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The model that was simulated for the discussion is presented in the first section. The
simulation strategy is described in the next section.

1. Household

The utility function of the jth household is:

U (Ct, hj,t) = logCt −A
h1+φj,t

1 + φ

The budget constraint is:

PtCt +Bt+1 ≤ Rt−1Bt +Wj,thj,t +Πj,t,

where Πj,t denotes lump sum profits and lump sum taxes.

1.1. Intertemporal Condition

The discount rate from t to t+ 1 has the following representation:

βt =
1

1 + rt

ββ̂t = −
µ

1

1 + r

¶2
drt,

or
β̂t = −βdrt

The first order condition associated with bonds is:

1

Ct
= βt

1

Ct+1
(1 +Rt)

1

πt+1
.

Linearizing around a zero inflation steady state:

−Ĉt = −Ct+1 − βdrt + \(1 +Rt)− π̂t+1,

or
Ĉt = Ct+1 + βdrt − βdRt + π̂t+1,

or,
Ĉt = Ĉt+1 − β (Rt − rt) + π̂t+1,



1.2. Household Wage/Employment Decision

The household selects the wage rate to optimize:

Et

∞X
i=0

(βξw)
i

"
υt+iWj,t+ihj,t+i −A

h1+φj,t+i

1 + φ

#
,

where υt+i denotes the multiplier on the household budget constraint in the Lagrangian
representation of its problem. The household treats this object as an exogenous constant.
Each household that optimizes its wage, chooses the same wage rate, W̃t :

Et

∞X
i=0

(βξw)
i υt+i

"
W̃th

t
t+i −A

¡
htt+i

¢1+φ
(1 + φ) υt+i

#
,

where htt+i denotes the level of employment in period t+ i of a household that optimizes its
wage in period t :

htt+i =

Ã
W̃t

Wt+i

! λw
1−λw

Ht+i,

and Ht+i denotes aggregate employment. Also, Wt denotes the aggregate wage rate. Impos-
ing the requirement that the household is always on the labor demand curve implies:

Et

∞X
i=0

(βξw)
i υt+i

⎡⎢⎢⎣W̃t

Ã
W̃t

Wt+i

! λw
1−λw

Ht+i −A

³
W̃t

Wt+i

´ λw
1−λw (1+φ)

H1+φ
t+i

(1 + φ) υt+i

⎤⎥⎥⎦ .
Differentiate with respect to W̃t :

Et

∞X
i=0

(βξw)
i υt+i

⎡⎢⎢⎣µ1 + λw
1− λw

¶
W̃

λw
1−λw
t

µ
1

Wt+i

¶ λw
1−λw

Ht+i −
λw

1− λw
A
W̃

λw
1−λw (1+φ)−1
t

³
1

Wt+i

´ λw
1−λw (1+φ)

H1+φ
t+i

υt+i

or,

Et

∞X
i=0

(βξw)
i υt+i

⎡⎢⎢⎣µ1 + λw
1− λw

¶
W̃

λw
1−λw+1−

λw
1−λw (1+φ)

t

µ
1

Wt+i

¶ λw
1−λw

Ht+i −
λw

1− λw
A

³
1

Wt+i

´ λw
1−λw (1+φ)

H1+φ
t+i

υt+i

⎤
⎦

or,

Et

∞X
i=0

(βξw)
i υt+i

⎡⎢⎢⎣W̃ 1− λw
1−λw φ

t

µ
1

Wt+i

¶ λw
1−λw

Ht+i − λwA

³
1

Wt+i

´ λw
1−λw (1+φ)

H1+φ
t+i

υt+i

⎤⎥⎥⎦ ,
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or,

Et

∞X
i=0

(βξw)
i υt+i

⎡⎢⎢⎣W̃ 1− λw
1−λw φ

t W̃
− λw
1−λw

t

Ã
W̃t

Wt+i

! λw
1−λw

Ht+i − λwA
W̃
− λw
1−λw (1+φ)

t

³
W̃t

Wt+i

´ λw
1−λw (1+φ)

H1+φ
t+i

υt+i

⎤⎥⎥⎦ ,
or,

Et

∞X
i=0

(βξw)
i υt+i

⎡⎢⎢⎣W̃t

Ã
W̃t

Wt+i

! λw
1−λw

Ht+i − λwA

³
W̃t

Wt+i

´ λw
1−λw (1+φ)

H1+φ
t+i

υt+i

⎤⎥⎥⎦ ,
or,

Et

∞X
i=0

(βξw)
i υt+i

"
W̃th

t
t+i − λwA

¡
htt+i

¢1+φ
υt+i

#
,

or

Et

∞X
i=0

(βξw)
i υt+ih

t
t+iPt+i

"
W̃t

Pt+i
− λwA

¡
htt+i

¢φ
Pt+iυt+i

#
,

or

Et

∞X
i=0

(βξw)
i υt+ih

t
t+iPt+i

"
W̃t

Pt+i
− λwA

¡
htt+i

¢φ
Pt+iυt+i

#
,

Given our utility function, we have

υt+i =
Uc,t+i

Pt+i
=

1

Pt+iCt+i
.

Note that

MRSt
t+i ≡ A

¡
htt+i

¢φ
Pt+iυt+i

= ACt+i

¡
htt+i

¢φ
,

where MRSt
t+i denotes the marginal rate of substitution between consumption and leisure

in period t + i for a person that reoptimizes in period t and does not reoptimize between
t+ 1 and t+ i. Substitute this into the first order condition:

Et

∞X
i=0

(βξw)
i h

t
t+i

Ct+i

"
W̃t

Pt+i
− λwMRSt

t+i

#
.

Now, consider the following scaling:

wt =
W̃t

Wt
, w̄t =

Wt

Pt
, Xt,t+i =

½ 1
πt+1···πt+i i ≥ 1
1 i = 0

.

