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A Appendix A: Scaling and Miscellaneous Variables

To solve our model, we require that the variables be stationary. To this end, we adopt a

particular scaling of the variables. Because our model satis�es su¢ cient conditions for bal-

anced growth, when the equilibrium conditions of the model are written in terms of the scaled

variables, only the growth rates and not the levels of the stationary shocks appear. In this

appendix we describe the scaling of the model that is adopted. In addition, we describe the

mapping from the variables in the scaled model to the variables measured in the data.

Let

qt = �t
Q �K0;t

Pt
; yz;t =

Yt
z+t
; it =

It
z+t �

t
; ~wt �

Wt

z+t Pt
;

�kt =
�Kt

z+t�1�
t�1 ; r

k
t = �

t~rkt ; �
�
z;t =

z+t
z+t�1

; ct =
Ct
z+t
;

where ~rkt Pt denotes the nominal rental rate on capital. The rate of in�ation in the nominal

wage rate is:

�w;t �
Wt

Wt�1
=
~wt�

�
z;t�t

~wt�1
:

Consider gdp growth, according to the model.

Y gdp
t

z+t
� yt = ct +

it
��;t

+ gt;

or,

Y gdp
t = ytz

+
t ;

so that

� log Y gdp
t = log Y gdp

t � log Y gdp
t�1 = log (yt)� log (yt�1) + log

�
z+t
�
� log

�
z+t�1

�
= log (yt)� log (yt�1) + log

��z;t
��z

:

Note that we have subtracted the steady state value of log ��z;t from this expression. This is

because � log Y gdp
t is the growth rate of GDP, after subtracting its steady state value.
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Let Nt+1 denote period t nominal net worth, so that

nt+1 =
Nt+1

Ptz
+
t

:

Then,

� log
Nt+1

Pt
= log nt+1 � log nt + log

��z;t
��z

:

Again, this variable is expressed in deviation from its steady state.

Another variable is investment. There is an issue about what units to measure investment

in. Investment times its relative price is given by:

invt �
It

�t��;t
=
itz

+
t �

t

�t��;t
=
itz

+
t

��;t
;

so that, in deviation from steady state:

� log invt � log invt � log invt�1 = log it � log it�1 + log
��z;t
��z

�
�
log ��;t � log ��;t�1

�
:

The relative price of investment goods is given by

PI;t �
1

�t��;t
;

so that

� logPI;t = �t log� + (t� 1) log�� log ��;t + log ��;t�1 + log�

= � log ��;t + log ��;t�1;

in deviation from steady state.

� logCt = log ct � log ct�1 + log
��z;t
��z

Real credit growth (in deviation from steady state) for entrepreneurs is computed as follows:

Creditet =
�
qt�kt+1 � nt+1

�
z+t

�Creditet = log
�
qt�kt+1 � nt+1

�
� log

�
qt�1�kt � nt

�
+ log

��z;t
��z

To obtain total credit growth, we need to add the credit by intermediate good �rms for working
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capital. From (2.40), this credit, scaled by Ptz�t is:

 k;t
rkt ut

�kt
��z�;t

+  l;t ~wt:

The real amount of this credit is:

Creditft =

�
 k;t

rkt ut
�kt

��z�;t
+  l;t ~wt

�
z�t :

So total credit, Creditt; is:

Creditt =

�
qt�kt+1 � nt+1 +  k;t

rkt ut
�kt

��z�;t
+  l;t ~wt

�
z�t ;

and its growth rate (in deviation from steady state) is:

�Creditt = log

�
qt�kt+1 � nt+1 +  k;t

rkt ut
�kt

��z�;t
+  l;t ~wt

�
� log

�
qt�1�kt � nt +  k;t�1

rkt�1ut�1
�kt�1

��z�;t�1
+  l;t�1 ~wt�1

�
+ log

��z;t
��z

:

The growth rate of the real wage is:

� log
Wt

Pt
= log ~wt � log ~wt�1 + log

��z;t
��z

B Appendix B: Dynamic Equations

B.1 Equilibrium Conditions

B.1.1 Prices

The equations pertaining to prices are:

(1)p�t �

24�1� �p
��Kp;t

Fp;t

� �f
1��f

+ �p

�
~�t
�t
p�t�1

� �f
1��f

35
1��f
�f

= 0 (2.21)

and

(2)Et

(
�c;t�z;tyz;t +

�
~�t+1
�t+1

� 1
1��f

��pFp;t+1 � Fp;t

)
= 0; (2.22)
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where �z;t denotes �tz�tPt: Also,

(3)�c;t�z;t�fyz;tst + ��p

�
~�t+1
�t+1

� �f
1��f

Kp;t+1 �Kp;t = 0: (2.23)

Note that both these equations involve Fp;t: This re�ects that a lot of equations have been

substituted out. In particular, we have

(4)Fp;t

2641� �p

�
~�t
�t

� 1
1��f

1� �p

375
1��f

= Kp;t; ~pt =
Kp;t

Fp;t
;

where ~pt is the price set by price-optimizing �rms in period t: In addition, ~pt is substituted out

using the equilibrium condition relating the aggregate price level to the prices of intermediate

goods.

B.1.2 Wages

The demand for labor is the solution to the following problem:

maxWt

=ltz }| {�Z 1

0

(ht;i)
1
�w di

��w
�
Z 1

0

Wt;iht;idi;

where Wt;i is the wage rate of i�type workers and Wt is the wage rate for homogeneous labor,

lt. The �rst order condition is:

ht;i = lt

�
Wt

Wt;i

� �w
�w�1

:

The wages of non-optimizing households evolve as follows:

Wj;t = ~�w;t
�
�z�;t

���
(�z�)

1���Wj;t�1; ~�w;t � (��t )
�w1 (�t�1)

�w2 ��1��w1��w2 : (2.24)

Nominal wage growth, �w;t; is:

�w;t =
~wt�

�
z;t�t

~wt�1
;

where ~wt denotes the scaled wage rate:

~wt �
Wt

z�tPt
:

