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Abstract

The `ideal' band pass ¯lter can be used to isolate the component of a time series that lies within
a particular band of frequencies. However, applying this ¯lter requires a dataset of in¯nite length.
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are stationary about a trend. We identify one approximation which, though it is only optimal for
one particular time series representation, nevertheless works well for standard macroeconomic time
series.

To illustrate the use of this approximation, we use it to characterize the change in the nature of
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is surprisingly little change in the Phillips curve and substantial change in money growth-in°ation
relation.
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1. Introduction

Economists have long been interested in the di®erent frequency components of the data. For example,

business cycle theory is primarily concerned with understanding °uctuations in the range of 1.5 to

8 years while growth theory focuses on the longer run components of the data. In addition, some

economic hypotheses are naturally formulated in the frequency domain, such as Milton Friedman's

hypothesis that the long-run Phillips curve is positively sloped, while the short run Phillips curve is

negatively sloped, and the proposition that money growth and in°ation are highly correlated in the

long run, and less correlated in the short run. As a ¯nal example, certain frequency components of

the data are important as inputs into macroeconomic stabilization policy. For instance, a policy maker

who observes a recent change in output is interested in knowing whether that change is part of a trend

(i.e., part of the lower frequency component of the data) or is more transitory (i.e., part of the higher

frequency component).

The theory of the spectral analysis of time series provides a rigorous foundation for the notion that

there are di®erent frequency components of the data. An advantage of this theory, relative to other

perspectives on decomposing time series, is that it does not require a commitment to any particular

statistical model of the data. Instead, it relies on the Spectral Representation Theorem, according to

which any time series within a broad class can be decomposed into di®erent frequency components.

The theory also supplies a tool for extracting those components. That tool is the ideal band pass ¯lter.

It is a linear transformation of the data, which leaves intact the components of the data within a

speci¯ed band of frequencies and eliminates all other components. The adjective, ideal, on this ¯lter

re°ects an important practical limitation. Literally, application of the ideal band pass ¯lter requires

an in¯nite amount of data. Some sort of approximation is required.

In this paper, we characterize and study optimal linear approximations, assess alternative ap-

proaches developed in the literature and provide empirical illustrations. To explain what we mean

by an optimal linear approximation, let yt denote the data generated by applying the ideal, though

infeasible, band pass ¯lter to the raw data, xt. We approximate yt by ŷt, a linear function, or ¯lter, of

the observed sample xt's. We select the ¯lter weights to make ŷt as close as possible to the object of

interest, yt; in the sense of minimizing the mean square error criterion:

E
h
(yt ¡ ŷt)

2 jx
i
; x ´ [x1; :::; xT ]; (1.1)

where the expectation operator is evaluated using the time series properties of xt: Thus, ŷt is the linear

projection of yt onto every element in the data set, x; and there is a di®erent projection problem for
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each date t: We derive closed form formulas for the ¯lter weights in these projections.

We illustrate the use of ŷt in two empirical applications: one concerns the relationship between

in°ation and unemployment and the other, the relationship between money growth and in°ation. We

use the ¯ltering technology developed here to characterize the change in the dynamics of these variables

before and after 1960. A bootstrap procedure is applied for conducting the relevant statistical inference.

The optimal approximation to the band pass ¯lter requires knowing the true time series repre-

sentation of xt: In practice, this is not known and must be estimated. It turns out, however, that

for standard macroeconomic time series, a more straightforward approach that does not involve ¯rst

estimating a time series model works well. That approach uses the approximation that is optimal

under the (most likely, false) assumption that the data are generated by a pure random walk.1 The

procedure is nearly optimal for the type of time series representations that ¯t US data on interest rates,

unemployment, in°ation, and output. The ¯lter is easy to implement, and is described as follows. To

isolate the component of xt with period of oscillation between pl and pu; where 2 · pl < pu < 1; our

recommended approximation of yt; ŷt; is computed as follows:2

ŷt = B0xt + B1xt+1 + ::: + BT¡1¡txT¡1 + ~BT¡txT (1.2)

+B1xt¡1 + ::: + Bt¡2x2 + ~Bt¡1x1;

for t = 3; 4; :::; T ¡ 2: In (1.2),

Bj =
sin (jb) ¡ sin (ja)

¼j
; j ¸ 1 (1.3)

B0 =
b ¡ a

¼
; a =

2¼

pu
; b =

2¼

pl
:

and ~BT¡t; ~Bt¡1 are simple linear functions of the Bj's.3 The formulas for ŷt when t = 2 and T ¡ 1 are

straightforward adaptations on the above expressions. The formulas for ŷ1 and ŷT are also of interest.

