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1 Introduction

We introduce the type of agency problems proposed by Robert Townsend (1979) and later

implemented in dynamic stochastic general equilibrium models in the seminal work of Ben

Bernanke and Mark Gertler (1989) and Bernanke, Gertler and Simon Gilchrist (1999) (BGG).1

Our estimates suggest that �uctuations in the severity of these agency problems account for a

substantial fraction of business cycle �uctuations over the past two and a half decades.

Entrepreneurs play a central role in our business cycle model. They combine their own

resources with loans to acquire raw, physical capital. They then convert this capital into

e¤ective capital in a process that is characterized by substantial idiosyncratic uncertainty. We

refer to the degree of dispersion in this uncertainty as �risk�. The notion that idiosyncratic

uncertainty in the allocation of capital is important in practice can be motivated informally

in several ways. For example, it is well known that a large proportion of �rm start ups end

in failure.2 Entrepreneurs and their suppliers of funds experience these failures as a stroke

of bad luck. Even entrepreneurs such as Steve Jobs and Bill Gates experienced failures as

well as the successes for which their are famous.3 Another example of the microeconomic

uncertainty involved in the allocation of capital is the various �wars�that have occured over

industry standards. In these wars, entrepreneurs commit a large amount of raw capital to one

or another standard. From the perspective of these entrepreneurs and their sources of �nance,

the ultimate result of their bet can be thought of as the outcome of a gamble.4 We model

this uncertainty experienced by entrepreneurs with the assumption that if an entrepreneur

purchases K units of physical capital, that capital then turns into K! units of e¤ective capital.

Here, ! � 0 is a random variable drawn independently by each entrepreneur, normalized to

have mean unity.5 Entrepreneurs that draw ! larger than unity experience a success, while

1Other important early contributions include Carstrom and Fuerst (1997), Fisher (1999) and Williamson
(1987). More recent contributions include Christiano, Motto and Rostagno (2003), Jermann and Quadrini
(2011) and Arellano and Kehoe (2011).

2See, for example, the March 2011 review of Carmen Nobel�s work in http://hbswk.hbs.edu/item/6591.html.
3Steve Jobs experienced tremendous success in allocating capital to the iPod, iPhone and iPad,

but experienced a commercial failure when he allocated capital to the NeXT Computer (see Ham-
mer (2011)). Similarly, Bill Gates experienced a spectacular return on the resources he invested
in Microsoft. However, his previous e¤orts, focused on his �rm, Traf-O-Data, completely failed
(http://www.thedailybeast.com/newsweek/2011/04/24/my-favorite-mistake.html).

4For example, in the 1970s Sony allocated substantial resources to the construction of video equipment that
used the Betamax video standard, while JVC and others used the VHS standard. After some time, VHS �won�
the standards war, so that the capital produced by investing in video equipment that used the VHS standard
was more e¤ective than capital produced by investing in Betamax equipment. The reasons for this outcome are
still hotly debated today. However, from the ex-ante perspective of the companies involved and their suppliers
of funds, the ex post outcome can be thought of as the realization of a random variable (for more discussion,
see http://www.mediacollege.com/video/format/compare/betamax-vhs.html).

5The assumption about the mean of ! is in the nature of a normalization because we allow other random
variables to capture the aggregate sources of uncertainty faced by entrepreneurs.
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entrepreneurs that draw ! close to zero experience failure. The realization of ! is not known at

the time the entrepreneur receives �nancing. However, when ! is realized its value is observed

by the entrepreneur, but can be observed by the supplier of �nance only by undertaking costly

monitoring.6 The cross-sectional dispersion of ! is controlled by a parameter, �: We refer to

� as risk. The variable, �; is assumed to be the realization of a stochastic process. Thus, risk

is high in periods when � is high and there is substantial dispersion in the outcomes across

entrepreneurs. Risk is low otherwise.

For the reasons stressed in Robert Townsend (1979), we follow BGG in supposing that

lenders interact with entrepreneurs in competitive markets in which standard debt contracts

are traded. The interest rate on entrepreneurial loans includes a premium to cover the costs

of default by the entrepreneurs that experience low realizations of !. The entrepreneurs and

the associated �nancial frictions are inserted into an otherwise standard dynamic, stochastic

general equilibrium (DSGE) model.7 According to our model, the credit spread (i.e., premium

in the entrepreneur�s interest rate over the risk-free interest rate) �uctuates with changes in

�: When risk is high, the credit spread is high and credit extended to entrepreneurs is low.

Entrepreneurs then acquire less physical capital. Because investment is a key input in the

production of capital, it follows that investment falls. With this decline in the purchase goods,

output and employment fall. Consumption falls as well. For the reasons stressed in BGG, the

net worth of entrepreneurs - an object that we identify with the stock market - falls too. This

is because the rental income earned by entrepreneurs on their capital falls with the reduction

in economic activity. In addition, the fall in the production of K results in a fall in the price

of capital, which results in capital losses for entrepreneurs. Finally, the overall decline in

economic activity results in a decline in the marginal cost of production and thus a decline in

in�ation. In this way, the � shock in the model predicts a countercylical interest rate premium

and procyclical investment, consumption, employment, in�ation, the stock market and credit.

These implications of the model correspond well to the analogous features of US business cycle

data. 8

6That the entrepreneur is in a much better position than the lender to assess the occurence of a �failure�
is illustrated by Steve Jobs�experience with the NeXT computer. Although that product was a commercial
failure, it was not a complete loss. In fact, the operating system developed for the NeXT turned out to be very
useful upon Jobs�return to Apple after leaving NeXT (see Hammer (2011)).

7Our strategy for inserting the entrepreneurs into a DSGEmodel follows the lead of BGG in a general way. At
the level of details, our model follows Christiano, Motto and Rostagno (2003) by introducing the entrepreneurs
into a version of the model proposed in Christiano, Eichenbaum and Evans (2005) and by introducing the risk
shock (and an equity shock mentioned later) studied here.

8Our model complements recent papers that highlight other ways in which increased cross-sectional dis-
persion in an important shock could lead to aggregate �uctuations. For example, Nicholas Bloom (2009) and
Bloom, Floetotto and Nir Jaimovich (2009) show how greater uncertainty can produce a recession by inducing
businesses to adopt a �wait and see�attitude and delay investment. For another example that resembles ours,
see Cristina Arellano, Yan Bai, and Patrick Kehoe (2011).
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We include other shocks in our model and then estimate it by standard Bayesian methods

using 12 macroeconomic variables. In addition to the usual 8 variables used in standard

macroeconomic analyses, we also make use of 4 �nancial variables: the value of the stock

market, credit to non�nancial �rms, the credit spread and the slope of the term structure.

Not surprisingly, in light of our previous observations, the results suggest that the � shock

is overwhelmingly the most important shock driving the business cycle. For example, the

analysis suggests that �uctuations in � account for 60 percent of the �uctuations in the growth

rate of aggregate US output since the mid 1980s. As our presentation below makes clear, our

conclusion that the risk shock is the most important shock depends crucially on including the

four �nancial variables.

Our empirical analysis treats � as an unobserved variable. We infer its properties from our

12 time series using the lense of our model. A natural concern is that we might have relied

too heavily on �large�values of � to drive economic �uctuations. Motivated by this, we seek a

more �direct�measure of the risk shock by following the lead in Bloom (2009). In particular,

we compute the cross-sectional standard deviation of �rm-level stock returns in the Center for

Research in Securities Prices (CRSP) stock-returns �le. We found that those cross-sectional

standard deviations have roughly the same magnitude as our estimated risk shocks.

Our model and related analyses are motivated in part by a growing body of evidence which

documents that the cross-sectional dispersion of a variety of variables is countercyclical.9 Of

course, the mere fact that cross-sectional variances are countercylical does not by itself establish

that risk shocks are causal, as our estimated model implies. It is in principle possible that

countercyclical variation in cross-sectional dispersion is a symptom rather than a cause of

business cycles.10 We do not provide any direct test of our model�s assumption about the

direction of causation, and this is certainly an issue that deserves further study. In the mean

time we see some support for the approach taken here in the �ndings of Scott R. Baker and

Bloom (2011), who present empirical evidence consistent with the causal assumption in our

9For example, Bloom (2009) documents that various cross-sectional dispersion measures for �rms in panel
datasets are countercyclical. De Veirman and Levin (2011) �nd similar results using the Thomas Worldscope
database. Matthias Kehrig (2011) documents using plant level data, that the dispersion of total factor produc-
tivity in U.S. durable manufacturing is greater in recessions than in booms. Vavra (2011) presents evidence
that the cross-sectional variance of price changes at the product level is countercyclical. Also, Alexopoulos
and Cohen (2009) construct an index based on the frequency of time that words like �uncertainty�appear in
the New York Times and �nd that this index rises in recessions. It is unclear, however, whether the evidence
about uncertainty they have gathered re�ects variations in cross-sectional variances or changes in the variance
of time series aggregates. Our risk shock corresponds to the former.
10For example, Rudiger Bachmann and Giuseppi Moscarini (2011) raise the possibility that cross-sectional

volatility may rise in recessions as the endogenous response of the increased fraction of �rms contemplating an
exit decision. D�Erasmo and Boedo (2011) and Kehrig (2011) provides two additional examples of the possible
endogeneity of cross-sectional uncertainty.
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model.11

Our work is also related to Alejandro Justiniano, Giorgio E. Primiceri and Andrea Tam-

balotti (2010), which stresses the role of shocks to the production of installed capital (marginal

e¢ ciency of investment shocks). These shocks resemble our risk shock in that their primary

impact is on intertemporal opportunities. Our risk shock and the marginal e¢ ciency of in-

vestment shock are hard to distinguish based on the eight standard macroecomic variables.

However, the analysis strongly favors the risk shock when our four �nancial variables are also

included in the analysis. This is because risk shocks a¤ect the demand for capital and so imply

a procyclical price of capital. We identify the value of the stock market with the net worth of

the entrepreneurs and their net worth is heavily in�uenced by the price of capital. That is, the

marginal e¢ ciency of capital implies the value of the stock market is countercyclical. The risk

shock, by contrast, operates on the demand side of capital and so implies a procyclical price

of capital and, hence, stock market. This reasoning, together with the fact that we include a

measure of the stock market in our data set, helps to explain why our analysis de-emphasizes

the importance of marginal e¢ ciency of investment shocks in favor of risk shocks.

We gain insight into the importance of our risk shock by comparing it to another shock,

one that we call an equity shock. This is a disturbance that directly a¤ects the quantity of net

worth in the hands of entrepreneurs. This shock acts a little like our risk shock, by operating

on the side of the demand for capital. However, unlike the risk shock, this shock has the

counterfactual implication that credit is countercylical. When we include credit in the data

set, the risk shock is preferred over the equity shock. We conclude that the procyclical nature

of credit is an important reason for the substantial role in business cycles assigned to risk by

our econometric results.

Of course, the credibility of our �nding about the importance of the risk shock depends on

the empirical plausibility of our model. We evaluate the model�s plausibility by investigating

various implications of the model that were not used in constructing or estimating it. First, we

evaluate the model�s out-of-sample forecasting properties. We �nd that these are reasonable,

relative to the properties of a Bayesian vector autoregression or a simpler New Keynesian

business cycle model such as the one in Christiano, Eichenbaum and Evans (2005) or Smets

and Wouters (2007). We also examine the model�s implications for data on bankruptcies,

information that was not included in the data set used to estimate the model. Finally, we

compare the model�s implications for the kind of uncertainty measures proposed by Bloom.

11This evidence is not decisive, since the analysis performed by Baker and Bloom (2011) does not allow one
to determine whether the volatility they �nd is causal is the sort that we emphasize (e.g., volatility of variables
in the cross section) or whether it corresponds to heteroscedasticity of aggregate variables.
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Although this analysis does bring out some �aws in the model, overall it performs well. We

conclude that the implications of the analysis for the role in business cycles of the risk shocks

deserves to be taken seriously. By this we mean that it would be useful to elaborate the

mechanisms that underly the risk shock.

The plan of the paper is as follows. The next section describes the model. Estimation

results and measures of �t are reported in section 3. Section 4 presents the main results.