The labor input variable that we treat as observed is the sum over the various di¤erent
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types of labor:

ht =

Z 1

0

hitdi

= ltW
�w

�w�1
t

Z 1

0

(Wt;i)
�w

1��w di

= ltW
�w

�w�1
t (W �

t )
�w

1��w ;

where

W �
t �

�Z 1

0

(Wt;i)
�w

1��w di

� 1��w
�w

=

�
(1� �w) ~Wt +

Z
�w monopolists that do not reoptimize

�
~�w;t

�
�z�;t

���
(�z�)

1���Wi;t�1
� �w
1��w di

� 1��w
�w

=

�
(1� �w) ~Wt + �w

�
~�w;t

�
�z�;t

���
(�z�)

1���W �
t�1
� �w
1��w

� 1��w
�w

:

Let w�t � W �
t =Wt; and use linear homogeneity:

w�t =

24(1� �w)
~Wt

Wt

+ �w

 
~�w;t

�
�z�;t

���
(�z�)

1���

�w;t
w�t�1

! �w
1��w

35
1��w
�w

;

~Wt is the nominal wage set by the 1� �w wage optimizers in the current period. Rewriting,

w�t = [(1� �w)w
�w

1��w
t + �w

 
~�w;t

�
��z;t
���
(��z)

1���

�wt
w�t�1

! �w
1��w

]
1��w
�w ; (2.25)

where

wt �
~Wt

Wt

: (2.26)

We conclude:

ht = lt (w
�
t )

�w
1��w : (2.27)

For purposes of evaluating aggregate utility, it is also convenient to have an expression for

the following:

Z 1

0

h1+�Lit di

= l1+�Lt W
��w(1+�L)

1��w
t

Z 1

0

(Wt;i)
�w(1+�L)
1��w di

= l1+�Lt W
��w(1+�L)

1��w
t

�W
�w(1+�L)
1��w

t ;

5



where

�Wt �
�Z 1

0

(Wt;i)
�w(1+�L)
1��w di

� 1��w
�w(1+�L)

:

Then,

�Wt =

�Z 1

0

(Wt;i)
�w(1+�L)
1��w di

� 1��w
�w(1+�L)

=

"
(1� �w)

�
~Wt

��w(1+�L)
1��w

+

Z
�w that change

(Wt;i)
�w(1+�L)
1��w di

# 1��w
�w(1+�L)

=

"
(1� �w)

�
~Wt

��w(1+�L)
1��w

+ �w

�
~�w;t

�
�z�;t

���
(�z�)

1��� �Wt�1

��w(1+�L)
1��w

# 1��w
�w(1+�L)

:

Divide by Wt and make use of the linear homogeneity of the above expression:

�Wt

Wt

=

264(1� �w)

 
~Wt

Wt

!�w(1+�L)
1��w

+ �w

 
~�w;t

�
�z�;t

���
(�z�)

1���

�w;t

�Wt�1

Wt�1

!�w(1+�L)
1��w

375
1��w

�w(1+�L)

De�ne

�wt =
�Wt

Wt

;

so that

�wt =

264(1� �w) (wt)
�w(1+�L)
1��w + �w

 
~�w;t

�
�z�;t

���
(�z�)

1���

�w;t
�wt�1

!�w(1+�L)
1��w

375
1��w

�w(1+�L)

; (2.28)

using (2.26). We conclude

Z 1

0

h1+�Lit di =
h
lt ( �wt)

�w
1��w

i(1+�L)
(2.29)

=

"
ht

�
�wt
w�t

� �w
1��w

#(1+�L)
:

using (2.27).

The optimality conditions associated with wage-setting are characterized by:

(5)Etf�c;t�z;t
(w�t )

�w
�w�1 ht

�
1� � lt

�
�w

+��w (�z�)
1���
1��w Et

�
�z�;t+1

� ��
1��w�1

�
1

�w;t+1

� �w
1��w ~�

1
1��w
w;t+1

�t+1
Fw;t+1�Fw;tg = 0

(2.30)
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and

(6) Etf�c;t�t
h
(w�t )

�w
�w�1 ht

i1+�L
+��w

 
~�w;t+1

�
��z;t+1

���
(��z)

1���

�wt+1

! �w
1��w (1+�L)

Kw;t+1�Kw;tg = 0:

(7)
1

 L

2641� �w

�
~�w;t
�w;t

(�z�)
1��� ��z�;t���� 1

1��w

1� �w

375
1��w(1+�L)

~wtFw;t �Kw;t = 0

Optimization by households implies:

wt =

�
 L
~wt

Kw;t

Fw;t

� 1��w
1��w(1+�L)

;

so that, using (2.25):

w�t =

24(1� �w)

�
 L
~wt

Kw;t

Fw;t

� �w
1��w(1+�L)

+ �w

 
~�w;t

�
��z;t
���
(��z)

1���

�wt
w�t�1

! �w
1��w

35
1��w
�w

:

We can replace Kw;t=Fw;t with the expression implied by (7) above:

(8) w�t =

2664(1� �w)

0B@1� �w

�
~�w;t
�w;t

(�z�)
1��� ��z�;t���� 1

1��w

1� �w

1CA
�w

+ �w

 
~�w;t

�
��z;t
���
(��z)

1���

�wt
w�t�1

! �w
1��w

3775
1��w
�w

B.1.3 Capital Utilization, Marginal Cost, Return on Capital, Investment, Mon-

etary Policy

The �rst order necessary condition associated with the capital utilization decision is:

Pt
1

�t
� ota

0 (ut) �Kt = Pt~r
k
t
�Kt;

or,

� ota
0 (ut) = �

t~rkt = rkt ;

after scaling. Making use of our assumed utilization cost function, this reduces to:

(9) rkt = � otr
k exp(�a [u� 1]):
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Marginal cost:

(10)rkt =
��t�

1 +  k;tRt

�  ���z;tLt (w�t ) �w
�w�1

ut�kt

!1��
st (2.31)

~wt =
(1� �) �t�
1 +  l;tRt

�  ���z;tLt (w�t ) �w
�w�1

ut�kt

!��
st;

where  k;t and  l;t denote the fraction of the capital services and labor bills, respectively,

that must be �nanced in advance. Combining the last two equations, we obtain the familiar

expression for marginal cost:

(11) st =
1

�t

 
rkt
�
1 +  k;tRt

�
�

!� 
~wt
�
1 +  l;tRt

�
1� �

!1��
(2.32)

