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1. Introduction

There is considerable interest in business cycle models with multiple, self-ful…lling rational expec-

tations equilibria. These models o¤er a new source of impulses to business cycles—disturbances

to expectations—and they o¤er new mechanisms for propagating and magnifying the e¤ects of

existing shocks, such as shocks to monetary policy, to government spending, and to technology.

Although initial versions of these models appear to rely on empirically implausible parameter

values, recent vintages are based on increasingly plausible empirical foundations.1 The models

also o¤er a new perspective on macroeconomic stabilization policy. Most mainstream equilib-

rium models suggest that, at best, the gains from macroeconomic stabilization are small.2 In

models with multiple equilibria, institutional arrangements and policy rules designed to reduce

‡uctuations in output may produce very large gains.3

This paper examines the potential gains from output stabilization in a particular business

cycle model with multiple equilibria. We consider a version of the one-sector, external increasing

returns model studied by Baxter and King (1991), Benhabib and Farmer (1994,1996), and

Farmer and Guo (1994,1995). We adopt a particular parameterization of this model which allows

us to obtain an analytic characterization of the global set of competitive equilibria. This set is

remarkably rich, and includes sunspot equilibria, regime switching equilibria like those studied

in Hamilton (1989), and equilibria which appear chaotic. There are equilibria with very poor

welfare properties in this set. We obtain a closed form expression for the e¢cient allocations,

despite the lack of convexity in the aggregate resource constraint due to the externality. We

show that the e¢cient allocations are unique and display no ‡uctuations. In this sense, output

stabilization is desirable in our model economy. The policy problem is to design tax rules which

stabilize the economy on the e¢cient allocations.

We analyze some pitfalls in the design of such a tax system. For example, we show that

a system which stabilizes the economy on the wrong output growth rate could actually reduce

1See Benhabib and Farmer (1996) and Harrison (1998).
2See Kydland and Prescott (1980) and Sargent (1979, p. 393) for classic statements of the proposition that

the gains are actually negative. Researchers who incorporate frictions like price rigidities do see some role for
activist policy. But, the welfare gains tend to be small.

3For recent work on the implications of multiple equilibrium models for policy design, see Bryant (1981),
Diamond and Dybvig (1983), Grandmont (1986), Guesnerie and Woodford (1992), Shleifer (1986), Woodford
(1986b,1991), and the articles in the symposium summarized in Woodford (1994).



welfare.4 This illustrates the dangers in the traditional approach to policy design, which tends

to focus on minimizing output variance.5

We also display a tax system which supports the e¢cient allocations. We show that such

a tax system must be an automatic stabilizer. That is, it must specify that the tax rate rise

and fall with aggregate economic activity. Since the unique equilibrium under this tax regime

displays no ‡uctuations, the tax rate that is realized in equilibrium is actually constant. If the

tax system instead …xed the tax rate at this constant, and did not commit to varying the rate

with the level of economic activity, then there would be multiple equilibria. Although one of

these equilibria is the e¢cient one, there would be no guarantee of it being realized.6

Why does an automatic stabilizer tax system have the potential to stabilize ‡uctuations

in our model economy? Absent tax considerations, if everyone believes the return to market

activity is high, then they become more active and the externality causes the belief to be ful…lled.

By undoing the e¤ects of the externality, a tax rate that rises with increased market activity

can prevent beliefs like this from being con…rmed.7

The outline of the paper is as follows. The model is presented in Section 2. Section 3

establishes a characterization result for the set of competitive equilibria. Sections 4 and 5 analyze

the deterministic and stochastic equilibria of the model, respectively. Section 6 considers the

impact of an automatic stabilizer tax policy and reports the socially optimal allocations. Section

7 concludes.

2. The Model

We accomplish two things in this section. In the …rst subsection, we describe the preferences,

technology and shocks in the economy. This section also states our functional form and para-

meter assumptions. We discuss the competitive decentralization in the second subsection.

4This possibility has been discussed by Guesnerie and Woodford (1992, pp. 383–388), Shleifer (1986), and
Woodford (1991, p. 103) in other contexts.

5An in‡uential example is the analysis of Poole (1970), who argues that the appropriate choice of monetary
policy regime depends on whether shocks emanate from …nancial markets or investment decisions. The criterion
driving the policy design in Poole’s analysis is minimization of output variance.

6This part of our analysis also illustrates potential dangers in the standard practice of focusing exclusively
on local uniqueness properties of equilibria. With the constant tax regime discussed in the text, the e¢cient
equilibrium is determinate, so that a local analysis would falsely conclude that it is unique.

7Although we emphasize the potential stabilizing role of simple tax rules, tax rules can also be destabilizing
(see Schmitt-Grohe and Uribe, 1997).
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2.1. Preferences, Technology and Shocks

We only consider non-fundamental shocks, i.e., shocks which have no impact on preferences or

technology. The date t realization of these shocks is summarized in the vector, st: For simplicity,

we only consider environments in which the number of possible values of st is …nite for each t:

Let st = (s0; s1; :::; st) denote a history of realizations up to and including date t; t = 0; 1; 2; :::.

The probability of history st is denoted ¹t(s
t); t = 0; 1; :::. To simplify the notation, from here on

we delete the subscript t on ¹: We adopt this notational convention for all functions of histories.

The probability of st+1 conditional on st is denoted ¹(st+1 j st) ´ ¹(st+1)=¹(st):

For each history, st; the preferences of the representative household over consumption and

leisure are given by:
1X

j=t

X

sj jst
¯j¡t¹(sj)u[c(sj); n(sj)]; (1)

where ¯²(0; 1) is the discount rate, sj j st denotes histories, sj ; that are continuations of the

given history, st; and c(sj); n(sj) denote consumption and labor, respectively, conditional on

history sj : We assume:

u(c; n) = log c+ ¾ log(1¡ n) (2)

where ¾ > 0:

Since the production technology is static, we can describe it without the st notation. Pro-

duction occurs at a large number of locations. A given location which uses capital, K; and labor,

N; produces output, Y using the following production function:

Y = f(y;K;N) = y°K®N (1¡®); 0 · °; ® · 1: (3)

Here, y denotes the average level of production across all locations. We assume

® = 1¡ °; (4)

with ° = 2=3: With this value of °; the model implies that labor’s share of income in the

competitive decentralization described below is 2=3, which is close to the value estimated using

the national income and product accounts (Christiano, 1988).

The relation between the economywide average level of output and the economywide average
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stock of capital, k, and labor, n, is obtained by solving y = f(y; k; n) for y:

y = k®=(1¡°)n(1¡®)=(1¡°) = kn
°

1¡° = kn2 (5)

given (4) and our assumed value of °.

