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APPENDIX A: SCALING AND MISCELLANEOUS VARIABLES

To solve our model, we require that the variables be stationary. To this end, we adopt a particular scaling
of the variables. Because our model satisfies sufficient conditions for balanced growth, when the equilibrium
conditions of the model are written in terms of the scaled variables, only the growth rates and not the levels
of the stationary shocks appear. In this appendix we describe the scaling of the model that is adopted. In
addition, we describe the mapping from the variables in the scaled model to the variables measured in the
data.
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where r̃kt Pt denotes the nominal rental rate on capital. The rate of inflation in the nominal wage rate is:

pw,t 
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=
w̃tµz,tp t
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.

Consider gdp growth, according to the model.
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or,
Ygdpt = ytz+t ,

so that
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
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Note that we have subtracted the steady state value of log µ


z,t from this expression. This is because D logYgdpt

is the growth rate of GDP, after subtracting its steady state value.
Let Nt+1 denote period t nominal net worth, so that
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.

Then,
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Again, this variable is expressed in deviation from its steady state.
Another variable is investment. There is an issue about what units to measure investment in. Investment
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times its relative price is given by:

invt 
It

°tµ°,t
=
it z+t °t

°tµ°,t
=
it z+t
µ°,t

,

so that, in deviation from steady state:

D log invt  log invt  log invt1 = log it  log it1+ log
µ


z,t
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
z


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
.

The relative price of investment goods is given by

PI,t 
1

°tµ°,t
,

so that

D logPI,t = t log°+(t1) log° log µ°,t + log µ°,t1+ log°
=  log µ°,t + log µ°,t1,

in deviation from steady state.
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µ


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µ


z

Real credit growth (in deviation from steady state) for entrepreneurs is computed as follows:
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
qt  kt+1nt+1


z+t
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
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
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
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z

To obtain total credit growth, we need to add the credit by intermediate good firms for working capital. From
(B20), this credit, scaled by Ptzt is:

yk,t
rkt ut  kt
°µz,t

+y l,t w̃t .

The real amount of this credit is:

Credit ft =

"
yk,t

rkt ut  kt
°µz,t

+y l,t w̃t

#
zt .

So total credit,Creditt , is:

Creditt =

"
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rkt ut  kt
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+y l,t w̃t

#
zt ,
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and its growth rate (in deviation from steady state) is:
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
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
z
.

The growth rate of the real wage is:

D log
Wt
Pt
= log w̃t  log w̃t1+ log

µ


z,t

µ


z

APPENDIX B: DYNAMIC EQUATIONS

B1. Equilibrium Conditions

This section displays all the equilibrium conditions of the model. Numbers in parentheses next to an
equation make it possible to identify the same equation in the Dynare code used to solve, estimate and
analyze our model.

PRICES

The equations pertaining to prices are:

(B1) (1)pt 

2

41x p
Kp,t

Fp,t

 l f
1l f

+x p


p̃ t
p t
pt1

 l f
1l f

3

5

1l f
l f

= 0

and

(B2) (2)Et

(
z c,tl z,tyz,t +


p̃ t+1
p t+1

 1
1l f

bx pFp,t+1Fp,t

)
= 0,

where l z,t denotes l t zt Pt . Also,

(B3) (3)z c,tl z,tl f yz,t st +bx p


p̃ t+1
p t+1

 l f
1l f

Kp,t+1Kp,t = 0.

Note that both these equations involve Fp,t . This reflects that a lot of equations have been substituted out. In
particular, we have

(4)Fp,t

2

64
1x p


p̃t
pt

 1
1l f

1x p

3

75

1l f

= Kp,t , p̃t =
Kp,t
Fp,t

,

where p̃t is the price set by price-optimizing firms in period t. In addition, p̃t is substituted out using the
equilibrium condition relating the aggregate price level to the prices of intermediate goods.
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WAGES

The demand for labor is the solution to the following problem:

maxWt

=ltz }| {Z 1

0
(ht,i)

1
lw di


lw


Z 1

0
Wt,iht,idi,

where Wt,i is the wage rate of itype workers and Wt is the wage rate for homogeneous labor, lt . The first
order condition is:

ht,i = lt

Wt
Wt,i

 lw
lw1

.

The wages of non-optimizing households evolve as follows:

(B4) Wj,t = p̃w,t

µz,t


i

µ


µz
1i

µ Wj,t1, p̃w,t  (pt )
iw1 (p t1)

iw2  
p

1iw1iw2 .

Nominal wage growth, pw,t , is:

pw,t =
w̃tµz,tp t
w̃t1

,

where w̃t denotes the scaled wage rate:
w̃t 

Wt
zt Pt

.

The labor input variable that we treat as observed is the sum over the various different types of labor:

ht =
Z 1

0
hitdi

= ltW
lw

lw1
t
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0
(Wt,i)

lw
1lw di

= ltW
lw

lw1
t (W 
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lw

1lw ,

where

W 
t 
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0
(Wt,i)

lw
1lw di

 1lw
lw

=

"
(1xw)W̃t +

Z

xw monopolists that do not reoptimize


p̃w,t


µz,t


i

µ


µz
1i

µ Wi,t1

 lw
1lw di

# 1lw
lw

=

"
(1xw)W̃t +xw


p̃w,t


µz,t


i

µ


µz
1i

µ W 
t1

 lw
1lw

# 1lw
lw

.

Let wt W 
t /Wt , and use linear homogeneity:

wt =

2

64(1xw)
W̃t
Wt
+xw

 
p̃w,t


µz,t


i

µ


µz
1i

µ

pw,t
wt1

! lw
1lw

3

75

1lw
lw

,
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W̃t is the nominal wage set by the 1xw wage optimizers in the current period. Rewriting,

(B5) wt = [(1xw)w
lw

1lw
t +xw

 
p̃w,t


µ


z,t


i

µ


µ


z
1i

µ

pwt
wt1

! lw
1lw

]
1lw

lw ,

where

(B6) wt 
W̃t
Wt
.

We conclude:

(B7) ht = lt (wt )
lw

1lw .

For purposes of evaluating aggregate utility, it is also convenient to have an expression for the following:
Z 1

0
h1+sL
it di

= l1+sL
t W

 lw(1+sL)
1lw

t

Z 1

0
(Wt,i)

lw(1+sL)
1lw di

= l1+sL
t W

 lw(1+sL)
1lw

t Ẅ
lw(1+sL)

1lw
t ,

where

Ẅt 
Z 1

0
(Wt,i)

lw(1+sL)
1lw di

 1lw
lw(1+sL)

.

Then,

Ẅt =

Z 1

0
(Wt,i)

lw(1+sL)
1lw di

 1lw
lw(1+sL)

=


(1xw)


W̃t
 lw(1+sL)

1lw +
Z

xw that change
(Wt,i)

lw(1+sL)
1lw di

 1lw
lw(1+sL)

=

"
(1xw)


W̃t
 lw(1+sL)

1lw +xw


p̃w,t


µz,t


i

µ


µz
1i

µ Ẅt1

 lw(1+sL)
1lw

# 1lw
lw(1+sL)

.

