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We augment a standard monetary dynamic general equilibriummodel to
include a Bernanke-Gertler-Gilchrist financial accelerator mechanism.
We fit the model to US data, allowing the volatility of cross-sectional
idiosyncratic uncertainty to fluctuate over time. We refer to this mea-
sure of volatility as risk. We find that fluctuations in risk are the most
important shock driving the business cycle.

We introduce agency problems associated with financial intermediation into an otherwise standard model

of business cycles. Our estimates suggest that fluctuations in the severity of these agency problems account

for a substantial portion of business cycle fluctuations over the past two and a half decades.

The agency problems we introduce are those associated with asymmetric information and costly moni-

toring proposed by Townsend (1979). Our implementation most closely follows the work of Bernanke and

Gertler (1989) and Bernanke, Gertler, and Gilchrist (1999) (BGG).1 Entrepreneurs play a central role in

the model. They combine their own resources with loans to acquire raw capital. They then convert raw

capital into effective capital in a process that is characterized by idiosyncratic uncertainty. We refer to the

magnitude of this uncertainty as risk. The notion that idiosyncratic uncertainty in the allocation of capital

is important in practice can be motivated informally in several ways. For example, it is well known that a

large proportion of firm start-ups end in failure.2 Entrepreneurs and their suppliers of funds experience these

failures as a stroke of bad luck. Even entrepreneurs who we now think of as sure bets, such as Steve Jobs

and Bill Gates, experienced failures as well as the successes for which they are famous. Another illustration

of the microeconomic uncertainty associated with the allocation of capital may be found in the various wars

over industry standards. In these wars, entrepreneurs commit large amounts of raw capital to one or another

standard. Whether that raw capital turns into highly effective capital or becomes worthless is, to a substantial
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degree, up to chance.3

We model the idiosyncratic uncertainty experienced by entrepreneurs by the assumption that if an entre-

preneur purchases K units of raw capital, then that capital turns into Kw units of effective capital. Here,

w  0 is a random variable drawn independently by each entrepreneur, normalized to have mean unity.4

Entrepreneurs who draw a large value of w experience success, while entrepreneurs who draw a value of

w close to zero experience failure. The realization of w is not known at the time the entrepreneur receives

financing. When w is realized, its value is observed by the entrepreneur, but can be observed by the supplier

of finance only by undertaking costly monitoring. We denote the time period t cross-sectional standard de-

viation of logw by s t .We refer to s t as risk. The variable s t is assumed to be the realization of a stochastic

process. Thus, risk is high in periods when s t is high and there is substantial dispersion in the outcomes

across entrepreneurs. Risk is low otherwise.

Our econometric analysis assigns a large role to s t because disturbances in s t trigger responses in our

model that resemble actual business cycles. The underlying intuition is simple. Following BGG, we sup-

pose that entrepreneurs receive a standard debt contract. The interest rate on entrepreneurial loans includes

a premium to cover the costs of default by the entrepreneurs who experience low realizations of w . The

entrepreneurs and the associated financial frictions are inserted into an otherwise standard dynamic stochas-

tic general equilibrium (DSGE) model.5 According to our model, the credit spread (i.e., the premium in

the entrepreneur’s interest rate over the risk-free interest rate) fluctuates with changes in s t . When risk is

high, the credit spread is high and credit extended to entrepreneurs is low. With fewer financial resources,

entrepreneurs acquire less raw capital. Because investment is a key input into the production of capital, it

follows that investment falls. With this decline in the purchase of goods, output, consumption, and employ-

ment fall. For the reasons stressed by BGG, the net worth of entrepreneurs an object that we identify with

the stock market  falls too. This occurs because the rental income of entrepreneurs falls with the decline

in economic activity and because they suffer capital losses as the price of capital drops. Finally, the overall

decline in economic activity results in a decline in the marginal cost of production and, thus, a decline in

inflation. So, according to the model, the risk shock implies a countercyclical credit spread and procyclical

investment, consumption, employment, inflation, stock market, and credit. These implications of the model

3For example, in the 1970s Sony allocated substantial resources to the construction of video equipment that used the Betamax video standard,
while JVC and others used the VHS standard. After some time, VHS won the standards war, so that the capital produced by investing in video
equipment that used the VHS standard was more effective than capital produced by investing in Betamax equipment. The reasons for this outcome
are still hotly debated today. However, from the ex ante perspective of the companies involved and their suppliers of funds, the ex post outcome
can be thought of as the realization of a random variable (for more discussion, see http://www.mediacollege.com/video/format/compare/betamax-
vhs.html).

4The assumption about the mean of w is in the nature of a normalization because we allow other random variables to capture the aggregate
sources of uncertainty faced by entrepreneurs.

5Our strategy for inserting the entrepreneurs into a DSGE model follows the lead of BGG in a general way. At the level of details, our model
follows Christiano, Motto, and Rostagno (2003) by introducing the entrepreneurs into a version of the model proposed by Christiano, Eichenbaum,
and Evans (2005) and by introducing the risk shock (and an equity shock mentioned later) studied here. To our knowledge, the first paper to appeal
to variations in risk as a driver of business cycles is that of Williamson (1987).
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correspond well to the analogous features of US business cycle data.6

We include other shocks in our model and estimate model parameters by standard Bayesian methods

using 12 aggregate variables. In addition to the usual 8 variables used in standard macroeconomic analyses,

we also make use of 4 financial variables: the value of the stock market, credit to nonfinancial firms, the

credit spread, and the slope of the term structure. As with any empirical analysis of this type, ours can

be interpreted as a sort of accounting exercise. We in effect decompose our 12 aggregate variables into a

large number of shocks. In light of the observations in the previous paragraph, it is perhaps not surprising

that one of these shocks, s t , emerges as the most important by far. For example, the analysis suggests

that fluctuations in s t account for 60 percent of the fluctuations in the growth rate of aggregate US output

since the mid-1980s. Our conclusion that the risk shock is the most important shock depends crucially on

including the four financial variables in our data set.

Our empirical analysis treats s t as an unobserved variable. We infer its properties using our model and our

12 aggregate time series. A natural concern is that we might have relied on excessively large fluctuations in

s t to drive economic fluctuations. To guard against this, we look outside the data set used in the econometric

analysis of the model for evidence on the degree of cyclical variation in s t . For this, we study a measure of

uncertainty proposed in Bloom (2009). In particular, we compute the cross-sectional standard deviation of

firm-level stock returns in the Center for Research in Securities Prices (CRSP) stock returns file. According

to our model, the time series of this measure of uncertainty is dominated by the risk shock. We use our model

to project Bloom (2009)’s measure of uncertainty onto the 12 data series used in the econometric analysis

of our model. We find that the degree of cyclical variation in the empirical and model-based measures of

uncertainty are very similar. We interpret this as important support for the model.

Our analysis is related to a growing body of evidence which documents that the cross-sectional disper-

sion of a variety of variables is countercyclical.7 Of course, the mere fact that cross-sectional volatility is

countercyclical does not by itself prove the hypothesis in our model, that risk shocks are causal. It is in prin-

ciple possible that countercyclical variation in cross-sectional dispersion is a symptom rather than a cause

of business cycles.8 Some support for the assumption about causal ordering in our model is provided by the

6Our model complements recent papers that highlight other ways in which increased cross-sectional dispersion in an important shock could
lead to aggregate fluctuations. For example, Bloom (2009) and Bloom, Floetotto, Jaimovich, Saporta-Eksten and Terry (2012) show how greater
uncertainty can produce a recession by inducing businesses to adopt a wait-and-see attitude and delay investment. For another example that
resembles ours, see the work of Arellano, Bai, and Kehoe (2012). For an example of how countercyclical dispersion may occur endogenously, see
the work of Christiano and Ikeda (2013).

7For example, Bloom (2009) documents that various cross-sectional dispersion measures for firms in panel data sets are countercyclical. De
Veirman and Levin (2011) find similar results using the Thomas Worldscope data base. Kehrig (2011) uses plant level data to document that
the dispersion of total factor productivity in US durable manufacturing is greater in recessions than in booms. Vavra (2011) presents evidence
that the cross-sectional variance of price changes at the product level is countercyclical. Christiano and Ikeda (2013) present evidence on the
countercyclicality of the cross-sectional dispersion of equity returns among financial firms. Also, Alexopoulos and Cohen (2009) construct an index
based on the frequency of time that words like uncertainty appear in the New York Times and find that this index rises in recessions. It is unclear,
however, whether the Alexopoulos-Cohen evidence about uncertainty concerns variations in cross-sectional dispersion or changes in the variance
of time series aggregates. Our risk shock corresponds to the former.

8For example, Bachmann and Moscarini (2011) explore the idea that the cross-sectional volatility of price changes may rise in recessions as



4 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

work of Baker and Bloom (2011).

Our work is also related to that of Justiniano, Primiceri, and Tambalotti (2010), who stress the role of

technology shocks in the production of installed capital (marginal efficiency of investment shocks). These

shocks resemble our risk shock in that they primarily affect intertemporal opportunities. Our risk shock and

the marginal efficiency of investment shock are hard to distinguish when we include only the eight standard

macroeconomic variables in our analysis. However, the analysis strongly favors the risk shock when our

four financial variables are included in the data set. In part this is because, consistent with the data, the risk

shock implies that the value of the stock market is procyclical while the marginal efficiency of investment

shock implies that it is countercyclical.

To gain intuition into our model and promote comparability with the literature, we also include a shock

that we refer to as an equity shock. Several analyses of the recent financial crisis assign an important causal

role to the equity shock (see, e.g., the work of Gertler and Kiyotaki (2010), Gertler and Karadi (2011),

and Bigio (2012) ). This is a disturbance that directly affects the quantity of net worth in the hands of

entrepreneurs.9 The equity shock acts a little like our risk shock, by operating on the demand side of the

market for capital. However, unlike the risk shock, the equity shock has the counterfactual implication

that credit is countercyclical. Thus, the procyclical nature of credit is another reason that our econometric

analysis assigns a preeminent status to risk shocks in business cycles.

The credibility of our finding about the importance of the risk shock depends on the empirical plausibility

of our model. We evaluate the model’s plausibility by investigating various implications of the model that

were not used in constructing or estimating it. First, we evaluate the model’s out-of-sample forecasting

properties. We find that these are reasonable, relative to the properties of a Bayesian vector autoregression

(VAR) or a simpler New Keynesian business cycle model such as the one of Christiano, Eichenbaum, and

Evans (2005) (CEE) or Smets and Wouters (2007). We also examine the model’s implications for data

on bankruptcies, information that was not included in the data set used to estimate the model. Finally, as

discussed above, we compare the model’s implications for the kind of uncertainty measures proposed by

Bloom(2009). Although the match is far from perfect, overall our model performs well.

The plan of the paper is as follows. The first section describes the model. Estimation results and mea-

sures of fit are reported in Section II. Section III presents the main results. We present various quantitative

measures that characterize the sense in which risk shocks are important in business cycles. We then explore

the reasons the econometric results find the risk shock so important. The paper ends with a brief conclusion.

Technical details, computer code and supporting analysis are provided in an online appendix (Christiano,

the endogenous response of the increased fraction of firms contemplating an exit decision. D’Erasmo and Boedo (2011) and Kehrig (2011) provide
two additional examples of the possible endogeneity of cross-sectional volatility. Another example of endogeneity in cross-sectional volatility is
provided by Christiano and Ikeda (2013).

9In the literature, the equity shock perturbs the net worth of banks. As explained below, our entrepreneurs can be interpreted as banks.
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Motto, and Rostagno (2013)).

I. The Model

The model incorporates the microeconomics of the debt-contracting framework of BGG into an otherwise

standard monetary model of the business cycle. The first subsection (I.A) describes the standard part of the

model. Although these parts of the model can be found in many sources, we include them nevertheless so

that the presentation is self-contained. In addition, the presentation fixes notation and allows us to be precise

about the shocks used in the analysis. The second subsection (I.B) describes the role of the entrepreneurs in

the model and the agency problems that occur in supplying them with credit. The time series representations

of the shocks, as well as adjustment cost functions are reported in the third subsection (I.C). The final

subsection, (I.D), displays the functional forms of adjustment costs and the timing assumptions that govern

when agents learn about shocks.

