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How well do current business-cycle models explain historical output
fluctuations? Almost a decade has passed since Plosser (1989) claimed
that a simple real-business-cycle (RBC) model could generate simulated
output with a correlation of 0.87 with actual output over the period since
the Korean War. A similar observation led Prescott (1986) to claim that
theory is ahead of business-cycle measurement. This paper revisits
Plosser’s exercise, using some recent innovations in business-cycle theory
and measurement. It uses estimates of technology change recently
derived by Basu, Fernald, and Kimball (1998) (henceforth BFK) and finds
that a simple RBC model calibrated with these shocks produces simulated
output that is negatively correlated with actual output. A simple dynamic
general-equilibrium (DGE) model with sticky prices does somewhat
better: Its impulse response to a technology improvement is qualitatively
similar to that found in the data, but quantitatively the results are only
moderately satisfactory. A simulation of the sticky-price model using
estimates of both technology and monetary policy shocks generates
model output that has a correlation of about 0.30 with actual output.
Thus, current business-cycle models cannot easily explain the observed
facts—measurement seems to be ahead of theory once again.

My results differ from Plosser’s mainly because of the new measure
of technological change that I employ. The particular series used here was
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estimated by BFK, but it is similar to those derived by a number of recent
researchers attempting to produce better measures of short-run technical
change than the standard Solow residual (for example, Burnside, Eichen-
baum, and Rebelo 1996; Gali 1998). This new series shows that short-run
changes in output and, especially, inputs are negatively correlated with
technology improvements. As is well known, the usual RBC model
produces impulse responses for output and other variables that are
strongly positively correlated with technical change. Thus, it is unsur-
prising that the RBC model cannot duplicate the co-movements between
observed variables and the new measure of technical change.

This paper makes four points. First, it reviews the evidence suggest-
ing that technical innovation has contractionary effects in the short run.
BFK argue that a major reason for the strong positive correlation of the
Solow residual with output is measurement error coming from variable
capital and labor utilization. Second, the paper shows that a sticky-price
model with variable capital utilization can do a reasonable job of
matching very short-run movements in business-cycle variables follow-
ing an improvement in technology, but it also finds that the model does
not capture the medium-run dynamics. Third, the paper argues that
variable utilization is not just a bias; it can be an important propagation
mechanism for both technology and money shocks, amplifying and
propagating the effects of small disturbances.1 However, even with this
new mechanism, nominal shocks do not have persistent effects. The basic
problem appears to be the standard one in the sticky-price literature, the
lack of sufficiently strong propagation mechanisms (real rigidities2) in
addition to variable utilization. Fourth, however, the paper suggests that
real rigidities that are strong enough to generate substantial endogenous
price stickiness in response to nominal shocks may lead to implausibly
large fluctuations in response to technology shocks. Thus, producing
plausible sticky-price DGE models of business cycles may be even more
complicated than hitherto believed.

The first part of the paper reviews the method that BFK use to purge
the Solow residual of various nontechnological components. Plosser
(1989) took the standard Solow productivity residual as his measure of
short-run technical change. Since then, a huge body of work has searched
for other explanations for the procyclicality of productivity. This litera-
ture has advanced four main explanations for procyclical productivity.
First, as Plosser assumed, procyclical productivity may reflect procyclical
technology. Second, widespread imperfect competition and increasing

1 This point has also been made by Burnside and Eichenbaum (1996); Dotsey, King, and
Wolman (1997); King and Rebelo (1997); and Wen (1997).

2 The term is from Ball and Romer (1990). Kimball (1995) provides an insightful
discussion of the relationship between the amplification of shocks in the static setting of Ball
and Romer and their propagation over time in the setting of current DGE models.

208 Susanto Basu



returns may lead productivity to rise whenever inputs rise. Third, as
already mentioned, utilization of inputs may vary over the cycle, in a way
that is not properly captured by standard input measures. Fourth,
reallocation of resources across uses with different marginal products
may contribute to procyclicality. For example, if different industries have
different degrees of market power, then inputs will generally have
different marginal products in different uses. Then aggregate productivity
growth is cyclical if sectors with higher markups have input growth that
is more cyclical.3

BFK control for the three nontechnological components of measured
productivity and derive technology change as a residual. Empirically,
variations in utilization and cyclical reallocation seem the most important
for generating the negative correlation between technology and inputs.
Given these results, it is easy to confirm that the standard RBC model,
even augmented with variable capital utilization, cannot duplicate the
impulse responses observed in the data. This finding may seem perplex-
ing given the recent claim of King and Rebelo (1997) that variable capital
utilization can “resuscitate” the RBC model. In the third section of this
paper, I discuss why my conclusions differ from theirs.

I then partially confirm the conjecture of BFK that a sticky-price
model with variable utilization can reproduce the impulse responses
estimated from the data. The intuition is straightforward. As a simple
example, suppose the quantity theory governs the demand for money, so
output is proportional to real balances. In the short run, if the supply of
money is fixed and prices cannot adjust, then real balances and hence
output are also fixed. Now suppose that a positive technology shock
occurs. With improved technology, firms need less labor to produce this
unchanged output. As a result, they lay off workers and reduce hours.
Over time, however, as prices adjust, the underlying real-business-cycle
dynamics take over, and output and inputs rise.

It turns out that a more sophisticated version of this model can
reproduce the initial contractionary effect of a technology improvement
quite well, predicting a small fall in output and a large fall in inputs.
However, the period of price stickiness is so short—and the response of
the monetary authority to the initial contraction is likely to be so
expansionary—that the contraction is succeeded by a boom far more
quickly in the model than in the data.

Since the empirical section of the paper implies that changes in factor
utilization are very important, I then investigate the extent to which
variable utilization can also act as an important propagation mechanism

3 For examples of these four explanations, see, respectively, Cooley and Prescott (1995);
Hall (1988, 1990); Basu (1996), Bils and Cho (1994), and Shapiro (1996); and Basu and Fernald
(1997).
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in a dynamic general-equilibrium (DGE) model. One advantage of this
method of controlling for utilization (taken from Basu and Kimball 1997)
is that it also provides estimates of some of the critical parameters
governing changes in utilization. Dotsey, King, and Wolman (1997) use
the Basu-Kimball results to calibrate a sticky-price DGE model, and they
claim that a model with interest-inelastic money demand, infinitely
elastic labor supply, and variable capital utilization can generate persis-
tent output fluctuations in response to nominal shocks. However, their
result does not appear to extend to the case considered in this paper,
where nominal interest rates are governed by a plausible Fed reaction
function and where the labor supply elasticity is more realistic. In this
setting, I can generate persistence only by allowing utilization to be
highly variable. But the fact that I want the sticky-price model to deliver
sensible impulse responses to both technology and money shocks turns
out to be a binding constraint: Highly variable utilization produces more
persistent dynamics in response to money shocks, but implausibly large
fluctuations in response to technology shocks. Thus, extending sticky-
price models to consider technology shocks is important both for match-
ing the data, which suggest that such shocks are important, and for
developing the theory of how they affect the economy.

The paper is structured as follows. The first section reviews the BFK
method for estimating technology change, and the next two sections
summarize the data and some of the empirical results. These results
establish the facts that we want to match. The fourth section presents
simple DGE models with and without nominal price rigidity and
discusses their calibration. Model results are then presented, and the final
section offers conclusions.

THE EMPIRICAL MODEL

The empirical model is based only on cost-minimization by firms and
one weak assumption about consumer preferences. It is thus consistent
with a wide class of models including—but not limited to—the models
explored in the fourth section, “A DGE Model with Variable Capital
Utilization.” The strategy will be to derive a series of corrected residuals,
using the methods of Basu and Kimball (1997) and Basu and Fernald
(1997). These residuals were first constructed, and their properties
discussed, in BFK. This section of the paper reviews their methods.4

The Basic Setup

I assume that each firm’s production function for gross output takes
the following form:

4 The presentation in this section draws on Basu and Fernald (1998).

210 Susanto Basu



Y 5 F~K̃, L̃, M, T! (1.1)

The firm produces gross output, Y, using capital services K̃, labor services
L̃, and intermediate inputs of materials and energy M. T indexes
technology. T also includes the effects of any externalities that may exist.
(For simplicity, time and firm subscripts are omitted.)

In principle, the services of labor and capital depend on both the raw
quantities of these inputs (hours worked, and the capital stock) and the
intensity with which they are used. Hence, labor services, L̃, depend on
the number of employees, N, hours worked per employee, H, and the
effort of each worker, E. Capital services depend on the capital stock, K,
and the utilization of the capital stock, Z. Input services are therefore the
following products:

L̃ 5 EHN,
(1.2)

K̃ 5 ZK

I generally assume that the capital stock and the number of employees are
quasi-fixed, so that firms cannot change their levels costlessly. In the short
run, firms can vary their inputs of capital and labor only by varying
utilization.

I assume that the firm’s production function F is (locally) homoge-
neous of arbitrary degree g in total inputs. Constant returns corresponds
to the case where g equals one. Formally, we can write returns to scale in
two useful, and equivalent, forms. First, returns to scale equal the sum of
output elasticities:

g 5
F1K̃
Y 1

F2L̃
Y 1

F3M
Y , (1.3)

where FJ
i denotes the derivative of the production function with respect

to the Jth element (that is, the marginal product of input J). Second, once
we assume that firms minimize cost, we can denote the firm’s cost
function by C(Y). (In general, the cost function also depends on the prices
of the variable inputs and the quantities of any quasi-fixed inputs,
although for simplicity I suppress those terms here.) The local degree of
returns to scale equals the inverse of the elasticity of cost with respect to
output (see Varian 1984, p. 68):

g~Y! 5
C~Y!

YC9~Y!
5

C~Y!/Y
C9~Y!

5
AC
MC , (1.4)

where AC equals average cost, and MC equals marginal cost. Note that
increasing returns, for example, may reflect overhead costs or decreasing
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marginal cost; both imply that average cost exceeds marginal cost. If
increasing returns take the form of overhead costs, then g(Y) is not a
constant structural parameter, but depends on the level of output the firm
produces. As production increases, returns to scale fall as the firm moves
down its average cost curve.

