.

The existence of an invariant probability measure µ∗ can be established as follows.
First, one can show [e.g., see Futia (1982, Prop. 5.6)] that T maps the space C(S)
of continuous functions into itself. Hence, operator T ∗ must be weakly continuous.
Moreover, in the weak topology the set of all probability measures on S is compact, and
it is obviously a convex set. Therefore, by the Markov-Kakutani fixed-point theorem
there exists µ∗ such that µ∗ = T ∗µ∗.

For a vector-valued function ϕ = (. . . , ϕi, . . . ), let ‖ϕ‖ = max1≤i≤l+m
∥∥ϕi∥∥. Con-

vergence of a sequence of functions {ϕj} should be understood in the metric induced

8



by this norm. By Assumptions 1-2 each ϕj defines the associated triple (Pj , Tj , T ∗j );
moreover, by Theorem 3.1 there always exists an invariant distribution µ∗j = T ∗j µ

∗
j .

Theorem 3.2 Let {ϕj} be a sequence of functions converging to ϕ. Let {µ∗j} be a
sequence of probabilities on S such that µ∗j = T ∗j µ

∗
j for each j. Then, under Assumptions

1-2 every weak limit point µ∗ of {µ∗j} is an invariant probability measure, µ∗ = T ∗µ∗.

Observe that the theorem asserts the bilinear convergence of T ∗j µ
∗
j to T ∗µ∗. This

result is stronger than the standard notion of weak convergence, and entails that the
invariant distributions correspondence is upper semicontinuous.2 An early statement
of the upper semicontinuity of this correspondence appears in Dubins and Freedman
(1966, Th. 3.4). Further extensions can be found in Manuelli (1985) and Stokey, Lucas
and Prescott (1989, Th. 12.3). All these authors validate the upper semicontinuity of
invariant distributions under assumptions on function P , but these assumptions seem
hard to check in applications. The practical importance of Theorem 3.2 is that it ap-
plies to numerical approximations of Markov processes generated by stochastic systems
satisfying Assumptions 1-2.

Corollary 3.3 Let f belong to C(S). Then under the conditions of Theorem 3.2, for
every η > 0 there exits J such that for each µ∗j with j ≥ J there is µ∗ with the property

|
∫
f(s)µ∗j (ds)−

∫
f(s)µ∗(ds)| < η. (3.3)

This is an alternative formulation of the upper semicontinuity of the invariant distri-
butions correspondence. Observe that function f may define a moment or statistic
of an invariant probability measure. A related result can be stated in terms of the
expectations operators for functions f in C(S). Let

Emax(f) = max
{µ∗|µ∗=T ∗µ∗}

∫
f(s)µ∗(ds) (3.4)

Emin(f) = min
{µ∗|µ∗=T ∗µ∗}

∫
f(s)µ∗(ds). (3.5)

2The proofs of our main results are gathered in the Appendix. One can check that
the proof of Theorem 3.2 goes through under the less demanding metric ‖ϕ− ϕj‖L =
maxs∈S [

R
‖ϕ(s, ε)− ϕj(s, ε)‖Q(dε)].
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Remark 3.4 Note that the set of invariant distributions {µ∗|µ∗ = T ∗µ∗} is weakly
compact and convex. Hence, every continuous linear functional µ∗ →

∫
f(s)µ∗(ds)

always attains a maximum and a minimum value over this set. Moreover, convexity
entails that for every point E(f) in the interval of values [Emin(f), Emax(f)] there
exists an invariant distribution µ∗ such that E(f) =

∫
f(s)µ∗(ds).

As a straightforward consequence of Corollary 3.3, we obtain the following simple
inequalities.

Corollary 3.5 Let f belong to C(S). Then under the conditions of Theorem 3.2, for
every η > 0 there exists J such that

Emax(f) + η ≥
∫
f(s)µ∗j (ds) ≥ Emin(f)− η (3.6)

for each µ∗j with j ≥ J .

It is worth mentioning the following two applications of Corollaries 3.3 and 3.5.
First, for some computational methods [e.g., see Santos (1999)] one can obtain a se-
quence of numerical approximations {ϕj} that converge to the exact solution ϕ. Then,
(3.6) implies that the invariant distributions generated by these approximations will
eventually be contained in an arbitrarily small weak neighborhood of the set of all
invariant distributions generated by the original model. Second, most economic mod-
elizations involve a family of solutions ϕ(s, ε, θ) parameterized by a vector θ in a space
Θ. (Note that if ϕ is a continuous mapping on a compact domain, then this function
is uniformly continuous.) As above for each θ one could define the functional mappings
Emaxθ (f) and Eminθ (f). Then, (3.6) implies that Emaxθ (f) is an upper semicontinuous
function in θ, and Eminθ (f) is a lower semicontinuous function in θ. If there exists but
a unique invariant distribution µ∗θ so that Eθ(f) = Emaxθ (f) = Eminθ (f) for all θ, then
the expectations operator Eθ(f) varies continuously with θ.

3.2 Error Bounds

In numerical applications it is often desirable to bound the size of the approximation
error. Computations must stop in finite time, and hence error bounds can dictate
efficient stopping criteria. In most theoretical work the size of the error is estimated
from the convergence order of the numerical approximation and the constant bounding
such a convergence order. It is then of paramount importance to relate these two
components of the approximation error to primitive parameters of the model.

We shall now impose a contractivity condition on function ϕ. Then, we show that
the error of the statistics generated by a numerical approximation is of the same order
of magnitude as that of the computed solution.
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CONDITION C: There exits a constant 0 < α < 1 such that
∫
E ‖ϕ(s, ε)− ϕ(s′, ε)‖Q(dε) ≤

α ‖s− s′‖ for all pairs s, s′.

Condition C is familiar in the literature on Markov chains [e.g., see Norman (1972)
for an early analysis and applications, and Stenflo (2001) for a recent update of the
literature]. Related contractivity conditions are studied in Dubins and Freedman (1966),
Schmalfuss (1996) and Bhattacharya and Majumdar (2003). In the macroeconomics
literature, Condition C arises naturally in the one-sector Solow model [e.g., Schenk-
Hoppé and Schmalfuss (2001)] and in concave dynamic programs [e.g., see Foley and
Hellwig (1975) and Examples 4.2-4.3 below]. Stochastic contractivity properties are also
encountered in learning models [e.g., Schmalensee (1975), and Ellison and Fudenberg
(1993)] and in certain types of stochastic games [e.g., Sanghvi and Sobel (1976)].

It has been shown under various forms that a random contractive system has a
unique invariant distribution µ∗. To present a formal version of this result –which will
be needed for Theorem 3.7 below– let us now introduce some simple definitions. We
say that a real-valued function f on S is Lipschitz with constant L if ‖f(s)− f(s′)‖ ≤
L ‖s− s′‖ for all pairs s and s′. Let Zn(s0) denote the random vector ϕ(ϕ · · · (ϕ(s0, ε1), ε2)
· · · εn) for each initial value s0, and let µns0 denote the distribution of Zn(s0). Finally,
let d = diam(S).