Finally, the resource constraint for this economy is

c(st) + k(st)¡ (1¡ ±)k(st¡1) · k(st¡1)n(st)2 = y(st): (6)

2.2. Decentralization

In what follows we describe the household and …rm problems, and our competitive equilibrium

concept. In addition, we introduce a government which has the power to tax and to transfer

resources.

2.2.1. Households

At each st and t, the representative household faces the following sequence of budget constraints:

c(sj) + k(sj)¡ (1¡ ±)k(sj¡1) = (7)

[1¡ ¿(sj)][r(sj)k(sj¡1) + w(sj)n(sj)] + T (sj); all sjjst; j ¸ t

where r(sj) and w(sj) denote the market rental rate on capital and the wage rate, respectively.

Also, ¿(sj) is the tax rate on income, T (sj) denotes lump-sum transfers from the government,

and k(sj) denotes the stock of capital at the end of period j, given history sj: The household

also takes k(st¡1) as given at st: Finally, the household must satisfy the following inequality

constraints:

k(sj) ¸ 0; c(sj) ¸ 0; 0 · n(sj) · 1 (8)

for all sj j st and j ¸ t and takes as given and known the actual future date-state contingent

prices and taxes:

fr(sj); w(sj); ¿ (sj); T (sj); j ¸ t; all sj j stg: (9)

Formally, at each st and t; the household problem is to choose fc(sj); n(sj); k(sj); j ¸ t; all

sj j stg to maximize (1) subject to (7), (8), (9), and the initial stock of capital, k(st¡1): The
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intertemporal Euler equations corresponding to this problem are

uc(s
j) = ¯

X

sj+1jst
¹(sj+1 j sj)uc(sj+1)f[1¡ ¿ (sj+1)]r(sj+1) + 1¡ ±g (10)

all sj j st; j ¸ t, and the intratemporal Euler equations are

¡un(sj)
uc(sj)

= [1¡ ¿(sj)]w(sj); all sj j st; j ¸ t. (11)

Here, uc(sj) and un(sj) denote the partial derivatives of u with respect to its …rst and second

arguments, evaluated at c(sj); n(sj). Finally, the household’s transversality condition is

lim
T!1

¯T
X

sT jst
¹(sT j st)uc(sT )f[1¡ ¿ (sT )]r(sT ) + 1¡ ±gk(sT¡1) = 0: (12)

The su¢ciency of the Euler equations, (10) and (11), and transversality condition, (12), for an

interior solution to the household problem may be established by applying the proof strategy

for Theorem 4.15 in Stokey and Lucas with Prescott (1989).

2.2.2. Firms

The technology at each location is operated by a …rm. Omitting the st notation, the represen-

tative …rm takes y; r; and w as given and chooses K and N to maximize pro…ts:

Y ¡ rK ¡ wN (13)

subject to (3). The …rm’s …rst-order conditions for labor and capital are

fN = w; fK = r (14)

where fK and fN are the derivatives of f with respect to its second and third arguments,

respectively. We assume the …rm behaves symmetrically, so that consistency requires y =

Y; k = K;n = N: Imposing these, we obtain

fN = (1¡ ®)nk; fK = ®n2: (15)
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2.2.3. Government

The income tax rate policy, ¿ (st); is speci…ed exogenously, and we require that the following

budget constraint be satis…ed for each st:

¿ (st)[r(st)k(st¡1) + w(st)n(st)] = T (st): (16)

2.3. Equilibrium

We adopt the following de…nition of equilibrium:8

De…nition 1. A sequence-of-markets equilibrium is a set of prices fr(st); w(st); all st; all t ¸ 0g;
quantities fy(st); c(st); k(st); n(st); all st; all t ¸ 0g; and a tax policy f¿(st); T (st); all st; t ¸ 0g
with the following properties, for each t; st:

² Given the prices, the quantities solve the household’s problem.

² Given the prices and given fy(st) = k(st¡1)n(st)2g, the quantities solve the …rm’s problem.

² The government’s budget constraint is satis…ed.

² The resource constraint is satis…ed.

We …nd it useful to de…ne an interior equilibrium. This is a sequence-of-markets equilibrium in

which a · n(st) · b for all st for some a and b satisfying 0 < a · b < 1:

3. Characterizing Equilibrium

In the next two sections of the paper, we study deterministic equilibria in which prices and

quantities do not vary with st and stochastic (sunspot) equilibria in which prices and quantities

do vary with st: The analysis of these equilibria is made possible by a characterization result,

which is the subject of this section.

Substituting (14) and (15) into the household’s intertemporal Euler equation, (10), we get

1

~c(st)
= ¯

1

¸(st)

X

st+1jst
¹(st+1 j st) 1

~c(st+1)
f[1¡ ¿ (st+1)]®n(st+1)2 + 1¡ ±g (17)

where

~c(st) =
c(st)

k(st¡1)
; ¸(st) =

k(st)

k(st¡1)
: (18)

8It is easily veri…ed that the analysis would have been unaltered had we instead adopted the date 0; Arrow-
Debreu equilibrium concept. In this case, households would have had access to complete contingent claims
markets.
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Substituting (15) into the household intratemporal Euler equation, (11), we get

~c(st) = [1¡ ¿ (st)]°
¾
n(st)[1¡ n(st)]: (19)

The resource constraint implies that

~c(st) = n(st)2 + 1¡ ± ¡ ¸(st): (20)

Combining the two Euler equations, (17) and (19), and the resource constraint, (20), our system

collapses into a single equation in current and next period’s employment:

X

st+1

¹(st+1 j st)v[n(st); n(st+1); ¿(st+1)] = 0; all st; t ¸ 0 (21)

where v is

v(n; n0; ¿ 0) =
1

n2 + 1¡ ± ¡ ¸ ¡ ¯[(1¡ ¿ 0)®(n0)2 + 1¡ ±]
¸[(n0)2 + 1¡ ± ¡ ¸0] (22)

with

¸ = n2 + 1¡ ± ¡ (1¡ ¿)°
¾
n(1¡ n): (23)

Here, a 0 denotes next period’s value of the variable. The transversality condition, (12), is

equivalent to

lim
T!1

X

sT

¯T¹(sT )
f[1¡ ¿ (sT )]®n(sT )2 + 1¡ ±g
[1¡ ¿(sT )] °

¾
n(sT )[1¡ n(sT )] = 0: (24)

The basic equilibrium characterization result for this economy is

Proposition 1 Suppose that ¿ (st) ´ 0: If, for all st and t ¸ 0;

fn(st)g satis…es (21)

and
a · n(st) · b for some 0 < a · b < 1

then fn(st)g corresponds to an equilibrium.