We present various quantitative measures that characterize the sense in which risk shocks are

important in business cycles. We then explore the reasons why the econometric results �nd

the risk shock is so important. The paper ends with a brief conclusion. Technical details and

supporting analysis are provided in the online Appendices A-I

2 The Model

The model incorporates the microeconomics of the debt-contracting framework of BGG into

an otherwise standard monetary model of the business cycle. The �rst subsection describes

the standard part of the model and the second subsection describes the �nancial frictions. The

time series representations of the shocks, as well as adjustment cost functions are reported in

the third subsection.

2.1 Standard Part of the Model

Goods are produced according to a Dixit-Stiglitz structure. A representative, competitive �nal

goods producer combines intermediate goods, Yjt; j 2 [0; 1]; to produce a homogeneous good,

Yt; using the following technology:

Yt =

�Z 1

0

Yjt
1

�f;t dj

��f;t
; 1 � �f;t <1; (2.1)

where �f;t is a shock. The intermediate good is produced by a monopolist using the following

technology:

Yjt =

8<: �tK
�
jt (ztljt)

1�� � �z�t if �tK�
jt (ztljt)

1�� > �z�t

0; otherwise
; 0 < � < 1: (2.2)

Here, �t is a covariance stationary technology shock and zt is a shock whose growth rate is

stationary. Also, Kjt denotes the services of capital and ljt denotes the quantity of homoge-

neous labor, respectively, hired by the jth intermediate good producer. The �xed cost in the
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production function, (2.2), is proportional to z�t : This variable is a combination of the two

nonstationary stochastic processes in the model, namely zt and an investment speci�c shock

described below. The variable, z�t ; has the property that Yt=z
�
t converges to a constant in

non-stochastic steady state. The monopoly supplier of Yjt sets its price, Pjt; subject to Calvo-

style frictions. Thus, in each period t a randomly-selected fraction of intermediate-goods �rms,

1� �p; can reoptimize their price. The complementary fraction sets their according to:

Pjt = ~�tPj;t�1;

where

~�t =
�
�targett

��
(�t�1)

1�� : (2.3)

Here, �t�1 � Pt�1=Pt�2; Pt is the price of Yt and �targett is the target in�ation rate in the

monetary authority�s monetary policy rule, which is discussed below.

There exists a technology that can be used to convert homogeneous goods into consumption

goods, Ct; one-for-one. Another technology converts a unit of homogenous goods into �t��;t

investment goods, where � > 1 and ��;t is a shock. Because we assume these technologies are

operated by competitive �rms, the equilibrium prices of consumption and investment goods

are Pt and Pt=
�
�t��;t

�
; respectively. The trend rise in technology for producing investment

goods is the second source of growth in the model, and

z�t = zt�
( �
1��)t:

There is a large number of identical households, which supply capital services and labor.

Households have a technology for constructing physical capital, �Kt+1; using the following tech-

nology:

�Kt+1 = �Kt + (1� S(�It It=It�1)) It: (2.4)

Here, S is a increasing and convex function described below, It denotes investment goods and

�It is a shock to the marginal e¢ ciency of investment in producing capital. Capital services

and physical capital are related by the utilization rate of capital, ut; by the following expression:

Kt = ut �Kt:

The utilization of capital is costly and requires purchasing a (ut)��t units of �nal goods per

unit of physical capital used (i.e., per �Kt+1). Here, a denotes an increasing and convex function
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described below. The trend in utilization costs is designed to help ensure a balanced growth

deterministic growth path in which capital utilization is constant.

The model of the labor market is taken from Erceg, Henderson and Levin (2000), and

parallels the Dixit-Stiglitz structure of goods production. A representative, competitive labor

contractor aggregates the di¤erentiated labor services, hi;t; i 2 [0; 1] ; into homogeneous labor,

lt; using the following production function:

lt =

�Z 1

0

(ht;i)
1
�w di

��w
; 1 � �w: (2.5)

The labor contractor sells labor services, lt; to intermediate good producers for nominal wage

rate, Wt:

Each of the large number of identical households supplies di¤erentiated labor, hi;t; i 2

[0; 1] : By assuming that all varieties of labor are contained within the same household (this

is the �large family�assumption introduced by Andolfatto (1996) and Merz (1995)) we avoid

confronting di¢ cult - and potentially distracting - distributional issues. For each labor type,

i 2 [0; 1] ; there is a monopoly union that represents workers of that type belonging to all

households. The ith monopoly union sets the wage rate, Wit; for its members, subject to

Calvo-style frictions. In particular, a randomly selected subset of 1� �w monopoly unions set

their wage optimally, while the complementary subset sets the wage according to:

Wit =
�
�z�;t

���
(�z�)

1��� ~�wtWi;t�1:

Here, �z� denotes the growth rate of z
�
t in non-stochastic steady state. Also,

~�w;t �
�
�targett

��w
(�t�1)

1��w ; 0 < �w < 1: (2.6)

The indexing assumptions in wage setting ensure wage-setting frictions are not distortionary

along a non-stochastic, steady state growth path. The representative household�s preferences

are given by:

E0

1X
t=0

�t�c;t

�
log(Ct � bCt�1)�  L

Z 1

0

h1+�Lit

1 + �L
di

�
; b; �L > 0: (2.7)

Here, �c;t > 0 is a shock. In the standard model, the representative household chooses con-

sumption, the capital utilization rate and physical capital accumulation to maximize (2.7)

subject to a budget constraint. The household takes Wi;t; i 2 [0; 1] ; as given and supplies
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whatever quantity of hi;t that is demanded at that wage rate. In addition, the household has

access to a nominally non-state contingent one-period bond with gross payo¤ Rt+1 in period

t + 1: Loan market clearing requires that, in equilibrium, the quantity of this bond that is

traded is zero.

We express the monetary authority�s monetary policy rule directly in linearized form:

Rt+1 �R = �p (Rt �R) +
�
1� �p

� �
�� (�t+1 � ��t ) + ��y

1

4
(gy;t � �z�)

�
+

1

400
"pt ; (2.8)

where "pt is a shock to monetary policy and �p is a smoothing parameter in the policy rule. Here,

400 (Rt+1 �R) is the deviation of the net quarterly interest rate, Rt+1; from its steady state,

expressed in annual, percent terms. Similarly, 400 (�t+1 � ��t ) is the deviation of anticipated

in�ation from the central bank�s in�ation target, also expressed in annual, percent terms.

The expression, 100 (gy;t � �z�) is quarterly GDP growth, in deviation from its steady state,

expressed in percent terms. Finally, "pt is the monetary policy shock, expressed in units of

annualized percent.

2.2 Financial Frictions

In the standard model, the supply of capital services is a routine and uneventful activity. In

practice, this activity more closely resembles grand opera, requiring a combination of talent and

luck. In our model, the agents with the required talent are called entrepreneurs. They produce

e¤ective capital services by combining raw, physical capital with an idiosyncratic productivity

shock. Inevitably, entrepreneurs are heterogeneous, because they experience di¤erent histories

of shocks. We abstract from the resulting distributional consequences by adopting various

linearity assumptions and by adopting the Andolfatto-Merz large household assumption, as in

GK2. In particular, each we continue to assume that all households are identical and contain

all varieties of worker skill types. Now, we also asume the representative household has a large

and diversi�ed group of entrepreneurs.12

All the activities of entrepreneurs occur in competitive markets. An entrepreneur acquires

capital by combining its own funds with loans obtained from mutual funds. The general �ow

of funds in �nancial markets is indicated in Figure 1. At the end of production in period t;

households deposit funds with mutual funds and each mutual fund extends loans to a diversi�ed

group of entrepreneurs. The most straightforward interpretation of our entrepreneurs is that

12Although we think the GK2 large-family metaphor helps to streamline the model presentation, the equations
that characterize the equilibrium are, with one minor exception described below, the same as if we had adopted
the slightly di¤erent presentation in BGG.
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they are �rms in the non-�nancial business sector. However, it is also possible to interpret

them as �nancial �rms that are risky because they hold a non-diversi�ed porfolio of loans to

risky non-�nancial businesses (see the �bank!entrepreneur�entries in Figure 1).13 We now

discuss the �nancial frictions in detail.

At the end of period t production, each entrepreneur has a given level of net worth, Nt+1;

which depends on the entrepreneur�s history and which completely summarizes its state. At

this time, each entrepreneur with a speci�c level of net worth, say N; obtains a loan from a

mutual fund, which it combines with its own net worth to purchase raw physical capital, �KN
t+1;

in a market for capital at the price Q �K;t. As in the standard model, the business of producing

physical capital and supplying it to the capital market is handled by the households.

After purchasing its capital, each entrepreneur experiences an idiosyncratic shock, !; which

converts its capital, �KN
t+1; into e¢ ciency units, ! �K

N
t+1. We assume that ! has a log normal

distribution that is independently drawn across time and across entrepreneurs. We adopt the

normalization, E! = 1; and denote the standard deviation of log! by �t: The random variable,

!; captures the idiosyncratic risk in actual business ventures. In some cases a given amount

of physical capital (i.e., metal, glass and plastic) is a great success (i.e., the Apple iPad or the

Blackberry cell phone) and in other cases it is less successful (i.e, the NeXT computer or the

Blackberry Playbook). The object, �t; characterizes the extent of cross sectional dispersion in

!, which we allow to vary stochastically over time. We refer to �t as �the risk shock�.

After observing the period t+ 1 shocks, each entrepreneur determines the utilization rate,

uNt+1; of its e¤ective capital and rents out the associated capital services in competitive markets

in return for uNt+1! �K
N
t+1r

k
t+1 units of currency. Here, r

k
t+1 denotes the nominal rental rate of

a unit of capital services. As in the standard model, the utilization of capital is costly and

requires purchasing a
�
uNt+1

�
��(t+1) units of �nal goods per unit of e¢ ciency capital used (i.e.,

per ! �KN
t+1). The function, a; is increasing and convex, and is described below.

At the end of production in period t+1; the entrepreneur is left with (1� �)! �KN
t+1 units of

physical capital, after depreciation. This capital is sold in competitive markets to households

at the price, Q �K;t+1: Households use this capital, whose economy-wide supply is (1� �) �Kt+1;

to build �Kt+2 using the technology in (2.4). We conclude that the entrepreneur with net worth,

N; at the end of period t enjoys rate of return, !Rk
t+1; at t+ 1, where

Rk
t+1 �

(1� � k)
�
ut+1r

k
t+1 � a(ut+1)

�
��(t+1)Pt+1 + (1� �)Q �K;t+1 + � k�Q �K0;t

Q �K;t

: (2.9)

13We have in mind the banks in Gertler and Kiyotaki (2011). For a detailed discussion, see section 6 in
Christiano and Ikeda (2011).
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Here, � k denotes the tax rate on capial income and we assume depreciated capital can be

deducted at historical cost. In (2.9), we have deleted the superscript, N; from the capital

utilization rate. We do so because the only way utilization a¤ects the entrepreneur is through

(2.9) and the choice of utilization that maximizes (2.9) is evidently independent of the entre-

preneur�s net worth: From here on, we suppose that ut+1 is set at this optimizing level, which

is a function of rkt+1 and �
�(t+1)Pt+1; variables that are beyond the control of the entrepreneur.

Thus, each entrepreneur in e¤ect has access to a stochastic, constant rate of return tech-

nology, Rk
t+1!:

14 Part of the uncertainty in this return, Rk
t+1; is aggregate and the other part

is idiosyncratic. The entrepreneur with net worth, N; purchases assets, Q �K;t
�KN
t+1; using a

combination of its own net worth and a loan, BN
t+1 = Q �K;t

�KN
t+1 �N . In the market for loans,

the entrepreneur is presented with a menu of standard debt contracts: A standard debt con-

tract speci�es a loan amount and a state t + 1 contingent interest rate, Zt+1: For a portion

of entrepreneurs, it is infeasible to repay BN
t+1Zt+1 because they experienced a low !: Such

an entrepreneur declares bankruptcy. The value of !; �!t+1; that separates bankrupt and non-

bankrupt entrepreneurs is de�ned by:

Rk
t+1�!t+1Q �K;t

�KN
t+1 = BN

t+1Zt+1: (2.10)

Note that we have left o¤ the superscript, N; on �!t+1 and Zt+1: This is to minimize notation,

and a re�ection of the well known fact (see below) that in equilibrium these objects are the

same for entrepreneurs with all levels of net worth:15 An entrepreneur with ! � !Nt+1 declares

bankruptcy. It is then monitored by its mutual fund, which then takes all the entrepreneur�s

assets. Bankrupt entrepreneurs are nevertheless able to borrow in the following period, because

each entrepreneur receives a (relatively small) transfer, W e
t+1; �nanced by lump-sum taxes

on the household at the beginning of period t.16 Before completing the discussion of the

entrepreneurs, we must �rst discuss the mutual funds.