Theorem 3.6 [cf., Stenflo (2001)] Let f be a Lipschitz function with constat L. Assume
that ϕ satisfies Condition C. Then under Assumptions 1-2,

(i) There exists a unique invariant distribution µ∗ = T ∗µ∗.
(ii) For all initial conditions s0 and all n,

|
∫
f(s)µ∗(ds)−

∫
f(s)µns0(ds)| ≤ Ldαn

1− α
. (3.7)

Consider now a numerical approximation ϕ̂. As before, this function defines an
operator T̂ ∗ that has a fixed-point solution µ̂∗ = T̂ ∗µ̂∗. We can now establish the
following result.

Theorem 3.7 Let f be a Lipschitz function with constant L. Let ‖ϕ̂− ϕ‖ < δ for some
δ > 0. Assume that ϕ satisfies Condition C. Then under Assumptions 1-2,

|
∫
f(s)µ∗(ds)−

∫
f(s)µ̂∗(ds)| ≤ Lδ

1− α
(3.8)

where µ∗ is the unique invariant distribution under ϕ, and µ̂∗ is any invariant distri-
bution under ϕ̂.
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Note that function ϕ̂ may not satisfy Condition C, and hence it may contain multi-
ple Markovian invariant distributions µ̂∗. Stenflo (2001) proves a related result in which
the approximate function ϕ̂ is required to satisfy Condition C. This contractivity con-
dition, however, is rather restrictive for our purposes, since it may not be preserved for
polynomial interpolations and related high-order approximation schemes under which
function ϕ̂ may have been calculated.

3.3 A Generalized Law of Large Numbers

In applied work, laws of large numbers are often invoked to compute statistics of invari-
ant distributions. For stochastic dynamical systems, usual derivations of laws of large
numbers proceed along the lines of the ergodic theorem [e.g., see Krengel (1985)]. But
to apply the ergodic theorem the initial value of the state variable s0 must lie inside an
ergodic set. A certain technical condition –known as Hypothesis D from Doob (1953)–
ensures that for every initial value s0 the dynamical system will enter one of its er-
godic sets almost surely. Then, using this hypothesis standard ergodic theorems can be
extended to incorporate all initial values s0 outside these ergodic sets. Hypothesis D,
however, is usually difficult to verify in economic applications [e.g., see Stokey, Lucas
and Prescott (1989, Ch. 11)].

Under conditions similar to Assumptions 1-2 above, Breiman (1960) proves a law
of large numbers that is valid for all initial values s0. This author dispenses with Hy-
pothesis D, but requires the Markov process to have a unique invariant distribution.
Uniqueness of the invariant distribution seems, however, a rather limiting restriction
for numerical approximations. Primitive conditions may be imposed on the original
model that guarantee the existence of a unique invariant distribution, but these con-
ditions may not be preserved by the discretization procedure leading to the numerical
approximation. Indeed, uniqueness of the invariant distribution is not robust to con-
tinuous perturbations of the model. This is illustrated in Figure 3 that portrays a
deterministic policy function with a unique stationary point. The dotted line depicts a
close approximation that contains a continuum of stationary points.

Our goal is then to derive a law of large numbers that holds true for all initial values
s0 but without imposing the technical Hypothesis D assumed in Doob (1953) or the ex-
istence of a unique invariant distribution assumed in Breiman (1960). Our generalized
law of large numbers is a strengthening of some analytical methods developed by Crauel
(1991, 2002). These methods cannot be directly applied to Markovian invariant distri-
butions, since function ϕ may contain some other invariant distributions. The method
of proof relies on an argument related to the subadditive ergodic theorem of Kingman
(1968) and on certain properties of conditional expectations for non-Markovian invari-
ant distributions as spelled out in Arnold (1998). Section 5 below provides a further

12



discussion of these results along with Hypothesis D.
In preparation for our analysis, we define a new probability space comprising all

infinite sequences {εn}. Let Ω = E∞ be the countably infinite cartesian product of
copies of E. Let F be the σ-field in E∞ generated by the collection of all cylinders
A1×A2× ...×An×E×E×E× ... where Ai ∈ E for i = 1, ..., n. A probability measure
λ can be constructed over these finite-dimensional sets A1×A2×...×An×E×E×E×...
as the product of probabilities Q(Ai). That is, let

λ{ω : ε1 ∈ A1, ε2 ∈ A2, ..., εn ∈ An} =
n∏
i=1

Q(Ai) (3.9)

for ω = (ε1, ε2, ...), and Ai ∈ E for 1 ≤ i ≤ n. This measure λ has a unique extension on
F. Hence, let (Ω,F, λ) denote the probability space. Finally, for every initial value s0 and
sequence of shocks ω = {εn}, let {sn(s0, ω)} be the sample path generated by function
ϕ, so that sn+1(s0, ω) = ϕ(sn(s0, ω), εn+1) for all n ≥ 1 and s1(s0, ω) = ϕ(s0, ε1).

Theorem 3.8 Let f belong to C(S). Then, under Assumptions 1-2 for all s0 and for
λ-almost all ω we have

(i) lim sup
N

1
N

N∑
n=1

f(sn(s0, ω)) ≤ Emax(f) (3.10)

(ii) lim inf
N

1
N

N∑
n=1

f(sn(s0, ω)) ≥ Emin(f). (3.11)

TECHNICAL REMARKS: (a) Example 4.1 below illustrates that inequalities (3.10)-
(3.11) may fail to hold in the absence of the continuity of ϕ(s, ε) in s. Moreover, the
proof of Theorem 3.8 shows that there are invariant probability measures for which
these bounds are tight in the sense that both (3.10) and (3.11) must hold with equality
for some (s0, ω).

(b) Theorem 3.8 is a sharpened version of Crauel (2002, Prop. 6.21). Our proof
has to deal with a further added technicality, since mapping ϕ and transition function
P may not have the same invariant distributions. Indeed, ϕ may generate some non-
Markovian probability measures µ on S × F [e.g., see Arnold (1998, p. 56)]. Our
operators Emax(f) and Emin(f) in (3.10)-(3.11) are defined in (3.4)-(3.5) over the set
of probability measures µ∗ which are fixed points of P , whereas Crauel proves the result
over the set of all invariant probability measures of ϕ. Therefore, our bounds (3.10)-
(3.11) are tighter, since the operators Emax(f) and Emin(f) are defined over a smaller
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set of invariant distributions, but the bounds in Crauel hold for functions f defined over
the set S × Ω.

(c) It should be stressed that (3.10)-(3.11) hold for all s0 over λ-almost all ω. As
a matter of fact, the proof of Theorem 3.8 shows that (3.10)-(3.11) hold uniformly
in s0. More precisely, inequality (3.10) can be replaced by the stronger condition
lim supN [maxs0∈S( 1

N

∑N
n=1 f(sn(s0, ω)))] ≤ Emax(f), and inequality (3.11) can be re-

placed by lim infN [mins0∈S( 1
N

∑N
n=1 f(sn(s0, ω)))] ≥ Emin(f).