1Our formulas assume there is no drift in the random walk. If there is a drift in the raw data, we assume it has been
removed prior to analysis. For more details, see footnote 5 below.

2If the data are quarterly and pl = 6; pu = 32; then yt is the component of xt with periodicities between 1:5 and 8
years.

3In particular, ~BT¡t is the sum of the Bj 's over j = T¡t; T¡t+1; ::: and ~Bt¡1 is the sum of the Bj 's over j = t¡1; t; :::
. Exploiting the fact that B0 + 2

P1
i=1

Bi = 0;

~BT¡t = ¡1
2
B0 ¡

T¡t¡1X

j=1

Bj ; for t = 3; :::; T ¡ 2:

Also, ~Bt¡1 solves
0 = B0 +B1 + :::+BT¡1¡t + ~BT¡t +B1 + :::+Bt¡2 + ~B:
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For example,

ŷT =

µ
1

2
B0

¶
xT + B1xT¡1 + ::: + BT¡2x2 + ~BT¡1x1; (1.4)

where ~BT¡1 is constructed using the analog of the formulas underlying the ~Bj 's in (1.2)4: The expression

for ŷT is useful in circumstances when an estimate of yT is required in real time, in which case only

a one-sided ¯lter is feasible. As we discuss below, the need for real time estimates of yt arises in a

macroeconomic stabilization context.

Note from (1.2) that our recommended ¯lter varies with time, and is not symmetric in terms of

future and past xt's. It is easy to adjust our recommended ¯lter weights to impose stationarity and

symmetry, if these features were deemed to be absolutely necessary. Simply construct (1.2) so that ŷt

is a function of a ¯xed number, p; of leads and lags of xt and compute the weights on the highest lead

and lag using simple functions of the Bj's.
5 This is the solution to our projection problem when xt is a

random walk, and ŷt is restricted to be a linear function of fxt; xt§1; :::; xt§pg only. With this approach,

it is not possible to estimate yt for the ¯rst and last p observations in the data set. In practice, this

means restricting p to be relatively small, to say three years of data. This ¯lter renders stationary time

series which have up to two unit roots, or which have a polynomial trend up to the power of two.

It is important to emphasize a caveat regarding our recommended ¯lter, (1.2)-(1.3). That ¯lter

does not closely approximate the optimal ¯lter in all circumstances. To illustrate this, we display an

example in which the ¯rst di®erence of the data displays substantial negative autocorrelation, and our

recommended ¯lter does not work well. For cases in which the appropriateness of our recommended

¯lter is questionable, it makes sense to estimate the time series representation of the data to be ¯ltered,

and then compute, using the formulas we provide, the optimal ¯lter based on the estimated time series

representation.6 Our formulas work for a fairly large class of time series models. Still, the class can be

extended even further by applying the kind of algebraic manipulations we do in the appendix.

The outline of the paper is as follows. In section two we describe precisely the component of the

4Here ~BT¡1 = ¡ 1
2B0 ¡

PT¡2
j=1

Bj :
5The weights on xt; xt§1; :::; xt§(p¡1) are B0; :::; Bp¡1; respectively. The weight on xt¡p and xt+p, ~Bp; is obtained using

~Bp = ¡1
2

"
B0 + 2

p¡1X

j=1

Bj

#
:

It is easy to verify that in this case there is no need to drift-adjust the raw data because the output of the formula is
invariant to drift. The reason is that the optimal symmetric ¯lter when the raw data are a random walk has two unit roots.
The ¯rst makes xt stationary and the second eliminates any drift. In contrast, the output of the potentially asymmetric
¯lter just discussed in the text is not invarient to drift. When p 6= f; that ¯lter has just one unit root.