It is convenient (though it involves no loss of generality) to imagine that mutual funds

specialize in lending to entrepreneurs with speci�c levels of net worth, N: Each mutual fund

holds a large portfolio of loans, so that it is perfectly diversi�ed relative to the idiosyncratic

14In the case where the entrepreneur is interpreted as a �nancial �rm, we follow Gertler and Kiyotaki (2010)
in supposing that Rkt+1! is the return on securities purchased by the �nancial �rm from a non-�nancial �rm.
The non-�nancial �rm possesses a technology that generates the rate of return, Rkt+1!; and it turns over the
full amount to the �nancial �rm. This interpretation requires that there be no �nancial frictions between the
non-�nancial and the �nancial �rm.
15The result that in equilibrium all entrepreneurs receive standard debt contracts with the same interest

rate in part re�ects our assumption that all entrepreneurs have the same ex ante risk, �t:In principle, the
environment could be modi�ed to allow for entrepreneurs with di¤erent levels of risk in the ex ante sense.
16To help ensure balanced growth, we assume that W e

t grows with the rest of the economy. We achieve this
by setting W e

t = z
�
tw

e; where we is a constant.
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risk experienced by entrepreneurs. To make loans, BN
t+1 per entrepreneur, the representative

mutual funds issue BN
t+1 in deposits to households at the competitively determined nominal

interest rate, Rt+1; which is not contingent upon period t + 1 uncertainty. We assume that

mutual funds do not have access in period t to period t+1 state-contingent markets for funds.

As a result, the funds received in each period t + 1 state of nature must be no less than the

funds paid to households in that state of nature. That is, the representative mutual fund

satis�es:

[1� Ft (�!t+1)]Zt+1B
N
t+1 + (1� �)

Z �!t+1

0

!dFt (!)R
k
t+1Q �K0;t

�KN
t+1 � BN

t+1Rt+1; (2.11)

in each period t + 1 state of nature. The object on the left of the equality in (2.11) is the

average return, per entrepreneur, on revenues received by the mutual fund from entrepreneurs.

The �rst term on the left indicates revenues received from the fraction of entrepreneurs with

! � �!t+1 and the second term indicates the revenues obtained from bankrupt entrepreneurs.

These revenues are net of mutual funds�monitoring costs, which take the form of �nal goods

and correspond in currency units to a proportion, �; of the assets of bankrupt entrepreneurs.

The left term in (2.11) also cannot be strictly greater than the term on the right in any period

t + 1 state of nature because otherwise mutual funds would make positive pro�ts and this

is incompatible in equilibrium with free entry and competition.17 It follows that the weak

inequality in (2.11) must be a strict equality in every state of nature. Using this fact and

rearranging (2.11) after subsituting out for Zt+1BN
t+1 using (2.10), we obtain:

�t (�!t+1)� �Gt (�!t+1) =
Lt � 1
Lt

Rt+1

Rk
t+1

; (2.12)

in each period t+ 1 state of nature. In (2.12),

�t (�!t+1) � [1� Ft (�!t+1)] �!t+1 +Gt (�!t+1) ; Gt (�!t+1) =

Z �!t+1

0

!dFt (!) ; Lt =
Q �K;t

�KN
t+1

N
;

so that Lt represents leverage and �t (�!t+1) represents the share of average entrepreneurial

earnings, Rk
t+1Q �K0;t

�KN
t+1; received by mutual funds. Note that we have left the superscript, N;

17In an alternative market arrangement, mutual funds in period t interact with households in period t + 1
state contingent markets for funds. This would be in addition to the nominally non-state contingent markets
for deposits already assumed. Under this market arrangement a mutual fund has a single zero pro�t condition
in period t; which can be represented as the requirement that the period t expectation of the left minus the
right side of (2.11) equals zero. With this market arrangement, we could assume, for example, that the interest
rate paid by entrepreneurs, Zt+1; is not contingent on the realization of period t+ 1 uncertainty. The market
arrangement described in the text is the one proposed in BGG and we have not explored the alternative,
complete market, arrangement described in this footnote.
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o¤ of leverage. We show below that in equilibrium all entrepreneurs choose the same level of

leverage, regardless of their level of net worth.

The (�!t+1; Lt) combinations which satisfy (2.12) corresponds to the menu of state t + 1

contingent standard debt constracts o¤ered to entrepreneurs.18 In period t; the representative

household instructs its entrepreneurs to maximize expected period t + 1 net worth: Given

that entrepreneurs take Rk
t+1 and their current level of net worth as given, this corresponds to

maximizing Et [1� �t (�!t+1)]Rk
t+1Lt by choice of (�!t+1; Lt) subject to (2.12) being satis�ed in

each period t + 1 state of nature.19 The fact that entrepreneurial net worth does not appear

in the objective or constraints of this problem explains why the equilibrium interest on loans

and the value of leverage are the same for all entrepreneurs.

After entrepreneurs have sold their undepreciated capital, collected rental receipts and set-

tled their obligations with their mutual fund at the end of period t + 1; a randomly selected

fraction, 1 � 
t+1; of the entrepreneurs in the family become workers. The remaining frac-

tion of entrepreneurs, 
t+1; survives to continue another period. Enough workers convert to

entrepreneurs so that the proportion of workers and entrepreneurs in the household remains

constant. After entry and exit are complete, all entrepreneurs receive a net worth transfer,

W e
t+1; from the household: BecauseW

e
t+1 is relatively small, this exit and entry process helps to

ensure that entrepreneurs as a group do not accumulate so much net worth that they outgrow

their dependence on loans. We refer to 
t+1 as an �equity shock�. A drop in 
t+1 reduces

the average net worth of entrepreneurs because exiting entrepreneurs typically have more net

worth than W e
t+1:

20 At the end of the entry and exit process in t + 1 and the transfer of W e
t ,

each entrepreneur�s net worth is determined. Each now proceeds to a mutual fund to obtain a

loan and the process just described continues.

Using the discussion in the previous paragraph, we derive an expression for �Nt+1; the

aggregate net worth of all entrepreneurs that take out bank loans at the end of period t: This

is de�ned as:

�Nt+1 =

Z 1

0

Nft (N) dN; (2.13)

where ft (N) denotes the density of entrepreneurs with net worth, N; presenting themselves

to mutual funds at the end of period t; to obtain loans. By the law of large numbers the

18Note that a speci�cation of (�!t+1,Lt) is equivalent to a speci�ation of (Zt+1; Lt) : To see this, note that
(2.10) implies Rkt+1�!t+1

�
N +BNt+1

�
= BNt+1Zt+1: After rearranging, we obtain Zt+1 = R

k
t+1�!t+1Lt= (Lt � 1) :

19The number of objects chosen is a single value for Lt and one �!t+1 for each period t+ 1 state of nature.
20One distinction between the arrangement used here and the one in BGG has to do with exiting entrepre-

neurs. In BGG, exiting entrepreneurs consume a fraction, �; of their net worth while only 1�� is transferred
in lump-sum form to households. This distinction is quantitatively insigni�cant because � is a very small
number in practice.
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aggregate pro�ts of all entrepreneurs with net worth N at the end of t, just before entry and

exit occurs, is [1� �t�1 (�!t)]Rk
tQ �K;t�1 �K

N
t : The aggregate stock of capital at the beginning of

period t satis�es the analog of (2.13):

�Kt =

Z 1

0

�KN
t ft�1 (N) dN: (2.14)

Integrating entrepreneurial pro�ts over all N and using (2.14) we �nd that the aggregate

�nancial resources of all entrepreneurs in the typical household at the end of t + 1; prior to

entry and exit, is [1� �t�1 (�!t)]Rk
tQ �K;t�1 �Kt: We conclude that

�Nt+1 = 
t [1� �t�1 (�!t)]Rk
tQ �K;t�1 �Kt +W e

t : (2.15)

In sum, �Nt+1; �!t+1 and Lt can be determined by (2.44) and the two equations which

characterize the solution to the entrepreneur�s problem.21 Notably, it is possible to solve

for these aggregate variables without determining the distribution of net worth in the cross-

section of entrepreneurs, ft (N) ; or the law of motion over time of that distribution. By the

de�nition of leverage, Lt; these variables place a restriction on �Kt+1: This restriction replaces

the intertemporal equation in the standard model, which relates the rate of return on capital,

Rk
t+1; to the intertemporal marginal rate of substitution in consumption. The remaining two

�nancial variables to determine are the aggregate quantity of debt extended to entrepreneurs

in period t; Bt+1, and their state-contingent interest rate, Zt+1: Note,

Bt+1 =

Z 1

0

BN
t+1ft (N) dN =

Z 1

0

�
Q �K;t

�KN
t+1 �N

�
ft (N) dN = Q �K;t

�Kt+1 � �Nt+1;

where the last equality uses (2.13) and (2.14): Finally, Zt+1 can be obtained by integrating

(2.10) relative to the density ft (N) and solving Zt+1 = Rk
t+1�!t+1Lt:

21The relations that characterize the solution to the time t entrepreneur�s problem are, �rst, one zero pro�t
condition,

[�t(�!t+1)� �Gt(�!t+1)]
Rkt+1
Rt+1

Lt � Lt + 1 = 0;

for each period t+ 1 state of nature; and second, the following single e¢ ciency condition:

Et

�
[1� �t(�!t+1)]

Rkt+1
Rt+1

+
�0t(�!t+1)

�0t(�!t+1)� �G0t(�!t+1)

�
Rkt+1
Rt+1

(�t(�!t+1)� �Gt(�!t+1))� 1
��

= 0:
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2.3 Household Problem and Resource Constraint

The budget constraint of the representative household is as follows:

(1 + � c)PtCt +Bt+1 +BL
t+40 +

�
Pt

�t��;t

�
It +Q �K;t (1� �) �Kt (2.16)

�
�
1� � l

� Z 1

0

W i
thi;tdi+RtBt +

�
RL
t

�40
BL
t +�t +Q �K;t

�Kt+1:

Here, Bt+1 denotes mutual fund deposits acquired by the household at the end of period t and

Rt denotes the gross nominal return on deposits acquired in period t�1; which is not contingent

on the period t state of nature. Also, � c and � l denote the tax rate on consumption goods and

on wage income, respectively. We also give the household access to a long term (10 year) bond,

BL
t+40; which pays o¤R

L
t+40 in period t+40: The nominal return on this bond, R

L
t+40; is known

at time t: The expression, �t; denotes pro�ts net of lump sum taxes earned by the household.

The remaining terms in (2.16) pertain to the household�s activities in constructing capital. At

the end of the production period in t; the household purchases investment goods, It; from �nal

good producers and existing capital, (1� �) �Kt; from entrepreneurs and uses these to produce

and sell new capital, �Kt+1 using the technology in (2.4).

The household�s problem is to maximize (2.7) subject to (2.16). We complete the descrip-

tion of the model with a statement of the resource constraint:

Yt = Dt +Gt + Ct +
It

�t��;t
+ a (ut)�

�t �Kt;

where the last term on the right represents the aggregate capital utilization costs of entrepre-

neurs, an expression that makes use of (2.14) and the fact that each entrepreneur sets the same

rate of utilization on capital, ut: Also, Dt is the aggregate resources used for monitoring by

mutual funds:

Dt = �G(�!t)
�
1 +Rk

t

� Q �K;t�1 �Kt

Pt
:

Finally, Gt denotes government consumption, which we model as

Gt = z�t gt; (2.17)

where gt is a stationary stochastic process. We adopt the usual sequence of markets equilibrium

concept.
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2.4 Shocks, Information and Model Perturbations

In our analysis, we include a measurement error shock on the long term interest rate, RL
t : In

particular, we interpret �
RL
t

�40
=
�
~RL
t

�40
�t+1 � � � �t+40;

where �t is an exogenous measurement error shock. The object, R
L
t , denotes the long-term in-

terest rate in the model, while ~RL
t denotes the long-term interest rate in the data. If �t accounts

for only a small portion of the variance in ~RL
t , then we infer that the model�s implications for

the long term rate are good.