(d) Observe that Theorem 3.8 does not guarantee convergence of a typical se-
quence { 1

N

∑N
n=1 f(sn(s0, ω))}. Note, however, that by the convexity of the set of

invariant distributions µ∗ (see Remark 3.4) for every limit point E(f) of the sequence
{ 1
N

∑N
n=1 f(sn(s0, w))} there exists an invariant distribution µ∗ such that E(f) =∫

f(s)µ∗(ds).
If there exists a unique invariant distribution µ∗, then Emax(f) = Emin(f). Hence,

both limits in (3.10)-(3.11) are the same and correspond to the unique expected value
E(f). Therefore, as a special case of Theorem 3.8 we obtain a standard formulation of
the law of large numbers for systems with a unique invariant distribution.

Corollary 3.9 [c.f., Breiman (1960)] Assume that there exits a unique invariant dis-
tribution µ∗ = T ∗µ∗. Then under the conditions of Theorem 3.8,

lim
N→∞

1
N

N∑
n=1

f(sn(s0, ω)) = E(f) (3.12)

for all s0 and for λ-almost all ω.

3.4 Accuracy of Numerical Simulations

The foregoing results are now applied to the problem of original interest represented
in Figure 1, which can be restated as follows. A researcher is concerned with the pre-
dictions of a stochastic dynamic model whose equilibrium solution may be specified
by a function ϕ. Function ϕ may not have an analytical representation. The model
is then solved by numerical methods. However, most often the invariant distributions
generated by a numerical approximation cannot be computed directly. Hence, numer-
ical methods are again brought up into the analysis. This time in connection with
some law of large numbers. As is typical in the simulation of stochastic models we sup-
pose that the researcher can draw sequences {ε̂n} from a generating process that can
mimic the distribution of the shock process {εn}. A probability measure λ is defined
over all sequences ω = (ε1, ε2, ...). Once a numerical approximation ϕj is available, it
is generally not so costly to generate sample paths {sjn(s0, ω)} defined recursively as
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sjn+1(s0, ω) = ϕj(sjn(s0, ω), εn+1) for every n ≥ 0 for fixed s0 and ω. Averaging over
these sample paths we get sequences of simulated statistics { 1

N

∑N
n=1 f(sjn(s0, ω))} as

defined by the real-valued function f . Our goal is to establish that the limit points of
the sequence of simulated statistics { 1

N

∑N
n=1 f(sjn(s0, ω))} from a good enough numer-

ical approximation ϕj are close to the exact values E(f) =
∫
f(s)µ∗(ds) of invariant

distributions µ∗ of the solution function ϕ.

Theorem 3.10 Under the conditions of Theorem 3.2, for every η > 0 there exists J
such that for each j ≥ J we can find a function Nj(w) so that

Emax(f) + 2η ≥ 1
N

N∑
n=1

f(sjn(s0, ω)) ≥ Emin(f)− 2η (3.13)

for all s0 and λ-almost all ω, and for all N ≥ Nj(ω).

Theorem 3.10 is a simple consequence of Corollary 3.5 and Theorem 3.8. Note that
by the technical remark (c) after Theorem 3.8 the convergence in (3.10)-(3.11) is uniform
in s0. Hence, (3.13) is valid for λ-almost all ω independently of s0. Also, we should stress
that by the convexity of the set of invariant distributions (see Remark 3.4) for every
function f in C(S) the whole interval of values [Emin(f), Emax(f)] can be generated by
the linear functionals µ∗ →

∫
f(s)µ∗(ds) over the set of invariant distributions {µ∗|µ∗ =

T ∗µ∗}. Therefore, every limit point of the sequence { 1
N

∑N
n=1 f(sjn(s0, ω))} in (3.13)

must be close to some expected value E(f) =
∫
f(s)µ∗(ds) for an invariant distribution

µ∗. Of course, if there exists a unique invariant distribution µ∗ = T ∗µ∗ we then have

Corollary 3.11 Assume that there exits a unique invariant distribution µ∗ = T ∗µ∗.
Then under the conditions of Theorem 3.10,

|E(f)− 1
N

N∑
n=1

f(sjn(s0, ω))| ≤ 2η (3.14)

for all s0 and λ-almost all ω, and for all N ≥ Nj(ω) with j ≥ J .

Regarding this result, notice that each approximating function ϕj may contain mul-
tiple invariant distributions µ∗j . In fact, this corollary is a good application of Theorem
3.8, since it would be quite restrictive to assume Hypothesis D or the existence of a
unique invariant distribution for every approximating function ϕj .

Finally, let us consider the numerical approximation ϕ̂ of Theorem 3.7. For given
s0 and ω, let ŝn+1(s0, ω) = ϕ̂(ŝn(s0, ω), εn+1) for all n ≥ 0.
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Corollary 3.12 Under the conditions of Theorem 3.7, for every η > 0 there exists a
function N̂(ω) such that for all N ≥ N̂(ω),

|E(f)− 1
N

N∑
n=1

f(ŝn(s0, ω))| ≤ Lδ

1− γ
+ η (3.15)

for all s0 and λ-almost all ω.

Finally, we would like to emphasize that all these results have been presented in a
framework of numerical simulation, but they may be recasted under alternative approx-
imations that can bear on issues related to convergence of parameter values, convergence
of the distributions for the stochastic shock ε, or stochastic perturbations of the model.
See Santos (2003) for an application of Theorems 3.2 and 3.8 to simulation-based esti-
mation.

4 Examples

This section contains three illustrative examples. The first example highlights the role
of the continuity condition of Assumption 2 in our main results. The remaining two ex-
amples are concerned with the derivation of error bounds in a simple model of economic
growth. For many economic models Condition C is quite restrictive, but it has a nice
application in the macroeconomics literature. Hence, the second example is concerned
with the analysis of error bounds in the case that the model contains a closed form
solution, and the third example extends this analysis to the more general case.

EXAMPLE 4.1: As one can observe from the proofs of Theorems 3.1-3.2 the continuity
of ϕ(s, ε) in s (Assumption 2) plays a fundamental role for the existence and upper semi-
continuity of the invariant distributions correspondence. The following two illustrations
enhance the further role of this continuity condition for the law of large numbers of The-
orem 3.8. The failure of the law of large numbers entails that the invariant distributions
no longer reflect the average behavior of a typical sample path.

Figure 4 depicts two real-valued functions g and ĝ, which are discontinuous from
the left at point s = 1. Moreover, g(s) > ĝ(s) > s for all s < 1, and lim

s→1−
g(s) =

lim
s→1−

ĝ(s) = 1; also, s > g(s) > ĝ(s) for all s ≥ 1. Using the same randomization device

of Example 2.1 we can then obtain a stochastic Markov process. But the resulting
stochastic Markov process from the random application of these two functions fails to
have an invariant distribution, since functions g and ĝ display a simple discontinuity at
point s = 1. Furthermore, for every sample path {sn} generated by this random process

16



the partial sums { 1
N

∑N
n=1 sn} converge to 1. This limit point cannot be the mean or

expected value of an invariant distribution, since such distribution does not exist.
Now, following Figure 5, let us change the value of the functions g and ĝ so that

g(s) > ĝ(s) > s for all s ≥ 1. Then, the resulting random dynamical system generated
by these new functions has a unique invariant distribution whose support is the interval
[1.9, 2]. Note that as in Figure 4, for every initial value s0 < 1 all the partial sums
{ 1
N

∑N
n=1 sn} of the sample paths {sn} generated by the random dynamical system

converge to point 1. Again, this limit point is not the mean value of an invariant
distribution, since the support of the existing invariant distribution is the interval [1.9, 2].
Hence, this limit point is off the feasible bounds asserted in Theorem 3.8, and the failure
of this theorem should be linked to the non-continuity of the stochastic process.