Proof. To establish the result, we need to compute the remaining objects, prices and quantities,
in an equilibrium and verify that they satisfy (10), (11), (12), (14), and (6). A candidate set
of objects is found in the obvious way. The su¢ciency of the …rst-order and transversality
conditions for household optimization and the su¢ciency of the …rst-order conditions for …rm
optimization guarantee that these are an equilibrium.

The characterization result indicates that understanding the equilibria of the model requires

understanding the v function. It is easily con…rmed that v = ! de…nes a quadratic function in
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n0 for each …xed n and !:9 (Later, we refer to ! as the Euler error.) Hence, for each n; ! there

are two possible n0 : n0 = fu(n; !) and n0 = fl(n; !); where

fu(n; !) =
1
2
fb(n; !) +

q
b(n; !)2 ¡ 4c(n; !)g

fl(n; !) =
1
2
fb(n; !)¡

q
b(n; !)2 ¡ 4c(n; !)g

: (25)

Here,

b(n; !) =
'(n)q(n; !)

®+ q(n; !)'(n)
; c(n; !) =

1¡ ±
®+ q(n; !)'(n)

(26)

'(n) =
n2 + 1¡ ± ¡ °

¾
n(1¡ n)

¯n(1¡ n) (27)

q(n; !) = 1¡ °

¾
n(1¡ n)!: (28)

The function v has the shape of a saddle, as can be seen in Figure 1a. The intersection of v

and the zero plane (! = 0) is depicted in Figure 1a as the boundary between the light and dark

region of v: This intersection de…nes the curves fu(¢; 0) and fl(¢; 0); which are shown in Figure

1b. We refer to these as the upper and lower branches of the function v: The lower branch

intersects the 45-degree line at two points, which are denoted ¹n1 and ¹n2: These intersection

points cannot be seen in Figure 1b, but can be seen in Figure 1c, which displays n0 ¡ n for n

near the origin. It is easy to see from Figure 1a that with higher values of !; fl increases and

fu decreases. The …gure also indicates that for these functions to be real-valued, ! must not be

too big.

The branches in the …gure are computed using our baseline parameterization, ¾ = 2; ¯ =

1:03¡
1
4 ; ± = 0:02; ® = 1=3. Here, ¹n1 = 0:02 and ¹n2 = 0:31. The gross growth rates of capital

(that is, ¸) at these two points are 0:973 and 1:004, respectively.

4. Deterministic Equilibria

We brie‡y discuss the set of deterministic equilibria. Since prices and quantities depend on t;

but not on st; we can drop the history notation, and use the conventional time subscript notation

instead. The set of deterministic equilibria is quite rich. For example, any constant sequence

fntg; with nt = ¹n1 or nt = ¹n2; satis…es the conditions of the characterization result and so is

9For other examples models in which the Euler equation has two solutions for every initial condition, see
Benhabib and Perli (1994) and Benhabib and Rustichini (1994).
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an equilibrium. Similarly, any sequence with n0 2 (¹n1; ~n) and nt+1 = fl(nt; 0); t ¸ 0 is also an

equilibrium, with nt ! ¹n2: Here, ~n satis…es ~n > ¹n2 and ¹n1 = fl(~n; 0): Figure 2 exhibits two

equilibrium paths, one starting with n0 = 0:4 and the other with n0 = 0:2: Each path converges

monotonically to ¹n2:

Other deterministic equilibria are more exotic and display a variety of types of regime switch-

ing. For example, the equilibrium employment policy function could be time non-stationary,

with employment determined by the lower branch for, say, six periods, followed by a single-period

jump to the upper branch, followed by another six-period sojourn on the lower branch, and so

on. The model has another type of regime switching equilibrium too, in which the employment

policy function is discontinuous.

As an example of the latter, consider equilibria in which employment, n0; is determined by

the upper branch for n over one set of intervals in (0; 1) and by the lower branch over the

complement of these intervals. One example of this is given by

n0 = f(n); where f(n) ´

8
>>><
>>>:

fu(n; 0) for n · ¹n1

fl(n; 0) for ¹n1 < n · m1

fu(n; 0) for m1 < n · m2

fl(n; 0) for m2 < n

(29)

where m1 < ¹n2 and m2 are a chosen set of numbers. By considering di¤erent values of ¾; (29)

de…nes a family of maps. This family includes maps which exhibit characteristics that resemble

chaos. See Christiano and Harrison (1996) for an extended discussion.

5. Sunspot Equilibria

In this section, we study equilibria of our model in which prices and quantities respond to st:

We construct two equilibria to illustrate the possibilities. The …rst, which we call a conventional

sunspot equilibrium, uses fl only. This equilibrium is constructed near the deterministic steady

state, ¹n2; which, as noted above, has a continuum of deterministic equilibria which converge

to it. Our choice of name re‡ects that this type of equilibrium is standard in the quantita-

tive sunspot literature.10 The second equilibrium considered, which we call a regime switching

10Because a continuum of other nonstochastic equilibria exists near the steady state equilibrium, ¹n2; this
equilibrium is said to be indeterminate (Boldrin and Rustichini, 1994, p. 327). For a general discussion of the
link between indeterminate equilibria and sunspots, see Woodford (1986a). Examples of quantitative analyses
that construct sunspot equilibria in the neighborhood of indeterminate equilibria include Benhabib and Farmer
(1994,1996), Farmer and Guo (1994,1995), and Gali (1994a,b).
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sunspot equilibrium, involves stochastically switching between fl and fu: Our principle interest

in these equilibria has to do with their welfare properties. However, we …nd it useful to also

display their business cycle properties. We display the business cycle properties of US data

and of a standard real business cycle model as benchmarks. Our benchmark real business cycle

model is the one analyzed in Christiano and Todd (1996).11

5.1. Conventional Sunspot Equilibrium

In this equilibrium, s 2 R is independently distributed over time, with s = ¡0:06 and s = 0:06

with probability 1=2 each. These values for s were chosen so that the standard deviation of

output, after …rst logging and then …ltering by the Hodrick and Prescott (1997) method (‘HP-

…lter’), equals the corresponding empirical analog. Given any n; next period’s hours worked; n0;

is computed by …rst drawing s and then solving

n0 = fl(n; s) (30)

where fl is de…ned in (25). We set the initial level of hours worked, n0; to ¹n2: Recall that ¹n2 is

the higher of the two deterministic steady states associated with the lower branch, fl: That is,

of the two solutions to x = fl(x; s); ¹n2 is the larger of the two.