Note that with this definition,

Xt,t+i
1

Pt
=

1

Pt+i
, all i ≥ 0.
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Then, the first order condition reduces to:

Et

∞X
i=0

(βξw)
i h

t
t+i

Ct+i

£
w̄twtXt,t+i − λwMRSt

t+i

¤
= 0.

Note,
X̂t,t+i = −π̂t+1 − · · ·− π̂t+i.

We are interested in the case where β is time varying. Although in the end the time
varying β has no impact on the reduced form wage equation, it is useful to establish this.
Thus,

βt+1 =
1

1 + rt+1

ββ̂t+1 = −
µ

1

1 + r

¶2
drt+1

= −β2drt+1
β̂t+1 = −βdrt+1

We write out the first order condition like this:

βt
htt
Ct

£
w̄twt − λwMRSt

t

¤
+βtβt+1ξw

htt+1
Ct+1

£
w̄twtXt,t+1 − λwMRSt

t+1

¤
+βtβt+1βt+2ξ

2
w

htt+2
Ct+2

£
w̄twtXt,t+2 − λwMRSt

t+2

¤
+βtβt+1βt+2βt+3ξ

3
w

htt+3
Ct+3

£
w̄twtXt,t+3 − λwMRSt

t+3

¤
+... = 0

Log-linearly expanding this expression, and taking into account that the object in square
brackets is zero in steady state:

β
h

C

h
w̄
¡b̄wt + ŵt

¢
− (λwMRS)\MRS

t

t

i
+β2ξw

h

C

h
w̄
³b̄wt + ŵt + X̂t,t+1

´
− λwMRS

³
\MRS

t

t+1

´i
+β3ξ2w

h

C

h
w̄
³b̄wt + ŵt + X̂t,t+2

´
− λwMRS

³
\MRS

t

t+2

´i
+β4ξ3w

h

C

h
w̄
³b̄wt + ŵt + X̂t,t+3

´
− λwMRS

³
\MRS

t

t+3

´i
+... = 0
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(note how the time varying β disappeared) or, noting w̄ = λwMRS

β
h

C
w̄
h¡b̄wt + ŵt

¢
−\MRS

t

t

i
+β2ξw

h

C
w̄
hb̄wt + ŵt + X̂t,t+1 −\MRS

t

t+1

i
+β3ξ2w

h

C
w̄
hb̄wt + ŵt + X̂t,t+2 −\MRS

t

t+2

i
+β4ξ3w

h

C
w̄
hb̄wt + ŵt + X̂t,t+3 −\MRS

t

t+3

i
+... = 0

dividing through by β h
C
w̄ :

b̄wt + ŵt −\MRS
t

t

+βξw

hb̄wt + ŵt + X̂t,t+1 −\MRS
t

t+1

i
+β2ξ2w

hb̄wt + ŵt + X̂t,t+2 −\MRS
t

t+2

i
+β3ξ3w

hb̄wt + ŵt + X̂t,t+3 −\MRS
t

t+3

i
+... = 0

Then,

b̄wt + ŵt −\MRS
t

t

+βξw

hb̄wt + ŵt − π̂t+1 −\MRS
t

t+1

i
+β2ξ2w

hb̄wt + ŵt − π̂t+1 − π̂t+2 −\MRS
t

t+2

i
+β3ξ3w

hb̄wt + ŵt − π̂t+1 − π̂t+2 − π̂t+3 −\MRS
t

t+3

i
+... = 0

and

1

1− βξw

¡b̄wt + ŵt

¢
−\MRS

t

t

+βξw

h
−π̂t+1 −\MRS

t

t+1

i
+β2ξ2w

h
−π̂t+1 − π̂t+2 −\MRS

t

t+2

i
+β3ξ3w

h
−π̂t+1 − π̂t+2 − π̂t+3 −\MRS

t

t+3

i
+... = 0
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or,

1

1− βξw

¡b̄wt + ŵt

¢
− βξw
1− βξw

π̂t+1 −
(βξw)

2

1− βξw
π̂t+2 − ... (1.1)

−
h
\MRS

t

t + βξw\MRS
t

t+1 + (βξw)
2\MRS

t

t+2 + ...
i

= 0

Note,

\MRS
t

t+i = Ĉt+i + φĥtt+i

= Ĉt+i + φĤt+i + φ
³
ĥtt+i − Ĥt+i

´
.

Recall,

htt+i =

Ã
W̃t

Wt+i

! λw
1−λw

Ht+i,

=

µ
wt

Wt

Wt+i

¶ λw
1−λw

Ht+i,

=

µ
wt

Wt

Wt+1

Wt+1

Wt+2
· · · Wt+i−1

Wt+i

¶ λw
1−λw

Ht+i

=

µ
wt

πw,t+1 · · · πw,t+i

¶ λw
1−λw

Ht+i

for i = 0 :

htt =

Ã
W̃t

Wt

! λw
1−λw

Ht = (wt)
λw

1−λw Ht

so that

htt+i
Ht+i

=

⎧⎨⎩
³

wt
πw,t+1···πw,t+i

´ λw
1−λw

i > 0

(wt)
λw

1−λw i = 0
.