The model we estimate includes 12 aggregate shocks: �t; �t, �zt, �ft, �
�
t , �c;t, ��;t, �I;t ,


t, �t, "
p
t and gt. We model the log-deviation of each shock from its steady state as a �rst

order univariate autoregression. In the case of the in�ation target shock, we simply �x the

autoregressive parameter and innovation standard deviation to ��� = 0:975 and ��� = 0:0001,

respectively. This representation is our way of accommodating the downward in�ation trend

in the early part of our data set. Also, we set the �rst order autocorrelation parameter on each

of the monetary policy and equity shocks, "pt and 
t, to zero.

We now discuss the timing assumptions that govern when agents learn about shocks. A

standard assumption in estimated equilibrium models is that a shock�s statistical innovation

(i.e., the one-step-ahead error in forecasting the shock based on the history of its past real-

izations) becomes known to agents only at the time that the innovation is realized. Recent

research casts doubt on this assumption. For example, Alexopoulos (2011) and Ramey (2011)

use US data to document that people receive information about the date t statistical innovation

in technology and government spending, respectively, before the innovation is realized. These

observations motivate us to consider the following shock representation:

xt = �xxt�1 +

=utz }| {
�0;t + �1;t�1 + :::+ �p;t�p; (2.18)

where p > 0 is a parameter. In (2.18), xt is the log deviation of the shock from its nonstochastic

steady state and ut is the iid statistical innovation in xt.22 We express the variable, ut; as a

sum of iid; mean zero random variables that are orthogonal to xt�j; j � 1:We assume that at

time t; agents observe �j;t; j = 0; 1; :::; p:We refer to �0;t as the �unanticipated component�of ut

and to �j;t as the �anticipated components�of ut+j; for j > 0: These bits of news are assumed

22This is a time series representation suggested by Josh Davis (2007) and also used in Christiano, Ilut, Motto
and Rostagno (2010).
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to have the following correlation structure:

�ji�jjx;n =
E�i;t�j;tq�
E�2i;t

� �
E�2j;t

� ; i; j = 0; :::; p; (2.19)

where �x;n is a scalar, with �1 � �x;n � 1:23 The subscript, n; indicates �news�. For the sake

of parameter parsimony, we place the following structure on the variances of the news shocks:

E�20;t = �2x;0; E�
2
1;t = E�22;t = :::E�2p;t = �2x;n:

In sum, for a shock, xt; with the information structure in (2.18), there are four free parameters:

�x; �x;n; �x;0 and �x;n: For a shock with the standard information structure in which agents

become aware of ut at time t; there are two free parameters: �x; �x:

We consider several perturbations of our model in which information structure in (2.18) is

assumed for one or more of the following set of shocks: technology, monetary policy, government

spending, equity and risk shocks. As we shall see below, the model that has the highest

marginal likelihood is the one with signals on the risk shock, and so this is our �baseline�model

speci�cation. We also consider a version of our model called CEE, which does not include

�nancial frictions. Essentially, we obtain this model from our baseline model by adding an

intertemporal Euler equation corresponding to household capital accumulation and dropping

the three equations that characterize the �nancial frictions: the equation characterizing the

contract selected by entrepreneur, the equation characterizing zero pro�ts for the �nancial

intermediaries and the law of motion of entrepreneurial net worth.

3 Inference About Parameters and Model Fit

This sectior reviews the basic results for inference on our model. We discuss the data used

in the analysis, the posteriors for model parameter values, measures of model �t and our

speci�cation of news shocks.

3.1 Data

We use quarterly observations on 12 variables covering the period, 1985Q1-2010Q2. These

include 8 variables that are standard in empirical analyses of aggregate data: GDP, consump-

tion, investment, in�ation, the real wage, the relative price of investment goods, hours worked

23We allow for correlation because in preliminary estimation runs, we found that the estimated news shocks
were correlated.
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and the federal funds rate. We interpret the price of investment goods as a direct observation

on �t��;t. The aggregate quantity variables are measured in real, per capita terms.
24

We also use four �nancial variables in our analysis. For our period t measure of credit, Bt+1;

we use data on credit to non-�nancial �rms taken from the Flow of Funds dataset constructed

by the US Federal Reserve Board.25 Our measure of the slope of the term structure, RL
t �Rt;

is the di¤erence beween 10-year constant maturity US government bond yield and the Federal

Funds rate. Our period t indicator of entrepreneurial net worth, Nt+1; is the Dow Jones

Wilshire 5000 index, de�ated by the Implicit Price De�ator of GDP. Finally, we measure the

credit spread, Zt � Rt; by the di¤erence between the interest rate on BAA-rated corporate

bonds and the 10 year US government bond rate.26

3.2 Priors and Posteriors for Parameters

We partition the model parameters into two sets. The �rst set contains parameters that we

simply �x a priori. Thus, the depreciation rate �; capital�s share, �; and the inverse of the

Frisch elasticity of labor supply �L are �xed at 0:025, 0:4 and 1; respectively. We set the mean

growth rate, �z, of the unit root technology shock and the quarterly rate of investment-speci�c

technological change, �, to 0:41% and 0:42%; respectively. We chose these values to ensure

that the model steady state is consistent with the mean growth rate of per capita GDP in our

sample, as well as the average rate of decline in the price of investment goods. The steady state

value of gt in (2.17) is set to ensure that the ratio of government consumption to GDP is 0:20

in steady state. Steady state in�ation is �xed at 2:4 percent on an annual basis. The household

discount rate, �; is �xed at 0:9987: There are no natural units for the measurement of hours

worked in the model, and so we arbitrarily set  L so that hours worked is unity in steady state.

Following CEE, the steady state markups in the labor market �w and in the product market
24GDP is de�ated by its implicit price de�ator; real household consumption is the sum of household purchases

of nondurable goods and services, each de�ated by their own implicit price de�ator; investment is the sum of
gross private domestic investment plus household purchases of durable goods, each de�ated by their own price
de�ator. The aggregate labor input is an index of nonfarm business hours of all persons. These variables are
converted to per capita terms by dividing by the population over 16. (Annual population data obtained from
the Organization for Economic Cooperation and Development were linearly interpolated to obtain quarterly
frequency.) The real wage, Wt=Pt; is hourly compensation of all employees in nonfarm business, divided by
the GDP implicit price de�ator, Pt: The short term risk-free interest rate, Rt; is the 3 month average of the
daily e¤ective Federal Funds rate. In�ation is measured as the logarithmic �rst di¤erence of the GDP de�ator.
The relative price of investment goods, P It =Pt = 1=

�
�t��;t

�
; is measured as the implicit price de�ator for

investment goods, divided by the implicit price de�ator for GDP.
25From the ��ow data�tables we take the �credit market instruments�components of �net increase in liabilities�

for nonfarm, non�nancial corporate business and nonfarm, non-corporate business.
26We also considered the spread measure constructed in Gilchrist and Zakrajcek (2011). They consider each

loan obtained by each of a set of �rms taken from the COMPUSTAT database. In each case, they compare the
interest rate actually paid by the �rm with what the US government would have paid on a loan with a similar
maturity. When we repeated our empirical anlaysis using the Gilchrist-Zakrajcek spread data, we obtained
similar results.
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�f are �xed at 1:05 and 1:2, respectively. The steady state value of the quarterly survival rate

of entrepreneurs, 
; was set to 0.985. This is fairly similar to the 0.973 value used in Bernanke,

et al (1999). Our settings of the consumption, labor and capital income tax rates, � c; � l and

� k; respectively, are discussed in Christiano, Motto and Rostagno (2010, pages 79-80).

The second set of parameters to be assigned values consists of the 36 parameters listed

in Tables 1a and 1b. We study these using the Bayesian procedures surveyed in An and

Schorfheide (2005). Table 1a considers the parameters that do not pertain to the exogenous

shocks in the model. The price and wage stickiness parameters, �p and �w, were given relatively

tight priors around values that imply prices and wages remain unchanged for on average one-

half and one year, respectively. The posteriors for these parameters are higher. The relatively

large value of the posterior mode on the parameter, �a; governing the capital utilization cost

function implies constant utilization. In most cases, there is a reasonable amount of information

in the data about the parameters, indicated by the fact that the standard deviation of the

posterior distribution is often less than half of the standard deviation of the prior distribution.27

We choose to treat the steady state probability of default, F (�!) ; as a free parameter. We

do this by making the variance of log! a function of F (�!) and the other parameters of the

model. The mean of our prior distribution for F (�!), 0.007, is close to the 0.75 quarterly percent

value used in Bernanke, et al (1999), or the 0.974 percent value used in Fisher (1999). The

mode of the posterior distribution is not far away, 0.0056. The mean of the prior distribution

for the monitoring cost, �; is 0.275. This is within the range of 0:20� 0:36 that Carlstrom and

Fuerst (1997) defend as empirically relevant. The mode of the posterior distribution for � is

close, 0.2149. Comparing prior and posterior standard deviations, we see that there is a fair

amount of information about the monitoring cost in our data and somewhat less about F (�!) :

The steady state value of the risk shock, � =
p
V ar(log (!)); that is implied by the mode of

our model parameters is 0.26. Section 5 below discusses some independent evidence on the

empirical plausibility of this result for the risk shock.

Values for the parameters of the shock processes are reported in Table 1b. The posterior

mode of the standard deviation of the unanticipated component of the shock to log �t, �0;t; is

0.07. The corresponding number associated with the anticipated components, �i;t; i = 1; :::; 8;

is 0.0283. This implies that a substantial 57 percent of the variance in the statistical innovation

in log �t is anticipated.28 The posterior mode on the correlation among signals is 0.4. Thus,

27In this remark, we implicitly approximate the posterior distribution with the Laplace approximation, which
is Normal.
28In particular,

0:57 =
8� 0:02832

8� 0:02832 + 0:072 :
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when agents receive information, �i;t; i = 0; :::; 8 about current and future risk, there is a

substantial correlation in news about adjacent periods, while that correlation is considerably

smaller for news about horizons three periods apart and more.29

For the most part, the posterior modes of the autocorrelations of the shocks are quite

large. The exception is the autorcorrelation of the growth rate of the persistent component

of technology growth, �z;t: This is nearly zero, so that log zt is nearly a random walk. There

appears to be substantial information in the data about the parameters of the shock processes,

as measured by the small size of the posterior standard deviation relative to the prior standard

deviation. The exception is the anticipated and unanticipated components of the risk shock,

where the standard deviation of the posterior is actually larger than the standard deviation of

the prior.

3.3 Where is the News?

In our baseline model we include �news shocks�on risk and not on other variables. On the

other hand, much of the news literature includes these shocks on technology and government

consumption. This section reports marginal likelihood statistics which suggest that the most

preferred shock to put news on is the risk shock.

Consider Table 2. According to that table the (log) marginal likelihood of our baseline

model is 4563.37. When we drop signals altogether, the marginal likelihood drops a tremendous

amount, roughly 400 log points. We then consider adding news shocks to various other shocks

(keeping the news shocks o¤ of risk shocks). When we add news shocks only to the equity

shock, 
; the marginal likelihood jumps substantially, but not as much as when we add news

shocks to risk. The same is true when we add news shocks to the monetary policy shock and to

all our technology shocks. When we add news shock to government consumption shocks, the

marginal likelihood actually drops a little. Overall, the analysis favors the use of news shocks,

but most prefers adding them to risk, as in our baseline speci�cation.

3.4 Measures of Fit

Our model has more parameters than a standard medium-sized DSGE model like CEE. Al-

though we have at the same time confronted our model with more data, we nevertheless want

to guard against overparameterization. A symptom of overparameterization is that model

29For example, the correlation between �1;t and �4;t is only 0.4
3 = 0:06:
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predictions deteriorate for objects not included in the estimation sample.30 For this reason,

this section examines our model�s out of sample forecasts along two dimensions. We �nd little

evidence of overparameterization. We also display the results of an in-sample measure of �t:

the model and data correlations between output and various other variables.