Divide byWt and make use of the linear homogeneity of the above expression:

Ẅt
Wt
=

2

64(1xw)


W̃t
Wt

 lw(1+sL)
1lw

+xw

 
p̃w,t


µz,t


i

µ


µz
1i

µ

pw,t

Ẅt1
Wt1

! lw(1+sL)
1lw

3

75

1lw
lw(1+sL)

Define
ẅt =

Ẅt
Wt
,
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so that

(B8) ẅt =

2

64(1xw)(wt)
lw(1+sL)

1lw +xw

 
p̃w,t


µz,t


i

µ


µz
1i

µ

pw,t
ẅt1

! lw(1+sL)
1lw

3

75

1lw
lw(1+sL)

,

using (B6). We conclude
Z 1

0
h1+sL
it di =

h
lt (ẅt)

lw
1lw

i(1+sL)
(B9)

=

"
ht

ẅt
wt

 lw
1lw

#(1+sL)

.

using (B7).

The optimality conditions associated with wage-setting are characterized by:

(5)Et{z c,tl z,t
(wt )

lw
lw1 ht


1 t

l
t


lw
...(B10)

+bxw

µz
 1i

µ

1lw Et

µz,t+1

 i

µ

1lw1


1
pw,t+1

 lw
1lw p̃

1
1lw
w,t+1

p t+1
Fw,t+1Fw,t = 0

and

(6) Et{z c,tz t

h
(wt )

lw
lw1 ht

i1+sL
+bxw

0

B@
p̃w,t+1


µ


z,t+1


i

µ


µ


z
1i

µ

pwt+1

1

CA

lw
1lw (1+sL)

Kw,t+1Kw,t}= 0.

(7)
1

yL

2

64
1xw


p̃w,t
pw,t


µz
1i

µ


µz,t


i

µ

 1
1lw

1xw

3

75

1lw(1+sL)

w̃tFw,t Kw,t = 0

Optimization by households implies:

wt =


yL
w̃t

Kw,t
Fw,t

 1lw
1lw(1+sL)

,

so that, using (B5):

wt =

2

64(1xw)


yL
w̃t

Kw,t
Fw,t

 lw
1lw(1+sL)

+xw

 
p̃w,t


µ


z,t


i

µ


µ


z
1i

µ

pwt
wt1

! lw
1lw

3

75

1lw
lw

.
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We can replace Kw,t/Fw,t with the expression implied by (7) above:

(8) wt = [(1xw)

0

B@
1xw


p̃w,t
pw,t


µz
1i

µ


µz,t


i

µ

 1
1lw

1xw

1

CA

lw

...

+xw

 
p̃w,t


µ


z,t


i

µ


µ


z
1i

µ

pwt
wt1

! lw
1lw

]
1lw

lw

CAPITAL UTILIZATION, MARGINAL COST, RETURN ON CAPITAL, INVESTMENT, MONETARY POLICY

The first order necessary condition associated with the capital utilization decision is:

Pt
1
°t

t

o
t a0 (ut)  Kt = Pt r̃kt  Kt ,

or,
t

o
t a0 (ut) = °t r̃kt = rkt ,

after scaling. Making use of our assumed utilization cost function, this reduces to:

(9) rkt = t

o
t rk exp(sa [u1]).

Marginal cost:

(10)rkt =
ae t

1+yk,tRt


0

@°µ


z,tLt (wt )

lw
lw1

ut  kt

1

A
1a

st(B11)

w̃t =
(1a)e t
1+y l,tRt



0

@°µ


z,tLt (wt )

lw
lw1

ut  kt

1

A
a

st ,

where yk,t and y l,t denote the fraction of the capital services and labor bills, respectively, that must be
financed in advance. Combining the last two equations, we obtain the familiar expression for marginal cost:

(B12) (11) st =
1
e t

 
rkt

1+yk,tRt



a

!
a

 
w̃t

1+y l,tRt



1a

!1a

Resource constraint:

(B13) (12)tot a(ut)
 kt

°µ


z,t
+gt + ct +

it
µ°,t

= yz,t

where gt is an exogenous stochastic process and

(B14) (13) kt+1 = (1d )
1

µ


z,t°

 kt +


1S


z i,t itµz,t°
it1


it ,

where it is investment scaled by zt °t .
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Equation defining the nominal non-state contingent rate of interest:

(B15) (14)Et{b

1
p t+1µ


z,t+1

z c,t+1l z,t+1 (1+Rt)z c,tl z,t}= 0

The derivative of utility with respect to consumption is,

(B16) (15)Et

"
(1+ t

C)z c,tl z,t 
µ


z,tz c,t

ctµz,t bct1
+bb

z c,t+1
ct+1µ


z,t+1bct

#
= 0,

where ct denotes consumption scaled by zt . The capital first order condition, which holds in the CEE version
of the model is:

(B17) (16)Et

(
z c,tl zt +

b

p t+1µ


z,t+1

z c,t+1l zt+1


1+Rkt+1

)
= 0,

where Rkt+1 denotes the rate of return on capital:

(17) 1+Rkt =
(1 t

k
t1)


utrkt  t

o
t a(ut)


+(1d )qt

°qt1
p t + t

k
t1d

where qt denotes the scaled market price of capital, Q  K0,t :

qt = °t
Q  K0,t
Pt
.

The investment first order condition:

(18) Et{z c,tl ztqt


1S(
z i,tµ


z,t°it

it1
)S0(

z i,tµ

z,t°it

it1
)
z i,tµ


z,t°it

it1


(B18)


z c,tl zt

µ°,t
+

bl zt+1z c,t+1qt+1

µ


z,t+1°

S0(
z i,t+1µ


z,t+1°it+1

it
)


z i,t+1µ


z,t+1°it+1

it

2

} = 0,

where it is scaled (by zt °t) investment. The scaled representation of aggregagte output is:

(19) yz,t 
Yt
zt
= (pt )

l f
l f1

"
e t


ut  kt

µ


z,t°


a 
(wt )

lw
lw1 ht

1a

f

#

The monetary policy rule:

(20) log(1+Rt) = (1 r̃) log(1+R)+ r̃ log(1+Rt1)(B19)

+
1 r̃

1+R


ãpp log

p t+1
p


t
+ ãy

1
4

log
yt
y


+ xpt ,

where xpt is an iid monetary policy shock and yt denotes scaled GDP:

(21) yt = gt + ct +
it

µ°,t
.

Total nonfinancial sector borrowing is an important variable to match with the data.
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Borrowing is an important variable in the model. In the CEE model, borrowing by nonfinancial firms is
for paying the capital rental bill and the wage bill. In unscaled terms, this is:

yk,tPt r̃
k
t Kt +y l,tWtlt .

We scale this by dividing by Ptzt :

yk,t
r̃kt ut  Kt
zt

+y l,t
Wt
Ptzt

lt

= yk,t
rkt utzt1°t1  kt

°t zt
+y l,t w̃t

= yk,t
rkt ut  kt
°µz,t

+y l,t w̃t .(B20)

ENTREPRENEURS

The zero profit condition is:

(22)
qt  kt+1
nt+1

1+Rkt+1
1+Rt

[Gt(  
w t+1)µGt(  

w t+1)]
qt  kt+1
nt+1

+1= 0,

which must hold in each realized t+1 state of nature. Here,

share of entrepreneurial earnings, (1+Rkt+1)qt  kt+1, received by bank
z }| {
Gt(  

w t+1)   
w t+1 [1Ft(  

w t+1)]+Gt(  
w t+1)

Gt(  
w t+1) 

Z  
w t+1

0
wdFt(w).