6Software for computing the ¯lters in MATLAB is available from the authors on request. The default option in this
software takes as input a raw time series, removes its drift, and then ¯lters it using our recommended random walk ¯lter.
Alternatively, any other formula in this paper can also be implemented simply by overriding the default.
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data we seek to identify. We then discuss how we estimate it in a ¯nite data set. Section 3 does

a quantitative evaluation of alternative approaches to this estimation problem. Section 4 relates our

analysis to the relevant literature. We stress in particular, the important papers by Baxter and King

(1999) and Hodrick and Prescott (1997). Section 5 presents two empirical applications to illustrate

the use of the ¯ltering technology analyzed here. These examples complement the ones presented in

Baxter (1994), Baxter and King (1999), Hornstein (1998), King and Watson (1994), King, Stock and

Watson (1995), and Stock and Watson (1998). Section 6 concludes.

2. The Problem and Its Solution

Our analysis accommodates two types of xt processes. In one, xt has a zero mean, and is covariance

stationary. If the raw data have a non-zero mean, we assume it has been removed prior to analysis. If

the raw data are covariance stationary about a trend, then we assume that trend has been removed.

We also consider the unit root case, in which xt ¡ xt¡1 is a zero mean, covariance stationary process.

If in the raw data this mean is non-zero, then we suppose that it has been removed prior to analysis.7

As we will see, the latter is actually only necessary when we consider asymmetric ¯lters. Any sampling

uncertainty in the parameters needed obtain xt from the raw data is ignored in our analysis.

We begin this section by de¯ning precisely the object that we seek: the component of xt that lies

in a particular frequency range. We then explain why this is di±cult to compute directly in a ¯nite

data set and that some sort of approximation is necessary. We describe a method for obtaining an

optimal approximation. Several examples are presented which convey the intuition about the formulas

we develop to implement this.

2.1. The Ideal Band Pass Filter

Consider the following orthogonal decomposition of the stochastic process, xt:

xt = yt + ~xt: (2.1)

7Removing this mean corresponds to `drift adjusting' the xt process. We elaborate on this brie°y here. Suppose the
raw data are denoted wt; and they have the representation, wt = ¹ + wt¡1 + ut; where ut is a zero mean, covariance
stationary process. Then, wt can equivalently be expressed as wt = (t ¡ j)¹ + xt; where xt = xt¡1 + ut for all t and j
is a ¯xed integer, which we normalize to unity for concreteness. The variable, xt; is the `drift-adjusted' version of wt;
and can be recovered from observations on wt as follows: x1 = w1; x2 = w2¡ ¹; x3 = w3 ¡ 2¹; ... . In practice, ¹ must
be estimated, with ¹̂ = (wT ¡ w1)=(T ¡ 1): Though we set j = 1; it is readily con¯rmed that the output of our ¯lter is
invariant to the value of j chosen. In sum, in the unit root case, we assume xt is the result of removing a trend line from
the raw data, where the slope of the line is the drift in the raw data and the level is arbitrary.
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The process, yt; has power only in frequencies belonging to the interval f(a; b) [ (¡b;¡a)g 2 (¡¼; ¼):

The process, ~xt; has power only in the complement of this interval in (¡¼; ¼): Here, 0 < a · b · ¼: It

is well known (see, for example, Sargent (1987, p. 259)), that,

yt = B(L)xt; (2.2)

where the ideal band pass ¯lter, B(L); has the following structure:

B(L) =
1X

j=¡1
BjL

j; Llxt ´ xt¡l;

where the Bj 's are given by (1.3). With this speci¯cation of the Bj's, we have

B(e¡iw) = 1; for w 2 (a; b) [ (¡b; ¡a) (2.3)

= 0; otherwise.

Our assumption, a > 0; implies, together with (2.3), that B(1) = 0: Note from (2.2) that to compute

yt using B(L) requires an in¯nite number of observations on xt:8 Moreover, it is not clear that simply

truncating the Bj 's will produce good results.