Figure 2 displays out-of-sample root mean square errors (RMSE�s) at forecast horizons,

j = 1; 2; :::; 12: Our �rst set of 12 forecasts is computed in 2001Q3 and our last set of forecasts

is computed in 2008Q1. We include forecasts for each of the 12 variables in our dataset.

Thus, we consider forecasts of quarterly growth rates of the variables our model predicts

are not covariance-stationary and we consider forecasts of levels of the variables that our

model predicts are stationary. We include two benchmark RMSE�s for comparison. The �rst

benchmark corresponds to the RMSE�s implied by a Bayesian vector autoregression (BVAR),

constructed using the procedure applied in SW.31 The second benchmark corresponds to the

RMSE�s implied by the version of our DSGE model labeled CEE and discussed in section

2.4. Forecasts of the BVAR are based on the posterior modes of the parameters updated each

quarter. In the case of the DSGE models, we update the parameters every other quarter. The

grey area in the �gures is centered on the RMSE�s for the BVAR. It is constructed so that if the

RMSE of our baseline model lies in the grey area for a particular variable and forecast horizon,

then the classical null hypothesis that the two RMSE�s are actually the same in population

fails to be rejected at the 95 percent level at that horizon.32

With one exception, our baseline model�s performance is the same or better than that of

the CEE model and - in the case of variables not in the CEE model - the baseline model does

about the same or better than the BVAR. In the case of in�ation, the baseline model does

noticeably better than the CEE model and even lies below the grey area about the BVAR.

The exceptional case, in which the baseline model performs noticeably worse than the BVAR,

corresponds to the credit spread. Our overall impression is that there is little evidence of

overparameterization in our baseline model.

30A dramatic illustration of the dangers of overparameterization is provided by the demonstration �le, cen-
sus.m, provided with the program language MATLAB. Decadal observations on the US population, 1900-2000,
are �tted with a sequence of higher order polynomial trends. Each polynomial provides a better in-sample �t of
the data until the 10th order polynomial provides a perfect �t to the 11 observations. Low order polynomials
provide reasonable forecasts for the post-2000 population, but as the order increases above 4 the forecasts
become increasingly erratic and bizarre.
31In particular, we work with a �rst order vector autoregression speci�ed in levels (or, in case of the real

quantities, log levels) of all the variables. With one exception we implement the so-called Litterman priors. In
particular, for the variables that our model predicts are non-startionary, we center the priors on a unit root
speci�ation. For the variables that our model predicts are stationary, we center the priors on the �rst order
autoregressive representation with autoregressive coe¢ cient 0.8. [Fill in the rest of the details about how the
priors are parameterized and how ML�s are not robust to priors, though RMSEs are.]
32The procedure we use is the one proposed in Christiano (1989). The sampling theory we use does not take

into account that the test is executed for multiple horizons.
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For our second out-of-sample test of the model we use the two-sided Kalman smoother

to estimate the period t default rate, Ft�1 (�!t) ; implied by our model and compare it with

the deliquency rate on all loans extended by commerical banks.33 The results are reported in

Figure 3. Note that the default rate implied by our model rises and falls with each of the three

recessions in our sample, just like the loan delinquency rate. However, the match between our

model�s default rate and the delinquency rate is not perfect since the latter lags recessions

somewhat. First, the levels of the two variables are di¤erent. To some extent, this may re�ect

that the loan delinquency rate is only an indicator of the model�s default rate. It may be that

in practice, troubled �rms default on other creditors �rst and only on commercial banks later

and as a last resort. Second, our model�s default rate peaks during the �rst and last recessions

in our sample and actually leads the middle recession somewhat. We suspect that the reason

our model�s default rate does not lag the cycle like the delinquency rate is that the credit

spread used in our analysis also does not lag the cycle.

In sum, we provide two out-of-sample tests of our model. In both cases, the model passes

reasonably well.

Figure 4 displays the model�s implications for the dynamic cross-correlations of year-over-

year output growth with several variables.34 The grey area is a centered 95% con�dence

interval about the corresponding empirical estimates, which are not displayed.35 The line with

stars are the model correlations when all shocks are fed to it. (The lines with circles are

discussed later.)36 For the most part, the model correlations conform with the corresponding

sample statistics from our dataset. There are some exceptions. For example, the model

understates the contemporaneous correlation between output and consumption and overstates

the dynamic correlation between output and future consumption (see Panel F). Also, while

the model captures the general countercyclical pattern in the credit spread, the model implies

the credit spread lags output slightly while there is (modest) evidence that the spread leads

output in the data. The economic reasons behind these exceptions are discussed later.

33The data were obtained from the St. Louis Federal Reserve Bank�s online database, FRED. The FRED
mnenomic is DRALACBS.
34Variables that are non-stationary according to the model are measured in year-over-year growth rates,

while the credit spread and term structure slope are measured in levels.
35The con�dence intervals were computed using standard Generalized Method of Moments formulas. We

stacked all the parameters in the cross correlation, corr (yt; xt�k), between HP �ltered and logged output, yt;
and some other variable, xt; in a vector, say �:We then formed a vector, ut (�) ; such that Eut

�
�0
�
= 0; where

�0 denotes the true value of the cross-correlations. The exactly identi�ed estimator of �; �̂; sets the sample
average of ut (�) to zero. The object, �̂; has an asymptotically Normal distribution with variance-covariance
matrix that requires a consistent estimator of the spectral density at frequency zero of ut

�
�0
�
: Let �j

�
�0
�
�

Eut
�
�0
�
ut�j

�
�0
�0
for jjj � 0:Our estimator of the zero frequency spectral density is �0

�
�̂
�
+�1

�
�̂
�
+�1

�
�̂
�0
:

36Model-based calculations were executed on a single sample of arti�cial data of length 100,000.
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4 The Risk Shock

Our main �nding in this paper is that the risk shock is a key driver of the business cycle. We

begin this section by describing various quantitative indicators of the importance of the shock.

We then discuss what it is about our model and data that explains our �nding. Finally, we

show what shocks are displaced with the introduction of the risk shock.

4.1 Measuring the Importance of the Risk Shock

Consider �rst the results in Figure 5. The solid line in panel a displays the year over year growth

rate in per capita, real US gross domestic product (GDP) for our sample. An interpretation of

this line is that it is the result of simulating our model�s response to all of the estimated shocks

and to the initial conditions. The dotted line shows the result of this same simulation when

we only feed our model the estimated risk shock, including its unanticipated and anticipated

components. The notable feature of panel a is how close the dotted and solid lines are to

each other. According to the results, the decline in GDP growth associated with the 2001

recession is closely associated with the risk shock. The 2007 recession is somewhat di¤erent.

The initial phase of that recession seems to have been driven by factors other than the risk

shock. However, according to the results the accelerated collapse in economic activity that

occured in late 2008 was largely due to an increase in risk at that time. Not coincidentally,

this is also the time when the credit spread increased sharply (see panel f). The remaining

panels in Figure 5 indicate that the risk shock is even more closely associated with aggregate

�nancial variables than it is with aggregate output. Thus, panel b shows that the risk shock

alone accounts for a large portion of the �uctuations in the log level of per capita, real equity.

Panel c shows that a very large part of the movements in the year over year growth rate in

real per capita credit are accounted for by the risk shock. Panel d indicates that the risk shock

accounts for a substantial component of the �uctuations in the slope of the term structure of

interest rates. Panel e shows that the risk shock accounts for a very large part of the movements

in the credit spread. In sum, the risk shock accounts for a large part of the movements of the

key variables in our data set.

To gain additional insight into the results in panel e, panel f displays the estimated risk

shock and our measure of the credit spread, copied for convenience from Figure 3.37 Note that

although the risk shock, �t; and the credit spread are positively related, they are by no means

perfectly correlated. This is so, despite the panel e result that when we feed only the estimated

37The estimated risk shock was obtained by applying the Kalman smoother and our model with its parameters
evaluated at their posterior mode, to the data. The risk variable reported in the �gure is (�t � �) =�:
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anticipated and unanticipated innovations in �t to the baseline model, the resulting simulated

credit spread tracks the corresponding empirical measure very closely. In e¤ect, the position

taken by the model is that the credit spread is a complicated dynamic function of the signals

about the risk shock, �t; and not just a simple function of the contemporaneous value of �t:

Our �nal indicator of the importance of risk shocks appears in Table 3. That table reports

the percent of the variance in the level of several variables at business cycle frequencies, con-

tributed by our shocks.38 This is done for several speci�cations of our model. The entries in

the �rst column of panels have a format, xjyjz; where x; y and z each denote the percent of

business cycle variance due to various components of the innovations to risk. The variable,

x pertains to both anticipated and unanticipated components, �0;t; :::; �8;t; y pertains to the

unanticipated component, �0t ; and z pertains to the anticipated component, �1;t; :::; �8;t: The

sum, x + y + z; does not always add to unity because there is a small amount of correla-

tion between the shocks (see (2.19)). In each case, the model is evaluated at the mode of its

parameters, computed using the dataset indicated in the �rst column.

Consider the results in the �rst row of each panel, which correspond to our baseline model

with the values of the parameters set at their posterior mode (subsequent rows are considered

later). The �rst column of panels pertain to the risk shock. Consistent with the evidence in

Panel a of Figure 5, over 60 percent of the business cycle variance in output is accounted for

by the risk shock. Indeed, the risk shock is by far more important for GDP than are any of the

other shocks. Again, consistent with the �ndings in Figure 5, the risk shock also plays a big

role in the business cycle �uctuations of �nancial variables, namely the level of the log of the

real value of each of the stock market (�Equity�), the premium (�Premium�), credit (�Credit�)

and the slope of the term structure (�Slope�). Interestingly, the risk shock makes the linear

term structure model of interest rates look good, because our term premium shock (i.e., the

�error in the linear term structure) only accounts for 7 percent of the �uctuations in the term

structure. The other rows in each panel of Table 3 provide some insight into why the risk

shock is so important, and these are discussed later.

4.2 Why is the Risk Shock So Important?

The simple answer to the question in the title is that when fed to our model, the risk shock

generates responses that resemble the business cycle. One way that we show this is by studying

our model�s impulse responses to disturbances in risk. In principle, model impulse responses

38We compute the variance of the (log) levels of the variables in the frequency domain, leaving o¤ frequencies
lower than the business cycle.
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point to another way to evaluate a model, namely by comparing them to analogous objects esti-

mated using minimally restricted vector autoregressions (VAR). However, the model developed

here implies that standard methods for identifying VARs do not work.39 These considerations

motivate us to also consider a second type of evidence, one based on the implications of risk

shocks for the dynamic cross-correlations of aggregate output with various macroeconomic

variables. Finally, we ask which variables in our dataset account for the pre-eminence of the

risk shock over other variables.

4.2.1 Impulse Response Functions

Turning to impulse response functions, Figure 6 displays the dynamic response of various

variables to an unanticipated shock in risk (i.e., �0;t; solid line) and to a 2 year-ahead anticipated

shock (i.e., �8;t; line with circles). (The thick solid line and thick line with circles will be

discussed later.) Both shocks occur in period 0. To simplify the interpretation of the impulse

responses, each of �0;0 and �8;0 are disturbed in isolation, ignoring the fact that according to

our empirical analysis, these variables are correlated. In addition, we restrict both shocks to

be the same magnitude, with �0;0 = �8;0 = 0:10.

Panel H displays the dynamic response of �t to the two shocks. The response of �t to �8;0

is the same as the response to �0;0; except that it is displaced by 8 periods. According to Panel

A, the response of the credit spread to �0;0 and �8;0 di¤ers in the same way that the response

in �t to these shocks di¤ers.40 Still, the response of the credit spread is countercyclical in each

case. The dynamic responses of the other variables to �0;0 and to �8;0 are much more similar.