Substituting out for h t+1 from the second first order condition into the first, we obtain:
(B21)

(16)Et

(
[1Gt(  

w t+1)]
1+Rkt+1
1+Rt

+
G0t(  

w t+1)

G0t(  
w t+1)µG0t(  

w t+1)

"
1+Rkt+1
1+Rt

(Gt(  
w t+1)µGt(  

w t+1))1

#)
= 0,

where G0t(  
w t+1) = 1Ft(  

w t+1). In principle these equations should have been derived separately for entre-
preneurs with each different level of possible net worth. It is clear from the first order conditions that had
we done so, each one’s standard debt contract would have been characterized by the same r t , {  

w t+1} .

We now derive the law of motion of net worth. After the loan contract received in t  1 is settled, but
before it is known which entrepreneur exits and which stays, the (scaled by Ptzt ) net worth in period t of
entrepreneurs is

Vt =

share of entrepreneurial earnings received by entrepreneursz }| {
[1Gt1(  

w t)] Rkt
qt1

p tµ

z,t

 kt ,

where the appearance of p tµ

z,t in the denominator reflects that qt1  kt has been scaled by Pt1zt1. The
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above expression can be written

Vt =

=1Gt1(  
w t)z }| {

1  
w t [1Ft1(  

w t)]
Z  

w t

0
wdFt1(w)


Rkt

qt1
p tµ


z,t

 kt

=


1+Rkt
 qt1

p tµ

z,t°

 kt 

earnings of banks, which must equal Bt(1+Rt1)=(1+Rt1)(qt1  ktnt)z }| {
 
w t [1Ft1(  

w t)]+(1µ)
Z  

w t

0
wdFt1(w)


Rkt

qt1
p tµ


z,t°

 kt

µ

Z  
w t

0
wdFt1(w)Rkt

qt1
p tµ


z,t°

 kt

=


1+Rkt  (1+Rt1)µ

Z  
w t

0
wdFt1(w)


1+Rkt

 qt1
p tµ


z,t

 kt +
1+Rt1

p tµ

z,t

nt .

At this point, g t entrepreneurs exit and are replaced by g t new arrivals. Both surviving entrepreneurs and
new arrivals receive a lump sum transfer in the amount, we. Thus, nt+1 = g tVt +we, or,

(B22) (23) nt+1 =
g t

p tµ

z,t


Rkt Rt1µ

Z  
w t

0
wdFt1(w)


1+Rkt


 ktqt1+we+ g t


1+Rt1

p tµ

z,t


nt .

The resource constraint becomes:

dt + ct +gt +
it

µ°,t
+Q1 g t

g t
[nt+1we]+ t

o
t a(ut)

 kt
°µ


z,t

(B23)

= yz,t

Here, [nt+1we]/g t denotes the assets of entrepreneurs before they have received their real transfer, we,
and before it is determined which is selected to exit. The assets of the fraction of entrepreneurs that exit
is (1 g t) times this amount, and they consume Q of their assets, with the other 1Q being transferred to
households. Also, dt denotes the resources used up in monitoring:

(B24) dt =
µG(  

w t)

1+Rkt


qt1  kt

p tµ

z,t

.

In the modified economy, entrepreneurs rather than households accumulate capital. This means that the
household intertemporal equation, (B17), (i.e., (12)) must be deleted. So, we have added three new equa-
tions, (B21), (1.13) and (B22) and deleted one. The net increase in the number of equations is two. We
increase the number of endogenous variables by two:  

w t+1 and nt+1 (the first variable is a function of the
period t+1 state of nature, while the second is a function of the period t state of nature).
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SOCIAL WELFARE FUNCTION

We now turn to developing an expression for the representative household’s utility function

Utilt = z c,t log(z+t ct bz+t1ct1)yL

Z 1

0

h1+sL
it

1+sL
di

= z c,t

(
log

"
z+t (ct b

z+t1
z+t

ct1)

#
yL

Z 1

0

h1+sL
it

1+sL
di

)

= z c,t


log(ct 

b
µ


z,t
ct1)

yL
1+sL

Z 1

0
h1+sL
it di


,

apart from a constant term. Using (B9):

yL
1+sL

Z 1

0
h1+sL
it di=

yL
1+sL

"
ht

ẅt
wt

 lw
1lw

#(1+sL)

,

so that

Utilt = z c,t

8
<

:log(ct 
b

µ


z,t
ct1)

yL
1+sL

"
ht

ẅt
wt

 lw
1lw

#(1+sL)
9
=

; ,

where ẅt is defined in (B8) and wt is defined in (8). Both these variables are unity in steady state.

APPENDIX C: STEADY STATE

Here, we discuss an algorithm for computing the steady state of the model. In our analysis, we distinguish
between steady state inflation, p, and the quantity appearing in the price and wage updating equations,  

p.
Equation (B1) in steady state, is:

p =

2

6666664


1x p


 

1x p( p̃

p

)
1

1l f

1x p

!
l f

1x p


p̃

p

 l f
1l f

3

7777775

1l f
l f

.

Note that, if p =  
p then p = 1. Equation (B2):

Fp =
l z (p)

l f
l f1


k

µ


z°


a


(w)

lw
lw1 h

1a

f



1


p̃

p

 1
1l f

bx p

,

assuming


p̃

p

 1
1l f

bx p < 1.
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Equation (B3) in steady state is:

Fp =
l zl f (p)

l f
l f1


k

µz


a


(w)

lw
lw1 h

1a

f


s

"
1x p( p̃

p

)
1

1l f

1x p

#1l f "
1bx p


p̃

p

 l f
1l f

#

Equating the preceding two equations:

(C1) s=
1

l f

"
1x p( p̃

p

)
1

1l f

1x p

#1l f "
1bx p


p̃

p

 l f
1l f

#

1


p̃

p

 1
1l f

bx p

.

In the case, p =  
p, s= 1/l f . Equation (B10) in steady state is:

Fw =
l z

(w)
lw

lw1 h(1t

l)
lw

1bxwp̃

1
1lww

( 1
p

)
lw

1lw

p

,

as long as the condition,

bxwp̃

1
1lww

 1
p

 lw
1lw

p

< 1,

is satisfied. Also
p̃w = (p)

iw,2  
p

1iw,2 .

The expression for Fw is:

Fw =

h
(w)

lw
lw1 h

i1+sL

1
yL

"
1xw(

p̃w
p

)
1

1lw

1xw

#1lw(1+sL)

w̃

"
1bxw


p̃w
p

 lw
1lw (1+sL)

# ,

as long as

bxw


p̃w
p

 lw
1lw (1+sL)

< 1.