As equation (1.4) shows, there is no necessary relationship between
the degree of returns to scale and the slope of the marginal cost curve.
Indeed, increasing returns is compatible with increasing marginal costs,
as in the standard Chamberlinian model of imperfect competition. One
can calibrate the slope of the marginal cost curve from the degree of
returns to scale only by assuming no fixed costs. This point is an
important one, because it is the slope of the marginal cost curve that
determines the slopes of the factor demand functions, which in turn are
critical for determining the results of DGE models, like the one in the
fourth section, below. A number of studies have used estimates of the
degree of returns to scale to calibrate the slope of marginal cost: This
procedure is not legitimate.

Firms may charge a price P that is a markup, m, over marginal cost.
That is, m 5 P/MC. Returns to scale g is a technical property of the
production function, while the markup m is essentially a behavioral
parameter, depending on the firm’s pricing decision. However, the
following identity links the two parameters:

g 5
C~Y!

YC9~Y!
5

P
C9~Y!

C~Y!

PY 5 m~1 2 sp!, (1.5)

where sp is the share of pure economic profit in gross revenue. As long
as pure economic profits are small (Rotemberg and Woodford 1995
provide a variety of evidence suggesting that profit rates are close to
zero), equation (1.5) shows that m approximately equals g. Large mark-
ups, for example, require large increasing returns.

Given low estimated profits, equation (1.5) also shows that strongly
diminishing returns (g less than one) imply that firms consistently price
output below marginal cost (m less than one). Since pricing below
marginal cost makes no economic sense, I conclude that firm-level returns
to scale must either be constant or increasing. Note also that increasing
returns requires that firms charge a markup, as long as firms do not make
losses.

The Solow-Hall Approach

Solow’s (1957) seminal contribution involves differentiating the
production function and using the firm’s first-order conditions for cost
minimization. Solow assumed constant returns to scale and perfect
competition, so the first-order conditions (discussed below) imply that
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output elasticities are observed in the data as factor shares in revenue.
Hall (1988, 1990) builds on Solow’s contribution, extending it to the case
of increasing returns and imperfect competition. Under these conditions,
output elasticities are not observed, since neither returns to scale nor
markups are observed. However, Hall derives a simple regression
equation, which he then estimates. This section extends Hall’s approach
by using gross-output data and taking account of variable factor utiliza-
tion.

Taking the logarithm of the production function (1.1), and differen-
tiating it totally, one gets

dy 5
F1ZK

Y ~dk 1 dz! 1
F2EHN

Y ~de 1 dh 1 dn! 1
F3M

Y dm 1 dt,

(1.6)

where lower-case letters represent logs. Without loss of generality, I have
normalized to one the elasticity of output with respect to technology.

Suppose firms take the price of all J inputs, PJ, as given. They may
have market power in output markets. If all factors are freely variable,
then the first-order conditions for cost-minimization imply that:

PFJ 5 mPJ. (1.7)

In other words, firms set the value of a factor’s marginal product equal to
a markup over the factor’s input price. Equivalently, rearranging the
equation by dividing through by m, this condition says that firms equate
each factor’s marginal revenue product ((P/m)FJ) to the factor’s price.

Equation (1.7) still holds in the case where some factors are quasi-
fixed, as long as we define the input price of the quasi-fixed factors as the
appropriate shadow price, or implicit rental rate. I return to this point in a
later subsection, when I specify a more complicated dynamic cost-
minimization problem. Note also that the price of capital, PK, must be
defined as the rental price (or shadow rental price) of capital. In particular,
if the firm makes pure economic profits, these are generally paid to
capital: These profits must be subtracted before computing the rental
price. (Note that these profits are over and above the quasi-rents that can
accrue to a fixed factor, which are incorporated into the rental price of
capital.)

Using equation (1.7), we can write each output elasticity as the
product of the markup multiplied by total expenditure on each input
divided by total revenue. Thus, for example,

F1ZK
Y 5 m

PKK
PY ; msK. (1.8)
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(Note that the marginal product of capital is F1Z, since the services from
a machine depend on the rate at which it is being utilized.)

Substituting these expressions for the output elasticities into (1.6), we
get the basic estimating equation for the markup:

dy 5 m@sK~dk 1 dz! 1 sL~dn 1 dh 1 de! 1 sMdm# 1 dt

5 m@sKdk 1 sL~dn 1 dh! 1 sMdm# 1 m@sKdz 1 sLde# 1 dt
(1.9)

; mdx 1 mdu 1 dt,

where dx is a share-weighted average of conventional (observed) input
growth, and du is a weighted average of unobserved variation in
utilization and effort. Note that the shares are the total cost of each type
of input divided by total revenue. Thus, the shares in dx sum to less than
one if firms make pure profits.

The derivation so far is in the spirit of Hall (1990), generalized to
include variable utilization. Hall, in turn, generalizes Solow (1957) to the
case of imperfect competition. (Both Hall and Solow considered variable
utilization, at least in principle.) Solow’s derivation assumes perfect
competition and constant returns, so m equals one. Since there are no
economic profits in that world, as shown by equation (1.5), capital’s share
can be taken as a residual.

Note that using equation (1.5), we can rewrite equation (1.9) in terms
of returns to scale g. In this case, the weights used to calculate weighted-
average inputs dx are cost shares, which sum to one. Hall (1990)
pioneered this latter approach, although no economic difference is found
between thinking of the output elasticity of inputs in terms of the markup
and thinking in terms of returns to scale, and the data requirements are
the same in the two cases.

It is important to note that the derivation relies solely on cost
minimization: Profit maximization is irrelevant. This is a large advantage,
since we can ignore the firm’s behavior in product markets, which may be
very complex. For example, firms may sell output with sticky prices (as
in the model in the fourth section, below), or engage in strategic
interactions in a repeated-game setting, but the existence of such behavior
does not affect the results.

Several practical issues need to be resolved before estimating equa-
tion (1.9). First, we must figure out the appropriate prices to use in
calculating weights. With quasi-fixed inputs, the appropriate shadow
price is not, in general, the observed factor price. Second, we must find
suitable proxies for du. To address these practical issues, we next specify
a cost-minimization problem that provides a framework for analysis.
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A Dynamic Cost-Minimization Problem

Although the problem is relatively complicated, specifying a partic-
ular dynamic cost-minimization problem provides insight into several
practical issues in attempting to estimate equation (1.9). In the subsection
“Variable Utilization,” below, it also provides proxies for unobserved
utilization, as well as a method for estimating crucial parameters used to
calibrate the models of the fourth section.

The firm is modeled as facing adjustment costs in both investment
and hiring, so that both the amount of capital (number of machines and
buildings), K, and employment (number of workers), N, are quasi-fixed.
I model quasi-fixity for two reasons. First, I want to examine the effect of
quasi-fixity per se on estimates of production-function parameters and
firm behavior. Second, quasi-fixity is necessary for a meaningful model of
variable factor utilization. Higher utilization must be more costly to the
firm, otherwise factors would always be fully utilized. If increasing the
rate of investment or hiring had no cost, firms would always keep
utilization at its minimum level and vary inputs using only the extensive
margin, hiring and firing workers and capital costlessly. Only if it is costly
to adjust along the extensive margin is it sensible to adjust along the
intensive margin, and pay the costs of higher utilization.5

While capital and labor have adjustment costs, I assume that the
number of hours per week for each worker, H, can vary freely, with no
adjustment cost. In addition, both capital and labor have freely variable
utilization rates. For both capital and labor, the benefit of higher utiliza-
tion is its multiplication of effective inputs. I assume two costs of
increasing capital utilization, Z. First, capital depreciates faster because of
extra wear and tear. Second, firms may have to pay a shift premium to
compensate employees for working at night or at other undesirable times.
I take Z to be a continuous variable for simplicity, although variations in
the workday of capital (that is, the number of shifts) are perhaps the most
plausible reason for variations in utilization. The variable-shifts model
has had considerable empirical success in manufacturing data, where, for
a short period of time, one can observe the number of shifts directly.6 The
cost of higher labor utilization, E, is a higher disutility on the part of

5 One does not require internal adjustment costs to model variable factor utilization in
an aggregative model (see, for example, Burnside and Eichenbaum 1996), since changes in
input demand on the part of the representative firm change the aggregate real wage and
interest rate, so in effect the concavity of the representative consumer’s utility function acts
as an adjustment cost that is external to the firm. However, if one wants to model the
behavior of firms that vary utilization in response to idiosyncratic changes in technology or
demand—obviously the case in the real world—then one is forced to posit the existence of
internal adjustment costs in order to have a coherent model of variable factor utilization.
(Both of these observations are found in Haavelmo’s (1960) treatment of investment.)

6 See, for example, Shapiro (1996).
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workers that must be compensated with a higher wage. I allow for the
possibility that this wage is unobserved from period to period, as might
be the case if wage payments are governed by an implicit contract in a
long-term relationship.

Consider the following cost-minimization problem for the represen-
tative firm of an industry:

Min
Z,E,H,M,I,A

C~Y! 5E
0

`

e2* 0
s rdt @WNG~H,E! 1 PMM 1 WNC~A/N! 1 PIKJ~I/K!# ds

(1.10)

subject to

Y 5 F~ZK, EHN, M, T! (1.11)

K̇ 5 I 2 d~Z!K (1.12)

Ṅ 5 A. (1.13)

The production function and inputs are as before. In addition, I is gross
investment, and A is hiring net of separations. WG(H,E) is total compen-
sation per worker, where W is the base wage (compensation may take the
form of an implicit contract, and hence not be observed period-by-
period); WNC(A/N) is the total cost of changing the number of employ-
ees; PIKJ(I/K) is the total cost of investment; PM is the price of materials.
d(Z) is the variable rate of depreciation. I continue to omit time subscripts
for clarity.

Using a perfect-foresight model amounts to making a certainty-
equivalence approximation. But even departures from certainty equiva-
lence should not disturb the key results, which rely only on intra-
temporal optimization conditions rather than intertemporal ones.

I assume that C, J, and d are convex, and make the appropriate
technical assumptions on G in the spirit of convexity and normality.7 It is
also helpful to make some normalizations in relation to the normal or
“steady-state” levels of the variables. Using an asterisk to denote these
steady-state levels, let d(Z*) 5 d*, J(d*) 5 0, J9(0) 5 1, C(0) 5 0. I also
assume that the marginal employment adjustment cost is zero at a
constant level of employment: C9(0) 5 0.