EXAMPLE 4.2: In this example we consider a simple version of the stochastic growth
model of Brock and Mirman (1972):

maxE
∞∑
t=0

βt log ct (P)

s. t. kt+1 = Aεt+1k
α
t + (1− π)kt − ct (4.1)

k0 fixed, kt ≥ 0, t = 0, 1, . . .

0 < β < 1, A > 0, 0 < α < 1, 0 < π < 1

where E is the expectations operator, and {εt} is an iid process drawn from a log-normal
distribution with mean 0 and variance σ2

ε .
The shock εt+1 is realized at the beginning of each date for t = 0, 1, . . . . Then, the

decision problem is to allocate at each t the amounts of consumption ct and capital
for the next period kt+1 so as to satisfy feasibility constraint (4.1). As is well known,
the set of optimal solutions for problem (P) has a Markovian representation. Hence,
every optimal path {kt} can be generated by a stochastic difference equation kt+1 =
g(kt, εt+1) where g is a continuous function. Moreover, for π = 1 the optimal policy
kt+1 = g(kt+1, εt+1) takes the form

kt+1 = αβAεt+1k
α
t , t = 0, 1, . . . (4.2)

Now, taking logs in (4.2) we get

log kt+1 = log(αβA) + log εt+1 + α log kt. (4.3)
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Clearly, this transformed system satisfies Condition C. Moreover, it follows from this
equation that k is log-normally distributed, and

E(log k) =
log(αβA)

1− α
(4.4a)

V ar(log k) =
σ2
ε

1− α2
. (4.4b)

We now introduce the following simple perturbations to function g:

(a) A simple translation gδ of the exact policy, gδ(kt, εt+1) = g(kt, εt+1) + δ with δ > 0;
hence, kt+1 = gδ(kt, εt+1) = αβAεt+1k

α
t + δ.

(b) A linear approximation gL of the exact policy g around the deterministic steady
state k∗ = g(k, 1); hence, kt+1 = gL(kt, εt+1) = k∗ + α2βAεt+1k

∗α−1
t (kt − k∗) for

k∗ = 1−α
√
αβA.

For the numerical experiments below we consider the following baseline parameter-
ization,

β = 0.95, A = 10, α = 0.34, π = 1, σε = 0.008. (4.5)

Whenever some of these parameter values are changed, normalizing constant A will
be adjusted so that the deterministic steady state k∗ = g(k∗, 1) always remains at
the benchmark value k∗ = 5.909. Also, in order to confine the analysis to a compact
domain of capitals, [kl, kh], we restrict the set of possible values for ε to the interval
[e−4σε , e4σε ]. Accordingly, the density function of ε is rescaled so as to have a unit mass
over this interval. The bounds kl and kh are computed from (4.2) as the fixed points
kl = g(kl, e−4σε) and kh = g(kh, e4σε).

Error Bounds
In what follows, k refers to the values for the capital stock generated by the policy

function (4.2), kδ refers to those generated by function gδ, and kL refers to those gen-
erated by function gL. For the computation of the sample moments we use a sequence
of pseudo-random numbers for ε of length N = 300, 000. The length of this path seems
larger than what it is necessary in all cases.

According to Theorem 3.7 the approximation error of the sample statistics from a
numerical approximation ĝ is up to a constant determined by ‖g−bg‖1−α , where ‖g − ĝ‖ is
the approximation error of the numerical solution and α is the modulus of the random
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contraction in Condition C. Note that by (4.3) above the modulus of contraction applies
to the logarithmic transformation of the function. Hence, ‖log(g)− log(ĝ)‖ seems the
proper notion of distance for our calculations.

Table 1 refers to the perturbed solution ĝ = gδ for δ = 0.01. This table illustrates
how the error of the first and second order moments varies with changes in α. The second
column considers the ratio ‖log(g)−log(bg)‖

1−α , and the third and fourth columns report the
differences of simulated values generated under these functions for the mean E(log k)
and the variance V ar(log k). (The expression xE-y means x times 10−y.) In the case
of E(log k) the derivative of this function is always equal to 1, and so the Lipschitz
constant in Theorem 3.7 is equal to 1. Therefore, the theory predicts that the entries
in the second column should dominate those of the third column. As we can see in this
table, the actual errors in the third column are always over one half of the theoretical
estimates of the second column. Hence, for the mean values these upper error estimates
are reasonably tight, and the observed values move consistently with those predicted by
the theory. Regarding the fourth column of this table, after some simple calculations we
obtain an upper bound equal to 0.2 for the Lipschitz constant of V ar(log k) in Theorem
3.7. The corresponding errors reported in the fourth column, however, go down by three
orders of magnitude. The fact that our upper estimates here are not so tight is in a
way expected. Our theory provides upper estimates based upon a Lipschitz constant
of the moment function, but the derivative of V ar(log k) varies sharply with log k. For
instance, at the mean value the derivative of this function is equal to zero.

The same calculations were replicated for the linear approximation gL. These num-
bers are reported in Table 2. Note that as α goes from 0.34 to 0.17 our theory predicts
a decrease in the error of the mean by a factor of 3.9538, whereas the observed error
went down by a factor of 10. Also an increase in α from 0.34 to 0.68 should lead to
an increment in the error of the mean by a factor of 14.43, but the observed error just
went up by a factor of 1.9. Therefore, our error bounds do not work as well for the
linear approximation gL. Again, this is to be expected since our theory is concerned
with worst-case error bounds that may just be tight for uniform numerical approxima-
tions. For the linear approximation the maximum distance between functions g and gL
is attained at the tails, but a typical sample path would be fluctuating near the mean
value. A further illustration of this point appears in Table 3. Here, we let σε = 0.08
and compare the errors of the moments generated by the approximations gδ and gL.
Although the error of the policy function gL is about 150 times larger than that of gδ,
the errors of the moments generated by gL are only about 10 times larger.

In conclusion, the upper bounds in Theorem 3.7 are the best possible. But these
estimates cannot be expected to be tight in all circumstances. These estimates should
be operative if the distance between the numerical approximation and the true solution
is constant over all values of state variable k and if the Lipschitz constant of the moment
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function is a tight upper bound for its derivative.

EXAMPLE 4.3: We now extend the analysis of the previous example for depreciation
factors 0 < π < 1. In this case, the model does not possess an analytical solution.
Hence, we propose a simple operational way to estimate numerically the modulus of the
random contraction in Condition C.

It should be clear that the model has a unique ergodic set, and for small values of σε
Condition C has to be satisfied. To bound the ergodic set we consider the deterministic
steady states kl and kh corresponding to the worst realization εt = e−4σε and the best
realization εt = e4σε for all t ≥ 1. Thus, let ζ(k, ε) be the policy function of the
deterministic model in which εt = ε for all t ≥ 1. Then,

kl = ζ(kl, e−4σε) (4.5a)

kh = ζ(kh, e4σε). (4.5b)

These steady states kl and kh can be calculated from the associated first-order condi-
tions. This interval of values [kl, kh] contains the original ergodic set.