Equating the two expressions for Fw, we obtain:

(C2) w̃=Wlw
yLhsL

(1 t

l)l z
,

where

(C3) W = (w)
lw

lw1 sL

2

64
1xw


p̃w
p

 1
1lw

1xw

3

75

lw(1+sL)1

1bxw


p̃w
p

 1
1lw

1bxw


p̃w
p

 lw
1lw (1+sL)

.
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In steady state:

(C4) w =

2

666664

(1xw)

 
1xw(

p̃w
p

)
1

1lw

1xw

!
lw

1xw


p̃w
p

 lw
1lw

3

777775

1lw
lw

According to the wage equation, the wage is a markup,Wlw, over the household’s marginal cost. Note that
the magnitude of the markup depends on the degree of wage distortions in the steady state. These will be
important to the extent that p̃w 6= pw.

The marginal cost equation, (B11) implies:

(C5) rk =
ae

[1+ykR]

 
°µ


z L(w)

lw
lw1

 k

!1a

s,

where w is determined by (C4). In steady state, the capital accumulation equation, (B14), is

 k


1
1d

µ


z°


= i.

In steady state, the equation for the nominal rate of interest, (B15), reduces to:

(C6) 1+R=
pµ


z

b

.

In steady state, the marginal utility of consumption, (B16), is

(C7) l z =
1

(1+ t

C)c
µ


z bb

µ


z b

.

Finally, the euler equation for investment, (B18), reduces to

q= 1.

We proceed as follows. First, fix the nominal rate of interest according to (C6). Now, fix a value for rk.
Solve (C5) for

(C8) (1)
h
 k
=
(w)

lw
1lw

°µ


z


[1+ykR]rk

sae

 1
1a

,

where s is determined by (C1). Then,

(C9) (2)Rk =
(1 t

k)rk+1d

°
p+ t

k
d 1.

Then, solve

(C10) (3) [1G(  
w)]

1+Rk

1+R
+

G0(  
w)

G0(  
w)µG0(  

w)


1+Rk

1+R
(G(  

w)µG(  
w))1


= 0.
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for  
w. When we estimate the model, for each  

w, we impose that F (  
w) is equal to a specified calibrated

value. Since F is cdf of the log normal distribution, with Ew = 1, then F has one free parameter, a variance.
For each  

w, this variance is computed to ensure that F (  
w) is the value required. When we compute the

Ramsey equilibrium, then we take the variance of the model in the posterior mode as fixed. To evaluate
(C10) it is useful to have a formula:

G(  
w) =

Z  
w

0
wdF(w).

Making the following change of variables: w = ex, dw = exdx, x= logw, dx= dw/w , we obtain:
Z  

w

0
wdF(w) =

Z log  
w

•
ex f (x)dx.

Here, x= log(w) and f is the Normal density function. Writing this explicitly:
Z  

w

0
wdF(w) =

Z log  
w

•
ex f (x)dx

=
1

s x
p

2p

Z log  
w

•
ex exp

(xEx)2

2s

2x dx,

where s

2
x is the variance of x. Now, Ew = 1 implies Ex=(1/2)s2

x , so that

Z  
w

0
wdF(w) =

1
s x
p

2p

Z log  
w

•
ex exp

(x+ 1
2 s

2x)
2

2s

2x dx

=
1

s x
p

2p

Z log  
w t

•
exp

x2s

2x(x+ 1
2 s

2x)
2

2s

2x dx

=
1

s x
p

2p

Z log  
w t

•
exp

(x 1
2 s

2x)
2

2s

2x dx.

Now, make the change of variable,

v =
x 1

2 s

2
x

s x
=
x+ 1

2 s

2
x

s x
s x

 v =
log(  

w)+ 1
2 s

2
x

s x
s x

dv =
1

s x
dx

so that

Z  
w

0
wdF(w) =

1
s x
p

2p

Z log(  
w)+ 1

2 s

2x
sx s x

•
exp

v2
2

s xdv

=
1
p

2p

Z log(  
w)+ 1

2 s

2x
sx s x

•
exp

v2
2 dv

= prob

"
x<

log(  
w)+ 1

2 s

2
x

s x
s x

#
.
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where

Ew = Eex = e[Ex+
1
2 s

2
x] = 1

Ex = 
1
2

s

2
x .

Next, find n/k which solves (1.13):

(C11) (4)
n
 k
= 1

1+Rk

1+R
[G(  

w)µG(  
w)]

In steady state, (B22) is

n=
g

pµ


z


RkRµ

Z  
w

0
wdF(w)


1+Rk

  k
n


n+we+ g


1+R
pµ


z


n,

so that

(5)n =
we

1 g

pµ


z
{RkRµG(  

w)(1+Rk)}


 k
n


 g


1+R
pµ


z

 ,(C12)

 k =

  k
n


n

h =


h
 k


 k

(6)i =


1 (1d )

1
µ


z°


 k,(C13)

where G(  
w) is obtained from (1.19).

We now need to solve the resource constraint for consumption. But, first we require f . Normally, this
parameter is set so that steady state profits of the intermediate good producer are zero. However, those
profits are not constant in the version of the model in which prices are distorted along a steady state growth
path. Instead, we choose f so that profits are zero in the version of the model in which there are no
distortions in the steady state. We suppose that this way of setting f or other ways will make little difference.
Thus, we compute f to guarantee that firm profits are zero in a steady state where p =  

p . Let h and  k
denote hours worked and capital in such a steady state. Also, let F denote gross output of the final good
in that steady state. Write sales of final good firm as F  f . Real marginal cost in this steady state is
s= 1/l f . Since this is a constant, the total costs of the firm are sF. Zero profits requires sF = Ff . Thus,
f = (1 s)F = F(11/l f ), or,

(C14) (7)f =
  k

µ


z°


a

(h)1a


1

1
l f


.

Solve the steady state version of the resource constraint, (B23), for c :

(C15) (8)d+ c+g+
i

µ°
+Q1 g

g

[nwe] = (p)
l f

l f1

  k
µ


z°


a h
(w)

lw
lw1 h

i1a

f ,



16 THE AMERICAN ECONOMIC REVIEW MONTH YEAR

where d is determined by the steady state version of (B24). Compute the steady state real wage using (B11):

(C16) (9)w̃= s(1a)

"
°µz (w)

lw
lw1 h

 k

#a

.

Then, solve the labor supply equation, (C2), for h :

(C17) (10)h=

"
1 t

l
l z

WlwyL
w̃

# 1
sL

,

where l z is obtained using (C7) and W is obtained from (C3). These calculations began by fixing a value
for rk. Adjust rk until the value of h obtained from (C17) coincides with the value implied by multiplying
h/ k in (C8) by  k.

It is of interest to understand what happens when µ = 0. In this case, (C10) implies R = Rk. So, one
chooses rk so that R=


rk+(1d )


p1. Then, (C8) implies a value for h/k. From (C17),

n=
we

1 g

b

.