A. Standard Part of the Model

1. GOODS PRODUCTION

A representative, competitive final goods producer combines intermediate goods,Yjt , j 2 [0,1], to produce

a homogeneous good, Yt , using the following Dixit-Stiglitz technology:

(1.1) Yt =
Z 1

0
Yjt

1
l f ,t d j


l f ,t

, 1 l f ,t < •,

where l f ,t is a shock. The intermediate good is produced by a monopolist using the following technology:

(1.2) Yjt =

8
<

:
e tKa

jt (zt l jt)
1a Fzt if e tKa

jt (zt l jt)
1a >Fzt

0, otherwise
, 0< a < 1.

Here, e t is a covariance stationary technology shock and zt is a shock with a stationary growth rate. Also,

Kjt denotes the services of effective capital, and l jt denotes the quantity of homogeneous labor hired by

the jth intermediate good producer. The fixed cost in the production function, (1.2), is proportional to zt .

The fixed cost is a combination of the two nonstationary stochastic processes in the model, namely, zt and

an investment-specific shock described below. The variable zt has the property that Yt/zt converges to a

constant in nonstochastic steady state. The monopoly supplier of Yjt sets its price, Pjt , subject to Calvo-style

frictions. Thus, in each time period t a randomly selected fraction of intermediate good firms, 1 x p, can

reoptimize their price. The complementary fraction set their price in this way, Pjt = p̃ tPj,t1. The indexation
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term, p̃ t , is defined as follows:

(1.3) p̃ t =

p

target
t


i

(p t1)
1i .

Here, p t1  Pt1/Pt2, Pt is the price of Yt , and p

target
t is the target inflation rate in the monetary authority’s

monetary policy rule, which is discussed below.

There exists a technology that can be used to convert homogeneous goods into consumption goods, Ct ,

one-for-one. Another technology converts a unit of homogenous goods into °tµ°,t investment goods, where

° > 1 and µ°,t is a shock. Because we assume these technologies are operated by competitive firms, the

equilibrium prices of consumption and investment goods are Pt and Pt/

°tµ°,t


, respectively. The trend

rise in technology for producing investment goods is the second source of growth in the model, and zt =

zt°(
a

1a

)t .

2. LABOR MARKET

The model of the labor market is taken from the work of Erceg, Henderson, and Levin (2000) and parallels

the Dixit-Stiglitz structure of goods production. A representative, competitive labor contractor aggregates

differentiated labor services, hi,t , i 2 [0,1] , into homogeneous labor, lt , using the following production

function:

(1.4) lt =
Z 1

0
(ht,i)

1
lw di


lw

, 1 lw.

The labor contractor sells labor services, lt , to intermediate good producers for nominal wage rate, Wt . The

labor contractor’s first-order condition for hi,t represents its demand curve for that labor type. There are

several ways of conceptualizing the supply of each labor type, each of which leads to the same equilibrium

conditions. We find it convenient to adopt the following framework. For each labor type i, there is a

monopoly union which represents all workers of that type in the economy. The union sets the wage rate,

Wi,t , for that labor type, subject to Calvo-style frictions. In particular, a randomly selected subset of 1xw

monopoly unions sets their wage optimally, while the complementary subset sets the wage according to

Wit =

µz,t


i

µ


µz
1i

µ

p̃wtWi,t1. Here, µz denotes the growth rate of zt in nonstochastic steady state.

Also,

(1.5) p̃w,t 

p

target
t


iw (p t1)

1iw , 0< iw < 1.
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The indexing assumptions in wage-setting ensure that wage-setting frictions are not distortionary along a

non-stochastic, steady state-growth path.

3. HOUSEHOLDS

There is a large number of identical and competitive households. We adopt the large family assumption of

Andolfatto (1996) and Merz (1995) by assuming that each household contains every type of differentiated

labor, hi,t , i 2 [0,1] . Each household also has a large number of entrepreneurs, but we defer our discussion

of these agents to the next subsection. Finally, households are the agents who build the raw capital in the

economy.10

After goods production in period t, the representative household constructs end-of-period t raw capital,
 Kt+1, using the following technology:

(1.6)  Kt+1 = (1d )  Kt +

1S(z I,t It/It1)


It .

To produce new capital, the household must purchase existing capital and investment goods, It . The quantity

of existing capital available at the end of period t production is (1d )  Kt , where 0< d < 1 denotes the rate

of depreciation on capital. In (1.6), S is an increasing and convex function described below and z I,t is

a shock to the marginal efficiency of investment in producing capital. The household buys It at the price

described in the previous subsection.11

In addition, the household purchases the existing stock of capital for the price Q  K,t . It sells new capital for

the same price. The household is competitive, so it takes the price of capital and investment goods as given.

The preferences of the representative household are as follows:

(1.7) E0
•

Â
t=0

b

t
z c,t

(
log(Ct bCt1)yL

Z 1

0

h1+sL
it

1+sL
di

)
, b,sL > 0.

Here, z c,t > 0 is a preference shock and Ct denotes the per capita consumption of the members of the

10This task could equivalently be assigned to a competitive capital goods producer. We adopt the idea that households produce raw capital to
minimize the number of agents.

11The specification of the production function for new capital in (1.6) is often used in DSGE models in part because it improves their fit to
aggregate data (see, e.g., the work of CEE and Smets and Wouters (2007)). Microeconomic evidence that also supports a specification like (1.6)
includes the work of Matsuyama (1984), Topel and Rosen (1988), and Eberly, Rebelo, and Vincent (2012). Papers that provide interesting theoretical
foundations which rationalize (1.6) as a reduced-form specification include those of Matsuyama (1984) and Lucca (2006).
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household. The budget constraint of the representative household is

(1+ t

c)PtCt +Bt+1+BLt+40+

 
Pt

°tµ°,t

!
It +Q  K,t (1d )  Kt(1.8)




1 t

l
Z 1

0
Wi
t hi,tdi+RtBt +


RLt
40BLt +Q  K,t  Kt+1+Pt .

According to the left side of the budget constraint, the household allocates funds to consumption, two

types of bonds, investment, and existing capital. The household’s sources of funds are the earnings from

differentiated labor and bonds, as well as the revenues from selling raw capital. Finally, Pt represents

various lump-sum payments. These include profits from intermediate goods, transfers from entrepreneurs

(discussed in the next subsection), and lump-sum transfers from the government net of lump-sum taxes.

Wages of differentiated labor, Wi,t , are set by the monopoly unions as discussed in the previous section. In

addition, the household agrees to supply whatever labor of each type that is demanded at the union-set wage

rate. So the household treats labor income as exogenous.

In (1.8), the tax rates on consumption and wage income, t

c and t

l, are exogenous and constant. The

revenues from these taxes are refunded to households in the form of lump-sum taxes via Pt . The object

Bt+1 denotes one-period bonds that pay a gross nominal return, Rt , which is not contingent on the realized

period t+1 state of nature. In addition, we give the household access to a long-term (10-year) bond, BLt+40.

These pay gross return, RLt , in period t+40, at a quarterly rate. The nominal return on the long-term bond

purchased in period t, RLt , is known in period t. As discussed in the next section, the one-period bond is the

source of funding for entrepreneurs and plays a critical role in the economics of the model. The long-term

bond plays no direct role in resource allocation, and the market for this bond clears at BLt+40 = 0.We include

this bond because it allows us to diagnose the model’s implications for the slope of the term structure of

interest rates.

The representative household’s problem in period t is to choose Ct ,  Kt+1,  Kt , It , Bt+1,BLt+40. It makes this

choice for each period with the objective of maximizing (1.7) subject to (1.8).

B. Financial Frictions

Each of the identical households in the economy has a large number of entrepreneurs.12 After production

in period t, entrepreneurs receive loans from mutual funds. At this time, the state of an entrepreneur is

summarized by its net worth, N  0. The density of entrepreneurs with net worth, N, is denoted ft (N) , and

12In adopting the large family assumption in this financial setting, we follow Gertler and Karadi (2011) and Gertler and Kiyotaki (2010).
Although we think the large-family metaphor helps to streamline the model presentation, the equations that characterize the equilibrium are the
same, with one minor exception described below, as if we had adopted the slightly different presentation in BGG.
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we denote the total net worth in the hands of all entrepreneurs at this point by

(1.9) Nt+1 =
Z •

0
N ft (N)dN.

We refer to an entrepreneur with net worth N as an N-type entrepreneur. EachN-type entrepreneur purchases

raw capital using his own net worth and a loan and converts raw capital into effective capital services. In

period t+1 each N-type entrepreneur earns income by supplying capital services and from capital gains; he

then repays his loan and transfers funds between himself and his household. At this point, each entrepre-

neur’s net worth in period t+ 1 is determined. Each entrepreneur then acquires a new loan and the cycle

continues. All markets visited by entrepreneurs are competitive.

In terms of the overall flow of funds, households are the ultimate source of funds for entrepreneurs. The

most straightforward interpretation of our entrepreneurs is that they are firms in the nonfinancial business

sector. However, it is also possible to interpret entrepreneurs as financial firms that are risky because they

hold a nondiversified portfolio of loans to risky nonfinancial businesses.13

The following subsection describes the details of one period in the life of an N-type entrepreneur. The

subsection after that discusses the implications for the aggregates of all entrepreneurs.

1. ONE PERIOD IN THE LIFE OF AN ENTREPRENEUR

Each N-type entrepreneur obtains a loan, BNt+1, from a mutual fund, which the entrepreneur combines

with N to purchase raw raw capital,  KN
t+1, in an anonymous and competitive market at a price of Q  K,t . That

is, Q  K,t  KN
t+1 = N + BNt+1. As explained in Section A.3, entrepreneurs purchase capital from households.

Entrepreneurs do not acquire capital from their own household.

After purchasing capital, each N-type entrepreneur experiences an idiosyncratic shock, w, which converts

capital,  KN
t+1, into efficiency units, w

 KN
t+1. Following BGG, we assume that w has a unit-mean log normal

distribution that is independently drawn across time and across entrepreneurs. Denote the period t standard

deviation of logw by s t . The random variable, w, captures the idiosyncratic risk in actual business ventures.

For example, in the hands of some entrepreneurs, a given amount of raw capital (e.g., metal, glass, and

plastic) is a great success (e.g., the Apple iPad or the Blackberry cell phone), and in other cases, it is less

successful (e.g., the NeXT computer or the Blackberry Playbook). The risk shock, s t , characterizes the

extent of cross-sectional dispersion in w . We allow s t to vary stochastically over time, and we discuss its

law of motion below.

After observing the period t+1 aggregate rates of return and prices, each N-type entrepreneur determines

13We have in mind the banks of Gertler and Kiyotaki (2010). For a detailed discussion, see section 6 in the work of Christiano and Ikeda (2012).
To interpret our entrepreneurs as financial firms, it is necessary that there be no agency problem between the entrepreneur and the bank.
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the utilization rate, uNt+1, of its effective capital and supplies an amount of capital services, uNt+1w

 KN
t+1, for a

competitive market rental rate denoted by rkt+1.

At the end of period t+1 production, the N-type entrepreneur who experienced the shock, w, is left with

(1d )w  KN
t+1 units of capital, after depreciation. This capital is sold in competitive markets to households

at the price, Q  K,t+1. In this way, an N-type entrepreneur who draws a shock, w, at the end of period t enjoys

rate of return wRkt+1 at t+1, where

(1.10) Rkt+1 
(1 t

k)

ut+1rkt+1a(ut+1)


°(t+1)Pt+1+(1d )Q  K,t+1+ t

k
dQ  K0,t

Q  K,t
.