I solve the representative firm’s problem using the standard current-

7 The conditions on G are easiest to state in terms of the function F defined by
ln G(H, E) 5 F(ln H, ln E). Convex F guarantees a global optimum; assuming F11 . F12
and F22 . F12 ensures that optimal H and E move together.
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value Hamiltonian, letting l, q, and u be the multipliers on constraints
(1.11), (1.12), and (1.13) respectively. Using numerical subscripts for
derivatives of the production function F with respect to its first, second,
and third arguments, and literal subscripts for derivatives of the labor
cost function G, the firm’s six intratemporal first-order conditions for
cost-minimization are:

Z: lK F1~ZK, EHN, M; T! 5 qKd9~Z! (1.14)

H: lEN F2~ZK, EHN, M; T! 5 WN GH~H, E! (1.15)

E: lHN F2~ZK, EHN, M; T! 5 WN GE~H, E! (1.16)

M: lF3~ZK, EHN, M; T! 5 PM (1.17)

A: u 5 WC9~A/N! (1.18)

I: q 5 PIJ9~I/K!. (1.19)

The Euler equations for the capital stock and employment are:

q̇ 5 @r 1 d~Z!#q 2 lZF1 1 PI@J~I/K! 2 ~I/K!J9~I/K!# (1.20)

u̇ 5 ru 2 lEHF2 1 WG~H, E! 1 W@C~A/N! 2 ~A/N!C9~A/N!#.
(1.21)

As the Lagrange multiplier associated with the level of output, l can
be interpreted as marginal cost. Since the firm internally values output at
marginal cost, lF1 is the marginal value product of effective capital input,
lF2 is the marginal value product of effective labor input, lF3 is the
marginal value product of materials input, and lF4 is the marginal value
product of energy input.8 Using the definition that the markup, m, equals
the ratio of output price, P, to marginal cost, I rewrite l as:

l 5 C9~Y! 5
P
m

. (1.22)

Note that equation (1.22) is just a definition, not a theory determining the
markup. The markup depends on the solution of the firm’s more complex
profit-maximization problem, which we do not need to specify at all.

Equations (1.20) and (1.21) implicitly define the shadow (rental)
prices of labor and capital:

8 For the standard static profit-maximization problem, of course, marginal cost equals
marginal revenue, so these are also the marginal revenue products.
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lZF1 5 @r 1 d~Z!#q 2 q̇ 1 PI@J~I/K! 2 ~I/K!J9~I/K!# ; PK
(1.209)

lEHF2 5 ru 2 u̇ 1 WG~H, E! 1 W@C~A/N! 2 ~A/N!C9~A/N!# ; PL
(1.219)

As usual, the firm equates the marginal value product of each input to its
shadow price. Note that with these definitions of shadow prices, the
atemporal first-order condition (1.7) is satisfied for all inputs. For some
intuition, note that equation (1.209) is the standard first-order equation
from a q-model of investment. In the absence of adjustment costs, the
value of installed capital q equals the price of investment goods PI, and
the “price” of capital input is then just the standard Hall-Jorgenson rental
cost of capital, (r 1 d)PI. With investment adjustment costs, there is
potentially an extra return to owning capital, through capital gains q̇ (as
well as extra terms that reflect the fact that investing today incurs
additional adjustment costs, but produces the benefit of lowering adjust-
ment costs in the future).

The intuition for labor in equation (1.219) is similar. Consider the case
where labor can be adjusted freely, so that it is not quasi-fixed. Then
adjustment costs c are always zero; so is the multiplier u, since constraint
(1.13) does not bind. In this case, as we expect, (1.219) says that the
shadow price of labor input to the firm—the right side of (1.219)—just
equals the (effort-adjusted) compensation WG(H,E) received by the
worker. Otherwise, the quasi-fixity implies that the shadow price of labor
to a firm may differ from the compensation received by the worker.

Implementation in Discrete Time

I now turn to issues of estimation. Equations (1.6) and (1.9) hold
exactly in continuous time, if the values of the output elasticities are
adjusted continuously. In discrete time, if the elasticities are treated as
time-invariant, then equation (1.6) is a first-order approximation (in logs)
to any general production function. For a consistent first-order approxi-
mation, one should then treat equation (1.9) as representing small
deviations from a steady-state growth path and evaluate derivatives of
the production function at the steady-state values of the variables. Thus,
to calculate the shares in equation (1.9), one should use steady-state prices
and quantities and, hence, treat the shares as constant over time. The
markup is then also taken as constant.

For example, in the first-order approach, we want the steady-state
output elasticity for capital, up to the unknown scalar m. Using asterisks
to denote steady-state values, we use equations (1.19), (1.209), and the
normalizations to compute the steady-state output elasticity of capital:
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F*1U*K*
Y* 5 m*

P*KK*
P*Y* ; m*

~r* 1 d*!P*IK*
P*Y* . (1.23)

Note that the steady-state user cost of capital is the frictionless Hall-
Jorgenson (1967) rental price.9 Since quasi-fixity matters only for the
adjustment to the steady state, in the steady state q 5 PI and q̇ 5 0.
Operationally, I calculate the Hall-Jorgenson user cost for each period
and take the time average of the resulting shares as an approximation to
the steady-state share. I proceed analogously for the other inputs. In the
final estimating equation for (1.9), I use logarithmic differences in place of
output and input growth rates, and use steady-state shares for the
weights.

Thus, I can construct the index of observable inputs, dx, and take the
unknown m*, multiplying it as a parameter to be estimated. We can use
a variety of approaches to control for the unobserved du; some of them
are discussed in the next section. In any case, we have to use instruments
that are orthogonal to the technology shock dt, since technology change
is generally contemporaneously correlated with input use (observed or
unobserved).10

Variable Utilization

Before we can estimate m from equation (1.9), we need to settle on a
method for dealing with changes in utilization, du. A priori reasoning—
and comparisons between results that control for du and those that do
not—argue that du is most likely positively correlated with dx; thus,
ignoring it leads to an upward-biased estimate of m*. Three general
methods have been proposed. First, one can try to observe du directly
using, say, data on shift work. When possible this option is clearly the
preferred one, but data availability often precludes its use.11 Second, one
can impose a priori restrictions on the production function.12 Third, one

9 In practice, one would also include various tax adjustments. We do so in the empirical
work but omit them in the model to keep the exposition simple.

10 Olley and Pakes (1996) propose an insightful alternative to the usual instrumental-
variables estimation strategy; see Griliches and Mairesse (1995) for an excellent discussion.
However, their procedure generally cannot be used when estimating structural parameters
governing changes in utilization, because it relies on using investment as a proxy for
changes in technology, dt. The method discussed in the next subsection uses investment as
a proxy for the shadow value of installed capital; thus, we cannot use the Olley-Pakes
procedure and identify all the structural parameters of the model.

11 In the United States, shift-work data are available solely for manufacturing indus-
tries, and then only for a few years. The only data set on worker effort that we know of is
the survey of British manufacturing firms used by Schor (1987).

12 For example, Jorgenson and Griliches (1967) assume that the unobserved service flow
of capital is proportional to electricity use. Burnside, Eichenbaum, and Rebelo (1996) have
recently used this assumption to derive utilization-adjusted estimates of technology shocks.
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can derive links between the unobserved du and observable variables
using first-order conditions like equations (1.14) to (1.19). Both the second
and third approaches imply links between the unobserved du and
observable variables, which can be used to control for changes in
utilization.

Bils and Cho (1994), Burnside and Eichenbaum (1996), and Basu and
Kimball (1997) argue that one can also control for variable utilization
using the relationships between observed and unobserved variables
implied by first-order conditions like equations (1.14) to (1.19). The
discussion here follows Basu and Kimball.

They begin by assuming a generalized Cobb-Douglas production
function:

F~ZK, EHN, M; Z! 5 ZG~~ZK!aK~EHN!aLMaM!, (1.24)

where G is a monotonically increasing function. In their case this
assumption is not merely a first-order approximation, because they make
use of the second-order properties of equation (1.24), particularly the fact
that the output elasticities are constant. Although they argue that one can
relax the Cobb-Douglas assumption, I shall maintain it throughout the
discussion.

Equations (1.15) and (1.16) can be combined into an equation
implicitly relating E and H:

HGH~H,E!

G~H,E!
5

EGE~H,E!

G~H,E!
. (1.25)

The elasticity of labor costs with respect to H and E must be equal,
because on the benefit side the elasticities of effective labor input with
respect to H and E are equal. Given the assumptions on G, (1.25) implies
a unique, upward-sloping E–H expansion path, so that we can write

E 5 E~H!, E9~H! . 0. (1.26)

Equation (1.26) says that the unobservable intensity of labor utilization E
can be expressed as a monotonically increasing function of the observed
number of hours per worker, H.

Finding the marginal product of capital from (1.14), substituting into
(1.8), and rearranging, we find that the level of capital utilization depends
on the degree to which the current marginal value product of capital
exceeds future marginal products:

Zd9~Z! 5 lgaK

Y
qK . (1.27)
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Since fluctuations in marginal cost l, returns to scale g, and the marginal
value of capital q are difficult to observe directly, we would like to express
these factors in terms of other variables that are more readily observed.

The problem with trying to measure q directly is not just the
difference between the marginal and average value of capital but also the
noisiness of the asset prices one would use to gauge the average value of
capital. Instead of trying to measure q directly, Basu and Kimball use
equation (1.19) to express q as the price of investment goods times a
function of I/K. (Note that Tobin’s q is actually q/PI in my notation.)
Equation (1.19) can be inverted to say that I/K is a function of Tobin’s q.

The first-order condition for materials usage (1.17) is the key to
expressing the product lg in terms of observables. Combining this
equation with the expression for the marginal products of materials, we
find

lg 5
PMM
aMY . (1.28)

Thus, we can measure the marginal value product of capital as:

lgaK 5
aK

aM

PMM
Y . (1.29)

Substituting the expression for the marginal revenue product of
capital (equation 1.29) and the expression for q (equation (1.19) into (1.27)
leads to the desired expression for capital utilization in terms of observed
variables and the ratio aK/aM:

Zd9~Z! 5
aK

aM

PMM
PIK

1
J9~I/K!

. (1.30)

Define a number of elasticities in terms of steady-state values of
different variables; let

z ;
H*E9~H*!