In the case,  
p = p, µ = 0 implies:

c+ I+Q1 g

g

[nwe] =


k

µ


z


a

h1a 

k

µ


z


a

h1a


1

1
l f



=
1

l f


1

µ


z


a


h
k

1a

k,

or,
c
k
+

1 (1d )µ1

z

+Q1 g

g

[nwe]
k

=
1

l f


1

µ


z


a


h
k

1a

The labor-leisure choice implies:

c=
µzbb

µzb

WlwyL
w̃hsL ,

where w̃ can be computed from (C16) and W = 1 according to (C3). Substituting this into the resource
constraint, we obtain:

µzbb

µzb

WlwyL
w̃

1
h1+sL

+Q(1 g)we

b  g

1
h
=

1
l f


1
µz


a  h

k
1a 


1 1d

µz



h
k

,

which is a single equation in one unknown, h. Note that the right side must be positive for consumption to
be positive. Also, the left side goes from 0 to • as h goes from • to 0. Thus, there is a unique solution,
as long as the model implies positive steady state consumption. Once this is solved for h, then we have k.
Then, given k we can compute  

w from (C11):

n
k
= 1G(  

w)

G(  
w) = 1

n
k
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This gives the same solution as the model without financial frictions, except for the fact that entrepreneurs
consume resources.

APPENDIX D: COMPARATIVE STATIC ANALYSIS OF THE EQUILIBRIUM LOAN CONTRACT

Our key empirical finding is that shocks to risk, s , can account for a large portion of business cycle
fluctuations. To better understand the impact of the risk shock in general equilibrium, we perform several
comparative static exercises with the standard debt contract. We do all our exercises in partial equilibrium,
treating variables treated as given in the market for debt contracts as exogenous. Thus, we consider the
effects of a change in s holding the risk free rate of interest and the aggregate return on capital fixed. In
order to gain insight into the general equilibrium effects of s , we also do a comparative exercise in which
we perturb the premium on the return on capital over the risk free rate.

Also, motivated by analyses of the 2008 crisis, we also consider a shock to net worth in the form of
a perturbation to g.49 One of our empirical findings is that, from the perspective of our model, such a
shock is an unlikely candidate as business cycle shock because it implies, counterfactually, that credit is
countercyclical. Comparative static exercises are designed in order to build intuition into this result. Our
results are summarized in the two comparative statics exercises summarized in Figures A1a and A1b.

To simplify notation and because we are concerned with only one period of time, we delete time sub-
scripts. We highlight a partial equilibrium and a general equilibrium effect on the loan contract of an
increase in s . The former effect refers to what happens to the loan contract, holding fixed the key mar-
ket variable, Rk/R, taken as given by participants in the market for entrepreneurial credit. Recall, Rk is the
across-entrepreneur average return on capital and R is the interest rate on the mutual funds’ source of funds.
The general equilibrium effect refers to the additional changes to the loan contract that occur when Rk/R
also adjusts in response to a change in risk. The general equilibrium effects of a change in risk are important
for understanding our empirical results.

Entrepreneurs have access to a constant returns to scale project with return, Rkw, where Rk is common
knowledge and w has a log-normal distribution with Ew = 1 and logw has standard deviation, s .Denote the
total assets acquired by entrepreneurs by A = N+B, where B is the size of the loans received from mutual
funds. Denote leverage by L = A/N. We characterize the standard debt contract received by entrepreneurs
in terms of a value for L and a interest rate spread, Z/R, where Z is the interest rate on the entrepreneurial
loan. As in (1.11),

(D1)  
w =

Z
R
R
Rk
L1
L
,

represents the value of w that separates bankrupt and non-bankrupt entrepreneurs. The objective of entre-
preneurs is proportional to:

(D2) [1G(  
w)]L.

The menu of standard debt contracts available to entrepreneurs is given by:

(D3) L=
1

1 [G(  
w)µG(  

w)] R
k

R
.

In our numerical example, we use the steady state values of the variables used in our empirical analysis:

µ = 0.21,
Rk

R
= 1.0073, s = 0.26.

49See Christiano and Ikeda (2012) and the references they cite for analyses of net worth shocks.
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Our partial equilibrium experiment increases s by 5 percent and holds Rk/R fixed. The equilibria corre-
sponding to the two values of s are exhibited in Figure A1a, which displays the interest rate spread, Z/R, on
the vertical axis and leverage, L, on the horizontal. The graphs of (D3) corresponding to the two values of s

are indicated in the figure. Both are upward-sloping, so that an entrepreneur can obtain a loan contract with
higher leverage but this requires paying a higher interest rate spread. This is because, with higher leverage
the entrepreneur imposes a greater cost on its mutual fund in the event of default. In both cases, the menu
of contracts implied by (D3) is bowed towards the southeast.50

Expression (D2) can be used to construct an indifference map for entrepreneurs, though we only display
the indifference curves that are tangent to the relevant menu of contracts. Indifference curves have a positive
slope. This is because, holding the interest rate fixed, (D2) is increasing in L and holding L fixed (D2) is
decreasing in Z/R.51 The indifference curves are bowed towards the northwest and entrepreneurial utility is
decreasing in that direction. The equilibrium loan contract occurs at a point of tangency of the entrepreneur’s
indifference curve and the menu of contracts.

The equilibrium for the lower of the two values of s is associated with a level of leverage, L= 2.02, and
an interest rate spread of 0.616 in annual, percent terms. With the jump in s , the indifference curves change
shape and the menu of contracts shifts. Not surprisingly, the menu shifts up. That is, entrepreneurs may still
obtain the same leverage as before the rise in s , but in this case they must pay a higher interest rate spread.
The higher interest rate spread is required because the rise in s increases the probability of default, and so
raises the cost of lending to banks. If they chose to do so, entrepreneurs could even select a higher level of
leverage in response to the increase in s . As it happens, the new point of tangency involves a 3 percent jump
in the interest rate premium, to 0.635 percent, and a slightly larger percent drop in leverage, to 1.95.

In the general equilibrium of our model, there is another effect associated with a temporary increase in
risk. The fall in credit associated with the reduction in leverage leads to a reduction in entrepreneurial
purchases of physical capital. This in turn leads to a fall in the production of capital by households which
results in a fall in its price, Q  K . The anticipated capital gains associated with the expectation that the effects
on Q  K will be undone raises Rk. Figure A1b shows the impact of an increase in Rk/R by 1 percent. This
corresponds roughly to a 1 percentage point increase in in the net return, Rk1, expressed in the time units
of the model (i.e., one quarter). Given the large rise in the return on capital it is not surprising that the
equilibrium involves a substantial increase in leverage. Thus, we can expect this general equilibrium effect
to mute the negative impact on leverage of a jump in s . In our numerical experiments, we have never found
examples where this general equilibrium effect on leverage was actually larger than the partial equilibrium
effect.52

We did find that general equilbrium effects tend to dominate partial equilibrium effects in the case of
shocks to equity. Thus, suppose there is a drop in g, captured in our numerical example by a drop in N. The
impact on leverage in partial equilbirium is nil, since N does not separately enter the analysis. Thus, the
partial equilibrium impact of a drop in N is an equiproportionate cut in credit, i.e., B. In general equilibrium
the consequent drop in A = N+B produces a drop in Q  K and a rise in Rk as discussed above. This in turn
leads to a rise in B, as indicated in Figure A1b. We found that there is a tendency for the general equilibrium
rise in B to dominate the partial equilibrium fall in B. That is, in numerical simulations of our dynamic
model, a drop in g tends to produce a rise in B. Because this rise in B in practice is smaller than the initial
drop in N, N+B still drops when both partial and general equilibrum effects are accounted for.