Now, as above let g(k, ε) be the policy function for Problem (P). By the mean-value
theorem,

g(k, ε)− g(k′, ε) = D1g(k̃, ε) · (k − k′) (4.6)

where D1g(k̃, ε) is the partial derivative of g with respect to k evaluated at (k̃, ε), for
some point k̃ in the segment (k, k′). Let

D1g(k̂, ε̂) = maxD1g(k, ε) (4.7)

s. t. {k ∈ [kl, kh], ε ∈ [e4σε , e−4σε ]}

Then, for any k in [kl, kh] it follows from (4.6)-(4.7) that∫
|g(k, ε)− g(k′, ε)|Q(dε) ≤ |D1g(k̂, ε̂)||k − k′|. (4.8)

Moreover, as already pointed out, |D1g(k̂, ε̂)| < 1 for σε small enough. To get an esti-
mate for D1g(k̂, ε̂) we just calculate the maximum value of the derivative D1ζ(k, ε) over
the set of points {(kε, ε)|kε = ζ(kε, ε), ε in [e−4σε , e4σε ]}. This is the set of determinis-
tic steady states kε = ζ(kε, ε) for all ε in [e−4σε , e4σε ]}. For each point the derivative
D1ζ(kε, ε) can be calculated as the smallest eigenvalue of the linearization of the Euler
equation evaluated at the steady state solution for the deterministic growth model in
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which εt = ε for all t. This computational procedure is relatively easy to implement,
and should provide a good approximation α̂ of the true value D1g(k̂, ε̂).

We now carry out several numerical experiments to evaluate the error of the sample
moments using the baseline parameter values (4.5) with π = 0.1. As before, the scale
parameter A is adjusted so as to keep the stationary solution k∗ = 5.909 for k∗ = ζ(k∗, ε)
and ε = 1. For this parameterization we get α̂ = 0.89 as our estimate for the modulus
of contraction D1g(k̂, ε̂). Since the model does not have an explicit solution, we use a
PEA computational algorithm with Chebyshev polynomial interpolation and collocation
along the lines of Christiano and Fisher (2000). Our finest grid uses 8 collocation
points over [kl, kh] and 5 collocation points over [e−4σε , e4σε ]. Let gPEA(8,5) denote the
computed policy function for the collocation pair (8, 5). The Euler equation residuals
generated by this policy function are of order at most 10−9, which seems a very good
approximation to the true solution [cf. Santos (2000)].

Order of Convergence
Table 4 compares the simulated first and second order moments generated by nu-

merical solution gPEA(8,5) with those generated by other solutions obtained from coarser
grids. The column of the Euler residuals lists the maximum value for the Euler equation
residuals generated by each of these policies. This value is of the same order of magni-
tude as the approximation error of the numerical solution. As one can see, the errors of
the moments vary quite evenly with the Euler residuals, especially for the mean values.
Hence, as predicted by our theory the error of the moments is of the same order of
magnitude as the approximation error of the numerical solution.

To see more neatly the order of convergence of the moments, we also analyzed the
following perturbation of the computed policy

ĝδ = gPEA(8,5) + δ (4.9)

for δ > 0. Figures 6 and 7 plot the simulated values for the ratios |EkPEA(8,5)−Ebkδ |
δ and

|V arkPEA(8,5)−V arbkδ |
δ against δ, where kPEA(8,5) refers to the random process generated

by the solution gPEA(8,5) and k̂δ refers to the random process generated by function
ĝδ in (4.9). These figures cast no doubt that these ratios settle down as δ goes to
0. Therefore, for this type of perturbation the errors of the moments have the same
convergence order as the approximation error of the numerical solution.
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5 Hypothesis D

In his classical treatise, Doob (1953, Ch. V) proves a law of large numbers for Markov
processes under a technical condition called Hypothesis D. In this section we present
various useful regularity properties of invariant distributions implied by Hypothesis D.
We also point out certain differences with respect to our approach, and analyze some
important environments in which condition D is satisfied.

Let Pn be the n-step transition function. That is, Pn(s,A) =
∫
Pn−1(t, A)P (s, dt)

for n ≥ 2 and P 1(s,A) = P (s,A). Note that Pn(s,A) = (T ∗nδs)(A), where δs is the
Dirac measure at s.

HYPOTHESIS D: There exists a finite-valued measure γ on S, an integer n, and a
positive constant η, such that for all s,

Pn(s,A) ≤ 1− η if γ(A) ≤ η. (5.1)

Theorem 5.1 [cf. Doob (1953, Ch. V)] Suppose that Hypothesis D is satisfied. Then
(i) There exists a finite number M of ergodic invariant probabilities µ∗m, m =

1, ...,M . Every other invariant probability µ∗ is a convex combination of the ergodic
invariant probabilities µ∗m.

(ii) For every probability µ0 on S, the sequence { 1
N

∑N
n=1 T

∗nµ0} converges to some
invariant probability measure µ∗. The limit of each sequence { 1

N

∑N
n=1 T

∗nµ0} may
depend on µ0, but the convergence is uniform to the set of invariant probability measures
µ∗.

(iii) Let f be an element in B(S). Then, for almost all s0 and λ-almost all ω,

lim
N−→∞

1
N

N∑
n=1

f(sn(s0, ω)) =
∫
f(s)µ∗m(ds) (5.2)

for some ergodic invariant probability µ∗m, m = 1, ...,M.

Let us now explain these results. Hypothesis D is a generalization of the so called
Doeblin’s condition:

P (s,A) ≥ γ(A) (5.3)

for all s ∈ S and A ∈ S, for a finite-valued measure γ on S. Note that under (5.3) the
transition function P can have but a unique invariant distribution µ∗, whereas under
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Hypothesis D there can be multiple invariant distributions. Both (5.1) and (5.3) are
usually hard to check in applications. Some basic cases satisfying Hypothesis D are
discussed below; for further economic applications making use of these conditions, see
Stokey, Lucas and Prescott (1989, Ch. 11), Easley and Spulberg (1981), and Laitner
(1988).

Since the supports Em and En of two ergodic invariant probabilities µ∗m and µ∗n must
be disjoint, part (i) of Theorem 5.1 is just a straightforward consequence of Hypothesis
D. Indeed, (5.1) implies that if Em is the support of an invariant probability µ∗m, then
γ(Em) > η. Hence, the number M must be bounded by γ(S)

η . Note that if γ is an abso-
lutely continuous measure, then the support Em of every invariant probability µ∗m must
have a non-empty interior. Part (ii) of the theorem is another technical consequence
of Hypothesis D. The convergence of { 1

N

∑N
n=1 T

∗nµ0} holds in a strong sense. This
convergence property implies that for every s0 a generic sample path {sn(s0, ω)} will
reach the center of some ergodic set Em, for λ-almost all ω. The law of large numbers
in (5.2) can now be easily deduced. Indeed, the ergodic theorem [e.g., Krengel (1985)]
can be applied to each individual set Em, for m = 1, ...,M ; hence, for µ∗m-almost all
s0 and λ-almost all ω the series { 1

N

∑N
n=1 f(sn(s0, ω))} will converge to

∫
f(s)µ∗m(ds).