Resource constraint:

(12)� ota(ut)
�kt
���z;t

+ gt + ct +
it
��;t

= yz;t (2.33)

where gt is an exogenous stochastic process and

(13)�kt+1 = (1� �)
1

��z;t�
�kt +

�
1� S

�
� i;t it�

�
z;t�

it�1

��
it; (2.34)

where it is investment scaled by z�t�
t:

Equation de�ning the nominal non-state contingent rate of interest:

(14)Etf�
1

�t+1��z;t+1
�c;t+1�z;t+1 (1 +Rt)� �c;t�z;tg = 0 (2.35)

The derivative of utility with respect to consumption is,

(15)Et

�
(1 + �C)�c;t�z;t �

��z;t�c;t
ct��z;t � bct�1

+ b�
�c;t+1

ct+1��z;t+1 � bct

�
= 0; (2.36)

where ct denotes consumption scaled by z�t . The capital �rst order condition:

(16)Et

�
��c;t�zt +

�

�t+1��z;t+1
�c;t+1�zt+1

�
1 +Rk

t+1

��
= 0; (2.37)

where Rk
t+1 denotes the rate of return on capital:

(17) 1 +Rk
t =

(1� � kt�1)
�
utr

k
t � � ota(ut)

�
+ (1� �)qt

�qt�1
�t + � kt�1�
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where qt denotes the scaled market price of capital, Q �K0;t :

qt = �
tQ �K0;t

Pt
:

The investment �rst order condition:

(18) Etf�c;t�ztqt
�
1� S(

� i;t�
�
z;t�it

it�1
)� S 0(

� i;t�
�
z;t�it

it�1
)
� i;t�

�
z;t�it

it�1

�
(2.38)

�
�c;t�zt

��;t
+
��zt+1�c;t+1� i;t+1qt+1

��z;t+1�
S 0(

� i;t+1�
�
z;t+1�it+1

it
)

�
��z;t+1�it+1

it

�2
g = 0;

where it is scaled (by z�t�
t) investment: The scaled representation of aggregagte output is:

(19) yz;t �
Yt
z�t
= (p�t )

�f
�f�1

�
�t

�
ut�kt
��z;t�

�� �
(w�t )

�w
�w�1 ht

�1��
� �

�

The monetary policy rule:

(20) log (1 +Rt) = (1� ~�) log (1 +R) + ~� log (1 +Rt�1) (2.39)

+
1� ~�
1 +R

�
~ap� log

�t+1
��t

+ ~ay
1

4
log

yt
y

�
+ xpt ;

where xpt is an iid monetary policy shock and yt denotes scaled GDP:

(21) yt = gt + ct +
it
��;t

:

Total non�nancial sector borrowing is an important variable to match with the data.

Borrowing is an important variable in the model. In the CEE model, borrowing by non-

�nancial �rms is for paying the capital rental bill and the wage bill. In unscaled terms, this

is:

 k;tPt~r
k
tKt +  l;tWtlt:

We scale this by dividing by Ptz�t :

 k;t
~rkt ut �Kt

z�t
+  l;t

Wt

Ptz�t
lt

=  k;t
rkt utz

�
t�1�

t�1�kt
�tz�t

+  l;t ~wt

=  k;t
rkt ut

�kt
��z�;t

+  l;t ~wt: (2.40)
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B.1.4 Entrepreneurs

cuto¤ equation we obtain:

(16)
qt�kt+1
nt+1

1 +Rk
t+1

1 +Rt

[�t(�!t+1)� �Gt(�!t+1)]�
qt�kt+1
nt+1

+ 1 = 0; (2.41)

which must hold in each realized t+ 1 state of nature: Here,

share of entrepreneurial earnings, (1+Rkt+1)qt�kt+1; received by bankz }| {
�t(�!t+1) � �!t+1 [1� Ft(�!t+1)] +Gt(�!t+1)(2.42)

Gt(�!t+1) �
Z �!t+1

0

!dFt(!):

Substituting out for �t+1 from the second �rst order condition into the �rst, we obtain:

(17)Et

�
[1� �t(�!t+1)]

1 +Rk
t+1

1 +Rt

+
�0t(�!t+1)

�0t(�!t+1)� �G0t(�!t+1)

�
1 +Rk

t+1

1 +Rt

(�t(�!t+1)� �Gt(�!t+1))� 1
��

= 0;

(2.43)

where �0t(�!t+1) = 1�Ft(�!t+1): In principle these equations should have been derived separately

for entrepreneurs with each di¤erent level of possible net worth. It is clear from the �rst

order conditions that had we done so, each one�s standard debt contract would have been

characterized by the same %t; f�!t+1g :

We now derive the law of motion of net worth. After the loan contract received in t� 1 is

settled, but before it is known which entrepreneur exits and which stays, the (scaled by Ptz�t )

net worth in period t of entrepreneurs is

Vt =

share of entrepreneurial earnings received by entrepreneursz }| {
[1� �t�1(�!t)] �Rk

t

qt�1
�t��z;t

�kt;

where the appearance of �t��z;t in the denominator re�ects that qt�1�kt has been scaled by
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Pt�1z
�
t�1: The above expression can be written

Vt =

=1��t�1(�!t)z }| {�
1� �!t [1� Ft�1(�!t)]�

Z �!t

0

!dFt�1(!)

�
Rk
t

qt�1
�t��z;t

�kt

=
�
1 +Rk

t

� qt�1
�t��z;t�

�kt �

earnings of banks, which must equal Bt(1+Rt�1)=(1+Rt�1)(qt�1�kt�nt)z }| {�
�!t [1� Ft�1(�!t)] + (1� �)

Z �!t

0

!dFt�1(!)