E~H*!
,

D ;
Z*d0~Z*!

d9~Z*!
,

and

j ;
~I/K!*J0~~I/K!*!

J9~~I/K!*!
5

d*J0~d*!

J9~d*!
.

Thus, from equation (1.26),
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d ln~EHN! 5 dn 1 dh 1 de 5 dn 1 ~1 1 z!dh. (1.31)

With a constant aK/aM,13 (1.31) implies

dz 5
1

1 1 D
~dpM 1 dm 2 dpI 2 dk! 2

j
1 1 D

~di 2 dk!. (1.32)

Putting everything together, we have an estimating equation that
controls for variable utilization:

dy 5 m*dx 1 m*zsLdh 1
m*

1 1 D
sK~dpM 1 dm 2 dpI 2 dk!

2
m*j

1 1 D
sK~di 2 dk! 1 dt. (1.33)

This specification controls for both labor and capital utilization, without
making special assumptions about separability or homotheticity. How-
ever, for this simple derivation, the Cobb-Douglas functional form is
important. One payoff of the Basu-Kimball approach is that it allows one
not only to control for variations in utilization, du, but also to estimate the
key elasticities governing changes in Z and E, which will be used in the
model simulations below.14 The residual from this equation is a measure
of technology change, cleansed of distortions coming from imperfect
competition and variable utilization.

The Definition of Technology Change

How are the firm-level technology shocks defined (implicitly) by
equation (1.33), related to aggregate technology shocks? Aggregate
technology change is sometimes defined from a macro (top down)
perspective, and sometimes from a micro (bottom up) perspective. A
sensible macro definition is the change in final output (that is, C 1 I 1

13 This equation is where the Cobb-Douglas assumption matters; Basu and Kimball
differentiate (1.31) assuming that aK/aM is a constant. Their theory allows for the fully
general case where the ratio of the elasticities is a function of all four input quantities, but
they argue that pursuing this approach would demand too much of the data and
instruments.

14 So far, we have abstracted from the existence of a shift premium. However, utilizing
capital more intensively by running it for extra shifts may require paying workers on later
shifts a higher base wage to compensate for the disutility of working at non-standard hours.
Basu and Kimball extend the model above to incorporate a shift premium. They show that
an estimating equation with the same three extra variables as (1.33) controls for utilization
even in this extended model. Thus, the technology residuals and markup estimates are
correct even in this more general framework. However, the parameters governing changes
in utilization—particularly D—are no longer identified once the model is generalized to
include a shift premium.
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G 1 X 2 M), for given aggregate primary inputs. A sensible micro
definition is an appropriately weighted average of firm-level technology
change. With constant returns and perfect competition, these two per-
spectives are equivalent (Domar 1961; Hulten 1978). Rotemberg and
Woodford (1995) show that equivalence also holds with imperfectly
competitive product markets, under certain restrictive conditions: perfect
factor markets, and all firms having identical separable gross-output
production functions, charging prices that are the same markup over
marginal cost, and always using intermediate inputs in fixed proportions
to gross output.

If the Rotemberg-Woodford assumptions fail—if, for example, factor
markets are imperfectly competitive or firms have different degrees of
market power—then the two perspectives lead to different definitions;
that is, aggregate technology from a macro perspective is not a weighted
average of firm-level technology.15 For example, suppose differences in
markups or factor payments across firms lead the same factor to have a
different social value for its marginal product in different uses. Then
changes in the distribution of inputs can affect final output, even if
firm-level technology and aggregate inputs are held constant. Conceptu-
ally, however, we may not want to count such variation as “technology
change,” since it can occur with no change in the technology available to
any firm.

Now consider the following definition of technical change: the
increase in aggregate output, holding fixed not only aggregate primary
inputs, but also their distribution across firms and the materials/output
ratio at each firm. Although this definition is close in spirit to the macro
perspective, it also corresponds to a reasonable micro definition, since
aggregate technology changes only if firm-level technology changes.
Indexing firms by i, Basu and Fernald (1997) show that this measure of
technical change equals:

dt 5 O
i

wi

dti

1 2 misMi
, (1.34)

where wi is the firm’s share of aggregate nominal value added:

wi 5
PiYi 2 PMiMiO

i

~PiYi 2 PMiMi!
;

Pi
VVi

PVV .

Conceptually, this measure first converts the gross-output technology
shocks to a value-added basis by dividing through by 1 2 msM. (A

15 Basu and Fernald (1997).
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value-added basis is desirable because of the national accounts identity,
which tells us that aggregate final expenditure equals aggregate value
added.)16 These value-added shocks are then weighted by the firm’s share
of aggregate value added.

Equation (1.34) defines a “micro” measure of technical change, since
it changes only if firm-level production technology changes. However, it
also nests the Rotemberg-Woodford definition of technology as a special
case, and thus it correctly measures “macro” technical change under their
conditions. This property is desirable, since the Rotemberg-Woodford
assumptions are implicit or explicit in most dynamic general-equilibrium
models with imperfect competition. I thus focus on definition (1.34) in
constructing the aggregate technology series.

However, the measure defined in equation (1.34) has the disadvan-
tage that it requires one to know (or estimate) the firm-level markups.
Domar (1961) and Hulten (1978) propose a different definition of aggre-
gate technology:

dt9 5 O
i

wi

dti

1 2 sMi
. (1.35)

They show that equation (1.35) satisfies both the micro and macro
definitions of technical change when there are constant returns and
perfect competition: Note that (1.34) reduces to (1.35) when m equals one
everywhere.

With imperfect competition, the Domar-weighted measure shows
how much increases in firm-level technical change increase final output,
holding fixed both the aggregate quantities and the distributions of
primary and intermediate inputs. This definition is unappealing, since it
corresponds to a thought experiment where firms are not allowed to use
more intermediate inputs even when they receive favorable technology
shocks. However, it does have the advantage that it does not require
knowledge of sectoral markups. BFK thus also use this measure of
technical change to check the robustness of the primary measure, and
they find that their results are unaffected by using one measure rather
than the other.

We define changes in aggregate utilization as the contribution to

16 Basu and Fernald (1997) discuss this conversion to value added at length. To
understand why (1 2 msM) is the right denominator, consider the case where a firm uses
materials in fixed proportion to output, and receives a gross-output technology innovation
dt. The firm’s output (which, for simplicity, we can assume is sold only for final demand)
increases both because of the technology improvement and because of the productive
contribution of the required additional materials. Since the marginal product of materials is
msM, output increases by dy 5 dt 1 msMdm. Since dm 5 dy (the materials/output ratio is
fixed), this equation implies that the change in output is dt/(1 2 msM).
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final output of changes in firm-level utilization. This, in turn, is a
weighted average of firm-level utilization change dui:

du 5 O
i

wi

midui

1 2 misMi
(1.36)

Note from equation (1.9) that midui enters in a manner parallel to dti and
hence (1.36) parallels (1.34).

DATA AND METHOD

The Data

I now construct a measure of “true” aggregate technology change,
dt, and explore its properties. As discussed in the previous section, I
estimate technology change at a disaggregated level, and then aggregate.
The aggregate is the private U.S. economy, and the “firms” are 34
industries; for manufacturing, these industries correspond roughly to the
2-digit SIC level.

Each industry contains thousands or tens of thousands of firms, so it
may seem odd to take industries as firms. Unfortunately, no firm-level
data sets span the economy. In principle, I could focus on a subset of the
economy, using the Longitudinal Research Database, say; however,
narrowing the focus requires sacrificing a macroeconomic perspective, as
well as panel length and data quality. By focusing on aggregates, the
paper complements existing work that uses small subsets of the economy.

I use data compiled by Dale Jorgenson and Barbara Fraumeni on
industry-level inputs and outputs. These data consist of a panel of 33
private industries (including 21 manufacturing industries) that cover the
entire U.S. nonfarm private economy. These sectoral accounts seek to
provide accounts that are, to the extent possible, consistent with the
economic theory of production. Output is measured as gross output, and
inputs are separated into capital, labor, energy, and materials. These data
are available from 1947 to 1989; in the empirical work, however, I restrict
my sample to 1950 to 1989, since the money shock instrument is not
available for previous years. For a complete description of the data set,
see Jorgenson, Gollop, and Fraumeni (1987).

I compute capital’s share sK for each industry by constructing a series
for required payments to capital. I follow Hall and Jorgenson (1967) and
Hall (1990), and estimate the user cost of capital R. For any type of capital,
the required payment is then RPKK, where PKK is the current-dollar
value of the stock of this type of capital. In each sector, I use data on the
current value of the 51 types of capital, plus land and inventories,
distinguished by the U.S. Bureau of Economic Analysis in constructing
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the national product accounts. Hence, for each of these 53 assets, indexed
by s, the user cost of capital is

Rs 5 ~r 1 ds!
~1 2 ITCs 2 tds!

~1 2 t!
, s 5 1 to 53. (2.1)

r is the required rate of return on capital (and on all other assets except
money), and ds is the depreciation rate for assets of type s. ITCs is the
asset-specific investment tax credit, t is the corporate tax rate, and ds is
the asset-specific present value of depreciation allowances. I follow Hall
(1990) in assuming that the required return r equals the dividend yield on
the S&P 500. Jorgenson and Yun (1991) provide data on ITCs and ds for
each type of capital good. Given required payments to capital, computing
sK is straightforward.

For the empirical work, we need instruments that are uncorrelated
with technology change. I use two of the Hall-Ramey instruments: the
growth rate of the price of oil deflated by the GDP deflator and the
growth rate of real government defense spending.17 (I use the contempo-
raneous value and one lag of each instrument.) To these I add a version
of the instruments used by Burnside (1996), quarterly Federal Reserve
“policy shocks” from an identified VAR. I use the sum of the four
quarterly policy shocks in year t 2 1 as instruments for input growth in
year t.18

Estimating Technology Change

To estimate “firm-level” technology change, I estimate equation
(1.33) for each industry. Although I could estimate these equations
separately for each industry (and indeed do so as a check on results),
some parameters, particularly the utilization proxies, are then estimated

17 We drop the third instrument, the political party of the President, because it appears
to have little relevance in any industry. Burnside (1996) shows that the oil price instrument
is generally quite relevant, and defense spending explains a sizable fraction of input
changes in the durable-goods industries.