To establish that this stochastic process for employment corresponds to an equilibrium, it

is su¢cient to verify that the conditions of the characterization result are satis…ed. The …rst

condition is satis…ed by construction, and the second is satis…ed because n(st) remains within

a compact interval that is a strict subset of the unit interval. That is, let a be the smaller

of the two values of n that solve a = fl(a;¡0:06); and let b > a be the unique value of n

with the property a = fl(b;¡0:06): Here, a and b are 0:0249 and 0:9509 after rounding. We

veri…ed that if a · n · b; then a · n0 · b for n0 = fl(n;¡0:06) and n0 = fl(n; 0:06): Thus,

prob[a · n0 · b j a · n · b] = 1: It follows that a · n(st) · b for all histories, st; with

¹(st) > 0. The conditions of the characterization result are satis…ed, and so we conclude that

n(st) corresponds to an equilibrium.

The …rst-moment properties of this equilibrium are reported in Panel C of Table 1. They are

similar to the corresponding properties of the US data (Panel A) and of the real business cycle

11See Christiano and Harrison (1996) for a discussion, using our model, of the econometrics of conventional
and regime switching sunspot equilibria.
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model (Panel B). The second-moment properties of this equilibrium (see Table 2, Panel C) also

compare favorably with the corresponding sample analogs, at least relative to the performance

of the real business cycle model (see Table 2, panel B). Four observations are worth stressing.

First, consumption in both models is smooth relative to output, as in the data. The two models

also perform similarly in terms of their implications for the volatility of investment. Second,

the conventional sunspot equilibrium does somewhat better on the volatility of hours worked

than does the real business cycle model. For example, the real business cycle model implies that

productivity is about 65 percent more volatile than hours worked, whereas the conventional

sunspot equilibrium implies that productivity is about as volatile as hours worked. In the data,

productivity is about 30 percent less volatile than hours worked. Third, hours and productivity

are procyclical in the real business cycle model and the conventional sunspot equilibrium, as

they are in the data. The conventional equilibrium’s implication that productivity is procyclical

re‡ects the increasing returns in the model. Fourth, the model inherits a shortcoming of standard

real business cycle models in overpredicting the correlation between productivity and hours

worked. In the data, this quantity is essentially zero.

Some of these properties can also be seen by examining the plots in Figure 3. They are graphs

of the logged and HP …ltered data from the equilibrium described above. Consumption is smooth

and investment is volatile in these graphs. In addition, hours worked and productivity are seen

to be procyclical. Overall, this sunspot equilibrium compares quite well to the real business

cycle model in its ability to mimic key features of postwar US. business cycles.

5.2. Regime Switching Sunspot Equilibrium

For this equilibrium, s = [s(1); s(2)] 2 R2; with s(1) 2 fu; lg and s(2) = ! 2 f¡0:06; 0:06g.

That is, the …rst element of s indicates whether the economy is on the lower or upper branch,

and the second element corresponds to the conventional sunspot variable. Given a history, st;

and an associated level of employment, n(st); we draw st+1 and solve for n(st+1) using:

n(st+1) = fst+1(1)
³
n(st); st+1(2)

´
(31)

for t = 1; 2; :::. The date zero level of employment is set to ¹n2: When the value of s(1) changes

along a history, we say there has been a regime switch.

We constructed the probabilities, ¹(st+1); used to draw st+1 as follows. First, st+1(1) and
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st+1(2) are independent random variables, and st+1(2) has the same distribution as s in the

previous equilibrium. The probabilities for st+1(1) 2 fu; lg were constructed to guarantee that

a · n(st+1) · b with probability one, for a; b such that 0 < a · b < 1: We used the values of a

and b from the conventional sunspot equilibrium. Also,

prob[st+1(1) = l] =

(
0:9; for ~n1 < n(st) < ~n2

1; otherwise,
(32)

where ~n1 = 0:0370 and ~n2 = 0:9279: We veri…ed numerically that, if a · n(st) · b; then

prob[a · n(st+1) · b] = 1: It follows that, for all st such that ¹(st) > 0; a · n(st) · b:12 This

establishes the second of the two conditions of the characterization result. To establish the …rst

condition, note that by (31),

v
³
n(st); n(st+1)

´
= st+1(2); for all st (33)

and by construction of the Euler error, st+1(2);

X

st+1jst
¹(st+1 j st)st+1(2) = 0; for all st: (34)

This establishes that the conditions of the characterization result are satis…ed, and we conclude

that n(st) corresponds to an equilibrium.

We now consider the dynamic properties of the regime switching sunspot equilibrium. First-

moment properties are reported in Panel D of Table 1, while second-moment properties are

reported in Panel D of Table 2. Regime switching is the key to understanding the dynamics of

this equilibrium. Periodically, the economy switches to the upper branch, fu; where employment

is very high. The economy typically stays on the upper branch only brie‡y. When it switches

down again, employment drops to a very low level, near a. Employment then rises slowly until

another switch occurs, when the economy jumps to the upper branch, and the process continues.

The fact that the economy spends much time in the left region of the lower branch explains why

average employment in this equilibrium is so low. This also explains why investment is, on av-

erage, negative. Regarding the second-moment properties, output is substantially more volatile

12Our speci…cation of ~n1 and ~n2 is crucial for guaranteeing the second condition of the characterization result.
For example, with ~n1 = a and ~n2 = b; histories, st; in which hours worked ‡uctuate between values that approach
0 and 1 occur with high probability. With ¹(st) speci…ed in this way, the second condition of the characterization
result fails.
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than it is in the data. Also, output displays very little serial correlation. The positive serial

correlation produced by sojourns on the lower branch is o¤set by the negative serial correlation

associated with transient jumps to the upper branch. These observations are supported by the

time series plots of the logged, HP …ltered data from this equilibrium, presented in Figure 4.

The regime switching equilibrium nicely illustrates a type of sunspot equilibrium that is

possible. However, in contrast with the conventional sunspot equilibrium, the …rst and second

moment properties of this equilibrium do not match the corresponding quantities in the data. In

Christiano and Harrison (1996), we explore other strategies for determining if the data exhibit

the type of regime-switching possible in our model. The …ndings there complement the results

here in suggesting that this type of behavior is probably empirically unimportant. This type of

equilibrium is a novel aspect of dynamic equilibrium models, and it would be interesting if it

turned out to be empirically relevant in the context of other models.