This can be seen in two ways. First, consider Figure 1a, which displays Bj for j = 0; :::; 200; when

a = 2¼=96 and b = 2¼=18: These frequencies, in monthly data, correspond to the business cycle, e.g.,

periods of °uctuation between 1.5 and 8 years. Note how the Bj's die out only for high values of j:

Even after j = 120; i.e., 10 years, the Bj 's remain noticeably di®erent from zero. Second, Figures 1b

- 1d show that truncation has a substantial impact on B(e¡iw): They display the Fourier transform of

¯lter coe±cients obtained by truncating the Bj 's for j > p and j < ¡p for p = 12; 24; 36 (i.e., 1 to 3

8As already noted, we want to consider not just cases in which xt is covariance stationary, but also cases in which it
has a unit root. In the unit root case, the covariance function and hence, the spectral density of xt; are not well de¯ned.
This creates a problem of how to interpret the notion that (2.1) represents an orthogonal decomposition. We do so as
follows. Let xt(¸) for j¸j < 1 be a covariance stationary stochastic process in which the unit root of xt is replaced by
¸. Denote the spectral density of this process, which is well de¯ned, by fx;¸(!): Then, (see Sargent (1987, p. 268)) the
cross-spectrum between yt and ~xt; gy;~x(!;¸); is

gy;~x(!;¸) = B(e
¡i!)

£
1¡B(ei!)

¤
fx;¸(!); j¸j < 1:

By the de¯nition of B (see (2.3)), this cross spectrum is zero for all !, for each ¸: Since the covariance between y and ~x at
any lag is just the suitably weighted integral of this spectrum, it follows that yt and ~xt are uncorrelated at all leads and
lags, for each ¸. In the unit root case, our interpretation of (2.1) as an orthogonal decomposition re°ects that we de¯ne

gy~x(!; 1) = lim
¸!1

gy~x(!;¸) = 0;

for all ! 2 (¡¼; ¼):
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years).9 These di®er noticeably from B(e¡iw).

2.2. Optimal Approximations

Suppose we have a ¯nite set of observations, x = [x1; :::; xT ] and that we know the population second

moment properties of fxtg: Our estimate of y = [y1; :::; yT ] is ŷ; the projection of y onto the available

data:

ŷ = P [yjx] :

This corresponds to the following set of projection problems:

ŷt = P [ytjx] ; t = 1; :::; T: (2.4)

For each t; the solution to the projection problem is a linear function of the available data:

ŷt =
pX

j=¡f
B̂p;f
j xt¡j ; (2.5)

where f = T ¡ t and p = t ¡ 1; and the B̂p;f
j 's solve

min
B̂p;fj ;j=¡f;:::;p

E
h
(yt ¡ ŷt)

2 jx
i
: (2.6)

Presumably, the solution to this problem would be di®erent if instead of having the true second moment

properties of fxtg; we had to rely on sample estimates. Studying the solution to (2.6) in this latter case

is beyond the scope of this paper. In any case, we report results below which suggest that in practice,

reasonable approximations to the solution can be obtained without knowing the details of the time

series representation of xt.

To discuss the solution to (2.6), it is useful to ¯rst de¯ne the following ¯lter:

B̂p;f (L) =
pX

j=¡f
B̂p;f
j Lj; Lhxt ´ xt¡h:

The strategy for estimating y1; y2; :::; yT described above in e®ect uses a di®erent ¯lter for each t: The

¯lters di®er according to the values of p and f; which vary with t:

Alternative strategies for estimating the yt's impose various restrictions. For example, one might

impose stationarity, i:e:; constancy of p and f; and/or symmetry, i:e:; p = f; on the sequence of

9The ¯gure reports B0 + 2
Pp

j=1
Bj cos(!j) for various values of p:
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projection problems de¯ned above. A feature of these alternatives is that they do not use all the

available observations on xt to estimate the yt's. There may be advantages to restricting one's attention

to stationary and/or symmetric ¯lters. For example, stationarity may have econometric advantages.

Symmetry has the advantage of ensuring that there is no phase shift between ŷt and yt:
10 Thus, there

is a trade-o® between stationarity and symmetry and obtaining the best possible estimate of yt in the

sense of (2.6). One of our objectives is to quantify the severity of this trade-o® in settings that are of

practical interest.