Moreover, every other point s0 outside the set
⋃M
m=1Em will eventually fall into one of

the ergodic sets Em with probability one. Therefore, for every initial condition s0 there
is only a finite set of possible limit points

∫
f(s)µ∗m(ds) in (5.2) corresponding to each

of the ergodic invariant measures µ∗m.
Hypothesis D is actually too strong for the derivation of the law of large numbers in

(5.2). This hypothesis may be replaced by some weaker, local irreducibility conditions
[e.g., see Meyn and Tweedie (1993) and Revuz (1975)]. These irreducibility conditions,
however, are also hard to verify in economic applications. In contrast, the assumptions
underlying our generalized law of large numbers in Theorem 3.8 hold true from regular
primitive assumptions on economic models.

Under the conditions contemplated in Theorem 3.8 there could be an infinite number
of ergodic invariant distributions µ∗; moreover, the sequence of distributions { 1

N

∑N
n=1 T

∗nµ}
may not have a well defined limit in the weak topology of measures. Hence, there is
no guarantee that a typical sequence { 1

N

∑N
n=1 f(sn(s0, ω))} will converge. But the

existence of a well defined limit as in (5.2) will at most improve marginally the con-
tent of our final convergence result in Theorem 3.10. The inequalities in Theorem 3.10
stem from the inequalities of both Corollary 3.5 and Theorem 3.8. Hence, unless one
could control for sudden explosions of the set of invariant distributions as considered
in Corollary 3.5, the bounds in Theorem 3.10 cannot be tightened. Moreover, Theo-
rem 3.8 establishes tight upper and lower bounds for the set of limit points of all these
sequences, and by the convexity of the set of invariant distributions (see Remark 3.4)
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every limit point of the sequence { 1
N

∑N
n=1 f(sjn(s0, ω))} in (3.13) must be arbitrarily

close to some expected value
∫
f(s)µ∗(ds) for an invariant probability measure µ∗.

Although Hypothesis D may be hard to check in particular economic applications, we
now show that this condition holds generically provided that one can enlarge adequately
the noise space. Hence, this condition is satisfied by the transition probabilities P of an
open and dense set of mappings ϕ over an enlarged space of random shocks. First, notice
that if the transition probability P of an equilibrium function ϕ satisfies Hypothesis D,
then this property will be preserved by the transition probability P̂ of a sufficiently
good approximation ϕ̂ of the mapping ϕ [e.g., see Futia (1982, Sect. 4.3)]. Second,
Doob (1953, p. 192) illustrates that if the transition probability P (s,A) can be written
as

P (s,A) =
∫
A
p(s, t)γ(dt) for all s ∈ S and A ∈ S (5.4)

where p(s, t) is a bounded measurable function, then P satisfies Hypothesis D. Now,
the following example considers an enlargement of the noise space such that the result-
ing transition probability Pa in this construction admits a representation of the form
(5.4). Hence, the addition of an independent shock ε̃ with a continuous positive density
function over the whole space S will give rise to a transition probability Pa satisfying
Hypothesis D. Further, in this example the sequence of mappings ϕa converge to ϕ as
a → 0. Therefore, Hypothesis D is satisfied by the probabilities Pa of a dense set of
mappings ϕa over the enlarged noise space. Similar constructions are often encountered
in the econometrics literature. See Rust (1994) for several possible interpretations of
this additional error term in the estimation and testing of structural dynamic models.
This enlargement of the shock process is not always justifiable on economic grounds.

EXAMPLE 5.1: We now add a non-singular random vector ε̃ to the original dynamical
system ϕ so as to guarantee the existence of a finite number of ergodic invariant measures
whose supports have non-empty interiors. Moreover, under this artificial enlargement of
the noise space a law of large numbers along the lines of Theorem 5.1 can be established
without the continuity assumption discussed in Example 4.1.

In order to perturb mapping ϕ, let us assume that the following regularity condition
is satisfied

int(S) 6= ∅ and (clos[ϕ(S × E)])
⋂

(∂S) = ∅ (5.5)

where ∂ denotes the boundary of S. The random vector ε̃ is now introduced in a rather
formal way. Let (G,G, ν) be a probability space, and let ε̃ : G → S be a measurable
function. Suppose that ν is such that the random vector ε̃ is uniformly distributed.
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Specifically, if γ denotes the Lebesgue measure, suppose that a probability γ̃ is defined
on S such that for every A ∈ S,

γ̃(A) = ν(ε̃−1(A)) =
γ(A)
γ(S)

. (5.6)

Let

ϕa(s, ε, ε̃) = ϕ(s, ε) + aε̃ (5.7)

where a is a multiplicative constant. Notice that by (5.5) the mapping ϕa : S×E×G→
S is well defined for a small enough. Then, let {(εt, ε̃t)} be the bivariate iid process
generated under the product measure Q× γ̃. As in (2.3), let

Pa(s,A) = Q× γ̃({(ε, ε̃)|ϕa(s, ε, ε̃) ∈ A}). (5.8)

Now, since the shock ε̃ has a continuous density and it is independent of ε it follows
that transition function Pa can be written as in (5.4) for all s ∈ S and A ∈ S. Hence,
Pa satisfies Hypothesis D. Then, by Theorem 5.1, there is a finite number Ma of ergodic
invariant probabilities µ∗am for Pa with non-overlapping supports σ(µ∗am). Any other
invariant probability µ∗a for Pa must be a convex combination of the ergodic invariant
probabilities µ∗am, for m = 1, ...,Ma. The support σ(µ∗a) of each invariant probability
µ∗a must have non-empty interior, since random vector ε̃ is uniformly distributed over
S, and independent of ε. Moreover, letting a → 0, by Theorem 3.2 these ergodic
invariant probabilities {µ∗am} must approach the set of invariant probability measures
{µ∗|µ∗ = T ∗µ∗}.

Finally, it should be clear that Hypothesis D does not require the vector of shocks ε
to be of at least the same dimension as the vector of state variables s, since (5.1) may be
satisfied for some n-step transition probability. Here we provide another application in
which condition (5.1) can be verified by invoking an inverse function theorem argument
over a sequence of shocks ε.

EXAMPLE 5.2: Consider the following dynamical system

kt+1 = g(kt, zt)
zt+1 = Ψ(zt, εt+1) (5.9)

where k, z are non-negative numbers that lie in the compact set K × Z and εt is an
iid random variable with an absolutely continuous distribution over some interval [ε, ε].
Now, assume that functions g and Ψ are continuously differentiable, and that each of
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their partial derivatives is always different from zero. Then, we claim that the 2-step
transition probability P 2 satisfies (5.1). Indeed, we may write (5.9) as

kt+1 = g(g(kt−1, zt−1),Ψ(zt−1, εt))
zt+1 = Ψ(Ψ(zt−1, εt), εt+1). (5.10)

Now, differentiating (5.10) with respect to (εt, εt+1), one can check that the matrix of
partial derivatives is non-singular. Hence, by an inverse function argument one can
see that for each (kt−1, zt−1) every small neighborhood of (εt, εt+1) is mapped into a
neighborhood of some (kt+1, zt+1). Furthermore, by a compactness argument there are
positive constants δ and δ′ such that for any given (kt−1, zt−1) and all (εt, εt+1) every
ball Bδ(εt, εt+1) with center (εt, εt+1) and radius δ will be mapped by (5.10) onto a
neighborhood containing a ball Bδ′(kt+1, zt+1) with center (kt+1, zt+1) and radius δ′.
From this injective uniform lower bound, it is now easy to show that Hypothesis D
must be satisfied for the 2-step transition function P 2.