5.3. Welfare Analysis

We approximated the expected discounted utility for our equilibria using a Monte Carlo sim-

ulation method. For the conventional sunspot equilibrium and the regime switching sunspot

equilibrium, the expected present discounted utilities are ¡378:21 (0:24) and ¡570:58 (1:77),
respectively (numbers in parentheses are Monte Carlo standard errors).13 To understand the

impact on utility of variance in the Euler error, s(2), we also computed expected utility for a

high variance version of our conventional sunspot equilibrium. In this case, s(2) 2 f¡0:55; 0:55g.

The expected present value of utility for this equilibrium is ¡363:35 (2:14). The present dis-

counted level of utility associated with the constant employment deterministic equilibrium at

¹n2 is ¡378:49: We refer to this equilibrium as the constant employment equilibrium.

To compare these welfare numbers, we converted them to consumption equivalents. That is,

we computed the constant percentage increase in consumption required in the constant employ-

ment equilibrium to make a household indi¤erent between that equilibrium and another given

13For each equilibrium, we drew 1; 000 histories, st; each truncated to be of length 2; 500 observations. Subject
to the initial level of employment being ¹n2 always, we computed consumption and employment along each
history. For each equilibrium, we computed 1; 000 present discounted values of utility, v1; :::; v1000. Our Monte
Carlo estimate of expected present discounted utility, v; is the sample average of these: ¹v = 1

1000

P1000
i=1 vi: The

fact that we use a …nite number of replications implies that ¹v is approximately normally distributed with mean
v and standard deviation ¾i=

p
1; 000; where ¾i is estimated by the standard deviation of v1; :::; v1000. We refer

to ¾i=
p

1; 000 as the Monte Carlo standard error.
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equilibrium. The results are shown in Table 4. They indicate that going from the constant em-

ployment equilibrium to the regime switching sunspot equilibrium is equivalent to a 289 percent

permanent drop in consumption. Going to the conventional sunspot equilibrium is equivalent

to a 0.9 percent permanent rise in consumption, and going to the high variance version of that

equilibrium is equivalent to an 11.2 percent rise in consumption.

An interesting feature of these results is that, despite concavity in the utility function, in-

creasing volatility in s(2) raises welfare. This re‡ects a trade-o¤ between two factors. First, other

things being the same, a concave utility function implies that a sunspot equilibrium is welfare-

inferior to a constant, deterministic equilibrium (concavity e¤ect). However, other things are

not the same. The increasing returns means that by bunching hard work, consumption can be

increased on average without raising the average level of employment (bunching e¤ect). When

the volatility of the model economy with initial employment ¹n2 is increased by raising the volatil-

ity of s(2); then the bunching e¤ect dominates the concavity e¤ect. When volatility is instead

increased by allowing regime switches, then the concavity e¤ect dominates. In interpreting these

results, it is important to recognize that they say nothing about the nature of the e¢cient al-

locations. All of the equilibria that we consider are ine¢cient, because of the presence of the

externality in production.

6. Policy Analysis

We now consider the impact of various policies on the set of equilibria. We consider two coun-

tercyclical tax policies that reduce the set of interior equilibria to a singleton in that output

is a constant. We refer to the …rst as a pure stabilizer because it does not distort margins in

equilibrium. The second tax policy introduces just the right distortions so that the equilibrium

supports the optimal allocations. We show that, for a tax policy to isolate the e¢cient allo-

cations as a unique equilibrium, it is necessary that the tax rate vary in the right way with

the state of the economy. For example, under a constant tax rate policy, the equilibrium is not

unique. Interestingly, the equilibria are isolated in this case, so that they would escape detection

under the usual procedure of analyzing local equilibria.
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6.1. A Pure Automatic Stabilizer

In this section, we display a particular procyclical tax rate rule which reduces the set of equilibria

to a singleton with nt = ¹n2 for all t (the constant employment equilibrium). The tax policy

has the property that in equilibrium, the tax rate is always zero and thus does not distort any

margins. Given our previous results for the constant employment equilibrium, this tax rate

rule improves welfare relative to the regime switching sunspot equilibrium, but actually reduces

welfare relative to the conventional sunspot equilibrium. The possibility that stabilization of a

sunspot by government policy might reduce welfare should not be surprising, given that both

the sunspot equilibrium and the ¹n2 equilibrium are ine¢cient.

Consider the following tax rate:

¿(n) = 1¡ ¹n2

n
(35)

where n denotes economywide average employment and ¹n2 is the higher of the two nonstochastic

steady state employment levels. (See Figure 1b.) Note that this tax rate is zero when aggregate

employment is ¹n2: It turns positive for higher levels of employment and negative for lower levels.

Let ~v(n; n0) denote (22) after substituting out for ¿ (n) from (35). It is easily veri…ed that,

for each value of n; there is at most one n0 that solves ~v(n; n0) = 0: This is given by

n0 = f(n) =
¹n2 ¡K(n)(1¡ ±)
¹n2[1 + ®K(n)]

where

K(n) =
¯¹n2

¸(n)
(1¡ n); ¸(n) = n2 + 1¡ ± ¡ °

¾
¹n2(1¡ n):

The function, f , and its derivative; f 0; have the property that at n = 1,

f(1) = 1; f 0(1) = ¯

"
®¹n2 + 1¡ ±
2¡ ±

#
< ¯

since ®¹n2 < 1: Figure 5 shows f under our baseline parameter values. For convenience, the two

branches of v = 0; fu and fl; are also displayed.

There are three things worth emphasizing about f: First, it cuts the 45-degree line from

below at n = ¹n2; and it intersects the horizontal axis at a positive level of employment. This

implies that there is no in…nite sequence, nt; t = 0; 1; 2; :::; with n0 < ¹n2 and nt = f(nt¡1); such

that nt > 0 for all t: Since satisfaction of the Euler equation, ~v = 0; is a necessary condition

for an interior solution to the household problem, it follows that there is no interior equilibrium
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with n0 < ¹n2: Second, a sequence of employments, nt; t = 0; 1; :::; which has the property

nt = f(nt¡1) and n0 > ¹n2; has the property nt ! 1 as t ! 1: Appealing again to the necessity

of the Euler equation, we conclude that there is no interior equilibrium with n0 > ¹n2: Third,

nt = ¹n
2 for all t satis…es the Euler and transversality conditions and so corresponds to an interior

equilibrium. Thus, the only deterministic interior equilibrium is the one that corresponds to

nt = ¹n
2 for t = 0; 1; :::. That sunspot equilibria are also ruled out follows from the fact that the

Euler equation cuts the 45-degree line from below and from the arguments in Woodford (1986a).