50For a thorough discussion of the menu of contracts, see
http://faculty.wcas.northwestern.edu/~lchrist/research/ECB/risk_shocks/risk_shocks.html

51Expression (D2) may not be increasing in L for small values of L. This is because an increase in L has two countervailing effects on
entrepreneurial utility. For each fixed and finite value of  

w fixed, (D2) indicates that utility is strictly increasing in L (it is easy to show
that 0 < G < 1 when F (  

w) < 1 for each finite  
w, an assumption that is satisfied when F corresponds to the log-normal distribution). At

the same time, an increase in L leads to a rise in  
w and this makes 1 G fall, as the probability that the entrepreneur makes positive prof-

its falls. This latter effect vanishes for sufficiently large L because in that case  
w ceases to vary with L.For additional discussion, see

http://faculty.wcas.northwestern.edu/~lchrist/research/ECB/risk_shocks/risk_shocks.html
52We suspect such an example may be impossible. If the general equilibrium effect dominated, then credit flows would increase after a positive

shock to s , and these would give rise to a fall in Rk, contradicting the rise needed to get the general equilibrium effect to be operative in the first
place.
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APPENDIX E: THE FISHERIAN DEBT-DEFLATION HYPOTHESIS

We wish to diagnose the role of the assumption that payments to households are non-state contingent in
nominal terms. We do this by exploring the BGG version of the model in which the payment on households’
bank deposits is non-state contingent in real terms. Thus, suppose that instead of earning gross nominal
return, 1+Rt , from t to t+1 households instead earn gross nominal return,

Ftp t+1,

from t to t+1. Here, Ft denotes the real return from t to t+1, which is non-state contingent in real terms.
With two exceptions, we substitute 1+Rt with Ftp t+1 everywhere. The two exceptions are the Taylor rule,
where we continue to assume a non-state contingent nominal rate of interest is ‘controlled’. To ensure that
that rate of interest is well defined, we keep equation (10). We add an equation for household deposits:

(10)0Et{b

1
µz

l z,t+1Ft l z,t}= 0.

We must change the relevant equations associated with the entrepreneur. The zero profit condition becomes:

(16)0 Gt1(  
w t)µGt1(  

w t) =
Ft1p t

1+Rkt


1

nt
qt1kt


.

The optimality condition becomes:

(17)0Et

(
[1Gt(  

w t+1)]
1+Rkt+1
Ftp t+1

+
G0t(  

w t+1)

G0t(  
w t+1)µG0t(  

w t+1)

"
1+Rkt+1
Ftp t+1

(Gt(  
w t+1)µGt(  

w t+1))1

#)
= 0

and the law of motion of net worth becomes:

(18)0nt+1 =
g t

p tµz


1+Rkt Ft1p t µ

Z  
w t

0
wdFt1(w)


1+Rkt


ktqt1+we+ g t

Ft1
µz

nt

APPENDIX F: LAPLACE-TYPE APPROXIMATION FOR BIMODAL POSTERIOR DISTRIBUTION

When we estimate our model on the standard data set, we find two isolated local modes for the posterior
distribution. The difference of the log posterior distribution, L, is only about 4 points across these two
modes. The local curvature about the two modes makes locally computed probability intervals seem narrow,
yet the properties of the model differs sharply across the two modes. In this sense, correctly computed
probability intervals encompass sharply different behavior and are not convex sets. In this appendix, we
describe a Laplace approximation procedure computing the posterior distribution under circumstances when
the posterior distribution is bimodal. We use it, among other things, to create a visual representation of the
posterior distribution in terms of the model property of interest. In particular, at one mode the fraction of
variance in output due to the risk shock is high and the fraction due to the marginal efficiency of investment
is low. The reverse is true at the other mode. The procedure developed here approximates the posterior
distribution of the fraction of variance due to risk under these circumstances. When represented visually
in a diagram with the fraction of variance in output due to risk on the horizontal axis and the associated
posterior density on the vertical axis, we obtain the following. The density has two humps, one above a high
value for the fraction of variance and the other over a low value of that fraction. One of the humps is slightly
higher than the other one. The local curvature at each hump greatly exagerates the precision, according to
the posterior distribution, assigned to that value of the fraction. The small difference in the height of the
posteriors over the two humps provides a correct assessment of the precision with which the two fraction
of variances are differentiated according to the posterior distribution. In the end, our efforts to construct an
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interesting bimodal distribution came to naught. Still, we leave this appendix here with an idea of possibly
picking this up again in the future.

Our approximation of the posterior distribution is that it is a mixture of two normals, with mixture prob-
ability, p. The approximation is valid as long as the posterior probability of each mode is nearly zero under
the local approximation about the other mode. We develop this approximation for two reasons. First, the ex-
act procedure based on the MCMC algorithm is impractical, because of the great amount of computer time
it would require. Second, we wish to develop an alternative measure of the distance between two posterior
modes that is not based on the posterior odds computed by exponentiating L. In practice, one often has to
give an interpretation to differences in the log criterion on the order of 4 or 10. Such differences seem small
and yet the posterior odds at these points are, exp(4) and exp(10), respectively. This gives rise to enormous
posterior odds, which seem to overstate the significance of such small differences in the log criterion. We
propose, as an alternative to the posterior odds, the mixture probability parameter, p.

Our approximation procedure simply requires the hessians at the two modes, in addition to L. With our
mixture of normals approximation of the posterior, we can draw the model parameters, q , many (say, N)
times, q 1, ...,qN . For any statistic of interest, s(q) , we then obtain the posterior distribution for that statistic
from s(q 1) , ...,s(qN) .

Consider first the standard Laplace approximation to a unimodal distribution. Let f (q) denote the product
of the likelihood and the prior, so that f (q) is proportional to the posterior distribution, where the factor of
proportionality is independent of q . Let g(q) log f (q). Define

g
qq

=
∂

2g(q)
∂q∂q

0 |q=q

 ,

where q

 is the mode. The second order Taylor series expansion of g about q = q

 is:

g(q) = g(q )
1
2
(q q

)0 g
qq

(q q

) ,

where the slope term is zero because of our assumption q

 is a local maximum of g. Then,

f (q) f (q )exp



1
2
(q q

)0 g
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(q q

)


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|
1
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
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

is a multivariate normal distribution, so that
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|
1
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1
2
(q q
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qq
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dq = 1.
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Bringing together the previous results, we obtain:
Z
f (q)dq


Z
f (q )exp




1
2
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)0 g
qq
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
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by the integral property of the normal distribution. Thus, the posterior distribution is, approximately,

f (q)
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This covers the unimodal case.

Suppose now that we have two local maxima of g : q


1 and q


2. Denote the analogs of g

qq

by g1
qq

and g2
qq

.
Suppose we approximate the posterior distribution by a mixture of normals:

F (q) = p
1
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n
2
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qq
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2 exp
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= pexp [G1 (q)]+(1 p)exp [G2 (q)] ,

where 0 p 1 and G1 (q) is the second order approximation of g(q) about q = q


i :

(F1) Gi (q) =
n
2

log(2p)+
1
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for i= 1,2. Note that
G0i (q i ) = 0|{z}

N1

, G00i (q) = gi
qq|{z}

NN

.