Here, the increasing and convex function a captures the idea that capital utilization is costly (we describe this

function below). We have deleted the superscript N from the capital utilization rate. We do so because the

only way utilization affects the entrepreneur is through (1.10), and the choice of utilization that maximizes

(1.10) is evidently independent of the entrepreneur’s net worth. From here on, we suppose that ut+1 is set to

its optimizing level, which is a function of rkt+1 and °(t+1)Pt+1. Finally, t

k in (1.10) denotes the tax rate on

capital income, and we assume depreciated capital can be deducted at historical cost.

Thus, each entrepreneur in period t, regardless of net worth, has access to a stochastic, constant rate to

scale technology, Rkt+1w.14 The loan obtained by an N-type entrepreneur in period t takes the form of a

standard debt contract, (Zt+1,Lt) . Here, Lt  (N+BNt+1)/N denotes leverage and Zt+1 is the gross nominal

rate of interest on debt. Let  
w t+1 denote the value of w that divides entrepreneurs who cannot repay the

interest and principal from those who can repay. In particular,

(1.11) Rkt+1  
w t+1Q  K,t  KN

t+1 = BNt+1Zt+1.

Entrepreneurs with w  w

N
t+1 declare bankruptcy. Such an entrepreneur is monitored by a mutual fund,

which then takes all the entrepreneur’s assets. We have left off the superscript N on Lt ,  
w t+1, and Zt+1.

This is to minimize notation and is a reflection of the fact (see below) that the equilibrium value of these

objects is independent of N. Note that given (1.11), a standard debt contract can equivalently be represented

as (Zt+1,Lt) or (  
w t+1,Lt) . We assume that N-type entrepreneurs value a particular debt contract according

to the expected net worth in period t+1 :

(1.12) Et
Z •

 
w t+1

h
Rkt+1wQ  K,t  KN

t+1BNt+1Zt+1

i
dF (w,s t)


= Et [1Gt (  

w t+1)]Rkt+1LtN.

14In the case where the entrepreneur is interpreted as a financial firm, we can follow Gertler and Kiyotaki (2010) in supposing that Rkt+1w is the
return on securities purchased by the financial firm from a nonfinacial firm. The nonfinacial firm possesses a technology that generates the rate of
return, Rkt+1w, which it turns over in full to the financial firm. This interpretation requires that there be no agency costs in the financial/nonfinacial
firm relationship.
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Here,

Gt (  
w t+1) [1Ft (  

w t+1)]  
w t+1+Gt (  

w t+1) , Gt (  
w t+1) =

Z  
w t+1

0
w dFt (w) , Lt =

Q  K,t  KN
t+1

N
,

so that 1Gt (  
w t+1) represents the share of average entrepreneurial earnings, Rkt+1Q  K0,t  KN

t+1, received by

entrepreneurs.15 In (1.12) we have made use of (1.11) to express Zt+1 in terms of  
w t+1.

Before describing equilibrium in the market for loans, we discuss the mutual funds. It is convenient

(though it involves no loss of generality) to imagine that mutual funds specialize in lending to entrepreneurs

with specific levels of net worth, N. Each of the identical N-type mutual funds holds a large portfolio of

loans that is perfectly diversified across Ntype entrepreneurs. To extend loans, BNt+1 per entrepreneur, the

representative N-type mutual fund issues BNt+1 in deposits to households at the competitively determined

nominal interest rate, Rt . As discussed in Section A.3, this rate is assumed not to be contingent on the

realization of period t+1 uncertainty. We assume that mutual funds do not have access in period t to period

t+1 state-contingent markets for funds, apart from their debt contracts with entrepreneurs. As a result, the

funds received in each period t+1 state of nature must be no less than the funds paid to households in that

state of nature. That is, the following cash constraint

(1.13) [1Ft (  
w t+1)]Zt+1BNt+1+(1µ)

Z  
w t+1

0
wdFt (w)Rkt+1Q  K0,t  KN

t+1  BNt+1Rt

must be satisfied in each period t + 1 state of nature. The object on the left of the inequality in (1.13) is

the return, per entrepreneur, on revenues received by the mutual fund from its entrepreneurs. The first term

on the left indicates revenues received from the fraction of entrepreneurs with w   
w t+1, and the second

term corresponds to revenues obtained from bankrupt entrepreneurs. The latter revenues are net of mutual

funds’ monitoring costs, which take the form of final goods and correspond to the proportion µ of the assets

of bankrupt entrepreneurs. The left term in (1.13) also cannot be strictly greater than the term on the right

in any period t+ 1 state of nature because in that case mutual funds would make positive profits, and this

is incompatible in equilibrium with free entry.16 Thus, free entry and the cash constraint in (1.13) jointly

imply that (1.13) must hold as a strict equality in every state of nature. Using this fact and rearranging (1.13)

15BGG show that Gt (  
w) is strictly increasing and concave, 0 Gt (  

w) 1, lim  
w!•Gt (  

w) = 1, and Gt (0) = 0.
16In an alternative market arrangement, mutual funds in period t interact with households via two types of financial instrument. One corresponds

to the non-state-contingent deposits discussed in the text. Another is a financial instrument in which payments are contingent on the period t+ 1
state of nature. Under this complete market arrangement a mutual fund has a single zero-profit condition in period t. Using equilibrium state-
contingent prices, that zero-profit condition corresponds to the requirement that the period t expectation of the left side of (1.13) equals the right
side of (1.13). The market arrangement described in the text is the one implemented by BGG, and we have not explored the complete markets
arrangement described in this footnote.
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after substituting out for Zt+1BNt+1 using (1.11), we obtain:

(1.14) Gt (  
w t+1)µGt (  

w t+1) =
Lt 1
Lt

Rt
Rkt+1

,

in each period t+1 state of nature.

The (  
w t+1,Lt) combinations which satisfy (1.14) define a menu of state (t+1)-contingent standard debt

contracts offered to entrepreneurs. Entrepreneurs select the contract that maximizes their objective, (1.12).

Since N does not appear in the constraint and appears only as a constant of proportionality in the objective,

it follows that all entrepreneurs select the same (  
w t+1,Lt) regardless of their net worth.

After entrepreneurs have sold their undepreciated capital, collected capital rental receipts, and settled their

obligations to their mutual fund at the end of period t+1, a random fraction, 1g t+1, of each entrepreneur’s

assets is transferred to their household. The complementary fraction, g t+1, remains in the hands of the

entrepreneurs. In addition, each entrepreneur receives a lump-sum transfer, We
t+1, from the household. The

objects, g t+1 andWe
t+1, are exogenous.

A more elaborate model would clarify why the transfer of funds back and forth between households

and their entrepreneurs is exogenous and not responsive to economic conditions. In any case, it is clear

that, given our assumptions, the larger is the net worth of a household’s entrepreneurs, the greater are the

resources available to the household. This is why it is in the interests of the representative household to

instruct each of its entrepreneurs to maximize expected net worth. By the law of large numbers, this is how

the household maximizes the aggregate net worth of all its entrepreneurs. Entrepreneurs comply with their

household’s request in exchange for perfect consumption insurance.17

2. IMPLICATIONS FOR AGGREGATES

The quantity of raw capital purchased by entrepreneurs in period t must equal the quantity produced,  Kt+1,

by households:

(1.15)  Kt+1 =
Z •

0
 KN
t+1 ft (N)dN.

17A variety of decentralizations of the entrepreneur side of the model is possible. An alternative is the one used by BGG, in which entrepreneurs
are distinct households who maximize expected net worth as a way of maximizing utility from consumption. In this arrangement, a fraction of
entrepreneurs die in each period and the complementary fraction are born. Dying entrepreneurs consume a fraction, Q, of their net worth with the
rest being transferred in lump-sum form to households. Entrepreneurs’ motive for maximizing expected net worth is to maximize expected end-of-
life consumption. The mathematical distinction between the BGG decentralization and the one pursued here is that BGG include entrepreneurial
consumption in the resource constraint. Since Q is a very small number in practice, this distinction is very small.
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The aggregate supply of capital services by entrepreneurs is:

(1.16) Kt =
Z •

0

Z •

0
uNt w

 KN
t ft1 (N)dF (w)dN = ut  Kt

where the last equality uses (1.15), the facts that utilization is the same for all N and that the mean of

w is unity. Market clearing in capital services requires that the supply of capital services, Kt , equal the

corresponding demand,
R 1

0 Kj,td j, by the intermediate good producers in Section A.1.

By the law of large numbers, the aggregate profits of all N-type entrepreneurs at the end of period t is

[1Gt1 (  
w t)]Rkt Q  K,t1  KN

t . Integrating this last expression over all N and using (1.15) evaluated at t 1,

we obtain [1Gt1 (  
w t)]Rkt Q  K,t1  Kt . Thus, after transfer payments, aggregate entrepreneurial net worth at

the end of period t is

(1.17) Nt+1 = g t [1Gt1 (  
w t)]Rkt Q  K,t1  Kt +We

t .

In sum, Nt+1,  
w t+1, and Lt can be determined by (1.14), (1.17) and an expression that characterizes the

solution to the entrepreneur’s optimization problem.18 Notably, it is possible to solve for these aggregate

variables without determining the distribution of net worth in the cross-section of entrepreneurs, ft (N) , or

the law of motion over time of that distribution. By the definition of leverage, Lt , these variables place

a restriction on  Kt+1. This restriction replaces the intertemporal equation in a model such as the one in

CEE, which relates the rate of return on capital, Rkt+1, to the intertemporal marginal rate of substitution in

consumption. The remaining two financial variables to determine are the aggregate quantity of debt extended

to entrepreneurs in period t, Bt+1, and their state-contingent interest rate, Zt+1. Note that

Bt+1 =
Z •

0
BNt+1 ft (N)dN =

Z •

0


Q  K,t  KN

t+1N

ft (N)dN = Q  K,t  Kt+1Nt+1,

where the last equality uses (1.9) and (1.15). Finally, Zt+1 can be obtained by integrating (1.11) relative to

the density ft (N) and solving Zt+1 = Rkt+1  
w t+1Lt .

18The first-order condition associated with the entrepreneur’s optimization problem is

Et

(
[1Gt(  

w t+1)]
Rkt+1
Rt

+
G0t(  

w t+1)

G0t(  
w t+1)µG0t(  

w t+1)

"
Rkt+1
Rt


Gt(  

w t+1)µGt(  
w t+1)


1

#)
= 0.
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C. Monetary Policy and Resource Constraint

We express the monetary authority’s policy rule directly in linearized form:

(1.18) Rt R= r p (Rt1R)+


1r p


a

p

(p t+1p


t )+aDy

1
4

gy,t µz


+

1
400

e

p
t ,

where e

p
t is a shock (in annual percentage points) to monetary policy and r p is a smoothing parameter in

the policy rule. Here, RtR is the deviation of the net quarterly interest rate, Rt , from its steady-state value.

Similarly, p t+1p


t is the deviation of anticipated quarterly inflation from the central bank’s inflation target.

The expression, gy,tµz is quarterly growth in gross domestic product (GDP), in deviation from its steady

state.

We complete the description of the model with a statement of the resource constraint:

Yt = Dt +Gt +Ct +
It

°tµ°,t
+a(ut)°t  Kt ,

where the last term on the right represents the aggregate capital utilization costs of entrepreneurs, an expres-

sion that makes use of (1.15) and the fact that each entrepreneur sets the same rate of utilization on capital,

ut . Also, Dt is the aggregate resources used for monitoring by mutual funds:

Dt = µG(  
w t)


1+Rkt
 Q  K,t1  Kt

Pt
.

Finally, Gt denotes government consumption, which we model as

(1.19) Gt = zt gt ,

where gt is a stationary stochastic process. We adopt the usual sequence of markets equilibrium concept.