Then,

ĥtt+i − Ĥt+i =

½ λw
1−λw (ŵt − π̂w,t+1 · · ·−π̂w,t+i) i > 0

λw
1−λw ŵt i = 0

.

Substituting,

\MRS
t

t+i = Ĉt+i + φĤt+i + φ
³
ĥtt+i − Ĥt+i

´
= Ĉt+i + φĤt+i + φ

λw
1− λw

(ŵt − π̂w,t+1 · · ·−π̂w,t+i) ,
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for i > 0. Then,

\MRS
t

t + βξw\MRS
t

t+1 + (βξw)
2\MRS

t

t+2 + ...

= Ĉt + φĤt + φ
λw

1− λw
ŵt

+βξw

∙
Ĉt+1 + φĤt+1 + φ

λw
1− λw

(ŵt − π̂w,t+1)

¸
+(βξw)

2

∙
Ĉt+2 + φĤt+2 + φ

λw
1− λw

(ŵt − π̂w,t+1 − π̂w,t+2)

¸
+(βξw)

3

∙
Ĉt+3 + φĤt+3 + φ

λw
1− λw

(ŵt − π̂w,t+1 − π̂w,t+2 − π̂w,t+3)

¸
+...

or,

\MRS
t

t + βξw\MRS
t

t+1 + (βξw)
2\MRS

t

t+2 + ...

=
∞X
i=0

(βξw)
i
h
Ĉt+i + φĤt+i

i
+ φ

λw
1− λw

1

1− βξw
ŵt −

1

1− βξw
φ

λw
1− λw

∞X
i=1

(βξw)
i π̂w,t+i.

Substituting the previous expression into (1.1), we conclude that the first order condition
for wages looks as follows:

1

1− βξw

¡b̄wt + ŵt

¢
− 1

1− βξw

∞X
i=1

(βξw)
i π̂t+i (1.2)

=
∞X
i=0

(βξw)
i
³
Ĉt+i + φĤt+i

´
+ φ

λw
1− λw

1

1− βξw
ŵt −

1

1− βξw
φ

λw
1− λw

∞X
i=1

(βξw)
i π̂w,t+i.

We now deduce the implications of the aggregate restrictions across wages:

Wt =

∙
(1− ξw)

³
W̃t

´ 1
1−λw

+ ξw (Wt−1)
1

1−λw

¸1−λw
.

Divide by Wt and use the scaling notation:

1 = (1− ξw) (wt)
1

1−λw + ξw

µ
1

πw,t

¶ 1
1−λw

.

Log-linearize this about steady state:

0 = (1− ξw)
1

1− λw
(w)

1
1−λw−1wŵt −

1

1− λw
ξw (πw)

− 1
1−λw−1 πwπ̂w,t,

or, taking into account w = πw = 1 :

ŵt =
ξw

1− ξw
π̂w,t.
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Substituting this into (1.2):

1

1− βξw
b̄wt +

1

1− βξw

ξw
1− ξw

π̂w,t −
1

1− βξw

∞X
i=1

(βξw)
i π̂t+i

=
∞X
i=0

(βξw)
i
³
Ĉt+i + φĤt+i

´
+ φ

λw
1− λw

1

1− βξw

ξw
1− ξw

π̂w,t −
1

1− βξw
φ

λw
1− λw

∞X
i=1

(βξw)
i π̂w,t+i.

Multiply by

κ =
(1− βξw) (1− ξw)

ξw

1− ξw
ξw

b̄wt + π̂w,t −
1− ξw
ξw

∞X
i=1

(βξw)
i π̂t+i

= κ
∞X
i=0

(βξw)
i
³
Ĉt+i + φĤt+i

´
+ φ

λw
1− λw

π̂w,t −
1− ξw
ξw

φ
λw

1− λw

∞X
i=1

(βξw)
i π̂w,t+i.

Note

St =
∞X
i=1

(βξw)
i π̂t+i (1.3)

= βξwπ̂t+1 + (βξw)
2 π̂t+2 + (βξw)

3 π̂t+3 + ...

= βξwπ̂t+1 + βξw
£
βξwπ̂t+2 + (βξw)

2 π̂t+3 + ...
¤

= βξwπ̂t+1 + βξwSt+1

Sw,t =
∞X
i=1

(βξw)
i π̂w,t+i = βξwπ̂w,t+1 + βξwSw,t+1.

So,t =
∞X
i=0

(βξw)
i
³
Ĉt+i + φĤt+i

´
= Ĉt + φĤt + βξwSo,t+1

So, the expression for the wage can be written,

1− ξw
ξw

b̄wt + π̂w,t −
1− ξw
ξw

St

= κSo,t + φ
λw

1− λw
π̂w,t −

1− ξw
ξw

φ
λw

1− λw
Sw,t

Lead and multiply by βξw :

1− ξw
ξw

βξw b̄wt+1 + βξwπ̂w,t+1 −
1− ξw
ξw

βξwSt+1

= κβξwSo,t+1 + φ
λw

1− λw
βξwπ̂w,t+1 −

1− ξw
ξw

φ
λw

1− λw
βξwSw,t+1.
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Subtract the second from the first and make use of (1.3)

1− ξw
ξw

b̄wt −
1− ξw
ξw

βξw b̄wt+1 + π̂w,t − βξwπ̂w,t+1

−1− ξw
ξw

βξwπ̂t+1

= κ
³
Ĉt + φĤt

´
+ φ

λw
1− λw

π̂w,t − φ
λw

1− λw
βξwπ̂w,t+1

−1− ξw
ξw

φ
λw

1− λw
βξwπ̂w,t+1

1− ξw
ξw

b̄wt −
1− ξw
ξw

βξw b̄wt+1 + π̂w,t − βξwπ̂w,t+1

−1− ξw
ξw

βξwπ̂t+1

= κ
³
Ĉt + φĤt

´
+ φ

λw
1− λw

π̂w,t −
1

ξw
φ

λw
1− λw

βξwπ̂w,t+1

Collecting terms:

1− ξw
ξw

b̄wt +

∙
1− φ

λw
1− λw

¸
π̂w,t

= κ
³
Ĉt + φĤt

´
+
1− ξw
ξw

βξw
£
π̂t+1 + b̄wt+1

¤
+

∙
1− λw

1− λw

φ

ξw

¸
βξwπ̂w,t+1

Note, b̄wt = b̄wt−1 + π̂w,t − π̂tb̄wt+1 = b̄wt + π̂w,t+1 − π̂t+1

so that

1− ξw
ξw

b̄wt +

∙
1− φ

λw
1− λw

¸
π̂w,t

= κ
³
Ĉt + φĤt

´
+
1− ξw
ξw

βξw
£b̄wt + π̂w,t+1

¤
+

∙
1− λw

1− λw

φ

ξw

¸
βξwπ̂w,t+1

then

κb̄wt +

∙
1− φ

λw
1− λw

¸
π̂w,t

= κ
³
Ĉt + φĤt

´
+
1− ξw
ξw

βξwπ̂w,t+1 +

∙
1− λw

1− λw

φ

ξw

¸
βξwπ̂w,t+1

or, ∙
1 + φ

λw
λw − 1

¸
π̂w,t

= −κ
³b̄wt − Ĉt − φĤt

´
+
1− ξw
ξw

βξwπ̂w,t+1 +

∙
1 + φ

λw
λw − 1

1

ξw

¸
βξwπ̂w,t+1

9



or, ∙
1 + φ

λw
λw − 1

¸
π̂w,t

= −κ
³b̄wt − Ĉt − φĤt

´
+

µ
1

ξw
+ φ

λw
λw − 1

1

ξw

¶
βξwπ̂w,t+1

or ∙
1 + φ

λw
λw − 1

¸
π̂w,t

= −κ
³b̄wt − Ĉt − φĤt

´
+

µ
1 + φ

λw
λw − 1

¶
βπ̂w,t+1

Now, divide by the term on π̂w,t :

π̂w,t = −
κ

1 + φ λw
λw−1

³b̄wt − Ĉt − φĤt

´
+ βπ̂w,t+1.

1.3. Goods Production and Price Setting

Suppose that a final good, Yt, is produced using a continuum of inputs as follows:

Yt =

∙Z 1

0

Y
1
λf

i,t di

¸λf
, 1 ≤ λf <∞. (1.4)

The good is produced by a competitive, representative firm which takes the price of output,
Pt, and the price of inputs, Pi,t, as given. The first order necessary condition associated with
optimization is: µ

Pt

Pi,t

¶ λf
λf−1

Yt = Yi,t. (1.5)

A useful result is obtained by substituting out for Yit in (1.4) from (1.5):

Pt =

∙Z 1

0

(Pi,t)
−1

λf−1 di

¸−(λf−1)
. (1.6)

Each intermediate good is produced by a monopolist using the following production
function:

Yi,t = Athi,t.

The equilibrium condition associated with price setting is, after log-linearizing about steady
state:

π̂t = βπ̂t+1 +

¡
1− βξp

¢ ¡
1− ξp

¢
ξp

ŝt.

Marginal cost in this model is

st =
Wt

Pt
= w̄t,
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so that
ŝt = b̄wt.

The resource constraint is:
Ct = p∗tHt,

where p∗t denotes the Tak Yun distortion, which is unity to a first order approximation.

1.4. Equilibrium Conditions

The system has 6 unknowns:
π̂t, b̄wt, Ĥt, π̂w,t, Rt, Zt,

and the following equations. The equations that characterize the private economy are:

b̄wt = b̄wt−1 + π̂w,t − π̂t

π̂t = βπ̂t+1 +

¡
1− βξp

¢ ¡
1− ξp

¢
ξp

b̄wt

π̂w,t = − κ

1 + φ λw
λw−1

∙b̄wt −
dτ t
1− τ

− (1 + φ) Ĥt

¸
+ βπ̂w,t+1

Ĥt = Ĥt+1 − β (dZt − drt) + π̂t+1,

and monetary policy:

dZt = ρRdRt−1 + (1− ρR)
1

β

h
rππ̂t + ryĤt

i
,

dRt =

⎧⎨⎩ dZt dZt ≥ −
³
1
β
− 1
´
‘zero bound not binding’

−
³
1
β
− 1
´

otherwise ‘zero bound binding’
.