For given t; we can obtain a closed form solution to the projection problem, (2.4), by formulating

it in the frequency domain:

min
B̂p;fj ;j=¡f;:::;p

Z ¼

¡¼
jB(e¡i!) ¡ B̂p;f (e¡i!)j2fx(!)d!; (2.7)

where fx(!) is the spectral density of xt:
11 This formulation of the problem emphasizes that the solution

to the projection problem, (2.4), depends on the time series properties of the data being ¯ltered. This

is true, despite the fact that the ideal band pass ¯lter is not dependent on the time series properties of

the data.

2.3. Time Series Representations

We consider the following class of time series representations for xt:

xt = xt¡1 + µ(L)"t; E"2t = 1; (2.8)

so that

fx(!) =
µ(e¡i!)µ(ei!)

(1 ¡ e¡i!)(1 ¡ ei!)
: (2.9)

10This observation follows from standard results. The phase-shift between ŷt and yt is determined by the phase of the
z¡transform of the cross-covariance function between ŷt and yt; gŷy(z): This is given by:

gŷy(z) = B̂
p;f (z)B(z¡1)fx(z);

where fx(z) is the z¡transform of the covariance function of the data being ¯ltered. The phase in gŷy(e
¡i!) is related to

the complex part of gŷy(e
¡i!): Given that B(e¡i!) and fx(e¡i!) are real, this is zero if, and only if, B̂p;f (e¡i!) is real.

But, this is equivalent to the requirement, B̂p;f (e¡i!) = B̂p;f (ei!); i.e., that B̂p;f
j = B̂p;f

¡j :
11This formula corresponds to one derived under similar circumstances by Sims (1972). Sims (1972) posits a situation in

which some variable, yt; is related to xt by a distributed lag, yt = B(L)xt+ "t; while the econometrician imposes that the
lag structure has the form, B̂p;f (L): He assumes that the restrictions imposed by the econometrician on B̂p;f (L) exclude
the true distributed lag, B(L): Sims showed that, in population, the econometrician's estimate of B̂p;f (L); obtained by a
least squares regression of yt on xt's, solves (2.7).
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We place a simple structure on µ(L); by assuming it is a ¯nite-ordered polynomial12:

µ(z) = µ0 + µ1z + ::: + µqz
q; q ¸ 0: (2.10)

We suppose that p and f are large by comparison with q:13 Speci¯cally,

p ¸ 0; f ¸ 0; p + f > 0; p + f ¸ 2q:

De¯ne

g(z) = µ(z)µ(z¡1) = c0 + c1(z + z¡1) + ::: + cq(z
q + z¡q); (2.11)

with c¡¿ = c¿ for all ¿; and c¿ = 0 for ¿ > q:

The case where xt is di®erence stationary corresponds to µ(1) 6= 0. The covariance stationary case

corresponds to µ(1) = 0, when the time series representation of xt is xt = [µ(L)=(1 ¡ L)] "t = ~µ(L)"t;

where ~µ(L) is a ¯nite-ordered polynomial in L:

Formulas for the solution to (2.7) when xt has the time series representation, (2.8), are derived in

Appendix A. The solution when xt is a random walk (i.e., µ(L) ´ 1) was presented in the introduction.14

Other special cases are discussed in the next subsection.

2.4. The Optimal Approximation and fx

The key to understanding the solution to (2.7) is to note that for ¯nite p and f; it is not possible to

construct B̂p;f (e¡i!) so that B̂p;f (e¡i!) = B(e¡i!) for all !: The two functions can be made close over

some subintervals, but only at the cost of sacri¯cing accuracy over other subintervals. The existence of

this trade-o® implies that some weighting scheme is needed to determine which intervals to emphasize

in constructing B̂p;f (e¡i!): The weighting scheme implicit in our optimization criterion is the spectral

density of xt: The reason for this is that the optimization problem seeks to make yt and ŷt as close as