18 The qualitative features of the results in the next section, “Empirical Results,” appear
robust to using different combinations and lags of the instruments. On a priori grounds, the
set I choose seems preferable to alternatives—all of the variables have strong grounds for
being included. In addition, the set chosen has the best overall fit (measured by mean and
median F statistic) of the a priori plausible combinations considered. Of course, Hall,
Rudebusch, and Wilcox (1996) argue that with weak instruments, one does not necessarily
want to choose the instruments that happen to fit best in sample; for example, if the “true”
relevance of all the instruments is equal, the ones that by chance fit best in sample are in fact
those with the largest small sample bias. That case is probably not a major concern here,
since the instrument set we choose fits well for all industry groupings; for example, it is the
one we would choose based on a rule of, say, using the instruments that fit best in durables
industries as instruments for nondurables industries, and vice versa.
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rather imprecisely. To mitigate this problem, I combine industries into
four groups, estimating equations that restrict the utilization parameters
to be constant within industry groups. Thus, for each group we have

dyi 5 ci 1 midxi 1 adhi 1 b~dpMi 1 dmi 2 dpIi 2 dki! 1 c~dii 2 dki! 1 dti.
(2.2)

The markup mi differs by industries within a group (Burnside (1996)
emphasizes the importance of allowing this heterogeneity). The groups
are durables manufacturing (11 industries); nondurables manufacturing
(10); natural-resource extraction, such as mining and petroleum extrac-
tion (4); and all others, mainly services and utilities (8). To avoid the
“transmission problem” of correlation between technology shocks and
input use, I estimate each system using Three-Stage Least Squares, using
the instruments noted above.

After estimating equation (2.2), the sum of the industry-specific
constant ĉi and residual dt̂i measures technology change in the gross-
output production function. Since I am ultimately interested in the
aggregate effects of technology shocks, I take an appropriately weighted
average of the firm-level estimates of technology change, using equation
(1.34).

EMPIRICAL RESULTS

This section summarizes the properties of the “true” technology
series; the results are taken from BFK. These results serve two purposes.
First, they explain the properties of the technology series, which will be
used as an input into the model simulations of the fifth section, “Simu-
lation Results,” below. Second, they allow us to compute impulse
responses to technology improvements, which will serve as benchmarks
for assessing the performance of the models.

Basic Correlations

Table 1 reports summary statistics for three series: (i) the Solow
residual; (ii) a series that makes no utilization corrections, but corrects
only for aggregation biases; and (iii) a “technology” measure based on
equation (2.2). Note that the first measure uses aggregate data alone,
whereas the other two are based on sectoral regression residuals, which
are aggregated using equation (1.4).

The corrected series have about the same mean as the Solow residual.
However, the variance is substantially smaller: The variance of the fully
corrected series is less than one-third that of the Solow residual, so the
standard deviation (shown in the second column) is only about 55
percent as large. The reported minimums show negative technical change
in some periods, but the lower variance of the technology series implies
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that the probability of negative estimates is much lower. For example, the
Solow residual is negative in 12 out of 40 years; the fully corrected
residual is negative in only 5 out of 40 years.

The fully corrected series now are plotted against some familiar
business-cycle variables. Figures 1 and 2 show how the estimated
technology series differs dramatically from the usual Solow residual.

Table 1
Descriptive Statistics for Technology Residuals

Mean
Standard
Deviation Minimum Maximum

Solow Residual .011 .022 2.044 .066
Technology Residual

(No Utilization
Correction) .012 .016 2.034 .050

Technology Residual
(Full Basu-Kimball
(1997) Correction) .013 .012 2.013 .032
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Figure 1 plots basic business-cycle data: the Solow residual dp, aggregate
output growth dv, and aggregate primary input growth, dxV. These three
series clearly co-move positively, quite strongly so in the case of dp and
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dv. (All variables are de-meaned; that is, the average has been removed
from all series.)

Figure 2 plots the fully corrected technology series against these
three variables. Comparing technical change to the standard Solow
residual, the fluctuations in the technology series are significantly smaller
than the fluctuations in the Solow residual, consistent with the intuition
that much of the volatility of the Solow residual reflects nontechnological
factors such as variable input utilization. In addition, some periods show
a phase shift: The Solow residual follows technology change with a lag of
one to two years. This phase shift reflects the utilization correction: In the
estimates, high technology shocks are associated with low levels of
utilization, which in turn reduce the Solow residual relative to the
technology series. The phase shift, in particular, appears to reflect
primarily movements in hours per worker, which generally increase one
year after a technology improvement. The model of the first section of this
paper says that an increase in hours per worker signals an increase in
unobserved effort, which the Solow residual incorrectly interprets as
positive technical change.

Aggregate value-added output growth (dv) is then plotted against
the same technology series. The series less clearly move together contem-
poraneously. Again, the series appear to have a phase shift: Output
co-moves with technology, lagged one to two years. This result is
qualitatively consistent with the sticky-price model in the next section,
where the contemporaneous correlation between technology shocks and
output growth is ambiguous but is clearly positive with a lag.

Finally, Figure 2 plots the growth rate of primary inputs of capital
and labor (dxV) and the same technology series. These two series clearly
co-move negatively over the entire sample period.

It is clear that the co-movements between technology and input and
output are quite different from those found in the usual real-business-
cycle (RBC) literature, where one takes the standard Solow residual dp as
the measure of technology change.

Why do these results differ from those of King and Rebelo (1997),
who argue that variable capital utilization can “resuscitate” the RBC
model? The difference arises from the different techniques used to purify
the Solow residual. King and Rebelo specify a particular dynamic
general-equilibrium (DGE) model, and then feed in just the observed
Solow residual as data. The model then decomposes the Solow residual
into technical change and variations in utilization, where the change in
utilization must be consistent with the rest of the model, given the
implied technology shock. In some ways this method goes into too much
depth, but in other ways it is insufficiently general. For example, King and
Rebelo specify a full model in order to derive the responses of labor,
investment, and other variables to a technology shock. But it is not
necessary to specify the environment to this extent, since these variables
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can all be observed in the data. On the other hand, their model does not
allow for capital and labor adjustment costs, imperfect competition,
sticky prices, or the variable labor effort and composition effects that we
find are empirically extremely important. It is important to realize that
the model of the first section nests the King-Rebelo model as a special
case—the fact that I get very different results implies that the data reject
their model.

Impulse Responses to Technology Improvement

I now present impulse responses of the basic variables to a technol-
ogy innovation, using bivariate VARs and studying the response of a
series of variables to technology shocks. The variables examined are
aggregate output growth (dv), aggregate input growth (dxV), total hours
worked (dh 1 dn), and the constructed series for utilization change, du,
as defined in equation (1.36).

The VAR estimated is of the form

A~L!Fdt
djG 5 F «

hG , (3.1)

where dj is one of the variables studied. For dt I use the fully corrected
measure of technology change. I assume that it is exogenous, so I set
a12(L) 5 0. In all other cases I use a lag length of 2 periods. All equations
include constants. Note that I am identifying technology shocks just as
before; I am not obtaining identification from assumptions imposed on
the VAR, for example, the long-run neutrality assumptions of Blanchard
and Quah (1989) or Gali (1998). The VAR is just a convenient way of
presenting some of the results.19

Figure 3 shows the impulse responses to a technology improvement:
the effects of a 1 percentage point technology improvement on the (log)
levels of technology, output, inputs, manhours, and utilization. Along
with the impulse responses are 95 percent confidence intervals, boot-
strapped using the procedure in the RATS statistical package.20

Both output and inputs fall on impact; the fall in inputs is strongly
significant, regardless of the type of input considered (manhours, utili-
zation, or dxV). The fall in output is not statistically significant.

Output grows strongly after the shock; the impulse response is

19 I do not use cointegration techniques, because levels of output and input need not be
cointegrated with technology. For example, changes in demographic structure (for example,
the baby boom) or in immigration policy can cause permanent changes in the size of the
labor force that are not related to technology.

20 These confidence intervals treat dz as data, although dz is a generated variable. They
do correct for the generated-regressor problem in « given this assumption about dz.
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significantly different from zero with a two-year lag, and the point
estimate shows output growing by about 1.8 percent. Inputs grow more
slowly, but the standard errors of the estimates are large. For example, the
point estimates say that dxV falls 0.8 percent on impact, and then recovers
to its pre-shock level (normalized to zero) in three years. However, at
three years the 95 percent confidence interval runs from about 1 percent
to 21 percent. The same is true of hours worked, except that the point
estimate never recovers to its pre-shock value. On the other hand, the
point estimates show utilization remaining above its pre-shock level
indefinitely.

The finding that technology improvements reduce both output and
input on impact seems problematic for standard flexible-price RBC
models. This assertion will be documented below.

In a standard RBC model (for example, Cooley and Prescott 1995)
with a capital share of 0.35, a 1.4 percent increase in Hicks-neutral
technology (which is how I have normalized the series) should increase
output by about 2.15 percent in the long run (computed as 1.4/(1 2 0.35)),
increase inputs (including capital) by about 0.75 percent in the long run,
and leave manhours and utilization unchanged. The point estimate for
the output response is fairly close to the predicted value. The point
estimate for the input response is much lower, but the predicted value is
well within the confidence interval. The same is true for utilization and
hours worked.

A DGE MODEL WITH VARIABLE CAPITAL UTILIZATION

This section lays out a simple sticky-price, dynamic general-equilib-
rium model with variable capital utilization and imperfect competition. It
is representative of a number of models in the recent literature,21 but the
presentation follows Kiley (1998). The model nests a competitive flexible-
price model with variable utilization and, of course, the standard RBC
model with a fixed short-run supply of capital services. I do not treat
variable labor effort, because in terms of model calibration the only effect
of variable effort is to make the effective labor supply curve more elastic.
Since I intend to follow the RBC literature and simply assume that
effective labor supply is very elastic, variable labor effort is not included
in the model.22 However, variable capital utilization makes the model
differ qualitatively from the standard RBC model, and this feature is
discussed below. As in the empirical model of the first section of this

21 For example, Kimball (1995); Chari, Kehoe, and McGrattan (1996); and Dotsey, King,
and Wolman (1997).

22 However, one can use the empirical evidence supporting the variable-effort hypoth-
esis to rationalize the high short-run labor supply elasticity assumed below.
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paper, the penalty for utilizing capital more intensively is that it wears
out faster.