These remarks establish

Proposition 2 For the baseline parameterization and under the tax policy in (35), there is a

unique interior equilibrium with nt = ¹n2 for all t:

Note that under the tax rate policy considered here, ¿ t = 0 in equilibrium. Evidently, the mere

threat to change tax rates is enough to rule out other equilibria. This feature of …scal (and

monetary) policies designed to select certain equilibria can also be found in other models with

multiple expectational equilibria. (See, for example, Boldrin, 1992, p. 215 and Guesnerie and

Woodford, 1992, p. 380–382.)

6.2. Optimal Allocations

The e¢cient allocations correspond to a …ctitious planner’s choice of investment, employment,

and consumption to maximize discounted utility subject to the resource constraint. We repro-

duce the utility function here for convenience:

1X

t=0

X

st

¯t¹(st)flog[c(st)] + ¾ log[1¡ n(st)]g: (36)

The resource constraint is

c(st) + k(st)¡ (1¡ ±)k(st¡1) · k(st¡1)[n(st)]2; for all t; st: (37)

This problem simpli…es greatly. Thus, using the change of variable in (18) and the identity

1X

t=0

X

st

¯t¹(st) log k(st¡1) (38)

=
1

1¡ ¯

(
log k0 + ¯

1X

t=0

X

st

¹(st)¯t log ¸(st)

)
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the objective function can be written

1X

t=0

X

st

¯t¹(st) flog[n(st)2 + 1¡ ± ¡ ¸(st)] + ¯

1¡ ¯ log¸(s
t) (39)

+¾ log[1¡ n(st)]g+ 1

1¡ ¯ log k0:

In (39), consumption has been substituted out using the (scaled) resource constraint after replac-

ing the weak inequality in (37) by a strict equality. Notice that the objective in (39) is separable

across dates and states. This has two implications. First, the e¢cient allocations are insensitive

to sunspots. Second, the e¢cient levels of employment and capital accumulation do not exhibit

cycles. It is trivially veri…ed that this result is independent of the curvature on leisure in the

utility function, the degree of nonconvexity on labor in the production function, and the degree

of homogeneity on capital in the resource constraint.14 Thus, for example, increasing the gains

from bunching production, by raising the power on labor above 2, and reducing the associated

costs, by making utility linear in leisure, still does not imply that the e¢cient allocations exhibit

cycles.

With our speci…cation of preferences, optimizing (39) requires that the planner maximize,

for each t; st;

log[n2 + 1¡ ± ¡ ¸] + ¯

1¡ ¯ log¸ + ¾ log[1¡ n] (40)

by choice of n and ¸, subject to

0 · ¸ · n2 + 1¡ ±; 0 · n · 1: (41)

The objective, (40), is not concave, because of the nonconcavity in the production function.

However, for …xed n, (40) is strictly concave in ¸; and its optimal value is readily determined

to be ¸ = ¯(n2 + 1 ¡ ±): Substituting this into (40), the criterion maximized by the e¢cient

allocations becomes
1

1¡ ¯ log(n
2 + 1¡ ±) + ¾ log(1¡ n) (42)

after constant terms are ignored. The constraint on this problem is 0 · n · 1: There are two

values of n that set the …rst-order condition associated with maximizing (42), and the larger of

14Lack of cycling in the e¢cient allocations also obtains for utility functions which are homogeneous of degree
° 6= 0 in consumption. See the Appendix for further discussion.
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the two is the global optimum. This is given by n0; where

n0 =
1

2

·
Á+

q
Á2 ¡ 4»

¸
; Á =

2

2 + ¾(1¡ ¯) ; » =
¾(1¡ ¯)(1¡ ±)
2 + ¾(1¡ ¯) : (43)

With the baseline parameter values, n0 = 0:98; which implies that the optimal value of ¸ is

1:94; or 94 percent per quarter. That equilibrium employment is so high re‡ects the fact that

the e¢cient allocations internalize the externality in the production function.

It is easily veri…ed that the tax rate which supports n0 as an equilibrium is ¿ = ¡2: It

is not surprising that this involves a subsidy, since the tax must in e¤ect coax individuals into

internalizing the positive externality associated with production. Consider …rst the case in which

the tax rate is simply …xed at ¿ = ¡2 for every n: Let ~v(n; n0) denote (22) after substituting

out for ¿ = ¡2. In e¤ect, reducing ¿ from zero to -2 pushes the saddle in Figure 1a down,

so that the ! = 0 plane now covers the seat of the saddle. The consequences can be seen in

Figure 6a, which displays the values of n0 that solve ~v(n; n0) = 0 for n 2 (0; 1). Note the region

of values for n for which there are no values of n0 that solve ~v(n; n0) = 0: In the other regions,

there are generally two values of n0 that solve this equation for each n: Interestingly, the unique

intersection of these points with the 45-degree line, at n0; is associated with a slope greater than

one. As a result, the equilibrium associated with n0; n0; n0; ::: is determinate. However, there

is at least one other equilibrium, ~n; n0; n0; :::: (See Figure 6a for ~n:) Evidently, the constant tax

rate policy does not guarantee a unique equilibrium.

One way to construct a tax regime that selects only the desirable equilibrium follows the

strategy taken in the previous subsection. Thus, consider

¿(n) = 1¡ 3n0

n
:

Evidently, with this policy, ¿ (n0) = ¡2; so that there is an equilibrium associated with this

tax policy which supports the e¢cient allocations. Also, it is easily veri…ed that—following the

same reasoning as in the preceding subsection—the Euler equation has only one branch. In

addition, we found for the baseline parameter values that this branch is monotone, and it cuts

the 45-degree line from below. It follows by the logic leading to Proposition 2 that there is a

unique interior equilibrium.
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7. Conclusion and Directions for Future Research

We have studied a model environment in which the gains from adopting an automatic stabilizer

tax system are potentially very large. An example was displayed in which the gains are equivalent

to increasing consumption by a factor of 3! We showed, however, that for positive gains to be

realized, it is important that the tax system be structured appropriately. In our model, the tax

system has an important impact on the growth rate of the economy, and stabilization could be

counterproductive if the economy were stabilized on the wrong growth path. Subject to this

quali…cation, the environment analyzed here seems to rationalize the importance assigned by

macroeconomists before the 1970s to devising automatic stabilizer tax systems.15 Our analysis

raises several questions that deserve further investigation.