�
Rk
t

qt�1
�t��z;t�

�kt

��
Z �!t

0

!dFt�1(!)R
k
t

qt�1
�t��z;t�

�kt

=

�
1 +Rk

t � (1 +Rt�1)� �

Z �!t

0

!dFt�1(!)
�
1 +Rk

t

�� qt�1
�t��z;t

�kt +
1 +Rt�1

�t��z;t
nt:

At this point, 
t entrepreneurs exit and are replaced by 
t new arrivals. Both surviving

entrepreneurs and new arrivals receive a lump sum transfer in the amount, we: Thus, nt+1 =


tVt + we; or,

nt+1 =

t

�t��z;t

�
Rk
t �Rt�1 � �

Z �!t

0

!dFt�1(!)
�
1 +Rk

t

��
�ktqt�1 + we + 
t

�
1 +Rt�1

�t��z;t

�
nt:

(2.44)

The resource constraint becomes:

dt + ct + gt +
it
��;t

+�
1� 
t

t

[nt+1 � we] + � ota(ut)
�kt
���z;t

(2.45)

= yz;t

Here, [nt+1 � we] =
t denotes the assets of entrepreneurs before they have received their real

transfer, we; and before it is determined which is selected to exit. The assets of the fraction

of entrepreneurs that exit is (1� 
t) times this amount, and they consume � of their assets,

with the other 1� � being transferred to households. Also, dt denotes the resources used up

in monitoring:

dt =
�G(�!t)

�
1 +Rk

t

�
qt�1�kt

�t��z;t
: (2.46)

In the modi�ed economy, entrepreneurs rather than households accumulate capital. This means

that the household intertemporal equation, (2.37), (i.e., (12)) must be deleted. So, we have

added three new equations, (2.43), (2.11) and (2.44) and deleted one. The net increase in the

number of equations is two. We increase the number of endogenous variables by two: �!t+1 and

nt+1 (the �rst variable is a function of the period t + 1 state of nature, while the second is a
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function of the period t state of nature).

B.1.5 Social Welfare Function

We now turn to developing an expression for the representative household�s utility function

Utilt = �c;t log(z
+
t ct � bz+t�1ct�1)�  L

Z 1

0

h1+�Lit

1 + �L
di

= �c;t

�
log

�
z+t (ct � b

z+t�1
z+t

ct�1)

�
�  L

Z 1

0

h1+�Lit

1 + �L
di

�
= �c;t

�
log(ct �

b

��z;t
ct�1)�

 L
1 + �L

Z 1

0

h1+�Lit di

�
;

apart from a constant term. Using (2.29):

 L
1 + �L

Z 1

0

h1+�Lit di =
 L

1 + �L

"
ht

�
�wt
w�t

� �w
1��w

#(1+�L)
;

so that

Utilt = �c;t

8<:log(ct � b

��z;t
ct�1)�

 L
1 + �L

"
ht

�
�wt
w�t

� �w
1��w

#(1+�L)9=; ;

where �wt is de�ned in (2.28) and w�t is de�ned in (8). Both these variables are unity in steady

state.

C Appendix C: Understanding the E¤ects of Financial

Friction Shocks

Our key empirical �nding is that shocks to risk, �; can account for a large portion of business

cycle �uctuations. To clarify the economics of this result, we discuss the impact of an increase

in � on equilibrium loan contracts. In addition, it is standard in analyses of the 2008 crisis,

to suppose that it was triggered by a shock to net worth. In our environment, this is cap-

tured by a perturbation in 
:57 One of our empirical �ndings is that, from the perspective of

our model, such a shock is an unlikely candidate as business cycle shock because it implies,

counterfactually, that credit is countercyclical. To build intuition, this section performs a mi-

croeconomic analysis of the credit market. Our results are summarized in the two comparative

statics exercises summarized in Figures 1a and 1b.

To simplify notation and because we are concerned with only one period of time, we delete

57See Christiano and Ikeda (2011) and the references they cite.
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time subscripts. We highlight a partial equilibrium and a general equilibrium e¤ect on the loan

contract of an increase in �. The former e¤ect refers to what happens to the loan contract,

holding �xed the key market variable, Rk=R; taken as given by participants in the market

for entrepreneurial credit. Recall, Rk is the across-entrepreneur average return on capital and

R is the interest rate on the mutual funds�source of funds. The general equilibrium e¤ect

refers to the additional changes to the loan contract that occur when Rk=R also adjusts in

response to a change in risk. The general equilibrium e¤ects of a change in risk are important

for understanding our empirical results.

Entrepreneurs have access to a constant returns to scale project with return, Rk!; where Rk

is common knowledge and ! has a log-normal distribution with E! = 1 and log! has standard

deviation, �: Denote the total assets acquired by entrepreneurs by A = N +B; where B is the

size of the loans received from mutual funds. Denote leverage by L = A=N: We characterize

the standard debt contract received by entrepreneurs in terms of a value for L and a interest

rate spread, Z=R; where Z is the interest rate on the entrepreneurial loan. As in (2.10),

�! =
Z

R

R

Rk

L� 1
L

; (3.47)

represents the value of ! that separates bankrupt and non-bankrupt entrepreneurs. The ob-

jective of entrepreneurs is proportional to:

[1� � (�!)]L: (3.48)

The menu of standard debt contracts available to entrepreneurs is given by:

L =
1

1� [� (�!)� �G (�!)] R
k

R

: (3.49)

In our numerical example, we use the steady state values of the variables used in our

empirical analysis:

� = 0:21;
Rk

R
= 1:0073; � = 0:26:

Our partial equilibrium experiment increases � by 5 percent and holds Rk=R �xed. The

equilibria corresponding to the two values of � are exhibited in Figure 1a, which displays

the interest rate spread, Z=R; on the vertical axis and leverage, L; on the horizontal. The

graphs of (3.49) corresponding to the two values of � are indicated in the �gure. Both are

upward-sloping, so that an entrepreneur can obtain a loan contract with higher leverage but

this requires paying a higher interest rate spread. This is because, with higher leverage the

13



entrepreneur imposes a greater cost on its mutual fund in the event of default. In both cases,

the menu of contracts implied by (3.49) is bowed towards the southeast.58

Expression (3.48) can be used to construct an indi¤erence map for entrepreneurs, though

we only display the indi¤erence curves that are tangent to the relevant menu of contracts.

Indi¤erence curves have a positive slope. This is because, holding the interest rate �xed, (3.48)

is increasing in L and holding L �xed (3.48) is decreasing in Z=R:59 The indi¤erence curves

are bowed towards the northwest and entrepreneurial utility is decreasing in that direction.

The equilibrium loan contract occurs at a point of tangency of the entrepreneur�s indi¤erence

curve and the menu of contracts.