Consumers

The consumer side of the model is standard. An infinitely lived,
representative consumer/worker supplies labor, rents capital, and owns
the firms. The consumer maximizes the discounted value of expected
utility, which is given by

Et O
i50

`

bi@~1 2 a! log ~Ct1i! 1 a log ~1 2 Nt1i!#, (4.1)

subject to the usual series of budget constraints:

Ct 1 At11 5 WtNt 1 ~1 1 rt!At 1 Pt.

C is consumption, A is the consumer’s stock of assets (equal to the capital
stock K in equilibrium), N is labor supply, r is the real interest rate on
bonds (equal to the marginal revenue product of capital minus depreci-
ation), W is the real wage, and P is economic profit (if any).

Optimization implies that the consumer is indifferent between con-
sumption and leisure at a point in time, and between consumption at two
different times. Thus, in equilibrium,

a~1 2 Nt!
21 5 ~1 2 a!WtCt

21, (4.2)

and

bEtFS Ct

Ct11
D ~1 1 rt11!G 5 1.

Since no government consumption is included in this model, aggre-
gate output equals the sum of consumption and investment:23

Yt 5 Ct 1 It. (4.3)

The Final Goods Sector

The final goods sector is competitive and has flexible prices. The
production function for final goods output, Y, uses intermediate goods,

23 Abusing notation slightly, I use Y to denote aggregate national output. In the
empirical section above, Y represented gross output, while national output is, of course, real
value added (which was called V in the first section).
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Yi, as inputs to production. There is a continuum of such goods, indexed
by i [ [0, 1]. Thus,

Y 5 FE
0

1

Yi
u diG 1/u

, 0 , u # 1. (4.4)

Note that final goods are produced with constant returns to scale. Let Si

denote the price of intermediate goods, Yi. Then cost-minimization by the
final goods firms implies constant elasticity of substitution demand
functions of the form:

Yi 5 YSSi

PD
21/~12u!

, (4.5)

where P is the ideal aggregate price index:

P 5 FE
0

1

Si
u/~u21! diG ~u21!/u

.

Note that the monopoly markup resulting from this demand specification
is constant at

m 5
1
u

.

The Intermediate Goods Sector

The intermediate goods sector comprises a continuum of firms, each
of which is a monopolist in the production of a single variety of good.
Each firm has the production function:

Yit 5 Tt~ZitKit!
aNit

12a 2 F, (4.6)

where F $ 0 is a fixed cost of production (paid in units of output) and T
is the level of technology. All firms have the same technology. Log
technology change follows an autoregressive process:

T̃t 5 jT̃t21 1 vt. (4.7)

If F . 0, then firms produce with increasing returns to scale. Note,
however, that increasing returns are not introduced by having diminish-
ing marginal cost, a specification that is standard in the literature but has
little empirical support. Here, marginal cost is independent of firm-level
output. In this model, the steady-state degree of returns to scale is given
by
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g* 5
Y* 1 F

Y* .

Since the increasing returns are internal to the firm, increasing returns
require imperfect competition, for the reasons discussed above following
equation (1.5).

The capital stock at each firm evolves according to

Ki,t11 5 Iit 1 ~1 2 d~Zit!!Kit. (4.8)

Note that unlike the empirical model, no adjustment costs for capital or
employment are included. Excluding adjustment costs makes the model
simpler, and also easier to compare to the existing literature.

In the sticky-price model, firms are required to set the same nominal
price for two periods. Half the firms set prices in odd-numbered periods,
and the other half in even-numbered periods. This specification, a variant
of that introduced by Taylor (1980), is intended to capture price stickiness
in a parsimonious fashion.24 Firms set prices to maximize discounted
profits. Let l denote the firm’s real marginal cost of production, as in the
first section. Using a tilde (~) to denote log deviations from the steady
state and assuming the one-period discount factor is approximately equal
to 1, the log-linearized pricing equation is

S̃it 5
1
2 Et@P̃t 1 l̃it 1 P̃t11 1 l̃i,t11#. (4.9)

Not surprisingly, equation (4.9) shows that nominal prices are set as a
markup over nominal marginal cost in the two periods. It is assumed that
firms must meet all demand at the posted price; that is, rationing is ruled
out. In equilibrium, all firms at time t set the same price St.

Note that by definition the (log) change in real marginal cost is the
change in the relative price minus the change in the markup:

l̃it 5 ~P̃it 2 P̃t! 2 m̃it. (4.10)

Finally, the price level is the average of prices set at t and t 2 1:

P̃t 5
1
2 @S̃t 1 S̃t21#. (4.11)

24 The other common variant is the Calvo/Rotemberg partial-adjustment model. Kiley
(1997) compares the two specifications and argues that partial adjustment imposes a large
amount of exogenous price stickiness in the case where prices are endogenously fairly
flexible.
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Money

Following Kiley (1998), money is introduced via an interest rate rule,
where the monetary authority sets the nominal interest rate. Kiley (1998)
discusses the advantages of this specification as opposed to an explicit
model of money demand arising from either the presence of money in the
utility function or a cash-in-advance constraint. Shocks to the interest rate
rule occur, as in the empirical VAR literature. The log-linearized rule is:

ĩ t11 5 fyỸt 1 fpDP̃t 1 nt, (4.12)

where

nt 5 rnt21 1 «t

and « is an iid shock.
Given the nominal interest rate, the real interest rate follows from the

Fisher equation:

r̃t11 5 ĩ t11 2 EtDP̃t11.

Implications

Here I discuss the implications of the major innovation in the model,
variable capital utilization. First, note that the cost-minimization problem
facing the intermediate-goods firms in this model is a simplified version
of the problem discussed in the first section. Firms face the same decision
regarding variable capital utilization, although there are no investment
adjustment costs and no variations in labor effort. Thus, equation (1.27)
applies directly. Log-linearizing (1.27) for the case of q [ 1 and using
equation (4.10), we find the expression for optimal utilization:

Z̃it 5
~P̃it 2 m̃it! 1 ~1/g*!Ỹit 2 K̃it

1 1 D
. (4.13)

As before, D is the elasticity of the marginal rate of depreciation with
respect to utilization.

Substituting equation (4.13) into the log-linearized production func-
tion, we find:

ỸitS1 2
a

1 1 DD 5
g*aD

1 1 D
K̃i,t21 1 g*~1 2 a!Ñit 1

g*a

1 1 D
~~P̃it 2 P̃t! 2 m̃it!

1 g*T̃t. (4.14)

As King and Rebelo (1997) observe, one gains intuition about the effects
of variable capital utilization by studying the limiting cases of equation
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(4.14). First, suppose that D 5 `. Then changes in capital utilization are so
costly that utilization never changes, and (4.14) reduces to the familiar
equation for log-linearized output growth with increasing returns:

Ỹit 5 g*aK̃i,t21 1 g*~1 2 a!Ñit 1 g*T̃t.

Second, suppose that D 5 0, so that depreciation increases only linearly
with utilization. Suppose we are in the perfectly competitive case, where
(P̃it 2 P̃t) 2 m̃it [ 0. Then the reduced-form production function is linear
in labor input—thus, there is effectively no diminishing marginal product
of labor, even in the short run, implying that marginal cost is less
procyclical and the propagation mechanism for external shocks is stron-
ger. Finally, in the imperfectly competitive case, note that a firm with
countercyclical markups experiences larger changes in output if D is
small. For example, if monetary policy is unexpectedly expansionary and
all prices are sticky, the change in the relative price is zero but the change
in the markup is negative.25 This countercyclical markup has the expan-
sionary effect of increasing the demand for all factors, including capital
services. The resulting increase in utilization is larger if D is small.

Calibration

This subsection discusses the calibration of the RBC model with
variable capital utilization, and the additional parameters needed to
calibrate the sticky-price model. The calibration is done so that each
model period corresponds to two quarters. Thus, in the sticky-price
model, each firm keeps its price fixed for one year.

The RBC Model. The RBC model consists of the model above with
one-period price setting (thus making prices perfectly flexible), perfect
competition, and constant returns. Perfect competition requires u 5 1;
constant returns implies that F 5 0. With two exceptions, the remaining
parameters are calibrated to equal those of the benchmark RBC model of
Cooley and Prescott (1995, p. 22).26 In particular, the critical intertemporal

25 The markup falls because expansionary monetary policy necessarily raises marginal
cost in this model. In other models, marginal cost might actually fall as output increases—
for example, in the “sunspot” model of Farmer and Guo (1994). Markups might also be
countercyclical in flexible-price models, for reasons advanced by Rotemberg and Woodford
(1992) and Gali (1994).

26 Since this model does not have steady-state growth, I set the investment share to
match the data using equation (33) in Cooley and Prescott (1995). Thus, although the model
has neither trend technology growth nor population growth, I use the values for those
parameters found in Cooley and Prescott’s table (1995, p. 22). The model would be quite
consistent with steady-state growth with some modification that makes the degree of
returns to scale stationary. One such change would be to have the size of fixed costs grow
deterministically at the trend rate of growth of the economy, but there are also other
possibilities. See Rotemberg and Woodford (1991, 1995).
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elasticity of labor supply is calibrated to equal approximately 2.2 (some-
what lower than most of the RBC literature, though still higher than most
of the micro estimates of this parameter).

The first exception is the variance of the innovation to technology. As
noted above, I use the actual innovations to technology estimated using
the BFK procedure.27 However, since the estimated residuals are annual,
I assume that the technology shock occurs in the first half of each year.
The technology shock for the second half of the year is always zero. Since
agents in the model always expect the technology innovation to equal
zero, and the log-linearization eliminates higher-order responses to
uncertainty such as precautionary saving, this procedure does not cause
any obvious problems.

The second exception is the parameter D, which Cooley and Prescott
(1995) do not need to calibrate since their model implicitly assumes D 5
`. Burnside and Eichenbaum (1996) calibrate D 5 0.56, but they do so
using a very restrictive functional form that implies

D ;
Z*d0~Z*!

d9~Z*!
5

Z*d9~Z*!

d~Z*!
2 1 5

r*
r* 1 d~Z*!