In particular, credit, investment, output and in�ation all drop immediately and persistently

in response to both �0;0 and �8;0: In all these cases, the eventual response to �8;0 exceeds the

eventual response to �0;0: The slope of the term structure of interest rates, RL
t �Rt; responds

countercylically in response to jumps in response to both risk shocks. Notably, the peak

39The results in Figure 5 (e) and in Table 3 suggest that the risk shock and the credit spread are very
similar. This might tempt one to pursue a standard identi�cation strategy to obtain an empirical estimate of
the impulse response function of macroeconomic variables to risk shocks. This strategy would interpret one-step-
ahead forecast errors in the interest rate spread computed using a limited list of standard aggregate variables
as shocks to �t that are unexpected by economic agents. Under this interpretation, the estimated dynamic
responses in economic variables to the one-step-ahead forecast error in the interest rate spread would constitute
an empirical estimate of the model�s impulse response to risk shocks. But, this standard identi�cation strategy
is not justi�ed in our framework because of our assumption that components of the one-step-ahead forecast
error in risk are anticipated as much as two years in advance. Ramey (2011) in particular has emphasized
how the standard identi�cation strategy leads to distorted inference when agents receive advance news about
one-step-ahead forecast errors.
40Note that �0;t has a smaller impact on the period t interest rate spread than on subsequent values of the

spread. This is because the period t spread corresponds to loans extended in period t� 1: Disturbances in �0;t
a¤ect �t, which has a direct impact on loans extended in period t and therefore on the period t + 1 spread.
The fact that �0;t has some e¤ect on the period t spread re�ects the state contingency in the interest rate paid
by entrepreneurs.
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response of the slope to �8;0 is twice as big as the peak response of the slope to �0;0:

Consider Panel F, which displays the response of consumption to a jump in risk. There is

perhaps a small qualitative di¤erence in the response of consumption to the �0;0 and �8;0 shocks.

Consumption drops immediately in response to �0;0 while it exhibits almost no response in the

immediate aftermath of a disturbance in �8;0: Still, in both cases consumption eventually drops

sharply. We now discuss the economics of the decline in consumption in the wake of a rise in

risk.

From the perspective of the representative household in our model, a rise in risk resembles

an increase in the tax rate on the return to investment.41 This is because as risk increases, a

larger share of the return to investment is siphoned o¤ by the monitoring costs associated with

increased bankruptcy. Of course, there is a wealth e¤ect that works in the other direction,

dragging consumption down after a rise in risk. For example, if monitoring costs absorbed

a substantial portion of output, then we would expect these wealth e¤ects to be important.

However, these wealth e¤ects play only a minor role in our model. From this perspective, one

is led to anticipate that a rise in risk induces substitution away from investment and towards

the alternatives: consumption and leisure. In particular, this intuition leads one to anticipate

that risk shocks counterfactually predict consumption is countercyclical and that they therefore

cannot be important impulses to the business cycle. So, a key challenge for understanding why

our analysis concludes risk shocks are in fact a very important source of business cycles is to

explain why the consumption response to risk shocks is procyclical.

One way to understand the impact of risk shocks begins with the identity that total output

equals total spending. If a component of spending is reduced for some reason (say, because

of a rise in risk), then output will decline by the same amount, unless some other component

of spending on goods increases. In practice, it is desirable for other components of spending

to rise to at least partially o¤set the fall in investment because otherwise productive resources

such as capital and labor are wasted. Frictionless markets avoid this ine¢ cient outcome by

engineering a fall in the price of the goods whose demand has declined, relative to the price

of other goods. One such relative price in the present example is the price of current goods

relative to the price of future goods, i.e., the real interest rate. For example, when there is a

temporary jump in the tax on the period t+1 return to capital, then the real interest rate from

41For a formal discussion of this point, see Christiano and Davis (2006). They show that a model like the one
in this paper is isomorphic to a real business cycle model with shocks to the tax rate on the rate of return on
capital. Christiano and Davis (2006) build on the analysis of Chari, Kehoe and McGrattan (2007), who stress
the insights one gains by mapping a given dynamic model into a real business cycle model with �wedges�. Chari,
Kehoe and McGrattan (2007) illustrate their point by displaying the isomorphism between a real business cycle
model with suitably constructed wedges and the model of �nancial frictions proposed by Carlstom and Fuerst
(1997).
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t to t+ 1 drops and time t consumption rises. The market signal that encourages households

to raise consumption is a drop in the real interest rate.42

This reasoning suggests that the dynamics of the real interest rate holds the key to under-

standing why risk shocks make consumption procyclical.43 In our model the real interest rate

is not entirely determined by market forces because the nominal rate of interest is controlled by

the monetary authority. Of course, the fact that the monetary authority controls the nominal

interest rate would be irrelevant if prices were fully �exible, because for the most part it is

the real interest rate that controls allocations. But, in our model prices do not adjust �exibly

to shocks, both because there are direct frictions in changing prices and because of inertia in

wages. As a result, the fact that the monetary authority controls the nominal rate of interest

implies that it also controls the real rate of interest. This suggests the possibility that the

response of consumption to a risk shock depends on the nature of monetary policy.

To evaluate these ideas, Figure 7 displays the response of consumption and the real interest

rate to a positive shock in �0;0; under various model perturbations. Here, we use the long-

term concept of the real interest rate.44 In both panels of Figure 7, the solid line displays

the responses in our baseline model, taken from the relevant portions of Figure 6. The lines

with circles correspond to the case of �exible prices and wages, i.e., �p = �w = 0. Note that,

consistent with the intuition outlined above, consumption rises in the wake of a positive shock

42The following calculations illustrate the logic in the text. Consider an annual real business cycle model in
which the resource constraint is Ct + It � K0:36

t h0:64t ; It = Kt+1 � 0:9Kt; and the period utility function is
logCt + 2:5 log (1� ht) with discount factor, � = 0:97: The after tax rate of return on capital constructed in
period t; Kt+1; is (1� � t)

h
0:36 (ht+1=Kt+1)

0:64
+ 0:9

i
; where � t is observed in period t; and is the tax rate

on the time t + 1 realized return on capital. Perturbations in � t are a reduced form representation of shocks
to �t; according to the analysis in Christiano and Davis (2006). The revenue e¤ects of � t are assumed to
be distributed in lump sum form back to households, thus eliminating wealth e¤ects associated with � t: We
suppose that � t = 0:9� t�1 + "t; where "t is an iid shock. In steady state, C=Y = 0:73. We solved the model
by a standard log-linearization procedure. We set "0 = 0:01 and "t = 0 for t > 0: The shock has a substantial
negative impact on investment, which drops 16 percent in period 0. Absent a response in C0; output would
have fallen 2.7 percent. In fact, C0 rises by 2.7 percent so that the actual fall in output is smaller (though not
a lot smaller!). The market force that guides the rise in C0 is a drop in the real rate of interest.
43Our discussion assumes separability between consumption and leisure in the utility function. Furlanetto

and Seneca (2011) show that consumption could fall in response to a contractionary intertemporal shock such
as a jump in risk if the marginal utility of consumption is increasing in labor.
44According to the model, the period t long term real interest rate is more closely connected to period t

consumption than, for example, the one period real interest rate at period t: Our long term interest rate is the
real non-state contingent interest rate on a 10 year bond purchased in period t which pays o¤ only in period
t+ 40: It is the value of rLt which solves:

uc;t =
�
rLt �

�40
Etuc;t+40;

where uc;t denotes the derivative of date t present discounted utility with respect to Ct. To see the importance
of rLt for current consumption, suppose marginal utility is a function of Ct alone and note that Etuc;t+40
does not respond to stationary shocks at time t; such as disturbances to risk. In this way the above equation
represents Ct as a function of rLt alone. In our environment, we assume habit persistence so that uc;t is not
just a function of Ct; but the logic based on the assumption of time separable utility is nevertheless a good
guide to intuition.

26



to risk under �exible wages and prices. This outcome is accomplished by a greater drop in the

real rate of interest in the �exible wage and price case. These results suggest that if monetary

policy were to cut the interest rate more aggressively in the wake of a risk shock, consumption

would respond by rising. We veri�ed this by introducing a term, �(�t � �), in the monetary

policy rule (recall, a variable without a subscript refers to its steady state value). In this way,

the monetary authority reduces the nominal rate of interest more sharply in response to a risk

shock than it does in our baseline speci�cation. Panel A in Figure 7 con�rms that in this case,

consumption indeed does rise in the wake of a risk shock.

Thus, our analysis indicates that consumption is procyclical in response to risk shocks

because under our (standard) representation of monetary policy, the authorities do not cut the

interest rate very aggressively in response to a contractionary risk shock. This is so, despite the

fact that our empirical estimate of the weight on anticipated in�ation in the policy rule, 2.4, is

somewhat high relative to other estimates reported in the literature (see Table 1a). Given that

a positive shock to risk reduces in�ation, a relatively high weight on in�ation in the monetary

policy rule implies that the monetary authority reduces the interest rate relatively sharply

in response to such a shock.45 Still, the high weight assigned to in�ation in our estimated

policy rule is not large enough to support allocations that resemble the ones that occur under

�exible wages and prices. We have found that one must raise the weight on in�ation to an

unrealistically high level of around 30 to support those allocations.

The �nding that the interest rate response to risk shocks under the standard formulation

of monetary policy is too weak to support the �exible price and wage allocations has been

found for other shocks as well.46 Consistent with this intuition, the thick lines in Panel F of

Figure 6 show that when the weight on in�ation in the monetary policy rule, ��; is reduced

to 1.5, then the drop in consumption in the wake of a risk shock is stronger. The impact is

particularly noticeable for the anticipated shock, �8;0: The cut in the value of �� does not have

an interesting impact on any of the other responses in Figure 6, and so we do not display those

in the �gure.

4.2.2 Dynamic Cross Correlations

Figure 4 provides a second way to make precise our assertion that risk shocks generate dynamics

that resembles the business cycle. For these purposes, we de�ne the business cycle as the

45This is a numerical �nding. A higher weight on in�ation leads the monetary authority to cut the interest
rate more for a given fall in in�ation. However, the magnitude of the fall in in�ation is itself reduced with a
higher coe¢ cient on in�ation. Based on these a priori considerations, it is not clear whether the interest rate
should fall more or less in the wake of a positive shock to risk, when the weight on in�ation is increased.
46For further discussion, see Christiano, Trabandt and Walentin (2011).
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dynamic cross correlations between output and the variables in Figure 6. As discussed earlier,

before computing the correlations in Figure 4, our data on output, credit, investment, equity

and consumption were logged and converted to year-over-year growth rates. The grey area

is a centered 95 percent con�dence interval about the empirical correlations, which are not

themselves displayed. In the �gure, �slope�indicates the slope of the term premium, RL � R;

and credit spread indicates Z � R; the premium of the interest rate paid by (non-defaulting)

entrepreneurs over the risk-free rate. The circled lines in Figure 4 display the model-implied

correlations when only the risk shocks (both unanticipated and anticipated) are activated. We

emphasize two results in Figure 4. First, the dynamic correlations implied by the model with

only risk shocks resemble the correlations when all shocks are activated. This illustrates how

risk shocks are a dominant shock in the model. Second, the dynamic correlations with only

the risk shock resemble broadly the corresponding objects in the data and in this sense, they

generate what looks like a business cycle.

Taken together the impulse response functions and cross correlation analysis quantify the

sense in which risk shocks in the model generate dynamics that resemble the business cycle.

This is the principle reason why our econometric analysis assigns such an important role in

business cycles to risk shocks.

4.2.3 Which Data Account for the Importance of the Risk Shock?

Our conclusion that the risk shock is the most important shock driving the business cycle

depends very much on the fact that we include �nancial variables in the analysis. We can see

this by examining the rows beyond the �rst one in each panel of Table 3. Those rows report

our analysis when the variable or variables in the left column are deleted from the dataset.

For example, the second row in the �rst panel reports what happens when credit is dropped

(see �delete credit�). Generally, the number of model parameters is invarient to which row

is considered, with two obvious exceptions. When equity is dropped from the data set, the

measurement error variance for equity drops from the set of model parameters. Similarly, when

the slope of the term structure is dropped, then the parameters governing the term structure

shock drop from the set of model parameters.