The equilibrium for the lower of the two values of � is associated with a level of leverage,

L = 2:02; and an interest rate spread of 0.616 in annual, percent terms. With the jump in �;

the indi¤erence curves change shape and the menu of contracts shifts. Not surprisingly, the

menu shifts up. That is, entrepreneurs may still obtain the same leverage as before the rise

in �, but in this case they must pay a higher interest rate spread. The higher interest rate

spread is required because the rise in � increases the probability of default, and so raises the

cost of lending to banks. If they chose to do so, entrepreneurs could even select a higher level

of leverage in response to the increase in �: As it happens, the new point of tangency involves

a 3 percent jump in the interest rate premium, to 0.635 percent, and a slightly larger percent

drop in leverage, to 1.95.

In the general equilibrium of our model, there is another e¤ect associated with a temporary

increase in risk. The fall in credit associated with the reduction in leverage leads to a reduction

in entrepreneurial purchases of physical capital. This in turn leads to a fall in the production

of capital by households which results in a fall in its price, Q �K : The anticipated capital gains

associated with the expectation that the e¤ects on Q �K will be undone raises Rk: Figure 1b

shows the impact of an increase in Rk=R by 1 percent. This corresponds roughly to a 1

percentage point increase in in the net return, Rk � 1; expressed in the time units of the

model (i.e., one quarter). Given the large rise in the return on capital it is not surprising that

the equilibrium involves a substantial increase in leverage. Thus, we can expect this general

equilibrium e¤ect to mute the negative impact on leverage of a jump in �: In our numerical

58For a thorough discussion of the menu of contracts, see
http://faculty.wcas.northwestern.edu/~lchrist/research/ECB/risk_shocks/risk_shocks.html
59Expression (3.48) may not be increasing in L for small values of L: This is because an increase in L has

two countervailing e¤ects on entrepreneurial utility. For each �xed and �nite value of �! �xed, (3.48) indicates
that utility is strictly increasing in L (it is easy to show that 0 < � < 1 when F (�!) < 1 for each �nite �!; an
assumption that is satis�ed when F corresponds to the log-normal distribution). At the same time, an increase
in L leads to a rise in �! and this makes 1�� fall, as the probability that the entrepreneur makes positive pro�ts
falls. This latter e¤ect vanishes for su¢ ciently large L because in that case �! ceases to vary with L:For additional
discussion, see http://faculty.wcas.northwestern.edu/~lchrist/research/ECB/risk_shocks/risk_shocks.html
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experiments, we have never found examples where this general equilibrium e¤ect on leverage

was actually larger than the partial equilibrium e¤ect.60

We did �nd that general equilbrium e¤ects tend to dominate partial equilibrium e¤ects in

the case of shocks to equity. Thus, suppose there is a drop in 
; captured in our numerical

example by a drop in N: The impact on leverage in partial equilbirium is nil, since N does

not separately enter the analysis. Thus, the partial equilibrium impact of a drop in N is

an equiproportionate cut in credit, i.e., B: In general equilibrium the consequent drop in

A = N + B produces a drop in Q �K and a rise in Rk as discussed above. This in turn leads

to a rise in B; as indicated in Figure 1b. We found that there is a tendency for the general

equilibrium rise in B to dominate the partial equilibrium fall in B: That is, in numerical

simulations of our dynamic model, a drop in 
 tends to produce a rise in B: Because this rise

in B in practice is smaller than the initial drop in N; N +B still drops when both partial and

general equilibrum e¤ects are accounted for.

D Appendix D: The Fisherian Debt-De�ation Hypoth-

esis

We wish to diagnose the role of the assumption that payments to households are non-state

contingent in nominal terms. We do this by exploring the BGG version of the model in which

the payment on households�bank deposits is non-state contingent in real terms. Thus, suppose

that instead of earning gross nominal return, 1 + Rt; from t to t + 1 households instead earn

gross nominal return,

Ft�t+1;

from t to t+ 1: Here, Ft denotes the real return from t to t+ 1; which is non-state contingent

in real terms. With two exceptions, we substitute 1 + Rt with Ft�t+1 everywhere. The two

exceptions are the Taylor rule, where we continue to assume a non-state contingent nominal

rate of interest is �controlled�. To ensure that that rate of interest is well de�ned, we keep

equation (10). We add an equation for household deposits:

(10)0Etf�
1

�z
�z;t+1Ft � �z;tg = 0:

60We suspect such an example may be impossible. If the general equilibrium e¤ect dominated, then credit
�ows would increase after a positive shock to �; and these would give rise to a fall in Rk; contradicting the rise
needed to get the general equilibrium e¤ect to be operative in the �rst place.
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We must change the relevant equations associated with the entrepreneur. The zero pro�t

condition becomes:

(16)0 �t�1(�!t)� �Gt�1(�!t) =
Ft�1�t
1 +Rk

t

�
1� nt

qt�1kt

�
:

The optimality condition becomes:

(17)0Et

�
[1� �t(�!t+1)]

1 +Rk
t+1

Ft�t+1
+

�0t(�!t+1)

�0t(�!t+1)� �G0t(�!t+1)

�
1 +Rk

t+1

Ft�t+1
(�t(�!t+1)� �Gt(�!t+1))� 1

��
= 0

and the law of motion of net worth becomes:

(18)0nt+1 =

t
�t��z

�
1 +Rk

t � Ft�1�t � �

Z �!t

0

!dFt�1(!)
�
1 +Rk

t

��
ktqt�1 + we + 
t

Ft�1
�z

nt

E Appendix E: Steady State

Here, we discuss an algorithm for computing the steady state of the model. In our analysis,

we distinguish between steady state in�ation, �; and the quantity appearing in the price and

wage updating equations, ��: Equation (2.21) in steady state, is:

p� =

2666664
�
1� �p

� 1��p( ~�� )
1

1��f

1��p

!�f

1� �p
�
~�
�

� �f
1��f

3777775

1��f
�f

:

Note that, if � = �� then p� = 1: Equation (2.22):

Fp =

�z (p
�)

�f
�f�1

��
k

��z�

�� �
(w�)