The latter captures the fact that Rt ≥ 0, which means Rt ≥ R = 1/β − 1.
We write this in matrix form as follows. Supppose the zero bound is not binding, so that

dRt = dZt. (1.7)

11



This gives us six equations in the six unknowns:

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 0 0 0
0 0 0 0 −β 0
0 −β 0 0 0 0
0 0 −1 0 −1 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎝
dRt+1

π̂w,t+1
Ĥt+1b̄wt+1

π̂t+1
dZt+1

⎞⎟⎟⎟⎟⎟⎟⎠+
⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −1 0 1 1 0

0 0 0 −(1−βξp)(1−ξp)
ξp

1 0

0 1 − κ(1+φ)

1+φ λw
λw−1

κ

1+φ λw
λw−1

0 0

β 0 1 0 0 β
0 0 − (1− ρR)

1
β
ry 0 − (1− ρR)

1
β
rπ 1

1 0 0 0 0 −1

+

⎡⎢⎢⎢⎢⎢⎢⎣
0 0 0 −1 0 0
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
−ρR 0 0 0 0 0
0 0 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦

⎛⎜⎜⎜⎜⎜⎜⎝
dRt−1
π̂w,t−1
Ĥt−1b̄wt−1
π̂t−1
dZt−1

⎞⎟⎟⎟⎟⎟⎟⎠+
⎡⎢⎢⎢⎢⎢⎢⎣
0 0
0 0
0 0
0 0
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎦
µ

drt+1
dτ t+1

¶
+

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0
0 0
0 − κ

1+φ λw
λw−1

1
1−τ

−β 0
0 0
0 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
or,

α0zt+1 + α1zt + α2zt−1 + β0st+1 + β1st = 0,

where the definitions of the matrices are obvious and Let,

zt =

⎛⎜⎜⎜⎜⎜⎜⎝
dRt

π̂w,t
Ĥtb̄wt

π̂t
dZt

⎞⎟⎟⎟⎟⎟⎟⎠ , st =

µ
drt
dτ t

¶
.

The linearized system when the zero bound is binding is as follows:

d+ α0zt+1 + α̃1zt + α2zt−1 + β0st+1 + β1st = 0,

where

d =

⎛⎜⎜⎜⎜⎜⎜⎝
0
0
0
0
0

1
β
− 1

⎞⎟⎟⎟⎟⎟⎟⎠ ,

and α̃1 is α1 with its 6, 6 element replaced by zero. This system is simply the previous one
with (1.7) replaced by:

dRt = −
µ
1

β
− 1
¶
.
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2. Simulating the Model

The general algorithm appears in the third subsection below. It captures the feature of
our setting, that the equations that characterize equilibrium change during the simulation.
Before we discuss the algorithm in its full generality, we provide two examples to illustrate
features of the algorithm not related to the equation switching.

2.0.1. Simple Example

We use a slight perturbation on a standard shooting algorithm. The perturbation is designed
so that the algorithm is required to ‘hit’ a specific target at a specific date, as opposed to the
usual shooting in which a target is reached asymptotically. Because the general algorithm
involves other complications, it is useful to point out the perturbation that we use, in isolation
from the other complications. Suppose that the system obeys the following scalar difference
equation:

α0zt+1 + α1zt + α2zt−1 = dt,

for t = 1, 2, ..., T. Here, z0 is given. For t ≥ T + 1,

zt = Azt−1.

Writing the equations out explicitly:

α0z2 + α1z1 + α2z0 = d1

α0zT+1 + α1zT + α2zT−1 = dT .

Given α0 6= 0, and given an arbitrary z1 ∈ R1, we can use these equations to compute
z2, ..., zT+1. But, it has to be the case that

zT+1 −AzT = 0.

So, the algorithm is to adjust z1 until the above equation is satisfied.

2.0.2. Algorithm Based on QZ Decomposition

The problem we have to confront in applying the simple algorithm in the previous section
is that α0 is not invertible. One way to adapt the algorithm applies the QZ decomposition.
Thus, let

Qα0Z = H0, Qα̃1Z = H1,

Z 0zt = γt.

Multiply (??) by Q :

Qα0ZZ
0zt+1 +Qα̃1ZZ

0zt +Qα2ZZ
0zt−1 +Qd+Qβ0st+1 +Qβ1st = 0,
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or,

H0γt+1 +H1γt +Qα2Zγt−1 +Q

dtz }| {
[d+ β0st+1 + β1st] = 0.

Summarizing,
H0γt+1 +H1γt = Dt,

for t = 1, 2, ..., T − 1. Write

H0 =

∙
G0 H12

0

0 H22
0

¸
, H1 =

∙
G1 H12

1

0 H22
1

¸
, γt =

µ
γ1t
γ2t

¶
= Z 0zt =

µ
L1zt
L2zt

¶
,

Dt = −Q [dt + α2zt−1] ,

where H0 and H1 are upper triangular and the diagonal elements of G0 are non-zero while
the l diagonal elements of H22

0 are all zero. It is necessary to verify numerically that all the
elements of H22

0 are zero. We assume that the diagonal elements of H22
1 are all non-zero.

Also,
dt = d+ β0st+1 + β1st

Then, the system is written∙
G0 H12

0

0 0

¸ ∙
γ12
γ22

¸
+

∙
G1 H12

1

0 H22
1

¸ ∙
γ11
γ21

¸
=

∙
D1
1

D2
1

¸
∙
G0 H12

0

0 0

¸ ∙
γ13
γ23

¸
+

∙
G1 H12

1

0 H22
1

¸ ∙
γ12
γ22

¸
=

∙
D1
2

D2
2

¸
...∙

G0 H12
0

0 0

¸ ∙
γ1T−1
γ2T−1

¸
+

∙
G1 H12

1

0 H22
1

¸ ∙
γ1T−2
γ2T−2

¸
=

∙
D1

T−2
D2

T−2

¸
∙
G0 H12

0

0 0

¸ ∙
γ1T
γ2T

¸
+

∙
G1 H12

1

0 H22
1

¸ ∙
γ1T−1
γ2T−1

¸
=

∙
D1

T−1
D2

T−1

¸
,

where we have imposed H22
0 = 0. We have found that, numerically, this is a property of our

model. To simulate this system forward note first that D1 is determined because γ0 = 0. Fix
a value for γ11 and compute:

γ21 =
¡
H22
1

¢−1
D2
1.