The key thing to note is that when all �nancial variables are dropped, then the risk shock

vanishes in importance and the marginal e¢ ciency of investment shock appears to be the most

important driver of the business cycle. Thus, note that the row, �drop all �n. var�indicates that

risk shocks play virtually no role in �uctuations in output, consumption and investment. In

the absence of the �nancial variables from the dataset, the resulting model resembles, in terms
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of the explanatory role of the shocks, the CEE model. In particular, the major shock driving

�uctuations is the marginal e¢ ciency of invesment shock, �I;t: To some extent, the degree

to which the risk shock is pushed out when the �nancial variables are dropped is overstated

in Table 3. The Laplace approximation of the log marginal likelihood of the model without

�nancial variables is 3112.9. With the same dataset, we found another local maximum of the

posterior density where the Laplace approximation of the log marginal likelihood is only 6

log points lower at 3106.1. The properties of this alternative parameterization of the model

resemble those of our baseline model in that the marginal e¢ ciency of investment plays only

a modest role and the risk shock is the most important shock. For this reason, we conclude

that in the absence of �nancial variables it is hard to distinguish a parameterization of the

model in which the risk shock is important and the marginal e¢ ciency of investment is not

important, from another in which the reverse is true. When the �nancial data are introduced,

it is no longer the case that these two parameterizations are hard to distinguish.47

According to the results in Table 3, all the �nancial variables are important for the con-

clusion that the risk shock is important. However, credit and the credit spread stand out as

most important. When either one of those variables are dropped individually, the role of the

risk shock decreases substantially, although not as much as when all �nancial variables are

dropped. Evidently, there are interaction e¤ects among the variables that are not apparent

when variables are dropped one at a time.

4.3 Why Do Risk Shocks Drive Out Other Intertemporal Shocks?

Our model includes three shocks that a¤ect intertemporal decisions: risk, �t; the marginal

e¢ ciency of investment, �I;t; and shocks to equity, 
t: We �nd that the risk shock is far more

important than the other two shocks. For example, according to Table 3, disturbances in �t

account for 62 percent of the �uctuations in output while shocks to �I;t and 
t only account

for 13 and 0 percent of the business cycle component of output, respectively. We discuss the

reasons for these results below.

4.3.1 Marginal E¢ ciency of Investment Shock

Our �nding for �I;t di¤ers sharply from results in the literature, which assign a very substantial

role in business cycles to �I;t (see for example, Justiniano, Primiceri and Tambalotti, (2010,

47Our results suggest that the posterior distribution when none of the four �nancial variables are included
is the only case where there is a local maximum near the mode. When we included some or all the �nancial
data, we never encountered a local maximum near the mode. Of course, we cannot de�nitively rule out such
alternative maxima.
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2011)). We reproduced the �nding in the literature for �I;t by estimating the CEE model using

a version of our data set that excludes the four �nancial variables: credit, equity, the credit

spread and the term premium. The variance decomposition of the resulting model is reported

in Table 3 in square brackets. The entries corresponding to risk and equity shocks are empty,

since these shocks do not appear in the CEE model. In addition, we do not include the term

premium shock in the CEE model, so that the entry corresponding to this shock is also empty.

Consistent with �ndings reported in the literature, �It is the most important shock driving

output in the CEE model and accounts for 39 percent of the business cycle �uctuations in that

variable.

The key reason that our model prefers the risk shock over the marginal e¢ ciency of invest-

ment has to do with the information contained in our data on equity, the credit spread and

the �ow of credit. To see this, �rst consider Figure 8, which displays the dynamic response of

the variables in our model to several shocks. To facilitate comparison, we repeat the impulse

responses to the unanticipated component in risk, �0;0; from Figure 6 (solid line). The line

with circles displays the dynamic responses to an innovation in �It in our model. For ease of

comparison, we have scaled this innovation so that the maximal decline in output coincides

with the maximal decline in the output response to �0;0: Consider Panel E, which displays the

dynamic responses in equity. Note in particular that equity is countercyclical in response to

the innovation in �It: Evidently, the marginal e¢ ciency of investment shock has the strongly

counterfactual implication that the value of equity is countercyclical. This stands in sharp

contrast to the risk shock which, consistent with the data, implies that the value of equity is

procyclical.

Another way to see the contrasting implications of risk versus the marginal e¢ ciency of

investment for the cyclical properties of equity appears in Figure 9. The solid lines indicate

historical observations on year over year output growth and on the real value of the stock

market. The dotted lines indicate the results of simulating the indicated model responses to

the indicated shocks. The left column of graphs reproduce the relevant portions of Figure 5.

It shows what output and equity would have been according to the estimated baseline model

if only the estimated risk shocks had been active in our sample. The right column of graphs

shows what output and equity would have been according to the estimated CEE model if

only the marginal e¢ ciency of investment had been active.48 Note that each shock accounts

well for the dynamics of output growth. However, when equity is brought into the picture,

the implications of the two perspectives on the sources of economic �uctuations di¤er sharply.

48In the CEE model, we proxy equity by the real price of capital, Q �K;t+1=Pt.
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The risk shock accounts well for the �uctuations in equity. In contrast, the marginal e¢ ciency

of investment predicts stock market booms when there are busts, and busts when there are

booms.

The intuition for these results is very simple. Consider a Marshallian cross representation

of the market for capital with the price of capital, Q �K;t+1; on the vertical axis and the quantity

of capital, �Kt+1; on the horizontal (see Figure 10). The supply curve corresponds to the

marginal cost of building capital, derived from the household�s technology for constructing

capital discussed just after (2.16). The marginal e¢ ciency of investment perturbs this supply

curve. Entrepreneurs are the source of demand for capital. This demand curve is perturbed

by the equity and risk shocks, 
t and �t; that a¤ect the terms of entrepreneurial loan contracts

with banks. The price of capital is a major input determining entrepreneurs�net worth, Nt+1;

which we identify with the value of equity in the data.49 For purposes of intuition, we can

think of the price of capital and the value of equity as being the same thing.

Now, suppose that there is a shock to the marginal e¢ ciency of investment which shifts the

supply curve to the left. The �gure indicates that the equilibrium quantity of capital decreases.

This in turn implies that fewer investment goods are purchased by the producers of capital

goods, so that there is a decline in production and employment. This explains why the �It

shock implies that investment is procyclical. A similar logic reaches the conclusion that the �t

and 
t shocks also imply procyclical invesment. This intuition is consistent with the results in

Figure 8, Panel C.50 Although the demand and supply shocks have the same implications for

the cyclical properties of investment, they have opposite implications for the price of capital

and, hence, the value of equity. This explains the results in panel E of Figure 8, as well as the

results in Figure 9.

Consider the implications of �It for the credit spread. According to Panel A of Figure

8, the marginal e¢ ciency of investment predicts, counterfactually, that the credit spread is

procylical. In addition, according to Panel B of Figure 8, the �It shock implies that credit rises

modestly in a contraction launched by the marginal e¢ ciency of investment shock. This, too,

is counterfactual.51

49The equation that characterizes net worth is given in (2.44). The price of capital enters that expression
via the rate of return on capital, (2.9).
50The dynamic responses to an innovation in 
t are displayed with the curve indicated by *�s and the equity

innovation has been scaled so that the maximal decline in output coincides with the maximal decline in output
in response to a risk shock.
51Note from Panel F that consumption is countercyclical in the �rst two years after a �It shock. However,

this failure of the model is not robust to alternative parameterizations. For example, when we reduce the
coe¢ cient on in�ation in the interest rate rule to 1.5, then consumption falls after a �It shock, for the reasons
discussed in section 4.2.1 above.
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4.3.2 Equity Shock

The risk shock, �t; also drives out equity shocks, 
t (recall the variance decomposition results

in Table 3). According to Table 3, an important variable underlying this conclusion is credit.

To gain intuition into this result, consider the dynamic response of our variables to a negative

innovation in 
t: Again, the size of the innovation is normalized so that the maximal impact on

output is the same across the three shocks displayed in Figure 8. According to Panel B, equity

and risk shocks have opposite implications for the cyclicality of credit. The reason why equity

shocks counterfactually imply countercyclical credit is explored in detail in Appendix C of the

online appendix. The idea is that a drop in 
t; by reducing the net worth of entrepreneurs,

causes a drop in the demand for capital at the end of period t (panel E of Figure 8 shows the

response of net worth to a decline in 
t). Because the price of capital is expected to return

back up to steady state over time, the period t drop in the price of capital triggers a jump

in the expected return to capital. This can be seen in panel H, which shows the immediate

drop in the excess return to capital,
�
1 +Rk

t

�
= (1 +Rt) ; in period t as the price of period t

capital drops, followed by a persistently high excess return. The jump in the expected return

on capital causes entrepreneurs to receive more credit in period t: Although credit expands, it

does not expand by enough to o¤set the initial decline in net worth that causes the contraction

in spending by entrepreneurs in the �rst place.

5 Risk Shocks and UncertaintyMeasure in Bloom (2009)

In an in�uential paper, Bloom (2009) has stressed the role of what he refers to as uncertainty

in business cycle �uctuations. In that and other papers, �uncertainty� refers to both cross-

sectional dispersion and aggregate volatility. In this paper, we use �risk� exclusively as a

measure of cross-sectional dispersion.

A measure of uncertainty used by Bloom (2009) is the cross-section standard deviation in

�rm-level stock returns in the CRSP data set. This object is very similar to our risk shock. We

show that the stock return data in CRSP provide support for key assumptions in our model

about the idiosyncratic shocks, !; to entrepreneurial returns. The results reported here are

motivated by the work Ferreira (2012).

According to our model the log of the realized gross return earned by the ith entrepreneur

at t+ 1, ri;t+1 has the following decomposition:

ri;t+1 = log
�
Rk
t+1

�
+ log!it; (5.20)
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where Rk
t+1 is de�ned in (2.9). In (5.20), (i) log!it is independently distributed over di¤erent

t�s for each given i; (ii) log!it is independent of log
�
Rk
t+1

�
for all i; and each t and (iii) our

econometric procedure provides an estimate of the standard deviation of of log!it for each t:

The time subscript on !it refers to the date in our model when the variance of the idiosyncratic

shock to entrepreneurial returns realized in t+1 becomes known. The risk shock in our model,

�t; is the standard deviation of log!it.

We begin with (iii), by evaluating our model�s implications for the standard deviation of

log!it: Our environment rationalizes estimating this standard deviation at each date by com-

puting the cross-sectional standard deviation of �rm stock returns. This is one of the measures

of uncertainty studied by Bloom (2009) and others. Although Bloom (2009) reports results

using monthly stock returns, we instead compute quarterly returns to ensure comparability

with our risk shock, which is estimated at a quarterly frequency.52

The line with circles in Figure 11 corresponds to our risk shock, computed using the Kalman

smoother.53 The line with stars is the cross-sectional standard deviation of �rm-level stock

returns in CRSP. In particular, if Nt is the number of �rms in the CRSP data set in period t;

then the period t cross-sectional standard deviation of stock returns is �Ut :

�Ut =

 
1

Nt

NtX
i=0

�
rit � log

�
1 +Rk

t

��2!1=2
; 1 +Rk

t =
1

Nt

NtX
i=0

exp (rit) ;

where the superscript, `U�denotes �uncertainty�. Our estimator of Rk
t makes use of our model

assumption that the mean of ! is unity in each period. Given the large typical value of Nt

in the dataset, we expect that the estimator of the unobserved common return, Rk
t ; is fairly

precise. The total number of �rms in the data set is 17,757. However, the number of these �rms

that are in the data set in any particular quarter is smaller. For example, Nt for t = 1985Q1

is 4,810. The value of Nt increases to 8,500 in the middle of the data set and then comes down

thereafter, to 5,678 at the end of the dataset, t = 2010Q4:54 We refer to �Ut as the CRSP-based

measure of uncertainty. To ensure comparability, the risk shock reported for period t in Figure

11 is what we call �t�1 in the model.55

Note �rst that the average level and volatility of our risk shock corresponds roughly to

the level and volatility of the CRSP-based measure of uncertainty. This suggests that our

52Bloom (2009)�s CRSP-based measure of volatility, or uncertainty, appears in row 2 of Table I.
53The line with circles in Figure 11 corresponds to �t: This di¤ers from the risk shock reported in Figure 5,

panel f, which is (�t � �) =�:
54Only �rms for which there are at least 10 consecutive observations are included.
55Recall that in our model, the idiosyncratic shock, !; to an entrepreneur�s time t+1 ex post return is drawn

from a distribution whose parameters are known at time t: The variance of this distribution is what we call the
risk shock and is denoted �t:

33



econometric evidence of the importance of the risk shock in output �uctuations is not based

on counterfactually large movements in the risk shock.