�w
�w�1 h

�1��
� �

�
1�

�
~�
�

� 1
1��f ��p

;

assuming �
~�

�

� 1
1��f

��p < 1:

Equation (2.23) in steady state is:

Fp =

�z�f (p
�)

�f
�f�1

��
k
�z

�� �
(w�)

�w
�w�1 h

�1��
� �

�
s"

1��p( ~�� )
1

1��f

1��p

#1��f �
1� ��p

�
~�
�

� �f
1��f

�
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Equating the preceding two equations:

s =
1

�f

"
1��p( ~�� )

1
1��f

1��p

#1��f �
1� ��p

�
~�
�

� �f
1��f

�
1�

�
~�
�

� 1
1��f ��p

: (5.50)

In the case, � = ��; s = 1=�f : Equation (2.30) in steady state is:

Fw =
�z

(w�)
�w

�w�1 h(1�� l)
�w

1� ��w~�
1

1��w
w

( 1� )
�w

1��w

�

;

as long as the condition,

��w~�
1

1��w
w

�
1
�

� �w
1��w

�
< 1;

is satis�ed. Also

~�w = (�)
�w;2 ��1��w;2 :

Equation (??) is

Fw =

h
(w�)

�w
�w�1 h

i1+�L
1
 L

"
1��w( ~�w� )

1
1��w

1��w

#1��w(1+�L)
~w
h
1� ��w

�
~�w
�

� �w
1��w (1+�L)

i ;

as long as

��w

�
~�w
�

� �w
1��w (1+�L)

< 1:

Equating the two expressions for Fw; we obtain:

~w = W�w
 Lh

�L

(1� � l)�z
; (5.51)

where

W = (w�)
�w

�w�1�L

241� �w
�
~�w
�

� 1
1��w

1� �w

35�w(1+�L)�1 1� ��w
�
~�w
�

� 1
1��w

1� ��w
�
~�w
�

� �w
1��w (1+�L)

: (5.52)
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In steady state, (??) reduces to:

w� =

2666664
(1� �w)

 
1��w( ~�w� )

1
1��w

1��w

!�w

1� �w
�
~�w
�

� �w
1��w

3777775

1��w
�w

(5.53)

According to the wage equation, the wage is a markup, W�w, over the household�s marginal

cost. Note that the magnitude of the markup depends on the degree of wage distortions in the

steady state. These will be important to the extent that ~�w 6= �w:

The marginal cost equation, (2.31) implies:

rk =
��

[1 +  kR]

 
���zL (w

�)
�w

�w�1

�k

!1��
s; (5.54)

where w� is determined by (5.53). In steady state, the capital accumulation equation, (2.34),

is

�k

�
1� 1� �

��z�

�
= i:

In steady state, the equation for the nominal rate of interest, (2.35), reduces to:

1 +R =
���z
�
: (5.55)

In steady state, the marginal utility of consumption, (2.36), is

�z =
1

(1 + �C)c

��z � b�

��z � b
: (5.56)

Finally, the euler equation for investment, (2.38), reduces to

q = 1:

We proceed as follows. First, �x the nominal rate of interest according to (5.55). Now, �x

a value for rk: Solve (5.54) for

(1)
h
�k
=
(w�)

�w
1��w

���z

�
[1 +  kR] r

k

s��

� 1
1��

; (5.57)
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where s is determined by (5.50). Then,

(2)Rk =
(1� � k)rk + 1� �

�
� + � k� � 1: (5.58)

Then, solve

(3) [1� �(�!)] 1 +R
k

1 +R
+

�0(�!)

�0(�!)� �G0(�!)

�
1 +Rk

1 +R
(�(�!)� �G(�!))� 1

�
= 0: (5.59)

for �!: When we estimate the model, for each �!; we impose that F (�!) is equal to a speci�ed

calibrated value. Since F is cdf of the log normal distribution, with E! = 1; then F has one

free parameter, a variance. For each �!; this variance is computed to ensure that F (�!) is the

value required. When we compute the Ramsey equilibrium, then we take the variance of the

model in the posterior mode as �xed. To evaluate (5.59) it is useful to have a formula:

G(�!) =

Z �!

0

!dF (!):

Making the following change of variables: ! = ex; d! = exdx; x = log!; dx = d!=!, we

obtain: Z �!

0

!dF (!) =

Z log �!

�1
exf (x) dx:

Here, x = log (!) and f is the Normal density function. Writing this explicitly:

Z �!

0

!dF (!) =

Z log �!

�1
exf (x) dx

=
1

�x
p
2�

Z log �!

�1
ex exp

�(x�Ex)2

2�2x dx;

where �2x is the variance of x: Now, E! = 1 implies Ex = � (1=2)�2x; so that

Z �!

0

!dF (!) =
1

�x
p
2�

Z log �!

�1
ex exp

�(x+1
2�

2
x)

2

2�2x dx

=
1

�x
p
2�

Z log �!t

�1
exp

x2�2x�(x+1
2�

2
x)

2

2�2x dx

=
1

�x
p
2�

Z log �!t

�1
exp

�(x� 1
2�

2
x)

2

2�2x dx:
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Now, make the change of variable,

v =
x� 1

2
�2x

�x
=
x+ 1

2
�2x

�x
� �x

�v =
log (�!) + 1

2
�2x

�x
� �x

dv =
1

�x
dx

so that

Z �!

0

!dF (!) =
1

�x
p
2�

Z log(�!)+ 1
2�

2
x

�x
��x

�1
exp

�v2
2 �xdv

=
1p
2�

Z log(�!)+ 1
2�

2
x

�x
��x

�1
exp

�v2
2 dv

= prob

�
x <

log (�!) + 1
2
�2x

�x
� �x

�
:

where

E! = Eex = e[Ex+
1
2
�2x] = 1

Ex = �1
2
�2x:

Next, �nd n=k which solves (2.11):

(4)
n
�k
= 1� 1 +R

k

1 +R
[�(�!)� �G(�!)] (5.60)

In steady state, (2.44) is

n =



���z

�
Rk �R� �

Z �!