Let F (q) denote logF (q) . Then,

F 0 (q) =
1

F (q)

pexp [G1 (q)]G01 (q)+(1 p)exp [G2 (q)]G02 (q)


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To
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Evaluate the latter at q


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where the terms with ' 0 reflect our assumption that q


1 is very unlikely under the Laplace approximation

about q


2 similarly for q


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Then,
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Thus, under (F2), the curvature of our mixted Normal approximation about q = q


1 coincides with the

curvature of the actual posterior distribution. This is a basic requirement of consistency. Of course, in
practice it is necessary to verify (F2). We have an analogous result for F 00 (q 2) .

It remains to compute p, the Normal mixture probability. We obtain this as follows. Let L denote the
difference in the log posterior between the two modes. Thus,

L= g(q 1)g(q 2)> 0,

so that q


1 is the global maximum of g. We can use L to pin down the value of p in the mixture distribution.

According to our mixture approximation to the posterior distribution,
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The second equality reflects the assumption, (F2), that under the local approximation, the alternative mode
is highly improbable. The fourth equality uses (F1). Thus,
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say, which can be used to solve for p :
p=

d
1+d

APPENDIX G: CROSS SECTION STANDARD DEVIATION OF RETURN ON EQUITY

The derivations in this appendix appear in Ferreira (2012). They are included here for completeness.
Define the rate of return on equity as the earnings of an entrepreneur, after accounting for expenses on debt,
divided by his initial level of net worth. Conditional on the time t realization of shocks, the earnings of an
entrepreneur that draws idiosyncratic shock, w, enjoys rate of return:

Ret =max{0, [w  
w t ]}Rkt Lt1,

where Lt1 is leverage. Note that this expression is independent of the entrepreneur’s level of net worth
because  

w t and Lt1 are not a function of N. We seek an expression for the cross-sectional variance of the
above expression:

Var (Ret ) =

Rkt Lt1

2
Var (max{0, [w  

w t ]}) .

We can think of two versions of this variance. In one, it is conditional on not being bankrupt, w >  
w t . In

the second, it is not conditioned in this way. We begin with the first interpretation.

Note,
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Then,
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where the conditional variance is defined next.

Note,
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as we supposed above.
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Note that however, we interpret the variance, we require
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Now consider a new transformation, x= y2s , so that  x=  y2s , dx= dy :
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We conclude: Z •
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APPENDIX H: PRIORS ON PARAMETERS

The priors on the Calvo parameters, x p and xw, are assumed to follow a beta distribution with mean
0.5 and 0.75, respectively, and standard deviation 0.1. They imply that prices and wages are reoptimized
on average once every 2 and 4 quarters, respectively. Our prior for the frequency of price adjustments is
taken from Smets and Wouters (2007), which is larger than Mark Bils and Peter Klenow (2004) and Mikhail
Golosov and Lucas (2007). When Golosov and Lucas (2007) calibrate their model to the micro data, they
select parameters to ensure that firms re-optimize prices on average once every 1.5 quarters. However, we
select a larger prior than suggested by micro data, on the basis of the large body of evidence based on the
estimation of DSGE models for the US.

The distribution of the priors for the three indexation parameters is beta, with mean 0.5 and standard
deviation 0.15, consistent with Smets and Wouters (2007). It encompasses a wide range of empirical findings
in the literature.

Habit persistence in consumption is assumed to follow a beta distribution with mean 0.5 and standard
deviation 0.1. The parameter governing capacity utilization has a very loose prior, following a Normal with
mean 1 and standard error 1. The investment adjustment cost is assumed to be Normal with mean 5 and
standard error 3. The mean is consistent with the value estimated in several empirical studies.

Turning to the parameters governing the financial contract, the probability of default is assumed to follow
a beta distribution with mean 0.007 – which is consistent with the value suggested in Bernanke, et al (1999) –
and standard deviation 0.004. The monitoring cost is assumed to be a beta distribution with mean 0.275 and
standard deviation 0.15. The mean has been selected with reference to the range of 0.20-0.36 that Carlstrom
and Fuerst (1997) defend as empirically relevant.

The parameters describing the monetary policy rule are centered on the priors used in Smets and Wouters
(2007). In particular, we assume that the long run reactions on inflation and on economic activity are Normal
with mean 1.5 and 0.25, respectively, and standard error 0.25 and 0.1, respectively. The persistence of the
policy rule is determined by the coefficient on the lagged interest rate, which is assumed to be Normal
around a mean of 0.75 with a standard error of 0.1.

The priors on the stochastic processes are taken primarily from Smets and Wouters (2007), and are har-
monized as much as possible. The persistence of the AR(1) processes is beta distributed with mean 0.5
and standard deviation 0.2.The standard errors of the innovations are assumed to follow an inverse-gamma
distribution with a mean of 0.002 and standard deviation 0.003, implying a loose prior. The standard error
of the monetary policy innovation follows an inverse-gamma distribution with mean 0.58 and standard de-
viation 0.8, and it is selected to be in line with VAR evidence on the size of monetary policy shocks of about
50-60 basis points. The correlation among signals is assumed to be Normal with zero mean and standard
deviation 0.5.

APPENDIX I: RESPONSE OF CONSUMPTION TO A RISK SHOCK

From the perspective of the representative household in our model, a rise in risk resembles an increase in
the tax rate on the return to investment.53 This is because as risk increases, a larger share of the return to
investment is siphoned off by the monitoring costs associated with increased bankruptcy. Of course, there
is a wealth effect that works in the other direction, dragging consumption down after a rise in risk. For

53For a formal discussion of this point, see Christiano and Davis (2006). They show that a model like the one in this paper is isomorphic to a real
business cycle model with shocks to the tax rate on the rate of return on capital. Christiano and Davis (2006) build on the analysis of Chari, Kehoe
and McGrattan (2007), who stress the insights one gains by mapping a given dynamic model into a real business cycle model with ‘wedges’. Chari,
Kehoe and McGrattan (2007) illustrate their point by displaying the isomorphism between a real business cycle model with suitably constructed
wedges and the model of financial frictions proposed by Carlstom and Fuerst (1997).
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example, if monitoring costs absorbed a substantial portion of output, then we would expect these wealth
effects to be important. However, these wealth effects play only a minor role in our model. From this
perspective, one is led to anticipate that a rise in risk induces substitution away from investment and towards
the alternatives: consumption and leisure. In particular, this intuition leads one to anticipate that risk shocks
counterfactually predict consumption is countercyclical and that they therefore cannot be important impulses
to the business cycle. So, a key challenge for understanding why our analysis concludes risk shocks are in
fact a very important source of business cycles is to explain why the consumption response to risk shocks is
procyclical.