. (4.15)

This method thus identifies D purely from a functional form assumption,
which is clearly undesirable. Basu and Kimball (1997) discuss the
shortcomings of this approach. They estimate D from an instrumental
variables regression of equation (1.33) and find D approximately equal to
1, but with a large standard error (also about 1). I therefore use 1 as my
benchmark value of D, but also experiment with other values.

Finally, the log-linearized capital accumulation equation also re-
quires one to calibrate the elasticity of d(Z*). However, as equation (4.15)
shows, this parameter can be calibrated from the steady-state real rate of
interest (which in turn is a function of the discount rate b) and the
steady-state depreciation rate, and does not require additional estimation.

The Sticky-Price Model. The real side of the sticky-price model is
identical to that of the RBC model, with one exception: the degree of
imperfect competition and markups. I follow a calibration that assumes
zero economic profit in the steady state and thus equates the markup and
the steady-state degree of returns to scale (see equation 1.5).28 A variety
of evidence indicates that the plausible degree of imperfect competition

27 However, I do maintain the Cooley-Prescott calibration of 0.95 (quarterly) for the
autoregressive parameter j. The point estimate for j is actually larger than 1, but one cannot
reject the lower value at the 95 percent level. I thus maintain the Cooley-Prescott value for
the model simulations, to allow easier comparison to the existing literature.

28 Rotemberg and Woodford (1995) present a variety of evidence supporting the
proposition that pure profit rates are close to zero.
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and/or the degree of increasing returns is small.29 Thus, I set g* 5 m* 5
1.05, implying that u 5 0.95 and F/Y* 5 0.05. Recall that this markup,
already very small, is the markup on real value added. Assuming a
material’s share in production of 0.50, it implies that firms sell actual
goods for about 2 percent higher than their marginal cost of produc-
tion—a calibration well within the confidence interval of any recent
estimate.

The sticky-price model also requires another set of parameters,
relating to the nominal side of the model. Interpreting equation (4.12) as
a policy rule, Taylor (1993) suggests that in the post-1987 period the
Federal Reserve has followed a policy described by setting fy 5 0.5 and
fp 5 1.5. These are the parameters I adopt as my baseline case, as does
Kiley (1998). Since it is unlikely that the Fed has adhered to this rule over
the 40 years of my sample period, the historical simulations based on this
rule should be treated as suggestive. I also experiment with reinterpreting
equation (4.12) as a standard LM curve, with an exogenous money
supply, an income elasticity of money demand equal to 1, and an interest
elasticity of money demand equal to 20.5.30 The calibration implies fy 5
2 and fp 5 2. The steady-state inflation rate is assumed to be zero.

In all cases, the autoregressive parameter r is set to 0.50.31 The
impulses for the money supply rule are residuals from an assumed
monetary policy reaction function, estimated by Burnside (1996).32 They
are residuals from an OLS regression of the 3-month T-bill rate on lags of
itself and on current and lagged values of GDP growth, inflation, and
commodity prices. The estimation is done at a quarterly frequency, so the
shocks for the first period are the sum of the shocks in the first two
quarters and the shocks for the second period are the sum of the shocks
from the third and fourth quarters.

SIMULATION RESULTS

This section presents two sets of results: impulse responses to both
technology and monetary policy shocks, and historical simulations, of the
sort performed by Plosser (1989).

Impulse Responses

I first present results for the RBC model, the benchmark model
described above, with variable capital utilization. The value of D is set to

29 See, for example, Basu (1996), Burnside (1996), and Basu and Fernald (1997).
30 In this case the equation gives the value of the nominal interest rate at time t, not

t 1 1.
31 See Kiley (1998) for a discussion.
32 I thank Craig Burnside for providing these data.
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the estimate of 1 in Basu and Kimball (1997). The series shown are the
responses of output, labor hours, the real interest rate, and the Solow
residual. The residual is calculated as it would be from the data—that is,
changes in utilization show up as changes in the residual. Knowing the
time path of technology, we can infer the time series for utilization.

Figure 4 gives the impulse response to a 1-percentage-point technol-
ogy improvement in the RBC model. Output rises by about 2 percent on
impact, and labor input by about 1 percent. Note that the Solow residual
is higher than 1 on impact, showing that capital utilization increases in
response to the technology improvement. Thus, as conjectured, variable
utilization amplifies the effects of shocks.

But, as we know from a long line of work, the impulse responses of
the RBC model are dramatically different from the empirical results
presented in Figure 3. In the data, both output and labor input fall when
technology improves, and reach their peak two or three years later. The
model shows no fall on impact; all variables are at their peak at time zero.

We now turn to the sticky-price model, to see whether it can explain
the observed impulse responses. Figure 5 presents the sticky-price
version of the RBC model simulated above. The model has the bench-
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mark calibration, including D 5 1 and monetary policy as described by
the Taylor rule. (The figures for the sticky-price model display the time
path for the nominal interest rate, rather than the real interest rate.)

The results are mildly encouraging. Labor hours fall significantly on
impact—about 1.5 percent, more than the point estimate from the data
but well within the confidence interval. Output basically does not respond
on impact, which is also quite consistent with the data. The Solow residual
rises by less than 1 percent, showing that utilization must have fallen, as it
does in the data. The model thus displays the strong negative co-movement
between technology and inputs that is observed in Figure 3.

The major failure of the sticky-price model is its inability to explain
the drawn-out contraction observed in the data. Output and inputs reach
their peak just one period (six months) after the shock, when only half the
firms have changed prices. They then fall somewhat, before converging
smoothly to the steady state. The empirical results, however, have output
and inputs reaching their peak about two or three years after the shock.33

33 Part of this pattern may be changed by using the actual ARI(1,1) process for
technology change that is observed in the data.
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I now turn to the other major issue to be investigated, the importance
of variable utilization as a propagation mechanism. I first study the effects
of variable utilization on the impulse response for nominal shocks, and
return to technology shocks after this detour. Figure 6 shows the effects of
a 1-percentage-point increase in the nominal interest rate in the model
just simulated. The experiment is to shock nt in equation (4.12) by 1
percentage point, and then let the future path of the nominal interest rate
be given by the autoregressive time path for n, as well as the endogenous
monetary response dictated by the Taylor rule. The results in Figure 6 are
not encouraging. Output falls by more than 1.5 percent in the period of
the shock, as does labor input. The Solow residual falls as well, matching
the co-movement between observed productivity and nominal shocks
documented by Evans (1992). In this case, the majority of the fall is due
to the reduction in utilization, though a small percentage can be attrib-
uted to the effects of increasing returns to scale in production. With
increasing returns, productivity changes when inputs change, and in the
same direction. Note that the Taylor rule dictates very expansionary
monetary policy in response to the fall in output and inflation. Even
though the exogenous component of monetary policy is still tight, the
endogenous response is so large that the nominal interest rate falls to
20.56 percent.

However, the shock is not propagated over time. Indeed, output and
inputs “overshoot” the steady state only one period after the shock, and
converge quickly to the steady state in an oscillatory fashion. This result
is puzzling given the encouraging findings of Dotsey, King, and Wolman
(1997), who calibrate a similar model, with the same parameters govern-
ing variable utilization, and report moderate persistence eight quarters
after a nominal shock. However, they assume that the monetary authority
does not respond to an economic contraction by loosening monetary
policy: The nominal interest rate in their model is derived from an LM
specification for money demand. The behavior of the nominal interest
rate in Figure 6 suggests that endogenous monetary policy is quite
important. I thus change the calibration of this part of the model, in an
effort to see how much of the difference in my results comes from the
assumption of endogenous monetary policy. I replace the Taylor rule
with an LM curve, assuming that the elasticity of money demand with
respect to output is 1, and its elasticity with respect to the nominal
interest rate is 20.5. (The latter figure is probably somewhat high given
the empirical estimates in the literature.)

Figure 7 reports the results. The experiment is still a 1 percentage
point increase in n, but now the nominal interest rate falls only 20.3
percentage points below its steady-state level the year after a shock. The
effects of the increase in the interest rate are much smaller—output and
inputs fall less than 0.5 percentage points—but this calibration avoids the
overshooting result: The period after the shock, output and inputs are
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back at the steady state, not significantly higher than their steady-state
levels. I still do not reproduce the Dotsey et al. results, but I am using
much higher values for the interest elasticity of money demand (they use
zero) and the labor supply elasticity (which they assume is infinite).

However, as Kiley (1998) argues, it seems better to calibrate sticky-
price models using Fed reaction functions rather than money demand
equations that assume exogenous monetary policy.34 First, an interest rate
targeting function is clearly a more realistic description of how Fed policy
now operates; the Fed definitely perceives the nominal interest rate as its
policy instrument. Second, the results in Dotsey et al. and Chari, Kehoe,
and McGrattan (1996) are sensitive to the assumed interest elasticity,
which is a very poorly estimated parameter. The advantage of the
reaction-function approach is that the money demand parameters are
irrelevant for the results. Thus, the challenge is to reproduce the Dotsey
et al. results, using the more realistic framework employed here.

One method is to follow Dotsey et al. and make labor supply
infinitely elastic. This strategy seems problematic—the elasticity of 2
assumed here seems about as high as one can reasonably get, even with
variable labor effort. The other way to make factor supply more elastic is
to reduce the size of D. Since D is quite imprecisely estimated, it seems
reasonable to experiment with values smaller than one.

Figure 8 reports the results for the limiting case of D 5 0, returning
to the case where the nominal interest rate is set by the Taylor rule. The
results seem encouraging; output and inputs fall by almost 2 percent and
remain above their steady-state levels for a year. No overshooting occurs,
as was the case for the same model with D 5 1 (shown in Figure 6).

However, there is still not enough persistence, relative to the results
found in the empirical literature. Of course, this result may simply
indicate still not enough “real rigidities” in the model. Ball and Romer
(1990) point out the importance of real rigidities for generating substan-
tial real effects of nominal shocks in static models with state-dependent
pricing; Kimball (1995) confirms their results in a dynamic DGE model
with time-dependent pricing. In the context of this model, the degree of
real rigidity corresponds (inversely) to the assumed size of D, given the
other calibration, particularly the intertemporal elasticity of labor supply.
Thus, the answer may simply be that we need even more real rigidity
than the minimum value of D allows. For example, countercyclical
variation in the size of desired markups would help enormously, for
reasons explained by Kimball (1995).