D. Adjustment Costs, Shocks, Information, and Model Perturbations

Our specification of the adjustment cost function for investment is as follows:

S(xt) =
1
2

n
exp
hp

S00 (xt  x)
i
+ exp

h

p
S00 (xt  x)

i
2
o
,

where xt  z I,t It/It1 and x denotes the steady state value of xt . Note that S (x) = S0 (x) = 0 and S00 (x) = S00,

where S00 denotes a model parameter. The value of the parameter, S00, has no impact on the model’s steady
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state, but it does affect dynamics. Also, the utilization adjustment cost function is

a(u) = rk [exp(sa(u1))1]
1

sa
,

where sa > 0 and rk is the steady-state rental rate of capital in the model. This function is designed so that

utilization is unity in steady state, independent of the value of the parameter sa.

We now turn to the shocks in the model. We include a measurement error shock on the long-term interest

rate, RLt . In particular, we interpret


RLt
40
=

R̃Lt
40

h t+1 · · ·h t+40,

where h t is an exogenous measurement error shock. We refer to h t as the term premium shock. The object,

RLt , denotes the long-term interest rate in the model, while R̃Lt denotes the long-term interest rate in the data.

If in the empirical analysis we find that h t accounts for only a small portion of the variance in R̃Lt , then we

infer that the model’s implications for the long-term rate are good.

The model we estimate includes 12 aggregate shocks: h t , e t , µzt , l f t , p


t , z c,t , µ°,t , z I,t , g t , s t , e

p
t , and

gt . We model the log-deviation of each shock from its steady state as a first-order univariate autoregression.

In the case of the inflation target shock, we simply fix the autoregressive parameter and innovation standard

deviation to r

p

 = 0.975 and s

p

 = 0.0001, respectively. This representation is our way of accommodating

the downward inflation trend in the early part of our data set. Also, we set the first-order autocorrelation

parameter on each of the monetary policy and equity shocks, e

p
t and g t , to zero.

We now discuss the timing assumptions that govern when agents learn about shocks. A standard assump-

tion in estimated equilibrium models is that a shock’s statistical innovation (i.e., the one-step-ahead error in

forecasting the shock based on the history of its past realizations) becomes known to agents only at the time

that the innovation is realized. Recent research casts doubt on this assumption. For example, Alexopoulos

(2011) and Ramey (2011) use US data to document that people receive information about the period t sta-

tistical innovation in technology and government spending, respectively, before the innovation is realized.

These observations motivate us to consider the following shock representation:

(1.20) xt = rxxt1+

=utz }| {
x 0,t +x 1,t1+ ...+x p,tp,

where p> 0 is a parameter. In (1.20), xt is the log deviation of the shock from its nonstochastic steady state

and ut is the iid statistical innovation in xt .19 We express the variable, ut , as a sum of iid, mean zero random

19Expression (1.20) is a time series representation suggested by Davis (2008) and also used by Christiano et al. (2010).
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variables that are orthogonal to xt j, j  1. We assume that in period t, agents observe x j,t , j = 0,1, ..., p.

We refer to x 0,t as the unanticipated component of ut and to x j,t as the anticipated, or news, components of

ut+ j, for j > 0.We refer to the individual terms, x j,t , j > 0, as news shocks. The x j,t’s are assumed to have

the following correlation structure:

(1.21) r

|i j|
x,n =

Ex i,tx j,tr
Ex

2
i,t


Ex

2
j,t

 , i, j = 0, ..., p,

where rx,n is a scalar, with 1  rx,n  1. The subscript n indicates news. For the sake of parameter

parsimony, we place the following structure on the variances of the shocks: Ex

2
0,t = s

2
x , Ex

2
1,t = Ex

2
2,t =

...Ex

2
p,t = s

2
x,n.

In sum, for a shock xt with the information structure in (1.20), there are four free parameters: rx, rx,n,

s x,0, and s x,n. For a shock with the standard information structure in which agents become aware of ut in

period t, i.e., there are no news shocks, there are two free parameters: rx and s x.

We consider several perturbations of our model in which the information structure in (1.20) is assumed for

one or more of the following set of shocks: technology, monetary policy, government spending, equity, and

risk shocks. As we shall see below, the model that has the highest marginal likelihood is the one with news on

the risk shock, so this is our baseline model specification. We also consider a simpler version of our model,

we call it CEE, which does not include financial frictions. We obtain this model from our baseline model by

adding an intertemporal Euler equation corresponding to household capital accumulation and dropping the

three equations that characterize the financial frictions: the optimality condition characterizing the contract

selected by entrepreneurs, the equation characterizing zero profits for the financial intermediaries, and the

law of motion of entrepreneurial net worth. Of course, it is also necessary to delete the resources used by

banks for monitoring from the resource constraint. A detailed list of the equations of our models can be

found in the online appendix and in the computer code that is also available online.

II. Inference About Parameters and Model Fit

This section discusses the data used in the analysis, the priors and posteriors for model parameters, and

measures of model fit. Finally, we report the effects on model fit of adding news to different economic

shocks.

A. Data

We use quarterly observations on 12 variables covering the period, 1985Q1 to 2010Q2. These include 8

variables that are standard in empirical analyses of aggregate data: GDP, consumption, investment, inflation,
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the real wage, the relative price of investment goods, hours worked, and the federal funds rate. We interpret

the relative price of investment goods as a direct observation on

°tµ°,t

1. The aggregate quantity variables

are measured in real, per capita terms.20

We also use four financial variables in our analysis. For our period t measure of credit, Bt+1, we use data

on credit to nonfinancial firms taken from the flow of funds data set constructed by the US Federal Reserve

Board.21 We convert our measure of credit into real, per capita terms. Our measure of the slope of the term

structure, RLt Rt , is the difference between the 10-year constant maturity US government bond yield and

the federal funds rate. Our period t indicator of entrepreneurial net worth, Nt+1, is the Dow Jones Wilshire

5000 index, converted into real, per capita terms. Finally, we measure the credit spread, Zt Rt , by the

difference between the interest rate on BAA-rated corporate bonds and the 10-year US government bond

rate.22

Prior to analysis, we transform the data as follows. In the case of consumption, investment, credit, GDP,

net worth, the price of investment, and the real wage we take the logarithmic first difference and then remove

the sample mean. We remove sample means separately from each variable in order to prevent counterfactual

implications of the model for the low frequencies from distorting inference in the higher business cycle

frequencies that interest us. For example, on average consumption grew faster than GDP in our dataset,

while our model predicts that the log of the consumption to GDP ratio is stationary. We measure hours

worked in log (per capita) levels, net of the sample mean. We measure inflation, the credit spread, the risk

free rate and the slope of the term structure in level terms, net of their sample mean. One implication of our

approach is that inference is not affected by the well-known fact that a model like ours cannot account for

the fact that the slope of the term structure is on average positive.23 We ensure the econometric consistency

of our analysis by always applying the same transformation to the variables in the model as were applied to

the actual data.

20GDP is deflated by its implicit price deflator; real household consumption is the sum of household purchases of nondurable goods and services,
each deflated by their own implicit price deflator; investment is the sum of gross private domestic investment plus household purchases of durable
goods, each deflated by their own price deflator. The aggregate labor input is an index of nonfarm business hours of all persons. These variables
are converted to per capita terms by dividing by the population over 16. (Annual population data obtained from the Organization for Economic
Cooperation and Development were linearly interpolated to obtain quarterly frequency.) The real wage, Wt/Pt , is hourly compensation of all
employees in nonfarm business divided by the GDP implicit price deflator, Pt . The short-term risk-free interest rate, Rt , is the 3-month average of
the daily effective federal funds rate. Inflation is measured as the logarithmic first difference of the GDP deflator. The relative price of investment
goods, PIt /Pt = 1/


°tµ°,t


, is measured as the implicit price deflator for investment goods divided by the implicit price deflator for GDP.

21From the ‘flow data’ tables, we take the credit market instruments components of net increase in liabilities for nonfarm, nonfinancial corporate
business and nonfarm, noncorporate business. We convert our credit variable to real, per capita terms by dividing by the GDP implicit price deflator
as well as by the population over 16.

22We also considered the spread measure constructed by Gilchrist and Zakrajšek (2012). They consider each loan obtained by each of a set of
firms taken from the COMPUSTAT data base. In each case, they compare the interest rate actually paid by the firm with what the US government
would have paid on a loan with a similar maturity. When we repeated our empirical analysis using the Gilchrist-Zakrajšek spread data, we obtained
similar results.

23Roughly, our model embodies the linear term structure hypothesis: the idea that the long rate is the average of future short rates.
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B. Priors and Posteriors

We partition the model parameters into two sets. The first set contains parameters that we simply fix a

priori. Thus, the depreciation rate d , capital’s share a, and the inverse of the Frisch elasticity of labor supply

sL are fixed at 0.025, 0.4 and 1, respectively. We set the mean growth rate µz of the unit root technology

shock and the quarterly rate of investment-specific technological change ° to 0.41 percent and 0.42 percent,

respectively. We choose these values in order to ensure that the model steady state is consistent with the

mean growth rate of per capita, real GDP in our sample, as well as the average rate of decline in the price

of investment goods. The steady-state value of gt in (1.19) is set to ensure that the ratio of government

consumption to GDP is 0.20 in steady state. Steady-state inflation is fixed at 2.4 percent on an annual basis.

The household discount factor b is fixed at 0.9987. There are no natural units for the measurement of hours

worked in the model, so we arbitrarily set yL so that hours worked is unity in steady state. Following

CEE, we fix the steady-state markups in the labor market lw and in the product market l f at 1.05 and 1.2,

respectively. The steady-state value of the parameter controlling the rate at which the household transfers

equity from entrepreneurs to itself, 1 g, is set to 10.985. This is fairly close to the 10.973 value used

by BGG. Our settings of the consumption, labor, and capital income tax rates, t

c, t

l , and t

k, respectively,

are discussed by Christiano, Motto, and Rostagno (2010, pp. 79-80). These parameter values are reported

in Table 1.

The second set of parameters to be assigned values consists of the 36 parameters listed in Table 2. We

study these using the Bayesian procedures surveyed by An and Schorfheide (2007). Panel A of Table 2

considers the parameters that do not pertain to the exogenous shocks in the model. The price and wage

stickiness parameters, x p and xw, are given relatively tight priors around values that imply prices and wages

remain unchanged for, on average, one-half and one year, respectively. The posteriors for these parameters

are higher. The relatively large value of the posterior mode on the parameter sa governing the capital

utilization cost function, implies utilization fluctuates relatively little. In most cases, there is a reasonable

amount of information in the data about the parameters, indicated by the fact that the standard deviation of

the posterior distribution is often less than half of the standard deviation of the prior distribution.24

We treat the steady-state probability of default, F (  
w) , as a free parameter. We do this by making the

variance of logw a function of F (  
w) and the other parameters of the model. The mean of our prior dis-

tribution for F (  
w), 0.007, is close to the 0.0075 value used by BGG, or the 0.0097 percent value used in

Fisher (1999). The mode of the posterior distribution is not far away, 0.0056. The mean of the prior dis-

tribution for the monitoring cost, µ, is 0.275. This is within the range of 0.20 0.36 that Carlstrom and

Fuerst (1997) defend as empirically relevant. The mode of the posterior distribution for µ is close, 0.2149.

24In this remark, we implicitly approximate the posterior distribution with the Laplace approximation, which is Normal.
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Comparing prior and posterior standard deviations, we see that there is a fair amount of information about

the monitoring cost in our data and somewhat less about F (  
w) . The steady-state value of the risk shock,

s =
p
Var(log(w)), that is implied by the mode of our model parameters is 0.26. Section IV.A below

discusses some independent evidence on the empirical plausibility of this result for the risk shock.