For t = 1 :

D2 = −Q (d2 +Qα2Zγ1)

γ22 =
¡
H22
1

¢−1
D2
2

γ12 = −G−10
£
H12
0 γ22 +G1γ

1
1 +H12

1 γ21 −D1
1

¤
For t = 1, ..., T − 1 :

Dt+1 = −Q (dt+1 + α2Zγt)

γ2t+1 =
¡
H22
1

¢−1
D2

t+1

γ1t+1 = −G−10
£
H12
0 γ2t+1 +G1γ

1
t +H12

1 γ2t −D1
t

¤
14



We now have γ1T , γ
2
T , DT .Recall that in period T + 1,

zT+1 = AzT ,

so that, after multiplying by Z 0 :

γT+1 = ÃγT , Ã = Z 0AZ,

or, µ
γ1T+1
γ2T+1

¶
=

⎡⎣ Ã1
· · ·
Ã2

⎤⎦ γT .
We must still satisfy the t = T equilibrium conditions:∙

G0 H12
0

0 0

¸ ∙
γ1T+1
γ2T+1

¸
+

∙
G1 H12

1

0 H22
1

¸ ∙
γ1T
γ2T

¸
=

∙
D1

T

D2
T

¸
.

Note, however, that the bottom set of equations are satisfied because of the way γ2T was
chosen and because γ2T+1 does not enter these equations. The first set of equations need not
be satisfied, however, and so we use the requirement that these be satisfied to pin down γ11.
In particular, we adjust γ11 until the following expression is satisfied:

G0γ
1
T+1 +H12

0 γ2T+1 +G1γ
1
T +H12

1 γ2T = D1
T .

Note that this is a number of equations equal to the dimension of γ11.

2.0.3. Extending the Algorithm

We now address the possibility that t1 ≥ 1 and t2 ≤ T. That is, the lower bound starts to
bind in some period after the discount rate goes negative and before it turns positive again.
Thus, the lower bound is not binding for t = 1, ..., t1−1, it is binding for t = t1, ..., t2 and it is
not binding for t > t2. Because we assume t2 ≤ T, we can apply a straightforward adaptation
of the algorithm in the previous section. First, the dt sequence needs to be adjusted so that
the constant vector, d in (??), is only turned on for t = t1, ..., t2. Second, we require the QZ
decomposition of the system both for the time when the lower bound is binding and the time
when it is binding:

Qα0Z = H0, Qα1Z = H1

Q̃α0Z̃ = H̃0, Q̃α̃1Z̃ = H̃1

γt = Z 0zt, γ̃t = Z̃ 0zt.

2.0.3.1.The Initial Non-Binding Regime For t = 1, ..., t1 − 1 :

α0zt+1 + α1zt = − [α2zt−1 + β0st+1 + β1st] .
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To solve these equations, proceed as before. After applying the QZ decomposition:∙
G0 H12

0

0 0

¸ ∙
γ12
γ22

¸
+

∙
G1 H12

1

0 H22
1

¸ ∙
γ11
γ21

¸
=

∙
D1
1

D2
1

¸
∙
G0 H12

0

0 0

¸ ∙
γ13
γ23

¸
+

∙
G1 H12

1

0 H22
1

¸ ∙
γ12
γ22

¸
=

∙
D1
2

D2
2

¸
...∙

G0 H12
0

0 0

¸ ∙
γ1t1−1
γ2t1−1

¸
+

∙
G1 H12

1

0 H22
1

¸ ∙
γ1t1−2
γ2t1−2

¸
=

∙
D1

t1−2
D2

t1−2

¸
∙
G0 H12

0

0 0

¸ ∙
γ1t1
γ2t1

¸
+

∙
G1 H12

1

0 H22
1

¸ ∙
γ1t1−1
γ2t1−1

¸
=

∙
D1

t1−1
D2

t1−1

¸
.

The basic idea of the simulation is that we start a given period, t, with (γ1t , γ
2
t ) and use

the period t equation to solve forward to obtain
¡
γ1t+1, γ

2
t+1

¢
. This would be completely

straightforward and standard if the lead matrix in the QZ decomposition of the dynamic
equation were invertible. It is not. So, to do the simulation, we compute γ2t+1 using the t+1
equation. Then, there is only γ1t+1 to compute using the period t equation. This computation
is possible because the relevant block in the lead matrix is invertible.
To begin the simulation, note first that D1 is determined because z0 = 0. Fix a value for

γ11 and compute:
γ21 =

¡
H22
1

¢−1
D2
1.

For t = 1 :

D2 = −Q (d2 + α2Zγ1) (constant term in period 2 equation)

γ22 =
¡
H22
1

¢−1
D2
2 (solving period 2 equation for γ

2
2)

γ12 = −G−10
£
H12
0 γ22 +G1γ

1
1 +H12

1 γ21 −D1
1

¤
(using period 1 equation to find γ12)

We proceed in this way in each period, t = 1, ..., t1 − 2 :

Dt+1 = −Q (dt+1 + α2Zγt)

γ2t+1 =
¡
H22
1

¢−1
D2

t+1

γ1t+1 = −G−10
£
H12
0 γ2t+1 +G1γ

1
t +H12

1 γ2t −D1
t

¤
Period t = t1 − 1 requires special treatment because the subsequent period’s equation

belongs to a different regime. We first solve for γ̃2t1 using the t1 equation. The ‘constant
term’ in the t1 equation is:

D̃t1 = −Q̃
µ
dt1 + α2Z

µ
γ1t1−1
γ2t1−1

¶¶
.