Now consider the pattern of time variation in Figure 11. The risk shock reaches a local

peak before the 2001 recession and reaches a peak during the 2007 recession. In addition, it

exhibits a modest rise during the recession in the early 1990s. These features are also shared

by the CRSP-based uncertainty measure, though the volatility of the latter makes discerning

a de�nite pattern di¢ cult. Two di¤erences we see between our risk shock and the measure

of uncertainty are: risk is monotonically increasing after the 2001 recession, while the CRSP

measure of uncertainty decreases before exhibiting a sharp rise before the 2007 recession; and

the rise in CRSP uncertainty in the wake of the recession of the early 1990s is more pronounced

than the rise in our measure of risk at that time. Overall, however, we were surprised at the

degree of agreement between those measures, given the very di¤erent ways in which they are

computed.

We now turn to an evaluation of implications (i) and (ii) above. We proceed by �rst re-

moving our estimate of the aggregate stock return, log
�
1 +Rk

t

�
; from each individual �rm�s

return, rit: Following (5.20), we interpret the result as the logarithm of the idiosyncratic com-

ponent of the �rm�s return, log!i;t�1: For each �rm in our dataset, we computed the �rst order

lag coe¢ cient, �; and constant in a �rst order autoregressive representation for log!i;t: The

histogram of the 17,757 �rm-level estimates of � is reported in the top left panel of Figure 12.

We also computed the correlation of log!i;t�1 with log
�
1 +Rk

t

�
for each �rm in the dataset.

The histogram of these correlations appears in the top right panel of Figure 12. Under the

hypothesis of our model, the idiosyncratic shock is independently distributed over time and so

it implies � = 0: Similarly, the correlation between the idiosyncratic shock and the aggregate

return should be zero. Turning to the estimated ��s, we �nd that they are typically small:

nearly 70% of them lie in the interval, (�0:2; 0:2) : In the case of the correlations, they are

also small in that 65% lie inside (�0:2; 0:2) : We now ask whether these results are what are

to be expected given (i) and (ii) above, i.e., the hypothesis that the true correlations and

autorcorrelations are all zero.

We constructed an environment that satis�es the null hypothesis, (i) and (ii), but is con-

sistent with all other aspects of our panel dataset. We did this by randomly reordering the

log (!it)�s of each individual �rm in the dataset.56 In this way, essentially all features of our

data set are preserved (e.g., the variance of each �rm�s idiosyncratic shocks, the details of the

56Let log (!it) ; t = t1; :::; t2 denote the observations on the idiosyncratic component of the ith �rm�s stock
return. We randomly re-ordered these idiosyncratic variables by randomly drawing, with replacement, from the
set, log (!it) ; t = t1; :::; t2: We found that the histograms in the bottom row of Figure 12 remained essentially
unchanged if we did additional second random re-orderings.
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unbalanced panel), except that by construction the log (!it)�s of each �rm are independent

over time and uncorrelated with the aggregate return. The computer program applied to the

actual data that produced the results in the top row of Figure 12 was applied to the re-ordered

data to produce the bottom panels in Figure 12. We see there that under the null hypothesis,

the probability that the �rst order autoregressive parameter is less than 0.2 in absolute value

is 74. This is somewhat greater than it is for the actual data, where the probability is 69

percent. Thus, there is some evidence that the ��s in the data are further away from zero than

is consistent with the null hypothesis. However, that evidence is quantitatively small, as the

histogram in the 1,1 panel roughly resembles the histogram in the 2,1 panel. Similarly, the

correlations between the idiosyncratic returns and the aggregate in the data are slightly further

away than they should be under the null hypothesis, but only by a small amount (compare

the histograms in the 1,2 and 2,2 panels of Figure 12).

We are also interested in whether the constant term, const; in the autoregression �t to

each �rm�s time series of idiosyncratic shocks corresponds to what our model predicts. We

checked this by noting that const= (1� �) is the implied mean of log (!it) : The top left panel

of Figure 12 reports the average, over all 17,757 �rms, of this object. This average, �0:051,

is reasonably similar to the value predicted by our model. According to the model, the mean

value of log (!it) is ��2t=2; where �t denotes the standard deviation of log (!it) : From Figure

11, we see that the average value of �t is about 0.3, which implies a mean of �0:045.

In sum, the risk shock estimated in this paper behaves similarly, in terms of absolute

magnitude and cyclical movements, to the CRSP-based measure of uncertainty reported in

Bloom (2009). Moreover, crucial assumptions in our model about the lack of autocorrelation

in the idiosyncratice shock, !; and its independence with the aggregate return, are supported

by the CRSP stock return data. Of course, these results can only be viewed as suggestive,

since many details of the mapping from our model to the stock return data in CRSP have been

left unspeci�ed.

6 Conclusion

We started with a model that combines CEE with BGG and added the assumption that

the cross sectional standard deviation of an idiosyncratic productivity shock varies through

time, as in Christiano, Motto and Rostagno (2003). We call this cross-sectional standard

deviation a �risk�shock. When we study US macroeconomic data over the period 1985-2010,

we conclude that the risk shock accounts for a very large part of the �uctuations in GDP
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and other macroeconomic variables. It is the fact that we include �nancial variables in an

otherwise standard macroeconomic data set that allows us to di¤erentiate the risk shock from

more standard macroeconomic shocks. To evaluate the credibility of our result, we study the

implications of our model for variables not included our data sample. In particular, we examine

the implications of the model for loan deliquency rates, for out-of-sample forecasts, and for

key features of the cross-sectional dispersion of �rm-level stock returns recently emphasized by

Bloom (2009) and others. We �nd that the model does well on these out-of-sample tests, and

infer that its implication that risk shocks are important deserves to be taken seriously.
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Table 1a: Model Priors and Posteriors - Economic Parameters
parameter name parameter prior mean mode s.d. t-statistic prior dist prior stdv

Calvo wage stickiness w 0.75 0.8128 0.0188 43.1424 beta 0.1
Habit parameter b 0.5 0.7358 0.0499 14.7389 beta 0.1
Steady state probabiliy of default F̄ 0.007 0.0056 0.0023 2.4523 beta 0.0037
Monitoring cost  0.275 0.2149 0.0727 2.957 beta 0.15
Curvature, utilization cost a 1 2.5356 0.6972 3.6365 normal 1
Curvature, investment adjust cost S′′ 5 10.78 1.7051 6.3224 normal 3
Calvo price stickiness p 0.5 0.7412 0.0346 21.4073 beta 0.1
Policy weight on inflation  1.5 2.3965 0.1633 14.6736 normal 0.25
Policy smoothing parameter p 0.75 0.8503 0.0154 55.0754 beta 0.1
price indexing weight on inflation target  0.5 0.8974 0.0489 18.3559 beta 0.15
wage indexing weight on inflation target w 0.5 0.4891 0.1149 4.2558 beta 0.15
wage indexing weight on persistent technology growth  0.5 0.9366 0.0293 32.0111 beta 0.15
Policy weight on output growth Δy 0.25 0.3649 0.0992 3.6776 normal 0.1



Table 1b: Model Priors and Posteriors - shocks
parameter name parameter prior mean mode s.d. t-statistic prior dist prior stdv

Correlation among signals ,n 0 0.3861 0.0952 4.0559 normal 0.5
Autocorrelation, price markup shock  f 0.5 0.9109 0.0344 26.4618 beta 0.2

Autocorrelation, price of investment goods shock  0.5 0.987 0.0085 115.9056 beta 0.2
Autocorrelation, government g 0.5 0.9427 0.0232 40.5649 beta 0.2
Autocorrelation, persistent technology growth z 0.5 0.1459 0.0704 2.073 beta 0.2
Autocorrelation, transitory technology  0.5 0.8089 0.0646 12.5291 beta 0.2
Autocorrelation, risk shock  0.5 0.9706 0.0093 104.0775 beta 0.2
Autocorrelation, consumption preference shock c 0.5 0.8968 0.0314 28.5483 beta 0.2
Autocorrelation, marginal efficiency of investment I 0.5 0.9087 0.0174 52.1844 beta 0.2
Autocorrelation, term structure shock  0.5 0.9744 0.0247 39.3785 beta 0.2
std, anticipated risk shock ,n 0.001 0.0283 0.0028 10.0271 invg2 0.0012
std, unanticipated risk shock ,0 0.002 0.07 0.0099 7.0955 invg2 0.0033
std, measurement error on net worth 0.01 0.0175 0.0009 18.8434 Weibull 5

Standard deviations, shock innovations
price markup  f 0.002 0.011 0.0022 4.9846 invg2 0.0033

investment price  0.002 0.004 0.0003 14.4766 invg2 0.0033
government consumption g 0.002 0.0228 0.0016 14.3544 invg2 0.0033
persistent technology growth z 0.002 0.0071 0.0005 13.1152 invg2 0.0033
equity  0.002 0.0081 0.001 7.9605 invg2 0.0033
temporary technology  0.002 0.0046 0.0003 14.1249 invg2 0.0033
monetary policy p 0.583 0.4893 0.0369 13.2507 invg2 0.825
consumption preference c 0.002 0.0233 0.003 7.8926 invg2 0.0033
marginal efficiency of investment I 0.002 0.055 0.0116 4.748 invg2 0.0033
term structure  0.002 0.0016 0.0007 2.2162 invg2 0.0033

Note: invg2 – ‘inverse gamma distribution, type 2’.







Figure 1: Flow of Funds Through Financial 
Markets
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Figure 2: Out of Sample RMSE’s
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Figure 3: Model Bankruptcy Rate, 
Versus Loan Delinquency Rate
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Figure 4: Selected Cross‐correlations, 
Model and Data

-10 -5 0 5 10

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

G. corr(output(t),slope(t-k))

k

 

 95% confidence interval for empirical point estimates
all shocks
only risk shocks (anticipated and unanticipated)

-10 -5 0 5 10

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

A. corr(output(t),credit spread(t-k))

k
-10 -5 0 5 10

-0.4

-0.2

0

0.2

0.4

0.6

0.8

B. corr(output(t),credit(t-k))

k
-10 -5 0 5 10

-0.5

0

0.5

1
C. corr(output(t),investment(t-k))

k
-10 -5 0 5 10

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
D. corr(output(t),output(t-k))

k

-10 -5 0 5 10

-0.4

-0.2

0

0.2

0.4

0.6

0.8

E. corr(output(t),equity(t-k))

k
-10 -5 0 5 10

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1
F. corr(output(t),consumption(t-k))

k



Figure 5:The Role of the Risk Shock in Selected Variables
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With exception of panels b and f, the grey solid line is the data. Panel b is the smoothed equity data which differs from the actual data by a small 
estimated measurement error. The dashed line is the result of feeding only the estimated risk shock to the model. Panel f displays the demeaned credit 
spread and the risk shock (the latter expressed  as a ratio to its steady state value, minus unity).
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Figure 6: Dynamic Responses to Unanticipated and Anticipated Components of Risk Shock
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Figure 7: Responses to Unanticipated Risk Shock
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Figure 9: Historical Decompositions in 
Two Models
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Figure 10: The Risk and Equity Shocks, Versus 
the Marginal Efficiency of Investment

Price of capital
(value of equity)

Quantity of capital

Supply shifter:
marginal efficiency
of investment, i,t

Demand shifters:risk, t; equity, t



Notes: stock return volatility corresponds to second row variable in Table I of Bloom (2009), as computed in Ferreira (2012). To ensure 
comparability, stock returns were first converted to quarterly rates. ‘Risk shock’ is the smoothed estimate of σt using the baseline model 
evaluated at the posterior mode of its parameters.
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Figure 12: Idiosyncratic Shock, Tests
logit  const   logi,t−1  it, corrlogit, rt

Note: top row provides distribution of indicated objects related to firm‐level idiosyncratic return shocks in actual panel of CRSP firms; 
bottom row provides distribution of same objects when temporal order of firm‐level idiosyncratic shock is randomized. The point of the

Figure is that the distributions in the top and bottom rows are similar, consistent with our assumed properties of idiosyncratic shocks.
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