First, how robust is our result that a properly constructed tax system necessarily eliminates

‡uctuations? We have shown that this is so under a particular homogeneity assumption on the

resource constraint. But, standard models do not satisfy this condition. It is also of interest

to investigate what happens when shocks to fundamentals are introduced, and a less extreme

position is taken on the nature of production externalities.16

Second, to what extent does the business cycle behavior of the US economy re‡ect the stabi-

lizing in‡uence of automatic stabilizers? It is clear that, at least under a broad interpretation of

automatic stabilizers, their role has been signi…cant. For example, the government’s commitment

to defend the liquidity of the banking system, with the Federal Deposit Insurance Corporation

as its backbone, has essentially eliminated the sort of …nancial panics that are thought to have

contributed to recessions in the past. This policy works to stabilize the economy by a mechanism

similar to the one studied in this paper.17 It would be of interest to understand whether the US

tax code might also have played a stabilizing role via this mechanism.

Third, would the US economy bene…t from adjustments to the tax code designed to bring

about further stabilization? The analysis of Lucas (1987) suggests that, without a di¤erent

speci…cation of household preferences, the answer is ‘no’. Lucas adopts a utility function much

15For a review, see Christiano (1984).
16For some steps in this direction, see Guo and Lansing (1996).
17The government’s commitment to provide liquidity to banks during a bank run eliminates individuals’

incentive to run on the bank, and thereby eliminates bank runs as equilibrium phenomena. Similarly, in our
model the committment to cut taxes in a recession reduces individuals’ incentives to reduce labor e¤ort then,
and this eliminates recessions as equilibrium phenomena.
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like ours and argues that, given the observed volatility of measured consumption, the upper

bound on the potential gains from stabilization is negligibly small. The case that further stabi-

lization is desirable would have to be based on a very di¤erent model: one in which either the

representative agent assumption is dropped, or preferences are very di¤erent, or both.

Finally, we emphasize that we have not rationalized ‘automatic stabilizers’ in the sense of

tax rates that demonstrate signi…cant procyclicality in equilibrium. It is important to draw

attention to this, since some might think that this is precisely what automatic stabilizers are all

about. In our model, an e¢cient tax system stabilizes ‡uctuations entirely and so our analysis

sheds no light on the cyclical properties of an e¢cient tax system when the e¢cient allocations

exhibit ‡uctuations in equilibrium. One way to investigate this further is to introduce shocks

to fundamentals. However, we conjecture that an e¢cient tax regime would move procyclically

with sunspot shocks, but would move very little with technology shocks. Assuming an e¢cient

tax regime eliminates sunspot equilibria, the optimal ‘automatic stabilizer’ tax rate would then

not be procyclical in equilibrium. An interesting question is what happens when the tax regime

cannot respond di¤erently to ‡uctuations due to sunspots and to ‡uctuations due to technology

shocks. Possibly, under these circumstances an e¢ciently constructed tax regime would exhibit

signi…cant procyclicality in equilibrium.
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A. Appendix: Linearity of Policy Rules Under Homogeneity

In this appendix, we establish e¢ciency for a policy of the form, kt+1 = ¸
¤kt and nt = n¤; where

¸¤; n¤ are …xed numbers. We do this for a class of economies in which the resource constraint is
homogeneous in capital and in which preferences are homogeneous in consumption. Our result
parallels that in Alvarez and Stokey (1995), except their environment does not explicitly allow
for variable hours worked.

Consider the following planning problem:

max
fkt+1;nt;ctg

1X

t=0

¯tu(ct; nt), 0 < ¯ < 1 (44)

subject to the following feasibility constraints:

k0 > 0 is given, 0 · ct · F (kt; kt+1; nt); 0 · nt · 1; kt+1 ¸ 0; for t = 0; 1; 2; ::::

We assume that F is homogeneous:

F (k; k0; n) = kÃf(
k0

k
; n); where f(¸; n) ´ F (1; ¸; n); ¸ =

k0

k
; Ã ¸ 0: (45)

In terms of ¸ and n; the constraints on the planner are:

B ´ f¸; n : 0 · n · 1; 0 · ¸; and f(¸; n) ¸ 0g:

That is, the planner’s feasible set is the set of in…nite sequences, f¸t; ntg1t=0; such that ¸t; nt 2 B
for each t ¸ 0: We place the following assumptions on f :

f : B ! R+; continuous, decreasing in ¸; and increasing in n: (46)

Also,
there exists a largest value of ¸; ¹̧ > 0; such that f(¹̧; 1) ¸ 0

¯
³
¹̧
´Ã°

< 1;
(47)

and
there exists 0 · ~n · 1 such that f(1; ~n) > 0: (48)

We place the following assumptions on u:

u(c; n) = c°g(n)=°; ° 6= 0; g(n) ¸ 0; g is continuous and non-increasing. (49)

We have the following proposition:

Proposition 2. If

(i) the functions F and u satisfy (45)-(46), and (49),
(ii) (47) holds when ° > 0; and (48) holds when ° < 0:

then, a policy of the following form solves (44):

kt+1 = ¸
¤kt; nt = n

¤; t ¸ 0; for …xed (n¤; ¸¤) 2 B:
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Proof. Write u(c; n) = k°Ã (f(¸; n))° g(n)=°. Also,

k°Ãt =

0
@
t¡1Y

j=0

¸°Ãj

1
A k°Ã0 ; t = 1; 2; ::::

Simple substitution establishes

v(k0) = max
fkt+1;ntg1t=0

1X

t=0

¯tu (F (kt; kt+1; nt); nt) = k
°Ã
0 w

where:

w = max
f(¸t;nt)2Bg1t=0

1X

t=0

¯t

0
@
t¡1Y

j=0

¸°Ãj

1
A (f(¸t; nt))

° g(nt)

°
: (50)

We establish ¡1 < w < 1: When ° < 0; then u is bounded above by zero and so trivially,
w < 1: For the case ° > 0; consider the (infeasible!) policy of applying the entire time
endowment both to labor e¤ort and to leisure, and of applying all of output both to consumption
and to investment. The value of this policy is ¹w = (f(0; 1))° g(0)=

h
°(1¡ ¯ ¹̧°Ã)

i
: We have

w < 1; since w · ¹w < 1: To establish ¡1 < w when ° > 0 note simply that u is bounded
below by zero in this case. For the case ° < 0; note that the feasible policy, ¸t = 1; nt = ~n; for
t ¸ 0 has return k°Ã0 ~w; where ~w = f(1; ~n)°g(~n)= [°(1¡ ¯)] ; so that ¡1 < ~w · w:

We have established that w is a …nite scalar. By writing (50) out explicitly, one veri…es that
w satis…es the following expression:

w = max
(¸0;n0)2B

n
(f(¸0; n0))

° g (n0) =° + ¯ (¸0)
°Ã w

o
: (51)

Let ¸¤ and n¤ denote values of ¸0 and n0 that solve the above maximization problem. The
result follows from the fact that these solve a problem in which the objectives and constraints
are independent of k0. Q.E.D.