Note that the Q̃ here belongs to the binding regime, while Z belongs to the non-binding
regime. We require the Z from the non-binding regime because what is needed to construct
the constant term is zt1−1, and what we actually have in hand at this point is γt1−1 = Z 0zt1−1.

With D̃t1 in hand, we compute γ̃
2
t1 :

γ̃2t1 =
³
H̃22
1

´−1
D̃2

t1
.
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We now return to the t1 − 1 equation to seek γ̃1t1 . The equation is:

α0zt1 + α1zt1−1 = − [α2zt1−2 + β0st1 + β1st1−1] ,

or,
α0Z̃γ̃t1 + α1zt1−1 = − [α2zt1−2 + β0st1 + β1st1−1] .

Now, apply the QZ decomposition relevant for the non-binding regime:

Qα0ZZ
0Z̃γ̃t1 +Qα1ZZ

0zt1−1 = Dt1−1 , Dt1−1 = − [α2zt1−2 + β0st1 + β1st1−1]

or,
H0Z

0Z̃γ̃t1 +H1γt1−1 = Dt1−1.

Let

Z 0Z̃ ≡M =

⎡⎢⎢⎣
M11|{z}

(m−l)×(m−l)

M12|{z}
(m−l)×l

M21|{z}
l×(m−l)

M22|{z}
l×l

⎤⎥⎥⎦ ,
where m denotes the length of zt, and m− l is the rank of α0. Then the previous system can
be written:⎡⎢⎢⎣

G0|{z}
(m−l)×(m−l)

H12
0|{z}

(m−l)×l
0|{z}

l×(m−l)

0|{z}
l×l

⎤⎥⎥⎦
⎡⎢⎢⎣

M11|{z}
(m−l)×(m−l)

M12|{z}
(m−l)×l

M21|{z}
l×(m−l)

M22|{z}
l×l

⎤⎥⎥⎦
⎡⎢⎢⎢⎣

γ̃1t1|{z}
(m−l)×1
γ̃2t1|{z}
l×1

⎤⎥⎥⎥⎦+
∙
G1 H12

1

0 H22
1

¸ ∙
γ1t1−1
γ2t1−1

¸
=

∙
D1

t1−1
D2

t1−1

¸
,

or,∙
G0M11 +H12

0 M21 G0M12 +H12
0 M22

0 0

¸ ∙
γ̃1t1
γ̃2t1

¸
+

∙
G1 H12

1

0 H22
1

¸ ∙
γ1t1−1
γ2t1−1

¸
=

∙
D1

t1−1
D2

t1−1

¸
.

We are now in a position to solve for γ̃1t1 . Writing out the first of the above equations:£
G0M11 +H12

0 M21

¤
γ̃1t1 +

£
G0M12 +H12

0 M22

¤
γ̃2t1 +G1γ

1
t1−1 +H12

1 γ2t1−1 = D1
t1−1,

so that

γ̃1t1 = −
£
G0M11 +H12

0 M21

¤−1 £¡
G0M12 +H12

0 M22

¢
γ̃2t1 +G1γ

1
t1−1 +H12

1 γ2t1−1 −D1
t1−1

¤
.

2.0.3.2.The Binding Regime We now turn to the period when the lower bound con-
straint on the interest rate is binding, t = t1, ..., t2. The equation to be solved is:

α0zt+1 + α̃1zt = − [α2zt−1 + d+ β0st+1 + β1st] .

Multiply by Q̃
H̃0γ̃t+1 +H1γ̃t = D̃t,
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or, ∙
G̃0 H̃12

0

0 0

¸ ∙
γ̃1t1+1
γ̃2t1+1

¸
+

∙
G̃1 H̃12

1

0 H̃22
1

¸ ∙
γ̃1t1
γ̃2t1

¸
=

∙
D̃1

t1

D̃2
t1

¸
∙
G0 H12

0

0 0

¸ ∙
γ̃1t1+2
γ̃2t1+2

¸
+

∙
G̃1 H̃12

1

0 H̃22
1

¸ ∙
γ̃1t1+1
γ̃2t1+1

¸
=

∙
D̃1

t1+1

D̃2
t1+1

¸
...∙

G̃0 H̃12
0

0 0

¸ ∙
γ̃1t2−2
γ̃2t2−2

¸
+

∙
G̃1 H̃12

1

0 H̃22
1

¸ ∙
γ̃1t2−3
γ̃2t2−3

¸
=

∙
D̃1

t2−3
D̃2

t2−3

¸
∙
G̃0 H̃12

0

0 0

¸ ∙
γ̃1t2−1
γ̃2t2−1

¸
+

∙
G̃1 H̃12

1

0 H̃22
1

¸ ∙
γ̃1t2−2
γ̃2t2−2

¸
=

∙
D̃1

t2−2
D̃2

t2−2

¸
,

We have γ̃t1 in hand. Consider t = t1 first. As before, we must compute γ̃2t1+1 using the
period t1 + 1 equation. Thus,

D̃t1+1 = −Q̃
³
dt1+1 + α2Z̃γ̃t1

´
γ2t1+1 =

³
H̃22
1

´−1
D̃2

t1+1
.

Then, using the period t1 equation:

γ1t1+1 = −G̃
−1
0

h
H̃12
0 γ̃2t1+1 + G̃1γ̃

1
t1
+ H̃12

1 γ̃2t1 − D̃1
t1

i
We proceed in this way in each period, t = t1, ..., t2 − 1 :

D̃t+1 = −Q̃
³
dt+1 + α2Z̃γ̃t

´
γ̃2t+1 =

³
H̃22
1

´−1
D̃2

t+1

γ̃1t+1 = −G̃−10
h
H̃12
0 γ̃2t+1 + G̃1γ̃

1
t + H̃12

1 γ̃2t − D̃1
t

i
.