Values for the parameters of the shock processes are reported in Panel B of Table 2. The posterior mode of

the standard deviation of the unanticipated component of the shock to logs t , x 0,t , is 0.07. The corresponding

number associated with the anticipated components, x i,t , i= 1, ...,8, is 0.0283. This implies that a substantial

57 percent of the variance in the statistical innovation in logs t is anticipated.25 The posterior mode on the

correlation among anticipated and unanticipated shocks is 0.4. Thus, when agents receive information, x i,t ,

i = 0, ...,8 about current and future risk, there is a substantial correlation in news about adjacent periods,

while that correlation is considerably smaller for news about horizons three periods apart and more.26

For the most part, the posterior modes of the autocorrelations of the shocks are quite large. The exception

is the autorcorrelation of the growth rate of the persistent component of technology growth, µz,t . This is

nearly zero, so that logzt is roughly a random walk. For the most part, there is substantial information

in the data about the parameters of the shock processes, as measured by the small size of the posterior

standard deviation relative to the prior standard deviation. The exception is the anticipated and unanticipated

components of the risk shock, where the standard deviation of the posterior is larger than the standard

deviation of the prior.

Table 3 reports the steady-state properties of the model when parameters are set to their mode under the

prior distribution. The table also reports the analog objects in the data. Overall, the model and data match

well. An exception is the model’s capital output ratio, which is a little low. In part, the relatively low stock

of capital reflects the effects of the financial frictions in the model. Our strategy for computing the posterior

distribution of the model parameters does not make use of information in the data about the sort of ratios

displayed in Table 3. It is therefore not surprising that when the model parameters are assigned their values

at the posterior mode, the model’s performance relative to the ratios in Table 3 deteriorates somewhat. With

two exceptions that deterioration is quantitatively negligible. The exceptions are the equity to debt ratio and

credit velocity, both of which are predicted to be 0.98.

25In particular,

0.57=
80.02832

80.02832+0.072 .

26For example, the correlation between x 1,t and x 4,t is only 0.43 = 0.06.
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C. Where is the News?

In our baseline model, we place news shocks on risk and not on other variables. Much of the news

literature attaches these shocks to technology and government consumption. This section reports marginal

likelihood statistics which suggest that the most preferred shock to put news on is the risk shock.

Consider Table 4. According to the first row in the table, the log marginal likelihood of our baseline model

is 4564.95. The second row shows that when we drop news from the risk shock, the fit of the model drops

tremendously. In particular, the log marginal likelihood falls roughly 400 log points. Then, while keeping

news off the risk shock we add news to other shocks one at a time. Results are reported in Table 4 in the order

of increasing model fit. Putting news on the persistent technology shock and on government consumption

adds the least to fit, compared to the scenario in which there are no news shocks at all. Putting news on

the transitory technology shock or on the monetary policy shock adds a substantial amount to fit. Each of

these adds roughly 300 log points to the marginal likelihood. Adding news to the equity shock adds an even

larger amount to fit. The greatest improvement in fit from adding news to a single shock, apart from adding

news to the risk shock, comes from adding news to the marginal efficiency of investment shock. News on

the marginal efficiency of investment shock adds 40 additional log points to fit above what is achieved by

adding news to the equity shock.

Because the news literature focuses relatively heavily on technology shocks, we want to give news on

technology shocks the best possible chance in terms of fit. So, we also considered the case where news is

added to all three technology shocks simultaneously. That adds 20 log points to fit beyond the case where

there is news on the marginal efficiency of investment shock alone.27 Table 4 shows that all these other ways

of introducing news into the model adds less to model fit than does adding news to the risk shock alone (see

the first row).

We infer two results from the findings in Table 4. First, news shocks have the potential to substantially

improve the econometric fit of a model. Second, if one wants to place news on only one shock (as we do,

for parameter parsimony reasons), then putting news on the risk shock is the best choice because it adds the

most to model fit.

III. The Risk Shock

We begin this section by discussing the various quantitative indicators which suggest that the risk shock

is the most important driver of the business cycle. We then review what it is about our model and data that

explains our finding. Previous studies of business cycles have stressed other shocks as the primary driving

27In results not reported in Table 4, we find that adding news to any two of the three technology shocks adds less to model fit than does adding
news to all three of the technology shocks simultaneously.
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force. The last part of this section discusses which of those shocks are displaced by the risk shock.

A. Measuring the Importance of the Risk Shock

Consider first the results in Figure 1. The solid line in panel A displays the year over year growth rate

in per capita, real GDP for our sample. An interpretation of this line is that it is the result of simulating

our model’s response to all of the estimated shocks and to the initial conditions. The dotted line shows the

result of this same simulation when we feed our model only the unanticipated and anticipated components

of the risk shock. The notable feature of panel A is how close the dotted and solid lines are to each other.

According to the results, the decline in GDP growth associated with the 2001 recession is closely associated

with the risk shock. The 2007 recession is similar. The 2007 NBER business cycle peak coincides with

a peak in the component of GDP driven by the risk shock. The full magnitude of the GDP drop in the

2007-2009 recession can be accounted for by the risk shock, as well as the partial bounce back at the end

of our sample. The remaining panels in Figure 1 indicate that the risk shock is also closely associated with

aggregate financial variables. Thus, panel B shows that the risk shock alone accounts for a large portion of

the fluctuations in the log level of per capita, real equity. Panel C shows that a large part of the movements in

the year-over-year growth rate in real per capita credit are accounted for by the risk shock. Panel D indicates

that the risk shock accounts for a substantial component of the fluctuations in the slope of the term structure

of interest rates. Panel E shows that the risk shock accounts for a very large part of the movements in the

credit spread. In sum, the risk shock accounts for a large part of the movements of the key variables in our

data set.

To gain additional insight into the results in panel E, panel F displays the estimated risk shock and our

measure of the credit spread.28 Note that although the risk shock, s t , and the credit spread are positively

related, they are by no means perfectly correlated. This is so, despite the result in panel E which shows

that when we feed only the estimated anticipated and unanticipated components of s t to the baseline model,

the resulting simulated credit spread tracks the corresponding empirical measure closely. We infer that the

credit spread is a complicated dynamic function of the news about the risk shock, s t , and not just a simple

function of the s t itself.

Our final indicator of the importance of risk shocks appears in Table 5. That table reports the percentage

of the variance in the level of several variables at business cycle frequencies which is contributed by our

various shocks.29 This is done for several specifications of our model. The entries in the first column of

data, labeled Risk, have a format, x|y|z, where x, y, and z each denote the percentage of business cycle

28The estimated risk shock was obtained in the same way used to compute the starred line in Panels A-E in Figure 1. We fed the estimated
anticipated and unanticipated components of the risk shock to the time series representation for risk. The risk variable reported in the figure is
100 (s t s)/s .

29We compute the variance of the (log) levels of the variables in the frequency domain, leaving off frequencies lower than the business cycle.
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variance due to various components of the innovations to risk. The variable x pertains to both anticipated

and unanticipated components, x 0,t , ...,x 8,t ; y pertains to the unanticipated component, x

0
t ; and z pertains to

the anticipated component, x 1,t , ...,x 8,t . The sum, x+ y+ z, does not always add to unity because there is a

small amount of correlation between the shocks (see (1.21)). For now, we only consider the first row of each

panel. The results in those rows are computed using our baseline model, evaluated at the posterior mode of

the parameters.

Consistent with the evidence in panel A of Figure 1, over 60 percent of the business cycle variance in

output is accounted for by the risk shock. Indeed, the risk shock is by far more important for GDP than are

any of the other shocks. Interestingly, with one exception the risk shock affects the economy primarily via

its unanticipated component. The unanticipated component of risk is more than twice as important as the

anticipated component, for GDP. It is four times as important in the case of consumption. In the exceptional

case, the credit spread, the anticipated and unanticipated components of risk are of roughly equal importance.

This evidence complements the findings in Table 4, that news is important in the modeling of business cycles.

The risk shock is particularly important for the financial variables. Interestingly, the risk shock makes the

linear term structure model of interest rates look good, because our term premium shock accounts for only

7 percent of the fluctuations in the slope of the term structure.30 More than half the business cycle variance

in the slope of the term structure is attributed to the risk shock.

B. Why is the Risk Shock So Important?

The answer to the question in the title of this subsection is that, when fed to our model, the risk shock

generates responses that resemble the business cycle. One way that we show this is by studying our model’s

impulse responses to disturbances in risk. In principle, model impulse responses point to another way to

evaluate a model, namely, by comparing them to analogous objects estimated using minimally restricted

vector autoregressions (VAR). However, the model developed here implies that standard methods for identi-

fying VARs do not work.31 These considerations motivate us to also consider a second type of evidence, one

based on the implications of risk shocks for the dynamic cross-correlations of aggregate output with various

macroeconomic variables. Finally, we ask which variables in our data set account for the preeminence of

the risk shock over other variables.
30To save space, we do not display this result in Table 5. With the exception of the slope of the term structure, the term premium shock accounts

for essentially 0 percent of the variance of the variables in the model.
31The results in Figure 1, Panel E and in Table 5 suggest that the risk shock and the credit spread are very similar. This might tempt one to

interpret one-step-ahead forecast errors in the credit spread computed using a limited list of aggregate variables as shocks to s t that are unexpected
by economic agents. Under this interpretation, the estimated dynamic responses in economic variables to the one-step-ahead forecast error in the
credit spread would constitute an empirical estimate of the economy’s response to risk shocks. The impulse responses obtained by this VAR strategy
could be compared with the impulses implied by the model. But this VAR strategy is not justified in our framework, for several reasons. One is
our finding that agents anticipate a substantial portion of the one-step-ahead forecast error in risk by as much as two years in advance. Ramey
(2011) in particular has emphasized the specification error consequences of a VAR strategy which ignores that agents have advance information
about statistical innovations in shocks. (See also the work of L’Huillier, Lorenzoni, and Blanchard (forthcoming).) An interesting application of the
model of this paper would be to quantify the specification error consequences of the VAR identification strategy described above.
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1. IMPULSE RESPONSE FUNCTIONS

As stressed in the introduction, the economic intuition underlying the response of the model to a jump in

the risk shock is simple. With a rise in risk, the probability of a low w increases and banks raise the interest

rate charged on loans to entrepreneurs to cover the resulting costs. Entrepreneurs respond by borrowing

less, so credit drops. With fewer financial resources, entrepreneurs purchase less capital, which has the

consequence that investment is lower. The drop in investment leads to a fall in output and consumption. The

fall in investment produces a fall in the price of capital, which reduces the net worth of entrepreneurs, and

this magnifies the impact of the jump in risk through standard accelerator effects. The decline in economic

output leads to a fall in costs, and thus, inflation is reduced. The decline in credit is smaller in percentage

terms than the decline in net worth, because in these dynamic responses there is a partially offsetting effect

on credit. In particular, when the price of capital drops, there is an expectation that it will return to steady

state. Other things the same, the resulting higher prospective return on capital raises credit. The net impact

of all these effects on credit is negative. But, the decline is muted and this is why credit falls less than net

worth, in percentage terms. In what follows, we display the impulse response functions which support the

intuition just described. A more detailed exploration of the economics of these impulse responses can be

found in our online technical appendix, sections D and I.

Figure 2 displays the dynamic response of various variables to an unanticipated shock in risk (i.e., x 0,t , the

solid line) and to a two-year-ahead anticipated shock (i.e., x 8,t , the line with circles). (The other lines will

be discussed later.) Both shocks occur in period 0. To simplify the interpretation of the impulse responses,

each of x 0,0 and x 8,0 are disturbed in isolation, ignoring the fact that according to our empirical analysis,

the anticipated and unanticipated shocks are correlated. In addition, we restrict both shocks to be the same

magnitude, with x 0,0 = x 8,0 = 0.10.