0

!dF (!)
�
1 +Rk

��� �k
n

�
n+ we + 


�
1 +R

���z

�
n;

so that

(5)n =
we

1� 

���z
fRk �R� �G (�!) (1 +Rk)g

�
�k
n

�
� 


�
1+R
���z

� ; (5.61)

�k =

� �k
n

�
n

h =

�
h
�k

�
�k

(6)i =

�
1� (1� �)

1

��z�

�
�k; (5.62)
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where G (�!) is obtained from (2.17).

We now need to solve the resource constraint for consumption. But, �rst we require �:

Normally, this parameter is set so that steady state pro�ts of the intermediate good producer

are zero. However, those pro�ts are not constant in the version of the model in which prices

are distorted along a steady state growth path. Instead, we choose � so that pro�ts are zero

in the version of the model in which there are no distortions in the steady state. We suppose

that this way of setting � or other ways will make little di¤erence. Thus, we compute � to

guarantee that �rm pro�ts are zero in a steady state where � = ��. Let h and �k denote hours

worked and capital in such a steady state. Also, let F denote gross output of the �nal good in

that steady state. Write sales of �nal good �rm as F � �. Real marginal cost in this steady

state is s = 1=�f : Since this is a constant, the total costs of the �rm are sF: Zero pro�ts

requires sF = F � �: Thus, � = (1� s)F = F (1� 1=�f ), or,

(7)� =

� �k

��z�

��
(h)1��

�
1� 1

�f

�
: (5.63)

Solve the steady state version of the resource constraint, (2.45), for c :

(8)d+ c+ g +
i

��
+�

1� 




[n� we] = (p�)

�f
�f�1

� �k

��z�

�� h
(w�)

�w
�w�1 h

i1��
� �; (5.64)

where d is determined by the steady state version of (2.46). Compute the steady state real

wage using (2.31):

(9) ~w = s (1� �)

"
��z� (w

�)
�w

�w�1 h
�k

#��
: (5.65)

Then, solve the labor supply equation, (5.51), for h :

(10)h =

"�
1� � l

�
�z

W�w L
~w

# 1
�L

; (5.66)

where �z is obtained using (5.56) and W is obtained from (5.52). These calculations began

by �xing a value for rk: Adjust rk until the value of h obtained from (5.66) coincides with the

value implied by multiplying h=�k in (5.57) by �k.

It is of interest to understand what happens when � = 0: In this case, (5.59) implies

R = Rk: So, one chooses rk so that R =
�
rk + (1� �)

�
� � 1: Then, (5.57) implies a value for

h=k: From (5.66),

n =
we

1� 

�

:
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In the case, �� = �; � = 0 implies:

c+ I +�
1� 




[n� we] =

�
k

��z

��
h1�� �

�
k

��z

��
h1��

�
1� 1

�f

�
=

1

�f

�
1

��z

���
h

k

�1��
k;

or,
c

k
+
�
1� (1� �)��1z

�
+�

1� 





[n� we]

k
=
1

�f

�
1

��z

���
h

k

�1��
The labor-leisure choice implies:

c =

�z�b�
�z�b

W�w L
~wh��L ;

where ~w can be computed from (5.65) and W = 1 according to (5.52). Substituting this into

the resource constraint, we obtain:

�z�b�
�z�b

W�w L
~w

1

h1+�L
+�

(1� 
)we

� � 


1

h
=

1
�f

�
1
�z

�� �
h
k

�1�� � �1� 1��
�z

�
h
k

;

which is a single equation in one unknown, h: Note that the right side must be positive for

consumption to be positive. Also, the left side goes from 0 to1 as h goes from1 to 0: Thus,

there is a unique solution, as long as the model implies positive steady state consumption.

Once this is solved for h; then we have k. Then, given k we can compute �! from (5.60):

n

k
= 1� �(�!)

�(�!) = 1� n

k

This gives the same solution as the model without �nancial frictions, except for the fact that

entrepreneurs consume resources.

F Appendix F: Laplace-type Approximation for Bimodal

Posterior Distribution

When we estimate our model on the standard data set, we �nd two isolated local modes for the

posterior distribution. The di¤erence of the log posterior distribution, L; is only about 4 points

across these two modes. The local curvature about the two modes makes locally computed

probability intervals seem narrow, yet the properties of the model di¤ers sharply across the
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two modes. In this sense, correctly computed probability intervals encompass sharply di¤erent

behavior and are not convex sets. In this appendix, we describe a Laplace approximation

procedure computing the posterior distribution under circumstances when the posterior dis-

tribution is bimodal. We use it, among other things, to create a visual representation of the

posterior distribution in terms of the model property of interest. In particular, at one mode

the fraction of variance in output due to the risk shock is high and the fraction due to the

marginal e¢ ciency of investment is low. The reverse is true at the other mode. The procedure

developed here approximates the posterior distribution of the fraction of variance due to risk

under these circumstances. When represented visually in a diagram with the fraction of vari-

ance in output due to risk on the horizontal axis and the associated posterior density on the

vertical axis, we obtain the following. The density has two humps, one above a high value for

the fraction of variance and the other over a low value of that fraction. One of the humps is

slightly higher than the other one. The local curvature at each hump greatly exagerates the

precision, according to the posterior distribution, assigned to that value of the fraction. The

small di¤erence in the height of the posteriors over the two humps provides a correct assess-

ment of the precision with which the two fraction of variances are di¤erentiated according to

the posterior distribution.

Our approximation of the posterior distribution is that it is a mixture of two normals, with

mixture probability, p. The approximation is valid as long as the posterior probability of each

mode is nearly zero under the local approximation about the other mode. We develop this

approximation for two reasons. First, the exact procedure based on the MCMC algorithm is

impractical, because of the great amount of computer time it would require. Second, we wish

to develop an alternative measure of the distance between two posterior modes that is not

based on the posterior odds computed by exponentiating L. In practice, one often has to give

an interpretation to di¤erences in the log criterion on the order of 4 or 10. Such di¤erences

seem small and yet the posterior odds at these points are, exp(4) and exp(10), respectively.

This gives rise to enormous posterior odds, which seem to overstate the signi�cance of such

small di¤erences in the log criterion. We propose, as an alternative to the posterior odds, the

mixture probability parameter, p.