The t = t2 equation requires special adjustments analogous to the ones used at the end of
the non-binding regime, because solving the t = t2 equation requires working with the t2+1
equation first. The ‘constant term’ in the t2 + 1 equation is:

Dt2+1 = −Q
µ
dt2+1 + α2Z̃

µ
γ̃1t2
γ̃2t2

¶¶
.

As before, Q is part of the QZ decomposition relevant to the non-binding regime, but Z̃
belongs to the binding regime because we have γ̃t2 in hand, and this must be converted to
zt2.
With Dt2+1 in hand, we compute γ

2
t2+1

as follows:

γ2t2+1 =
¡
H22
1

¢−1
D2

t2+1.

We now return to the t2 equation:

α0zt2+1 + α̃1Z̃γ̃t2 = −
h
α2Z̃γ̃t2 + d+ β0st2+1 + β1st2

i
,
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or, after multiplying by Q̃ :
H̃0Z̃

0Zγt2+1 + H̃1γ̃t2 = D̃t2 ,

where D̃t2 is available from the previous computations. Writing this out more carefully,∙
G̃0 H̃12

0

0 0

¸ ∙
M̃11 M̃12

M̃21 M̃22

¸ ∙
γ1t2+1
γ2t2+1

¸
+

∙
G̃1 H̃12

1

0 H̃22
1

¸ ∙
γ̃1t2
γ̃2t2

¸
=

∙
D̃1

t2

D̃2
t2

¸
,

where

M̃ =

∙
M̃11 M̃12

M̃21 M̃22

¸
= Z̃ 0Z (=M 0) .

Writing out the first of the above equations:h
G̃0M̃11 + H̃12

0 M̃21

i
γ1t2+1 +

h
G̃0M̃12 + H̃12

0 M̃22

i
γ2t2+1 + G̃1γ̃

1
t2 + H̃12

1 γ̃2t2 = D̃1
t2,

or,

γ1t2+1 = −
h
G̃0M̃11 + H̃12

0 M̃21

i−1 h³
G̃0M̃12 + H̃12

0 M̃22

´
γ2t2+1 + G̃1γ̃

1
t2
+ H̃12

1 γ̃2t2 − D̃1
t2

i
.

2.0.3.3.The Final Non-Binding Regime Given
¡
γ1t2+1, γ

2
t2+1

¢
, we now solve the equa-

tions in the non-binding regime, t = t2 + 1, ..., T. Consider period t2 + 1 first:

α0zt2+2 + α1zt2+1 = − [α2zt2 + β0st2+2 + β1st2+1] .

Multiplying by Q and applying the QZ decomposition:

Qα0ZZ
0zt2+2 +Qα1ZZ

0zt2+1 = −Q [α2zt2 + β0st2+2 + β1st2+1] ,

or,
H0γt2+2 +H1γt2+1 = Dt2+1,

or, ∙
G0 H12

0

0 0

¸ ∙
γ1t2+2
γ2t2+2

¸
+

∙
G1 H12

1

0 H22
1

¸ ∙
γ1t2+1
γ2t2+1

¸
=

∙
D1

t2+1

D2
t2+1

¸
.

To solve for
¡
γ1t2+2, γ

2
t2+2

¢
, we first obtain γ2t2+2 using the t2 + 2 equation:

Dt2+2 = −Q
¡
dt2+2 + α2Zγt2+1

¢
(constant term in period t2 + 2 equation)

γ2t2+2 =
¡
H22
1

¢−1
D2

t2+2
(solving period t2 + 2 equation for γ2t2+2)

Then,
γ1t2+2 = −G

−1
0

£
H12
0 γ2t2+2 +G1γ

1
t2+1 +H12

1 γ2t2+1 −D1
t2+1

¤
.

For t = t2 + 1, ..., T − 1 :

Dt+1 = −Q (dt+1 + α2Zγt)

γ2t+1 =
¡
H22
1

¢−1
D2

t+1

γ1t+1 = −G−10
£
H12
0 γ2t+1 +G1γ

1
t +H12

1 γ2t −D1
t

¤
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We now have γ1T , γ
2
T , DT . Recall that st = 0 for t ≥ T + 1.

zT+1 = AzT ,

so that, after multiplying by Z 0 :

γT+1 = ÃγT , Ã = Z 0AZ,

or, µ
γ1T+1
γ2T+1

¶
=

⎡⎣ Ã1
· · ·
Ã2

⎤⎦ γT .
We must still satisfy the t = T equilibrium conditions:∙

G0 H12
0

0 0

¸ ∙
γ1T+1
γ2T+1

¸
+

∙
G1 H12

1

0 H22
1

¸ ∙
γ1T
γ2T

¸
=

∙
D1

T

D2
T

¸
.

Note, however, that the bottom set of equations are satisfied because of the way γ2T was
chosen and because γ2T+1 does not enter these equations. The first set of equations need
not be satisfied, however, and so we use the requirement that these be satisfied to pin down
γ1T+1. In particular, we adjust γ

1
1 until the following expression is satisfied:

G0γ
1
T+1 +H12

0 γ2T+1 +G1γ
1
T +H12

1 γ2T = D1
T .

Note that this is a number of equations equal to the dimension of γ11.
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