Panel H of Figure 2 displays the dynamic response of s t to the two shocks. The response of s t to x 8,0

mirrors the response to x 0,0, except that it is displaced by 8 periods. According to panel A, the dynamic

response of the credit spread to x 0,0 and to x 8,0 differs in roughly the same way that the response of s t to

x 0,0 and x 8,0 differs.32 Still, the response of the credit spread is countercyclical in each case. The dynamic

responses of the other variables to x 0,0 and to x 8,0 are much more similar. In particular, credit, investment,

output, and inflation all drop immediately and persistently in response to both x 0,0 and x 8,0. Interestingly,

in all these cases the eventual response to x 8,0 exceeds the eventual response to x 0,0. The slope of the term

structure of interest rates, RLt Rt , is countercyclical in response to each shock to risk. The peak response

32Note that x 0,t has a smaller impact on the period t interest rate spread than on subsequent values of the spread. This is because the period t
spread corresponds to loans extended in period t 1. Disturbances in x 0,t affect s t , which has a direct impact on loans extended in period t and
therefore on the period t+1 spread. The fact that x 0,t has some effect on the period t spread reflects the state contingency in the interest rate paid
by entrepreneurs.
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of RLt Rt to x 8,0 is bigger than the peak response of RLt Rt to x 0,0.

Consider panel F, which displays the response of consumption to a jump in risk. There is perhaps a small

qualitative difference in the response of consumption to the x 0,0 and x 8,0 shocks. Consumption drops imme-

diately in response to x 0,0 while it exhibits almost no response in the immediate aftermath of a disturbance

in x 8,0. Still, in both cases consumption eventually drops sharply. This negative response of consumption

to a jump in risk may at first glance seem surprising. The rise in risk in effect corresponds to an increased

tax on investment, and this is why investment falls. With flexible prices one expects this decrease in the

demand for current goods to drive down the price of current goods relative to future goods, i.e., the real

interest rate. This drop in the real interest rate would then be expected to stimulate consumption. In fact,

consumption does rise in response to a jump in risk in the flexible wage and price version of our model.

But, consumption and investment move up and down together over the business cycle in the data. So, any

econometric estimator working with the flexible price and wage version of our model would assign a very

small role to risk shocks in business cycles. Price and wage frictions are essential to our finding that the risk

shock is important.

The reason that consumption falls after a rise in risk in our model is that the real interest rate is not

exclusively determined by market forces when wages and prices are not flexible. In our baseline model,

monetary policy also plays a key role in determining the real rate of interest. Moreover, our standard

representation of monetary policy is known to imply that the real interest rate responds less to shocks than it

does when wages and prices are flexible (see, for example, the work of Christiano, Trabandt, and Walentin

(2011)). We conclude that consumption falls after a rise in risk because the real interest rate falls by less

than it would if wages and prices were flexible. The results in Figure 2 lend support to this intuition. Panel

F in that figure displays the drop in consumption when the weight on inflation in the Taylor rule, a

p

, is

reduced to 1.5. Because inflation falls in the wake of a positive shock to risk, the reduced value of a

p

implies that the interest rate falls by less after a positive shock to risk. Consistent with the intuition outlined

above, the smaller value of a

p

results in a larger drop in consumption after a positive shock to risk. The

impact is particularly noticeable for the anticipated shock, x 8,0. The cut in the value of a

p

does not have an

interesting impact on any of the other responses in Figure 2, and so we do not display those in the figure. A

more extended discussion of these observations about consumption appears in the online technical appendix,

Section I.

2. DYNAMIC CROSS CORRELATIONS

Here, we define the business cycle as the dynamic cross-correlations between output and the variables in

Figure 3. Before we computed the correlations displayed in Figure 3, our data on output, credit, investment,
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equity, and consumption were logged and converted to year-over-year growth rates. The grey area in each

graph is a 95 percent confidence interval centered about the empirical correlations, which are not themselves

displayed. In the figure, slope indicates the slope of the term premium, RLR, and credit spread indicates

ZR, the premium of the interest rate paid by (nondefaulting) entrepreneurs over the risk-free rate. The lines

with circles in Figure 3 display the model-implied correlations when only the anticipated and unanticipated

shocks to risk are activated. We emphasize two results in Figure 3. First, the dynamic correlations implied by

the model with only risk shocks resemble the correlations when all the shocks are activated. This illustrates

how risk shocks are a dominant shock in the model. Second, the dynamic correlations with only the risk

shock resemble broadly the corresponding objects in the data, and in this sense, they generate what looks

like a business cycle.

Taken together, the impulse response functions and cross-correlation analysis quantify the sense in which

risk shocks in the model generate dynamics that resemble the business cycle. This is the principal reason

our econometric analysis assigns such an important role to risk shocks in its account of business cycles.

3. THE RISK SHOCK AND FINANCIAL DATA

Our conclusion that the risk shock is the most important shock driving the business cycle depends sensi-

tively on the fact that we include financial variables in the analysis. We can see this by examining the rows

beyond the first one in the panels of Table 5. The rows marked drop all fin. var report variance decom-

positions at the posterior mode of our baseline model when our four financial variables are dropped from

the analysis.33 The rows marked CEE allows one to see what happens to inference about the importance of

shocks when a model without financial frictions is used. The results in the CEE rows are computed using the

CEE model discussed in Section I.D, evaluated at the mode of the posterior distribution of its parameters.

The data set underlying that posterior distribution is the same as the data set underlying the calculations

reported in the rows labeled drop all fin. var. The entries for CEE corresponding to risk and equity shocks

are empty, since these shocks do not appear in the CEE model. In addition, we do not include the term

premium shock in the CEE model, so the entry corresponding to this shock is also empty.

The key result in Table 5 is that when all financial variables are dropped, the risk shock vanishes in

importance and the marginal efficiency of investment shock appears to be the most important driver of the

business cycle. Moreover, when our model is not permitted to see the financial variables, it reaches a similar

conclusion as does CEE regarding the historical importance of different shocks. In particular, the major

shock driving GDP fluctuations is the marginal efficiency of investment shock, z I,t .

33The four variables dropped are credit, the credit spread, equity and the slope of the term structure. The number of model parameters is reduced
somewhat in the drop all fin. var case. Dropping equity implies that the measurement error variance for equity drops from the set of model
parameters. Similarly, dropping the slope of the term structure implies that the parameters governing the term premium shock, h t , also drop from
the set of model parameters.
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To some extent, the degree to which the risk shock is pushed out when the financial variables are dropped

is overstated in Table 5. The log of the posterior density at the mode on which the results in the drop all

fin. var row of Table 5 are based is, apart from an additive constant, equal to 3221.3. But, we found another

local maximum for the posterior distribution where the log of the posterior is, apart from the same additive

constant, 3218.4. The difference in the criterion at these two points is a trivial 2.9 log points. However,

the properties of the model at the alternative parameterization resemble those of our baseline model in that

the marginal efficiency of investment plays only a modest role and the risk shock is the most important

shock. For this reason, we conclude that in the absence of financial variables, it is hard to distinguish a

parameterization of the model in which the risk shock is important and the marginal efficiency of investment

is not important from another in which the reverse is true.34 When the financial data are introduced, it is no

longer the case that these two parameterizations are hard to distinguish.35

C. Why Do Risk Shocks Drive Out Other Intertemporal Shocks?

Our model includes three shocks that affect intertemporal decisions: risk, s t ; the marginal efficiency of

investment, z I,t ; and shocks to equity, g t . We find that the risk shock is far more important than the other

two shocks. For example, according to Table 5, disturbances in s t account for 62 percent of the fluctuations

in output while shocks to z I,t and g t account for only 13 and 0 percent of the business cycle component of

output, respectively. We discuss the reasons for these findings below.

1. MARGINAL EFFICIENCY OF INVESTMENT SHOCK

Our finding for z I,t differs sharply from results in the literature, which assign a very substantial role in

business cycles to z I,t .36 We reproduced the finding in the literature for z I,t by computing the variance

decompositions implied by the CEE model.37 According to the results in Table 5, the CEE model implies

that z I,t is the most important shock driving output and that it accounts for 39 percent of the business cycle

fluctuations in that variable. Here, we seek to understand at an intuitive level why the risk shock reduces the

importance of the marginal efficiency of investment. We focus in particular on the role played by equity.

Consider Figure 4, which displays the dynamic response of the variables in our model to several shocks.

To facilitate comparison, we repeat the impulse responses to the unanticipated component in risk, x 0,0, from

Figure 2 ( the solid lines). The lines with circles display the dynamic responses to an innovation in z I,t in

our model. For ease of comparison, we have scaled this innovation so that the maximal decline in output

34A related observation is made in Justiniano, Primiceri and Tambalotti (2010, p. 144).
35Our results show that the posterior distribution, when none of the four financial variables are included, has a second local maximum near the

mode. When we included some or all the financial data, we never encountered another local maximum near the mode.
36See, for example, Justiniano, Primiceri, and Tambalotti (2010, 2011).
37See sections I.D and B.3 for a discussion of the CEE model and its parameters.
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coincides with the maximal decline in the output response to x 0,0. Consider panel E of Figure 4, which

displays the dynamic responses in equity. Note in particular that equity is countercyclical in response to the

innovation in z I,t . Evidently, the marginal efficiency of investment shock has the strongly counterfactual

implication that the value of equity is countercyclical. This stands in sharp contrast to the risk shock, which,

consistent with the data, implies that the value of equity is procyclical.

Another way to see the contrasting implications of risk versus the marginal efficiency of investment for

the cyclical properties of equity appears in Figure 5. The solid lines indicate historical observations on year-

over-year output growth and on the real value of the stock market. The starred lines indicate the results of

simulating the indicated model responses to the indicated shocks. The left column of graphs reproduces the

relevant portions of Figure 1. It shows what output and equity would have been according to the baseline

model at its posterior mode if only the estimated risk shocks had been active in our sample. The right column

of graphs shows what output and equity would have been according to the CEE model at its posterior mode

if only the marginal efficiency of investment shocks had been active.38 Note that each type of shock accounts

well for the dynamics of output growth. However, when equity is brought into the picture, the implications

of the two perspectives on the sources of economic fluctuations differ sharply. The risk shock accounts well

for the fluctuations in equity. In contrast, the marginal efficiency of investment shock predicts stock market

booms when there are busts and busts when there are booms.

The intuition for these results is very simple. Consider a Marshallian cross representation of the market

for capital with the price of capital, Q  K,t+1, on the vertical axis and the quantity of capital,  Kt+1, on the

horizontal (see Figure 6). The supply curve corresponds to the marginal cost of building capital, derived

from the household’s technology for constructing capital discussed just after (1.8). The marginal efficiency

of investment shock perturbs this supply curve. Entrepreneurs are the source of demand for capital. The

demand curve is perturbed by the equity and risk shocks, g t and s t , that affect the terms of entrepreneurial

loan contracts with banks. The price of capital is a major input determining entrepreneurs’ net worth, Nt+1,

which we identify with the value of equity in the data.39 For purposes of gaining intuition, we can think of

the price of capital and the value of equity as being the same thing.

Now, suppose that there is a shock to the marginal efficiency of investment which shifts the supply curve

to the left. The figure indicates that the equilibrium quantity of capital decreases. This in turn implies

that fewer investment goods are purchased by the producers of capital goods, so that there is a decline

in production and employment. This explains why the z I,t shock implies that investment is procyclical.

A similar logic reaches the conclusion that the s t and g t shocks also imply procyclical investment. This

38In the CEE model, we proxy equity by the real price of capital, Q  K,t+1/Pt .
39The equation that characterizes net worth is given in (1.17). The price of capital enters that expression via the rate of return on capital, (1.10).
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intuition is consistent with the results in Figure 4, panel C.40 Although the demand and supply shocks have

the same implications for the cyclical properties of investment, they have opposite implications for the price

of capital and, hence, the value of equity. This explains the results in panel E of Figure 4.