Our approximation procedure simply requires the hessians at the two modes, in addition

to L. With our mixture of normals approximation of the posterior, we can draw the model

parameters, �; many (say, N) times, �1; :::; �N : For any statistic of interest, s (�) ; we then

obtain the posterior distribution for that statistic from s (�1) ; :::; s (�N) :

Consider �rst the standard Laplace approximation to a unimodal distribution. Let f (�)
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denote the product of the likelihood and the prior, so that f (�) is proportional to the posterior

distribution, where the factor of proportionality is independent of �: Let g (�) � log f (�).

De�ne

g�� = �
@2g (�)

@�@�0
j�=�� ;

where �� is the mode. The second order Taylor series expansion of g about � = �� is:

g (�) = g (��)� 1
2
(� � ��)0 g�� (� � ��) ;

where the slope term is zero because of our assumption �� is a local maximum of g: Then,

f (�) � f (��) exp

�
�1
2
(� � ��)0 g�� (� � ��)

�
:

Note that
1

(2�)
n
2

jg��j
1
2 exp

�
�1
2
(� � ��)0 g�� (� � ��)

�
is a multivariate normal distribution, so that

Z
1

(2�)
n
2

jg��j
1
2 exp

�
�1
2
(� � ��)0 g�� (� � ��)

�
d� = 1:

Bringing together the previous results, we obtain:

Z
f (�) d�

�
Z
f (��) exp

�
�1
2
(� � ��)0 g�� (� � ��)

�
d�

=
f (��)

1

(2�)
n
2
jg��j

1
2

Z
1

(2�)
n
2

jg��j
1
2 exp

�
�1
2
(� � ��)0 g�� (� � ��)

�
d�

=
f (��)

1

(2�)
n
2
jg��j

1
2

;

by the integral property of the normal distribution. Thus, the posterior distribution is, ap-

proximately,

f (�)
f(��)
1

(2�)
n
2
jg��j

1
2

�
f (��) exp

�
�1
2
(� � ��)0 g�� (� � ��)

�
f(��)
1

(2�)
n
2
jg��j

1
2

=
1

(2�)
n
2

jg��j
1
2 exp

�
�1
2
(� � ��)0 g�� (� � ��)

�
:

This covers the unimodal case.

Suppose now that we have two local maxima of g : ��1 and �
�
2: Denote the analogs of g�� by
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g1�� and g
2
��: Suppose we approximate the posterior distribution by a mixture of normals:

F (�) = p
1

(2�)
n
2

��g1���� 12 exp ��12 (� � ��1)
0 g1�� (� � ��1)

�
+(1� p)

1

(2�)
n
2

��g2���� 12 exp ��12 (� � ��2)
0 g2�� (� � ��2)

�
= p exp [G1 (�)] + (1� p) exp [G2 (�)] ;

where 0 � p � 1 and G1 (�) is the second order approximation of g (�) about � = ��i :

Gi (�) = �
n

2
log (2�) +

1

2
log
��gi����� 12 (� � ��i )

0 gi�� (� � ��i ) ; (6.67)

for i = 1; 2: Note that

G0i (�
�
i ) = 0|{z}

N�1

; G00i (�) = gi��|{z}
N�N

:

Let F (�) denote logF (�) : Then,

F 0 (�) =
1

F (�)
fp exp [G1 (�)]G01 (�) + (1� p) exp [G2 (�)]G

0
2 (�)g

F 00 (�) = � 1

F (�)
g0 (�)

n
p exp [G1 (�)] [G

0
1 (�)]

T
+ (1� p) exp [G2 (�)] [G

0
2 (�)]

T
o

+
1

F (�)
fp exp [G1 (�)]G001 (�) + (1� p) exp [G2 (�)]G

00
2 (�)g

Evaluate the latter at ��1 :

F 00 (��1) = � 1

F (��1)
F 0 (��1)

8><>:p exp [G1 (��1)]
=0z }| {

[G01 (�
�
1)]

T
+ (1� p)

'0z }| {
exp [G2 (�

�
1)] [G

0
2 (�

�
1)]

T

9>=>;
+

1

F (��1)
fp exp [G1 (��1)]G001 (��1) + (1� p)

'0z }| {
exp [G2 (�

�
1)]G

00
2 (�

�
1)g;

where the terms with ' 0 re�ect our assumption that ��1 is very unlikely under the Laplace

approximation about ��2 similarly for �
�
2 :

exp [G2 (�
�
1)] ' 0; exp [G1 (��2)] ' 0: (6.68)

25



Then,

F 00 (��1) =
1

F (��1)
p exp [G1 (�

�
1)] g

1
��

=
p exp [G1 (�

�
1)] g

1
��

p exp [G1 (�
�
1)] + (1� p) exp [G2 (�

�
1)]

=
p exp [G1 (�

�
1)] g

1
��

p exp [G1 (�
�
1)]

= g1��:

Thus, under (6.68), the curvature of our mixted Normal approximation about � = ��1 coincides

with the curvature of the actual posterior distribution. This is a basic requirement of consis-

tency. Of course, in practice it is necessary to verify (6.68). We have an analogous result for

F 00 (��2) :

It remains to compute p; the Normal mixture probability. We obtain this as follows. Let

L denote the di¤erence in the log posterior between the two modes. Thus,

L = g (��1)� g (��2) > 0;

so that ��1 is the global maximum of g:We can use L to pin down the value of p in the mixture

distribution. According to our mixture approximation to the posterior distribution,

L = log
p exp [G1 (�

�
1)] + (1� p) exp [G2 (�

�
1)]

p exp [G1 (�
�
2)] + (1� p) exp [G2 (�

�
2)]

= log
p exp [G1 (�

�
1)]

(1� p) exp [G2 (�
�
2)]

= log
p

(1� p)
+G1 (�

�
1)�G2 (�

�
2)

= log
p

1� p
+
1

2
log

jg1��j
jg2��j

:

The second equality re�ects the assumption, (6.68), that under the local approximation, the

alternative mode is highly improbable. The fourth equality uses (6.67). Thus,

p

1� p
= exp

�
L� 1

2
log

jg1��j
jg2��j

�
= d;

say, which can be used to solve for p :

p =
d

1 + d
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Figure 1a: Impact on standard debt contract of a 5% jump in 
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Figure 1b: Impact on standard debt contract of a 1% jump in Rk/R
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