One way to understand the impact of risk shocks begins with the identity that total output equals total
spending. If a component of spending is reduced for some reason (say, because of a rise in risk), then output
will decline by the same amount, unless some other component of spending on goods increases. In practice,
it is desirable for other components of spending to rise to at least partially offset the fall in investment
because otherwise productive resources such as capital and labor are wasted. Frictionless markets avoid this
inefficient outcome by engineering a fall in the price of the goods whose demand has declined, relative to the
price of other goods. One such relative price in the present example is the price of current goods relative to
the price of future goods, i.e., the real interest rate. For example, when there is a temporary jump in the tax
on the period t+1 return to capital, then the real interest rate from t to t+1 drops and time t consumption
rises. The market signal that encourages households to raise consumption is a drop in the real interest rate.54

This reasoning suggests that the dynamics of the real interest rate holds the key to understanding why risk
shocks make consumption procyclical.55 In our model the real interest rate is not entirely determined by
market forces because the nominal rate of interest is controlled by the monetary authority. Of course, the
fact that the monetary authority controls the nominal interest rate would be irrelevant if prices were fully
flexible, because for the most part it is the real interest rate that controls allocations. But, in our model prices
do not adjust flexibly to shocks, both because there are direct frictions in changing prices and because of
inertia in wages. As a result, the fact that the monetary authority controls the nominal rate of interest implies
that it also controls the real rate of interest. This suggests the possibility that the response of consumption
to a risk shock depends on the nature of monetary policy.

To evaluate these ideas, Figure A2 displays the response of consumption and the real interest rate to a
positive shock in x 0,0, under various model perturbations. Here, we use the long-term concept of the real
interest rate.56 In both panels of Figure A2, the solid line displays the responses in our baseline model,
taken from the relevant portions of Figure 3. The lines with circles correspond to the case of flexible prices
and wages, i.e., x p = xw = 0. Note that, consistent with the intuition outlined above, consumption rises
in the wake of a positive shock to risk under flexible wages and prices. This outcome is accomplished by

54The following calculations illustrate the logic in the text. Consider an annual real business cycle model in which the resource constraint is
Ct + It  K0.36

t h0.64
t , It = Kt+10.9Kt , and the period utility function is logCt +2.5log(1ht) with discount factor, b = 0.97. The after tax rate of

return on capital constructed in period t, Kt+1, is (1 t t)
h
0.36(ht+1/Kt+1)

0.64+0.9
i
, where t t is observed in period t, and is the tax rate on the

time t+1 realized return on capital. Perturbations in t t are a reduced form representation of shocks to s t , according to the analysis in Christiano
and Davis (2006). The revenue effects of t t are assumed to be distributed in lump sum form back to households, thus eliminating wealth effects
associated with t t . We suppose that t t = 0.9t t1+ e t , where e t is an iid shock. In steady state, C/Y = 0.73. We solved the model by a standard
log-linearization procedure. We set e0 = 0.01 and e t = 0 for t > 0. The shock has a substantial negative impact on investment, which drops 16
percent in period 0. Absent a response inC0, output would have fallen 2.7 percent. In fact,C0 rises by 2.7 percent so that the actual fall in output is
smaller. The market force that guides the rise inC0 is a drop in the real rate of interest.

55Our discussion assumes separability between consumption and leisure in the utility function. Furlanetto and Seneca (2011) show that con-
sumption could fall in response to a contractionary intertemporal shock such as a jump in risk if the marginal utility of consumption is increasing in
labor.

56According to the model, the period t long term real interest rate is more closely connected to period t consumption than, for example, the one
period real interest rate at period t. Our long term interest rate is the real non-state contingent interest rate on a 10 year bond purchased in period t
which pays off only in period t+40. It is the value of rLt which solves:

uc,t =

rLt b

40Etuc,t+40,

where uc,t denotes the derivative of date t present discounted utility with respect toCt . To see the importance of rLt for current consumption, suppose
marginal utility is a function of Ct alone and note that Etuc,t+40 does not respond to stationary shocks at time t, such as disturbances to risk. In this
way the above equation representsCt as a function of rLt alone. In our environment, we assume habit persistence so that uc,t is not just a function of
Ct , but the logic based on the assumption of time separable utility is nevertheless a good guide to intuition.
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a greater drop in the real rate of interest in the flexible wage and price case. These results suggest that if
monetary policy were to cut the interest rate more aggressively in the wake of a risk shock, consumption
would respond by rising. We verified this by introducing a term, (s t s), in the monetary policy rule
(recall, a variable without a subscript refers to its steady state value). In this way, the monetary authority
reduces the nominal rate of interest more sharply in response to a risk shock than it does in our baseline
specification. The left panel in Figure A2 confirms that in this case, consumption indeed does rise in the
wake of a risk shock.

Thus, our analysis indicates that consumption is procyclical in response to risk shocks because under our
(standard) representation of monetary policy, the authorities do not cut the interest rate very aggressively in
response to a contractionary risk shock. This is so, despite the fact that our empirical estimate of the weight
on anticipated inflation in the policy rule, 2.4, is somewhat high relative to other estimates reported in the
literature (see Table 2a). Given that a positive shock to risk reduces inflation, a relatively high weight on
inflation in the monetary policy rule implies that the monetary authority reduces the interest rate relatively
sharply in response to such a shock. Still, the high weight assigned to inflation in our estimated policy rule
is not large enough to support allocations that resemble the ones that occur under flexible wages and prices.
We have found that one must raise the weight on inflation to an unrealistically high level of around 30 to
support those allocations.

APPENDIX J: CONVENTIONAL OUT-OF-SAMPLE MEASURES OF FIT

Figure A3 displays out-of-sample root mean square errors (RMSE’s) at forecast horizons, j = 1,2, ...,12
for various variables. Our first set of 12 forecasts is computed in 2001Q3 and our last set of forecasts is
computed in 2008Q1. We include forecasts for each of the 12 variables in our dataset. We consider forecasts
of quarterly growth rates for the variables which our model predicts are not covariance-stationary and of
levels for the variables which our model predicts are stationary. We include two benchmark RMSE’s for
comparison. The first benchmark corresponds to the RMSE’s implied by a Bayesian vector autoregression
(BVAR), constructed using the procedure applied in Smets and Wouters (2007).57 The second benchmark
corresponds to the RMSE’s implied by the version of our DSGE model labeled CEE and discussed in section
I.D. Forecasts of the BVAR are based on the posterior modes of the parameters updated each quarter. In
the case of the DSGE models, we update the parameters every other quarter. The grey area in the figures
is centered on the RMSE’s for the BVAR. It is constructed so that if the RMSE of our baseline model lies
in the grey area for a particular variable and forecast horizon, then the classical null hypothesis that the two
RMSE’s are actually the same in population fails to be rejected at the 95 percent level at that horizon.58

Our baseline model’s performance is the same or better than that of the CEE model and - in the case of
variables not in the CEE model - the baseline model does about the same or better than the BVAR, with the
exception of the credit spread. In the case of inflation, the baseline model does noticeably better than the
CEE and BVAR models. Overall, the model does reasonably well in terms of RMSE’s.

57In particular, we work with a first order vector autoregression specified in levels (or, in case of the real quantities, log levels) of all the variables.
With one exception we implement the so-called Litterman priors. In particular, for the variables that our model predicts are non-startionary, we center
the priors on a unit root specifiation. For the variables that our model predicts are stationary, we center the priors on the first order autoregressive
representation with autoregressive coefficient 0.8.

58The procedure we use is the one proposed in Christiano (1989). The sampling theory we use does not take into account that the test is executed
for multiple horizons.
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Figure 1a: Impact on standard debt contract of a 5% jump in σ
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Figure 1b: Impact on standard debt contract of a 1% jump in Rk/R
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Figure 7: Responses to Unanticipated Risk Shock
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