Remark 1. The proof for the class of utility functions u(c; n) = log(c) + g(n) is a trivial
perturbation on the argument in the text:

Remark 2. When ° > 0; then the …xed point problem in (51) can be shown to be the …xed
point of a contraction mapping. In this case, w in (50) is the only solution to (51), and the
contraction mapping theorem provides an iterative algorithm for computing w; ¸¤; and n¤:

Remark 3. When ° < 0; the mapping implicitly de…ned in (51) is not necessarily a contraction.
Still, it may be possible to …nd w; ¸¤; and n¤ by ‘contraction iterations’. To see this, consider the
case f(¸; n) = (¹̧¡¸); g(n) = 1; Ã = 1; ¹̧ > 1; ° < 0; so that B =

n
¸; n : 0 · ¸ · ¹̧; 0 · n · 1

o

and (47) is satis…ed. Then, de…ne T (w) = max¸(¹̧¡¸)°=°+¯¸°w; ¸(w) = argmax¸(¹̧¡¸)°=°+
¯¸°w: It is easy to verify: (i) for w > 0; T (w) = 1; ¸(w) = 0; (ii) T (0) = ¹̧°=° < 0, ¸(0) = 0;
and (iii) for w < 0; dT (w)=dw = ¯ [¸(w)]° ; d2T (w)=dw2 > 0; ¸(w) = ¹̧=

h
1 + (¯°w)1=(°¡1)

i
;so

that, as w ! ¡1; ¸(w) ! ¹̧: From these observations it is easy to see that, although T is
not a contraction (its derivative is not less than unity in absolute value everywhere), there is
nevertheless only one w such that w = Tw; and also w = limj!1T jw0 for any w0 · 0: See
Alvarez and Stokey (1995) a further discussion of iterative schemes for computing w in this case.
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Remark 4. When ° < 0; there is an alternative to contraction iterations for …nding w; ¸¤; and
n¤: From (50),

w =
f(¸¤; n¤)°g(n¤)

°(1¡ ¯ (¸¤)°Ã)
:

The two …rst order conditions associated with (51), together with the above expression, consti-
tute three equations in the three objects sought.
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Table 1: First-Moment Properties

n c=y k=y i=y growth in k growth in y
Panel A: U.S. Data

0:23 0:73 10:62 0:27 1:0047 1:0040
Panel B: Real Business Cycle Model

0:23 0:73 10:64 0:27 1:0040 1:0040
Panel C: Conventional Sunspot

0:309 0:745 10:46 0:255 1:0045 1:0046
Panel D: Regime Switching Sunspot

0.094 5.17 298 ¡4.17 0.989 4.74

Notes to Table 1: Entries in the table are the mean of the indicated variable. US data results
are taken from Christiano (1988). Results in Panel B are based on the real business cycle
model in Christiano and Todd (1996). That model corresponds to the one in this paper,
with ¾ = 3:92; ° = 0; ± = 0:021; ® = 0:344; and a production function that has the form
Y = K®(zn)(1¡®); with z = z¡1exp(¸); and ¸ » IIN(0:004; 0:0182): See the text for a
discussion of the entries in Panels C and D.
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Table 2: Second-Moment Properties
xt ¾x=¾y Correlation of yt with xt+¿

¿ = 2 ¿ = 1 ¿ = 0 ¿ = ¡1 ¿ = ¡2
Panel A: U.S. Data

y 0.02 0.65 0.86 1.00 0.86 0.65
c 0.46 0.48 0.66 0.78 0.76 0.61
i 2.91 0.33 0.56 0.71 0.68 0.57
n 0.82 0.69 0.81 0.82 0.66 0.41

y=n 0.58 0.12 0.32 0.55 0.55 0.53
y=n; n 0.70 ¡0.17 ¡0.07 ¡0.03 0.21 0.33

Panel B: Real Business Cycle Model
y 0.02 0.51 0.74 1.00 0.74 0.51
c 0.55 0.59 0.78 0.98 0.69 0.44
i 2.37 0.45 0.70 0.99 0.76 0.55
n 0.38 0.40 0.67 0.98 0.77 0.57

y=n 0.63 0.57 0.78 0.99 0.71 0.47
y=n; n 1.65 0.61 0.77 0.94 0.61 0.33

Panel C: Conventional Sunspot
y 0.02 0.35 0.63 1.00 0.63 0.35
c 0.33 0.58 0.72 0.87 0.44 0.13
i 3.13 0.26 0.57 0.99 0.66 0.40
n 0.51 0.22 0.54 0.98 0.66 0.42

y=n 0.52 0.46 0.69 0.98 0.57 0.27
y=n; n 1.02 0.49 0.68 0.91 0.44 0.11

Panel D: Regime Switching Sunspot
y 0.78 ¡0.07 ¡0.07 1.00 ¡0.07 ¡0.07
c 0.06 0.25 0.30 0.35 ¡0.42 ¡0.35
i na na na na na na
n 0.54 ¡0.11 0.11 0.99 ¡0.01 ¡0.03

y=n 0.47 ¡0.03 ¡0.02 0.99 ¡0.13 ¡0.12
y=n; n 0.88 0.01 0.02 0.96 ¡0.19 ¡0.17

Notes to Table 2: See the text for a description of the equilibria. Prior to analysis, all data
have been logged and then HP …ltered. Here, ¾x is the standard deviation of the logged,
HP …ltered variable, xt. All but the …rst and last row of the ‘¾x=¾y’ column in each panel
report ¾x=¾y: The …rst row has ¾y; and the last, ¾y=n=¾n. The correlations reported in the
last row of each panel are corr[(y=n)t; nt¡¿ ]: Results in Panels A and B in this table are
taken from Christiano and Todd (1996, tables 2 and 3). For a description of the underlying
model, see Notes to Table 1.
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Table 3: Percentage Utility Gain Relative to Constant Equilibrium
Conventional Sunspot I Conventional Sunspot II Regime Switching

0.9% 11.2% ¡289%

Notes to Table 3: This is the constant percentage decrease in consumption required for house-
holds in the indicated equilibrium to be indi¤erent between that equilibrium and the con-
stant equilibrium at n = ¹n2. Let v denote the discounted utility associated with the
constant employment level. Let ~v denote the discounted utility associated with one of the
other equilibria. Then, the number in the table is 100[exp((1¡ ¯)(~v ¡ v))¡ 1]:
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