Inspecting Figure 4, it is also clear that the credit spread plays a role in differentiating between the risk

shocks and z I,t shocks. According to panel A of Figure 4, the marginal efficiency of investment predicts,

counterfactually, that the credit spread is procyclical. The risk shock predicts, correctly, that the credit spread

is countercyclical.41

2. EQUITY SHOCK

The risk shock, s t , also drives out equity shocks, g t (recall Table 5). To understand why this is so, consider

the dynamic response of our baseline model to a negative innovation in g t (see Figure 4). According to panel

B, equity and risk shocks have opposite implications for the cyclicality of credit. The reason equity shocks

counterfactually imply countercyclical credit is explored in detail in Appendix D of the online appendix. The

idea is that an equity shock has two effects on credit. The first is a partial equilibrium effect. A drop in g t

directly reduces the net worth of entrepreneurs and partial equilibrium analysis of the debt contract implies

that this reduces the amount that entrepreneurs borrow in period t (panel E of Figure 4 shows the response of

net worth to a decline in g t). The second, general equilibrium, effect follows from the fact that entrepreneurs

with fewer resources buy less capital and this drives down the price of capital. Because the price of capital

is expected to return back up to steady state over time, the period t drop in the price of capital triggers a

jump in the expected return to capital. This can be seen in panel H, which shows the immediate drop in the

excess return to capital,

1+Rkt


/(1+Rt1) , in period t as the price of period t capital drops, followed by

a persistently high expected excess return. The jump in the expected return on capital causes entrepreneurs

to receive more credit in period t. Thus, the partial equilibrium effect causes a fall in credit in the wake of

a drop in g t and the general equilibrium effect causes a rise. In our model, the general equilibrium effect

dominates and this is why credit rises. Although credit expands, it does not expand by enough to offset the

initial decline in net worth that causes the contraction in spending by entrepreneurs in the first place.

The risk shock also triggers the two effects described in the previous paragraph (the general equilibrium

effect may be seen in panel H). However, Figures 3 and 4 indicate that the partial equilibrium effect dom-

inates, so that the risk shock correctly implies procyclical credit. We suspect that this numerical result is

robust because a contractionary risk shock does not have the direct, negative effect on net worth that a con-

40The dynamic responses to an innovation in g t are displayed with the curve indicated by *’s, and the equity innovation has been scaled so that
the maximal decline in output coincides with the maximal decline in output in response to a risk shock.

41Note from panel F that consumption is countercyclical in the first two years after a z I,t shock. However, this failure of the model is not robust
to alternative parameterizations. For example, when we reduce the coefficient on inflation in the interest rate rule to 1.5, then consumption falls
after a z I,t shock, for the reasons discussed in Section B.1 above.
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tractionary equity shock has. To see this, suppose credit did increase in the wake of a contractionary risk

shock. Because there is no direct negative shock to net worth, we expect the overall resources available

to entrepreneurs to expand. This would cause them to buy more capital, driving its price up and, hence,

its anticipated rate of return down. But, this drop in the anticipated rate of return is inconsistent with the

assumed initial rise in credit. This is why we expect a rise in risk to robustly lead to a fall in credit.

We conclude that the credit data favor the risk shock over the equity shock because the former correctly

predicts credit is procyclical, while the latter incorrectly predicts credit is countercyclical.

IV. Various Measures of Model Out-of-Sample Performance

The key finding of this paper is that variations in risk, s t , are the most important impulse to business

cycles. Whether this finding should be taken seriously depends on how seriously we take the underlying

model. In this section, we offer a defense of the model based on various out-of-sample measures of fit.

We begin by examining two variables not used in our formal econometric analysis. The first of these is

a measure of uncertainty recently proposed by Bloom (2009). The second is an indicator of bankruptcy

rates. We use our model to project these two variables onto the sample data used in model estimation. If our

analysis overstates the importance of risk shocks in the business cycle, then we expect the model to overstate

the degree of cyclical variation in Bloom’s measure of uncertainty and in the bankruptcy rate. We show that,

in fact, the predicted and actual degrees of cyclical variation in these two variables are very similar.

We then turn to the Federal Reserve’s survey of senior loan officers to test another aspect of our analysis.

Our model stresses that the origins of business cycle fluctuations lie in agency problems in the nonfinancial

sector.42 Other research, particularly work that focusses on the events since 2007, explores the idea that

agency problems lie specifically inside the financial sector.43 We display evidence in the survey of senior

loan officers that lends support to the approach taken in this paper.

We also examine a more conventional measure of model fit, the model’s pseudo-real-time out-of-sample

root mean square forecast errors (RMSE). By pseudo-real-time we mean that forecasts are computed using

model parameters estimated only on revised data available at the date of the forecast. We compare the

RMSE’s of our baseline model with those implied by CEE as well as RMSE’s implied by a Bayesian Vector

Autoregression. We find that our model compares well against all these alternatives. These results are

reported in the online appendix, Section J.

42In section I.B we indicated that in principle some of our entrepreneurs could be interpreted as financial firms. However, our measure of credit
in the data corresponds to borrowing by nonfinacial firms. So in the empirical analysis, we in effect take the position that our entrepreneurs are
nonfinancial firms.

43See the work of Christiano and Ikeda (2012) as well as the studies that they cite. Related research develops the idea that problems in the
financial sector are a source of business cycle disturbances, without developing a detailed structural model of those disturbances. See, for example,
Ajello (2012) and the references that he cites.
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A. Implications for Uncertainty

In an influential paper, Bloom (2009) draws attention to time series data on a particular measure of volatil-

ity. The period t observation on the time series represents the period t cross sectional standard deviation of

firm-level stock returns. A version of Bloom’s volatility measure is depicted by the solid line marked with

‘+’ in Figure 7.44 Bloom infers from the countercyclicality of his volatility measure that uncertainty plays an

important role in business cycles. Note that his volatility measure is highest near the business cycle trough

in the 1990 and 2007 recessions. In the 2001 recession, it rose sharply somewhat before the start of the

recession (the vertical grey areas indicate NBER recession periods).

We computed the analog of Bloom’s volatility measure in our model. Conditional on the period t ag-

gregate shocks, an entrepreneur with idiosyncratic shock w earns Ret (w)  max{0, [w  
w t ]} Rkt Lt1

expressed as a ratio to his net worth. Here, Lt1 denotes leverage and Rkt denotes the cross-sectional av-

erage return on capital. The standard deviation, std, of the entrepreneurial return on equity in a cross

section which only includes non-bankrupt entrepreneurs (i.e., those with w >  
w) is std (Ret (w) |w >  

w t) =

Rkt Lt1
p
Var (w  

w t |w >  
w t). Here, Var (x|D) denotes the variance of x conditional on the event, D.45

We use our estimated model and the Kalman smoother to compute the projection of std (Ret (w) |w >  
w t)

onto the data set used in our formal Bayesian analysis. The results are depicted by the solid line marked with

‘x’ in Figure 7. The empirical and model-implied data differ somewhat in terms of levels. The mean of the

model and data variables is 0.58 and 0.30, respectively. Presumably, the mean of the model variable could

be reduced by small adjustments in parameter values, without substantially altering the dynamic properties

of the model. The real test of the model lies in comparing the magnitude of variation in the two volatility

measures. To focus on this degree of variation, the two volatility measures in Figure 7 are expressed as a

deviation from their respective sample means. Note that the magnitude and timing of the variation in the

two volatility measures is similar. For example, both series indicate that volatility is relatively high towards

the end of the 1990 and 2007 recessions. Also, the model implies that volatility is relatively high before the

onset of the 2001 recession, as in the data. Because the volatility data played no role in the estimation of the

model, this similarity between model and data is evidence in support of the model.

Our model analysis also has the effect supporting Bloom’s inference from the volatility data that uncer-

44There are two differences between the data studied by Bloom (2009) (see row 2 of his Table I) and our data. First, the time period in our model
is quarterly while the Center for Research in Securities Prices (CRSP) data used by Bloom (2009) are monthly. To ensure comparability between
the data and our quarterly model, we use the data constructed by Ferreira (2012) which converts the monthly CRSP returns to quarterly. Second, we
work specifically with data on nonfinacial firms rather than all firms, as does Bloom (2009). This choice of data is more consistent with our analysis,
given the way we map from entrepreneurial credit and interest rate spreads into the data in our econometric analysis. However, there would have
been virtually no change to Figure 7 if we had instead reported results based on CRSP data for nonfinacial and financial firms.

45Ferreira (2012) shows that

Var (Ret (w) |w   
w t) =


Rkt Lt1

2 1
1F (  

w t)
es

2


1F


log  
w t

s


3
2

s





1G(  
w t)

1F (  
w t)

2
.

For completeness, Ferreira’s derivation is reproduced in Appendix G of the online technical appendix to this paper.
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tainty is an important force in business cycles. Such support is helpful because, in addition to the usual

problem of inferring causality from correlations, the degree of cyclicality in Bloom’s volatility measure

may at first glance not seem very big. According to our model, a key driving force of the business cycle

is variations in risk and the model predicts roughly the degree of variation in volatility that is observed.

This represents support for Bloom’s inference because our concept of risk is similar to his concept of uncer-

tainty.46

B. Implications for Bankruptcy Rates

For our second out-of-sample test of the model, we use the two-sided Kalman smoother to estimate the

period t default rate, Ft1 (  
w t) , implied by our model and compare it with the delinquency rate on all loans

extended by commercial banks.47 The results are reported in Figure 8. Note that the default rate implied by

our model rises and falls with each of the three recessions in our sample, just as the loan delinquency rate

does. However, the match between our model’s default rate and the delinquency rate is not perfect since

the latter lags recessions somewhat. Still, the two variables are reasonably similar, bearing in mind that

empirical measures of default played no role in model estimation.

C. Senior Loan Officer Opinion Survey

Each quarter, the Federal Reserve surveys the opinions of senior loan officers at commercial banks. We

focus on a key question in this survey: “If you have tightened or eased over the last three months, what

are the reasons?" Loan officers are referred to the following seven potential considerations for tightening

or easing bank credit: (1) bank capital position; (2) liquidity conditions in secondary markets for loans;

(3) current and expected liquidity position; (4) less favorable or more uncertain macroeconomic outlook;

(5) tolerance to risk; (6) industry-specific developments; (7) bank competition. For each of these seven

considerations, the respondent is asked to report whether it was very important, somewhat important, or

not important in the decision to tighten or ease bank credit. We collected the reasons into two categories:

factors having to do with banks’ own balance sheets (considerations 1, 2, 3) and factors associated with

macroeconomic conditions not related to banks’ balance sheets (considerations 4, 5, 6).48

We summarize respondents’ answers in Figure 9, which covers the period from the first quarter of 2008

to the second quarter of 2011.49 There are potentially four bars associated with each quarter in Figure 9.

The length of the two bars above the zero line in a particular quarter indicate how many banks reported that

46We use risk to refer exclusively to variations in microeconomic uncertainty. Bloom uses uncertainty to refer both to risk and to changes in
aggregate volatility.

47The data were obtained from the St. Louis Federal Reserve Bank’s online data base, FRED. The FRED mnenomic for the delinquency rate on
commercial bank loans is DRALACBS.

48Consideration 7 was not included in either of the two categories.
49The survey of loan officers begins before 2008. However, the Fed did not publish how many banks responded to each question prior to 2008.
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they were tightening credit in that quarter. The length of the two bars extending below the zero line indicate

how many banks reported that they were easing credit in that quarter. Evidently, in late 2008 and early

2009, no bank was easing credit. In each quarter, the left bar summarizes the importance assigned to factors

having to do with the banks’ balance sheets, and the right bar summarizes the importance assigned to macro

factors originating outside the banks. Each bar has a black part, a grey part and a white part. The length

of the black part indicates the average number of very important responses across the three considerations

in the associated category. Similarly, the length of the grey part indicates the average number of somewhat

important responses, and the length of the white part indicates the number of not important responses. The

sum of the average responses is equal to the number of banks tightening or easing. This is why the length

of the bars on the right and the left is always equal.

The key result is that the black and grey areas extend further for the bars on the right than for the bars

on the left. That is, changing conditions outside banks’ balance sheets are relatively more important than

changes in banks’ own balance sheets in determining whether banks tighten or ease credit conditions.