However, the fact that we now want sticky-price models to generate

34 However, it is not clear that the Taylor rule is the best one. Orphanides (1997) argues
that estimation using real-time data supports simple forward-looking rules over the Taylor
rule.
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sensible impulse responses to technology shocks puts greater constraints
on the search for real rigidities. To document this assertion, Figure 9
shows what happens in the sticky-price model with D 5 0 in response to
a 1-percentage-point technology improvement. First, we see the expected
fall in inputs and output, now almost 4 percent. Utilization falls so much
that the Solow residual actually falls slightly in response to an improve-
ment in technology! But then, in the first period after the shock, the model
predicts enormous increases in output (almost 10 percent) and inputs
(about 7 percent). These far exceed in magnitude any of the impulse
responses observed in the data, at any lag. But, according to the fully
adjusted technology residual, a 1-percentage-point or larger change in
technology relative to its mean is not an uncommon event in the
data—we find such changes in 17 of the 40 years of the sample. Thus, the
D 5 0 model must be rejected for implying too much real rigidity to be
consistent with the observed effects of technology—while at the same
time it generates too little real rigidity to rationalize persistent real effects
of money.

The reasons are not hard to understand. A nominal shock is
fundamentally a weak shock, relying on price rigidity to have any real
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effects. For weak shocks to have large, persistent effects, the economy
needs to be in a state of “near indeterminacy,” depicted in the labor
market as flat labor supply and demand curves lying almost on top of one
another.35 But technology shocks are large, real shocks. An economy that
displays business-cycle-sized fluctuations in response to money shocks
may well display implausibly large fluctuations in response to technol-
ogy shocks—as Figures 8 and 9 show.

This result does not mean that the search for a sensible, integrated
model of business cycles is hopeless. What it does imply is that we need
“shock-dependent” real rigidities. For example, the implicit-collusion
model of countercyclical markups36 predicts that changes in the markup
depend on the time path of output and interest rate responses to shocks.
These paths are likely to differ in response to different shocks. Similarly,
if leisure is durable, then labor supply will be more elastic in response to

35 The phrase and interpretation are from Hall (1991). Kimball (1995) and Kiley (1998)
discuss this issue in the context of sticky-price DGE models.

36 Rotemberg and Woodford (1992, 1995).
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temporary rather than to permanent changes in the demand for labor. If
the effects of monetary shocks last only over the “short run,” but the
effects of technology shocks last over the “medium run,” then the degree
of real rigidity from flat labor supply may well be larger in the case of
monetary shocks.

Historical Simulations

I now simulate the two benchmark models using historical shocks,
and then compare the realizations with actual data for the years 1950 to
1989. The simulation for the RBC model is simple, since I need only
choose a value for D (set equal to one) and feed in the estimated series of
technology shocks. The sticky-price model simulation is much harder,
since I also need to specify the form of the Fed’s reaction function. For a
historically accurate simulation, one would actually need to supply a
variety of reaction functions, since it seems clear that the Fed has
fundamentally changed its procedures several times over this sample
period. However, I assume that the reaction function was given by the
Taylor rule throughout, but the exogenous component of money was
subject to the shocks estimated by Burnside’s (1996) VAR. Thus, the
simulation should be regarded more as an instructive exercise than a
rigorous attempt to duplicate the historical record. I also maintain D 5 1
for this model.

The results for the RBC model are summarized in Table 2. The first
panel shows basic standard deviations and correlations for the data. For
the data, I use private output growth (a chain-weighted index of
aggregate GDP minus government purchases); private consumption,
investment, and hours worked; and the Solow residual for the private
economy. The only surprises are the high correlation of consumption
growth with output growth, which I find to be 0.92, and the high
standard deviation of consumption, 1.81. Most studies using annual data
put these figures at about 0.8 and 1.3. I speculate that the difference comes
partly from the fact that I am using the new chain-weighted NIPA data
and partly from my definition of output, which excludes government. On
the other hand, I find that investment is somewhat less correlated with
output than generally reported.

As one might have guessed from the impulse responses, the results
are not kind to the RBC model. Since the volatility of the estimated
technology shocks is much smaller than the volatility of the Solow
residual series used by Plosser (1989), the model underpredicts the
standard deviations of all the variables. All variables are too highly
correlated with output, a standard result when only one shock is driving
all fluctuations. Most problematically, the correlations of the simulated
growth rates with the actual ones are mostly negative. The correlation
between the actual and simulated output series is 20.21, and the
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correlation between the two labor series is 20.62. Time-series plots for the
actual and generated series (in de-meaned growth rates) are shown in
Figure 10.

Results for the sticky-price model are more encouraging (Table 3).
Many of the standard deviations are much higher; in fact, the standard
deviation of hours worked is almost 50 percent larger in the model than
in the data. This result is not typical of DGE models, particularly ones
with such low labor supply elasticities as the model used here. Hours are
so volatile for two reasons. First, capital utilization is allowed to vary,
reducing the rate at which the diminishing marginal product of labor sets
in. Second, technology shocks produce a “whiplash” effect, first reducing
then increasing hours above their steady-state level. The correlations with
output are also reduced—implausibly so, in the case of consumption.
(The main reason seems to be that consumption rises in response to a
technology improvement, even though output falls on impact.) Most impor-
tantly, the correlations with the actual series are positive, albeit mildly so. For
example, the output and hours correlations are both about 0.3.

This model seems promising, because two small modifications are
likely to go a long way towards improving the summary statistics. The
first is adding variable labor effort. I have argued that from a modeling
standpoint variable effort is equivalent to a higher labor supply elasticity.
Thus the labor series in the model should be regarded as the sum of
observed (hours) and unobserved (effort) labor fluctuations in the model.

Table 2
Summary Statistics for Historical Simulation: RBC Model
(D51)

A. Actual

Standard
Deviation

Correlation with
Output

Correlation with
Actual

D log (Y) 2.97 1.00 1.00
D log (C) 1.81 .92 1.00
D log (I) 10.51 .86 1.00
D log (N) 2.28 .80 1.00
D log (SR) 2.98 .98 1.00

B. Predicted

Standard
Deviation

Correlation with
Output

Correlation with
Actual

D log (Y) 2.30 1.00 2.21
D log (C) .98 .94 .08
D log (I) 6.44 .99 2.41
D log (N) 1.16 .97 2.62
D log (SR) 1.48 1.00 2.12

TECHNOLOGY AND BUSINESS CYCLES 249



250 Susanto Basu



But from an empirical standpoint, modeling unobserved effort would
increase the standard deviation of the simulated Solow residual and its
correlation with output, while reducing the standard deviation of
hours—all desirable outcomes. Second, both the volatility of consump-
tion and its correlation with output can probably be increased by
modeling liquidity constraints. After all, most research on consumption
strongly rejects the simple permanent-income model used in the DGE
literature. Liquidity constraints might prevent the countercyclical behav-
ior of consumption in response to technology improvements that is found
in the model but not the data (see BFK).

However, the model is nowhere close to experiencing the sort of
success that Plosser (1989) claimed for the RBC model. Inspecting the
time-series plots in Figure 11 suggests that the reason is the lack of
propagation discussed earlier. Panel A, which plots the two output series,
shows that fluctuations do not seem as long-lived in the model as in the
data, leading to the relatively poor fit between prediction and outcome. It
may be possible to reduce this problem by adding more real rigidities to
the model—but bearing in mind the caveat discussed above.

Table 3
Summary Statistics for Historical Simulation: Sticky-Price Model
(Taylor Rule, D 5 1)

A. Actual

Standard
Deviation

Correlation with
Output

Correlation with
Actual

D log (Y) 2.97 1.00 1.00
D log (C) 1.81 .92 1.00
D log (I) 10.51 .86 1.00
D log (N) 2.28 .80 1.00
D log (SR) 2.98 .98 1.00

B. Predicted

Standard
Deviation

Correlation with
Output

Correlation with
Actual

D log (Y) 2.59 1.00 .30
D log (C) 1.03 .35 .19
D log (I) 9.62 .95 .35
D log (N) 3.19 .84 .33
D log (SR) 1.29 .59 .12
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CONCLUSION

The behavior of the economy in response to technology shocks is a
challenge for business-cycle theory. Current empirical results show that
when technology improves, inputs fall significantly in the short run and
output is almost unchanged. The results in this paper show that bench-
mark models of the business cycle are unable to rationalize this behavior
fully. Sticky-price models show some promise of being able to match the
data, but they clearly have a long way to go.

Disappointingly, just adding a plausible amount of variable factor
utilization to the sticky-price model does not impart enough real rigidity
to match estimated impulse responses for either technology or money. In
some ways, this result may not seem particularly discouraging. After all,
variable utilization is only one of many possible real rigidities, and the
others may pick up the slack. Variable capital utilization is different,
however, in that it is solidly documented (for example, by Shapiro 1996,
using firm-level data), and some of the parameters governing changes in
utilization have been estimated. By contrast, many of the other mecha-
nisms discussed in the literature—for example, kinked demand curves,
sector-specific externalities, efficiency wages, or countercyclical target
markups—remain more in the realm of wishful thinking.

Finally, while adding technology shocks to sticky-price models holds
the promise of being able to explain the puzzling facts about the effects of
technology on the economy, researchers now face the challenge of
producing sensible impulse responses for two kinds of shocks using the
same model. While this discipline is desirable, it makes an already
difficult job even harder.

However, a second class of propagation mechanisms that has some
solid empirical support has not been considered here. These are models
where, as a result of frictions of some kind, cyclical changes in the
composition of output serve to magnify the effects of shocks. And since
different types of shocks lead to different output composition, this class of
models has the potential to produce different degrees of real rigidities for
technology shocks than for money shocks. However, research on cali-
brated multisector models with frictions is extremely demanding, both
computationally and in terms of the effort needed to understand the
workings of the model at a deep level. Some research is under way,37 but
it is too early to say whether these models will make a significant
contribution to solving the problems identified here.

37 See, for example, Horvath (1995), Basu, Fernald, and Horvath (1996), and Phelan and
Trejos (1996).
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