To summarize, under Hypothesis D the ergodic theorem can be extended to encompass
all initial conditions s0 outside the ergodic sets. This is a very useful result since in
general it is not possible to locate these ergodic sets. In economic models, however, Hy-
pothesis D is hard to verify from primitive conditions. Hence, our law of large numbers
in Theorem 3.8 has wider applicability. Examples 5.1 and 5.2 illustrate nevertheless
two important applications covered by Hypothesis D that often arise in the economics
literature.

6 Concluding Remarks

As argued by Lucas (1980), theoretical economics should provide fully articulated, artifi-
cial economic systems that can be simulated and contrasted with available data sets. For
reasons of mathematical tractability and further considerations, most economic models
are not conceived as computer programs that can be realized in a finite number of in-
structions. These models are characterized by non-linear functions and correspondences,
and are discretized by numerical methods. Therefore, typically a researcher simulates
a numerical approximation in order to learn about the behavior of an economic model.

In this paper we have delved into the theoretical foundations of numerical simulation
for stochastic dynamic models. One issue of major concern in this investigation is that
some of the available theory is grounded on assumptions which are not readily verifiable
for economic models. More specifically, existing results on continuity properties of the
correspondence of invariant distributions are not suitable for numerical approximations
as they are formulated under conditions on the transition probability P ; error bounds
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concerning perturbations of stochastic contractions require that the approximating func-
tion ϕ̂ must also satisfy the contractivity condition; and laws of large numbers build
along the lines of Hypothesis D or the assumption of a unique invariant distribution.
All these conditions are difficult to check in economic models, and may not be preserved
for numerical approximations or under further stochastic perturbations of the original
system.

Our analysis builds on the assumptions of a compact domain and continuity of the
equilibrium solution. These hypotheses are usually validated from primitive conditions
of economic models, and hold true for most numerical approximation schemes. The as-
sumption of a compact domain can be weakened [e.g., see Billingsley (1968) and Futia
(1982)]. The continuity of the equilibrium solution is a more delicate assumption,3 and
can only be dispensed at the cost of some other specific conditions [e.g., Hopenhayn
and Prescott (1992)]. As discussed in Example 4.1 above, the continuity of the equilib-
rium function plays an essential role for the existence of an invariant distribution, the
upper semicontinuity of the correspondence of invariant distributions, and our gener-
alized version of the law of large numbers. Therefore, a main message of the present
paper is that the continuity of the equilibrium function is of fundamental importance
to guarantee convergence of the simulated moments from numerical solutions to the
moments of the model’s invariant distributions as the approximation errors of these so-
lutions converge to zero. These asymptotic results are a first step to develop theories of
comparative analyses and error bounds for approximate solutions in stochastic dynamic
models. Error bounds for the moments of the invariant distributions were obtained un-
der the assumption of a random contraction. This assumption may be difficult to check
in some economic applications, but it seems plausible to establish related error bounds
for differentiable perturbations of the model. However, under the postulated continuity
property of the dynamical system our asymptotic results appear to be optimal.

Continuity properties of invariant distributions are usually assumed in estimation-
based simulation and testing of dynamic economic models in which one generally con-
siders a family of models ϕ(s, ε, θ) indexed by a vector of parameters θ in a space Θ.
Then, sequences of simulated moments { 1

N

∑N
n=1 f(sn(s0, ω, θ))} are generated so as

to approximate the expectations operator Eθ(f). Hence, an important property is the
continuity of operator Eθ(f) in θ. This continuity property follows from our results
above (cf., Corollary 3.5), and plays a central role in proofs of consistency of simulated
estimators [e.g., Duffie and Singleton (1993) and Santos (2003)] to establish the uniform
convergence of the sequence of simulated moments { 1

N

∑N
n=1 f(sn(s0, ω, θ))} to Eθ(f)

in θ.
3Continuity of the equilibrium function may cease to hold in non-convex optimization problems or

in competitive convex economies with incomplete markets [Krebs (2002)] or with taxes, externalities,
and money [Santos (2002)].
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Finally, we would like to conclude with a brief discussion of an important and con-
troversial issue regarding the simulation of stochastic dynamic models. It seems to be a
common practice in macroeconomics to compute the distribution of the simulated mo-
ments from a large number of sample paths of length equal to that of the data sample.
Thus, if the length of the data sample is N the simulation exercise would proceed by
producing a large number of the model’s sample paths of the same length N . Then,
the simulated moments computed over each of these sample paths are compared with
those of the data sample. Our analysis, however, seems to suggest that a proper way to
simulate a dynamic model would be produce one single sample path of arbitrarily large
length. This is because by the law of large numbers the simulated moments would be
approaching generically the true moments as the length of the sample path gets large.
Of course, note that once a model has been specified in our framework the only uncer-
tainties in the computation of the moments of an invariant distribution stem from the
approximation and truncation errors of the numerical solution. Therefore, our analysis
offers no justification for replicating a large number of the model’s sample paths –each
of the same length N as that of the data sample. These sample paths may be heavily
influenced by the choice of the initial values s0.

7 Appendix

Proof of Theorem 3.2: For an associated triple (ϕ, T, T ∗) and a probability µ, let ϕ · µ
stand for T ∗µ. Then, following Dubins and Freedman (1966, p. 239) the theorem will
be established if we can show the continuity of the evaluation map ev(ϕ, µ) = ϕ · µ.
Recall that the space of mappings ϕ is endowed with the metric topology induced by the
norm ‖ϕ‖ and the space of probability measures is endowed with the topology of weak
convergence. Note that the topology of weak convergence is metrizable [cf. Billingsley
(1968)]. As is well known [e.g., see Shiryaev (1996)], the following metric is compatible
with this topology:

d(µ, ν) = sup
f∈A
{|
∫
f(s)µ(ds)−

∫
f(s)ν(ds)|} (7.1)

where A is the space of Lipschitz functions on S with constant L ≤ 1 and such that
‖f‖ ≤ 1.

Let f belong to A. Then, for any two mappings ϕ and ϕ̂, and any two measures µ
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and ν, we have

|
∫
f(s)[ϕ · µ(ds)]−

∫
f(s)[ϕ̂ · ν(ds)]|

= |
∫

[
∫
f(ϕ(s, ε))Q(dε)]µ(ds)−

∫
[
∫
f(ϕ̂(s, ε))Q(dε)]ν(ds)|

≤ |
∫

[
∫
f(ϕ(s, ε))Q(dε)]µ(ds)−

∫
[
∫
f(ϕ(s, ε))Q(dε)]ν(ds)|

+|
∫

[
∫
f(ϕ(s, ε))Q(dε)]ν(ds)−

∫
[
∫
f(ϕ̂(s, ε))Q(dε)]ν(ds)|

≤ |
∫

[
∫
f(ϕ(s, ε))Q(dε)][µ(ds)− ν(ds)] + ‖ϕ− ϕ̂‖ .