We view the evidence in Figure 9 as providing some support for our choice to leave out considerations

strictly related to banks’ balance sheets from the model. It is important, however, to stress the limitations

of the evidence in Figure 9. First, the evidence applies to a relatively short subperiod of our data set. At

the same time, this evidence is perhaps notable because it covers a period when many think problems in

banks’ balance sheets were a principal reason for the business cycle contraction.50 Second, the loan officer

survey only covers a portion of the financial system, namely, the commercial banks. What is true about the

commercial banks need not necessarily be true for financial firms as a whole. Still, we regard the evidence

in Figure 9 as supportive of our model.

V. Conclusion

We started with a model that combines CEE with BGG and added the assumption that the cross sectional

standard deviation of an idiosyncratic productivity shock varies over time, as in Christiano, Motto, and

Rostagno (2003). We call this cross-sectional standard deviation a risk shock. When we study US macro-

economic data over the period 1985-2010, we conclude that the risk shock accounts for a large share of the

fluctuations in GDP and other macroeconomic variables. It is the fact that we include financial variables

in an otherwise standard macroeconomic data set that allows us to differentiate the risk shock from more

standard macroeconomic shocks. To evaluate the credibility of our result, we study the implications of our

model for variables not included in the dataset used to assign values to the model parameters. In particular,

we examine the implications of the model for loan delinquency rates, for out-of-sample forecasts, and for

50See Christiano and Ikeda (2012).
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features of the cross-sectional dispersion of firm-level stock returns recently stressed by Bloom (2009) and

others. We find that the model does well on these dimensions and infer that its implications for the risk

shock deserve to be taken seriously.

Our analysis assumes that variations in risk are exogenous. Presumably, in reality there is a large endoge-

nous component to risk shocks. Understanding these endogenous components is an important task for future

research. Examples of how cyclical variations in risk may arise endogenously are explored in Bachmann

and Moscarini (2011) and Christiano and Ikeda (2013).
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Table 1: Calibrated Parameters (Time unit of Model: quarterly)
 Discount rate 0.9987
L Curvature on disutility of labor 1.00
 L Disutility weight on labor 0.7705
w Steady state markup, suppliers of labor 1.05
µz Growth rate of the economy 0.41
 Trend rate of investment-specific technological change 0.42
 Depreciation rate on capital 0.025
 Power on capital in production function 0.40
f Steady state markup, intermediate good firms 1.20
1  Fraction of entrepreneurial net worth transferred to households 1 98.50
W e Transfer received by entrepreneurs 0.005
g Steady state government spending-GDP ratio 0.20

target Steady state inflation rate (APR) 2.43
 c Tax rate on consumption 0.05
 k Tax rate on capital income 0.32
 l Tax rate on labor income 0.24



Table 2a: Model Priors and Posteriors - Economic Parameters
Prior Distribution Posterior Distribution

parameter name parameter prior dist mean stdv mode s.d.

Calvo wage stickiness w beta 0.75 0.1 0.81 0.019
Habit parameter b beta 0.5 0.1 0.74 0.050
Steady state probabiliy of default F (!̄) beta 0.007 0.0037 0.0056 0.0023
Monitoring cost µ beta 0.275 0.15 0.21 0.073
Curvature, utilization cost a normal 1 1 2.54 0.70
Curvature, investment adjust cost S00 normal 5 3 10.78 1.71
Calvo price stickiness p beta 0.5 0.1 0.74 0.035
Policy weight on inflation  normal 1.5 0.25 2.40 0.16
Policy smoothing parameter p beta 0.75 0.1 0.85 0.015
Price indexing weight on inflation target  beta 0.5 0.15 0.90 0.049
Wage indexing weight on inflation target w beta 0.5 0.15 0.49 0.11
Wage indexing weight on persistent tech. growth µ beta 0.5 0.15 0.94 0.029
Policy weight on output growth y normal 0.25 0.1 0.36 0.099



Table 2b: Model Priors and Posteriors - shocks
Prior Distribution Posterior Distribution

parameter name parameter dist mean stdv mode s.d.
Correlation among signals ,n normal 0 0.5 0.39 0.095
Autocorrelation, price markup shock f beta 0.5 0.2 0.91 0.034
Autocorrelation, price of investment goods shock µ beta 0.5 0.2 0.99 0.0085
Autocorrelation, government g beta 0.5 0.2 0.94 0.023
Autocorrelation, persistent technology growth µz beta 0.5 0.2 0.15 0.070
Autocorrelation, transitory technology  beta 0.5 0.2 0.81 0.065
Autocorrelation, risk shock  beta 0.5 0.2 0.97 0.0093
Autocorrelation, consumption preference shock c beta 0.5 0.2 0.90 0.031
Autocorrelation, marginal e¢ciency of investment I beta 0.5 0.2 0.91 0.017
Autocorrelation, term structure shock  beta 0.5 0.2 0.97 0.025
std, anticipated risk shock ,n invg2 0.001 0.0012 0.028 0.0028
std, unanticipated risk shock ,0 invg2 0.002 0.0033 0.07 0.0099
std, measurement error on net worth Weibull 0.01 5 0.018 0.0009

Standard deviations, shock innovations
price markup f invg2 0.002 0.0033 0.011 0.0022
investment price µ invg2 0.002 0.0033 0.004 0.0003
government consumption g invg2 0.002 0.0033 0.023 0.0016
persistent technology growth µz invg2 0.002 0.0033 0.0071 0.0005
equity  invg2 0.002 0.0033 0.0081 0.001
temporary technology " invg2 0.002 0.0033 0.0046 0.0003
monetary policy "p invg2 0.583 0.825 0.49 0.037
consumption preference c invg2 0.002 0.0033 0.023 0.003
marginal e¢ciency of investment I invg2 0.002 0.0033 0.055 0.012
term structure  invg2 0.002 0.0033 0.0016 0.0007
Note: invg2 — ‘inverse gamma distribution, type 2’.



Table 3: Steady State Properties, Model at Priors versus Data
Variable Model Sample averages

i
y

0.25 0.241
c
y

0.54 0.592
g
y

0.20 0.16
k
y

7.6 10.93
N

KN (Equity to Debt ratio) 1.91 1.3-4.74

Transfer received by new entrepreneurs as % of GDP 0.18 not known
Banks monitoring costs as % of GDP 0.45 not known
Credit velocity 1.53 1.675

Inflation (APR) 2.43 2.476

Short-term risk free rate (APR) 4.67 4.807

Notes: All sample averages are computed over the period 1985:1-2008:2, except inflation and the short-term
interest rate, which are computed over 1987:1-2008:2. Model objects are computed on the basis of the parame-
ters evaluated at the prior mode. 1Investment includes residential, non-residential, equipment, plants, business
durables, change in inventories and durable consumption. Source: BEA. 2Personal Consumption Expenditure
includes non-durables and services. Source: BEA. 3Capital stock includes private non-residential fixed assets,
private residential, stock of consumer durables and stock of private inventories. Source: BEA. 4Masulis (1988)
reports an equity to debt ratio for U.S. corporations in the range of 1.3-2 over the period 1937-1984. McGrattan
and Prescott (2004) estimate an equity to debt ratio of 4.7 for the corporate sector over the period 1960-1995.
5Credit velocity is computed as annual GDP over credit, where credit is defined as credit market instruments
liabilities of nonfarm nonfinancial corporate business plus credit market instruments liabilities of nonfarm non-
corporate business. Source: Flow of Funds Accounts of the Federal Reserve Board. 6Computed on the basis of
the GDP Price Index. Source: BEA. 73-month average of the daily e§ective Federal Funds rate. Source: Federal
Reserve Board.



Table 4: Marginal Likelihood of Placing News on Alternative
Shocks

News on: Marginal Likelihood
risk shock, t (baseline specification) 4564.95
no news on any shock 4184.10
persistent technology shock, µz,t 4184.74
government spending shock, gt 4195.93
transitory technology shock, "t 4423.39
monetary policy shock, "pt 4486.08
equity shock, t 4491.44
marginal e¢ciency of investment shock, I,t 4531.97
all technology shocks, "t, µz,t, I,t 4557.14

Notes: the marginal likelihood is computed using Geweke (1998)’s modified harmonic mean method.
The computations are based on a Monte Carlo Markov Chain of length 200,000 for each model.

1



Table 5. Variance Decomposition at Business Cycle Frequency (in percent)

shock Risk Equity M.E.I. Technol. Markup M.P. Demand Exog.Spend.
variable t t I,t "t, µz,t, f,t, t c,t gt

GDP 62|16|38 0 13 2 12 2 4 3
drop all fin. var 1|0|1 0 44 12 22 3 11 8
CEE [—] [—] [39] [18] [31] [4] [3] [5]
Consumption 16|3|12 0 11 3 19 2 46 3
drop all fin. var 0|0|0 0 2 15 26 3 51 2
CEE [-] [-] [6] [12] [9] [1] [67] [5]
Investment 73|18|46 0 21 0 4 1 1 0
drop all fin. var 2|0|2 0 85 2 7 2 2 0
CEE [-] [-] [57] [10] [24] [3] [5] [0]
Equity 69|23|35 2 23 0 1 2 0 0
Credit Spread 95|39|42 1 3 0 0 0 0 0
Credit 64|12|46 10 17 2 4 1 1 0
Slope 56|12|38 0 17 3 8 6 2 0

Notes: For each variable indicated in the first column, variance decompositions are generated by the baseline model
evaluated at the mode of the posterior distribution. Results in the row marked, drop all fin. var, are generated by
the baseline model evaluated at the mode of the posterior distribution when our four financial variables are dropped.
Results in the rows marked CEE are generated by the CEE model (i.e., the model without financial frictions),
evaluated at the mode of the posterior distribution computed based on our eight standard macroeconomic variables.
Numbers in each row may not add up to 100 due to rounding. The table does not display results for shocks (such as
t and µ,t) whose contribution is less than 1/2 of 1%. To save space, we also dropped results for the term premium
shock. With one exception it contributes roughly zero to the variance of all variables. In the exceptional case, the
term premium shock accounts for 7% of the variance of Slope, the slope of the term structure. Data on equity is also
explained by measurement error, which is estimated to contribute 3% in the baseline model. The contribution of the
risk shock, t, is presented in the following way: the first entry is the contribution of the entire shock, the second entry
is the contribution of 0, and the third entry is the contribution of 1, ..., 8. The latter two contributions do not sum
up to the first entry as they ignore the correlation between the ’s. Business cycle frequency is measured as periodic
component with cycles of 8 32 quarters, obtained using the model spectrum.
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Figure 1. The Role of the Risk Shock in Selected Variables
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Figure 2. Dynamic Responses to Unanticipated and Anticipated Components of the Risk Shock
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Figure 3. Selected Cross−Correlations with Contemporaneous Output, Model and Data
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Notes: First row of graphs − actual GDP growth (solid line) and model simulated growth (starred line). 
Second row of graphs − same as first row, except data pertains to log level of real, per capita equity.
Columns − simulation of indicated model in response to smoothed estimate of indicated shock.
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Figure 7: Time Series, Cross Section Standard Deviations of Quarterly Rates of Return
Model and Data (Non−financial Firm Equity, CRSP)

 

 

Notes: (i) shaded area corresponds to NBER Dates, (ii) sample means removed from data and reported in box.

data, sample mean = 0.30
model, sample mean = 0.58



Figure 8. Model Bankruptcy Rate versus Loan Delinquency Rate
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Figure 9. Contribution of Bank Balance Sheet Factors and
Nonfinancial Firm Macroeconomic Factors to Tightening/Easing
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For each quarter, the first bar refers to the contribution of bank balance sheet factors, and the second bar
refers to the contribution of nonfinancial firm macroeconomic factors.
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Figure 11. Contribution of Bank Balance Sheet Factors and
Nonfinancial Firm Macroeconomic Factors to Tightening/Easing
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For each quarter, the first bar refers to the contribution of bank balance sheet factors, and the second bar
refers to the contribution of nonfinancial firm macroeconomic factors.
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Figure 9. Contribution of Bank Balance Sheet Factors and
Nonfinancial Firm Macroeconomic Factors to Tightening/Easing
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