Note that the first inequality comes from the triangle inequality, and after some simple
arrangements the second inequality comes from the definition of the norm ‖ϕ− ϕ̂‖ for
f in A.

Then, by (7.1) the theorem will be established if we can show that for every arbitrary
η > 0 there exists a weak neighborhood V (µ) of µ such that for all ν in V (µ) and all f
in A,

|
∫

[
∫
f(ϕ(s, ε))Q(dε)][µ(ds)− ν(ds)]| < η. (7.2)

By the Arzela-Ascoli theorem, the set A is compact. Hence, we can find a finite
set of elements {f j} such that for every f in A there exists an element f j so that
‖f −f j‖ < η

3 . Also, by Assumption 2 the mapping
∫
f(ϕ(s, ε))Q(dε) is continuous in s.

Hence, for every f j there exists a weak neighborhood Vj(µ) such that for all ν in Vj(µ),

|
∫

[
∫
f j(ϕ(s, ε))Q(dε)][µ(ds)− ν(ds)]| < η

3
.

Therefore, (7.2) must hold for all f with ‖f − f j‖ < η
3 . Finally, let V (µ) =

⋂
j Vj(µ).

Then, (7.2) must hold for every ν in V (µ) and all f in A. The proof is complete.
Proof of Theorem 3.7: For an initial point s0, let Zn(s0) denote the random vector
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ϕ(ϕ · · · (ϕ(s0, ε1), ε2) · · · εn) and let Ẑn(s0) denote ϕ̂(ϕ̂ · · · (ϕ̂(s0, ε1), ε2) · · · εn). Then,

|E[f(Zn(s0))]− E[f(Ẑn(s0))]| =

|E[f(ϕ(Zn−1(s0), εn))]− E[f(ϕ̂(Ẑn−1(s0), εn))]| ≤

|E[f(ϕ(Zn−1(s0), εn))]− E[f(ϕ(Ẑn−1(s0), εn))]|+

|E[f(ϕ(Ẑn−1(s0), εn))]− E[f(ϕ̂(Ẑn−1(s0), εn))]| =

|E[E[f(ϕ(Zn−1(s0), εn))− f(ϕ(Ẑn−1(s0), εn))]|εn]|+

|E[f(ϕ(Ẑn−1(s0), εn))]− E[f(ϕ̂(Ẑn−1(s0), εn))]| ≤

LαE‖Zn−1(s0)− Ẑn−1(s0)‖+ Lδ.

Observe that the first inequality comes from the triangle inequality. The second equality
results by first conditioning on εn, and then by an application of the law of iterated
expectations. And the last inequality follows from the assumptions of the theorem.
Now, by a similar argument we get

LαE‖Zn−1(s0)− Ẑn−1(s0)‖ ≤

Lα2E‖Zn−2(s0)− Ẑn−2(s0)‖+ Lαδ.

Hence, combining these inequalities and proceeding inductively it follows that

|E[f(Zn(s0))]− E[f(Ẑn(s0))]| ≤ Lδ

1− α
for all n ≥ 1. (7.3)

Now, consider an invariant distribution µ̂∗ of mapping ϕ̂. Then,

|
∫
E[f(Zn(s0))]µ̂∗(ds0)−

∫
f(s)µ̂∗(ds0)| =

|
∫
E[f(Zn(s0))]µ̂∗(ds0)−

∫
E[f(Ẑn(s0))]µ̂∗(ds0)| ≤ Lδ

1− α
for all n ≥ 1. (7.4)

Observe that the equality comes from the fact that µ̂∗ is an invariant distribution under
ϕ; and the inequality in (7.4) is a consequence of (7.3). As this inequality holds true
for all n ≥ 1, and Ef(Zn(s0)) =

∫
f(s)µns0(ds), by Theorem 3.6 we must have

|
∫
f(s)µ∗(ds)−

∫
f(s)µ̂∗(ds)| ≤ Lδ

1− α
. (7.5)
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Therefore, (7.5) must be satisfied for every invariant distribution µ̂∗ under ϕ̂. This
concludes the argument.

Proof of Theorem 3.8: For the proof of this theorem, it is convenient to let time n
range from−∞ to∞ so as to consider sequences of the form (. . . , ε−n, . . . , ε−1, ε0, ε1, . . . , εn, . . . ).
Using the construction in (3.9), we can then define a probability space (Ω̂, F̂, λ̂) over
these doubly infinite sequences. Also, we shall view F as σ-subfield of F̂. For each integer
J we define the J-shift operator ϑJ : Ω̂→ Ω̂, as ϑJ(. . . , ε−n, . . . , ε−1, ε0, ε1, . . . , εn, . . . ) =
(. . . , ε−n+J , . . . , ε−1+J , εJ , ε1+J , . . . , εn+J , . . . ). Note that the mapping ϑJ is bijective
and measurable. Hence, (Ω̂, F̂ , λ̂, ϑJ) is an ergodic system.

Let

FN (ω) = maxs0∈S(
N∑
n=1

f(sn(s0, ω))). (7.6)

Then, the following inequality must be satisfied,

FN+J(ω) ≤ FN (ϑJ(ω)) + FJ(ω)

for all positive integers N and J . Hence, by the subadditive ergodic theorem of Kingman
(1968) there exists a constant F such that for λ-almost all ω,

lim
N→∞

FN (ω)
N

= F. (7.7)

Under these conditions, Crauel (1991, and 2002 pp. 96-97) shows existence of a ϕ-
invariant probability measure ν̂ on the product space S× F̂ such that∫

f(s)ν̂(ds, dω) =
∫

[
∫
f(s)ν̂ω(ds)]λ̂(dω) = F (7.8)

where ν̂ω(ds)λ̂(dω) denotes the disintegration of ν(ds, dω). Furthermore, by (7.7) and
an iterated application of the ergodic theorem to the measure ν̂ in (7.8) we get that

lim
N→∞

1
N

N∑
n=1

f(sn(s0, ω)) = F (7.9)

for ν̂-almost all (s0, ω).
For our purposes, the problem with Crauel’s argument is that the ϕ-invariant prob-

ability measure ν̂ in (7.8) may not be P -invariant [cf., Arnold (1998, p. 56)]. Hence,
to complete the argument we need to show that there exists a ϕ-invariant probability
measure satisfying (7.8) that can be expressed as a product measure.
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Let ν∗ = E(ν̂|S× F) be the conditional expectations of ν̂ over our original product
space S×F. Then, as illustrated in Arnold (1998, p. 38) this measure ν∗ is ϕ-invariant.
Furthermore, since {εn} is an iid process the measure ν∗ can be expressed as ν∗ = µ∗×λ
where µ∗ is a P -invariant probability measure (viz. op. cit. Corollary 1.7.6.). Moreover,
for any continuous function f on S,∫

S×Ω
f(s)ν̂(ds, dω) =

∫
S×Ω

f(s)ν∗(ds, dω) =
∫
S
f(s)µ∗(ds).

Hence, (7.7)-(7.8) entail that Emax(f) = F . Therefore, (3.10) in Theorem 3.8 follows
now from (7.6)-(7.7). After minor changes, the same argument will prove (3.11). The
theorem is thus established.
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