12The case where (1¡e¡i!)(1¡ei!)fx(!) is a rational polynomial is a conceptually straightforward, though algebraically
intensive, extension of what we do here. Our analysis suggests that the extension to the rational polynomial case may
not be necessary to achieve good results in practice.
13This is only imposed to simplify the projection formulas in the Appendix. The requirement could be dropped by a

suitable extension of the formulas derived there.
14The random walk case is simple, and can be established with the following time-domain argument. The problem is

that not all the observations on xt are available to evaluate yt in (2.2). The missing data are the xt's after the end of the
data set and before the beginning. We can use the assumed time series model for xt to forecast and backcast these missing
observations based on the actual data. We obtain ŷt by incorporating the actual data and the estimates for the missing
observations into the formula for yt. In the random walk case, the formulas for the missing observations are particularly
simple: for j < t ¡ T; P [xt¡j jx1; :::; xT ] = xT and for j > t ¡ 1; P [xt¡j jx1; :::; xT ] = x1: With these observations, it is
easy to verify (1.2)-(1.4), where ~BT¡t is the sum of the Bj 's over all j ¸ T ¡ t and ~Bt¡1 is the sum of the Bj 's over all
j ¸ t ¡ 1: This time domain strategy for solving our problem follows the one implement by Stock and Watson (1998) in
a business cycle context and by Geweke (1978) and Wallis (1981) in a seasonal adjustment context.
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possible, and this translates into making the product of B and fx similar to the product of B̂p;f and

fx: Thus, the optimization criterion picks the B̂p;f
j 's so that B̂p;f (e¡i!) resembles B(e¡i!) closely for

values of ! where fx(!) is large and places less emphasis on regions where fx is relatively small: We

illustrate this principle using four examples. The four examples tilt the graph of fx(!); ! 2 (0; ¼) in

various ways and the e®ects on the B̂p;f
j 's are displayed.

In what we call the `IID case', µ(z) = 1¡z; so that fx(!) = 1 for all !: In this case, the optimization

criterion assigns equal weight to all frequencies. In the appendix, it is shown that the B̂p;f
j 's that solve

(2.7) in this case are given by:

IID case: B̂p;f
j = Bj; for j = ¡f;¡f + 1; :::; 0; ::::; p: (2.12)

For p = f = 12; pu = 24; pl = 4 (see (1.3)), B̂p;f (e¡i!) and B(e¡i!) are displayed in Figure 2a.15

In our other three examples, xt has a single unit root. That (2.12) is not the solution to (2.7) in this

case can be seen using a simple argument by contradiction. Thus, suppose (2.12) is the solution to (2.7)

in the unit root case. Since B(1) = 0; it follows that yt is covariance stationary. But, since most likely

B̂p;f (1) 6= 0; ŷt will not be covariance stationary.16 This implies that ŷt and, hence, yt¡ ŷt; has in¯nite

variance. This variance can be made ¯nite by just altering the ¯lter weights so that B̂p;f (1) = 0: This

is a contradiction to the assumption that the ¯lter weights solve (2.7).

The preceding considerations suggest that a necessary condition for B̂p;f (L) to solve (2.7) when xt

has a unit root is that B̂p;f (1) = 0: We impose this in the formulas derived in the appendix.

To illustrate these formulas, we analyze the following additional examples. The case where xt is a

random walk is discussed in the introduction. In the `Near IID case',

µ(z) = 1 ¡ (1 ¡ ´)z; ´ > 0; ´ small. (2.13)

15That (2.12) is the solution to (2.7) in the IID case can be veri¯ed trivially using the time domain strategy in footnote
12. The frequency domain strategy is also straightforward in this case. The ¯rst order condition of (2.7) associated with
the optimal choice of B̂p;f

j is Z ¼

¡¼
B(e¡i!)e¡i!jd! =

Z ¼

¡¼
B̂p;f (e¡i!)e¡i!jd!;

for j = ¡f;¡f + 1; :::; 0; :::; p: Equation (2.12) follows by evaluating these integrals using the well known fact
Z ¼

¡¼
e¡i!hd! =

½
2¼; h = 0
0; h 6= 0 :

16We have not ruled out the possibility that there is some combination of p and f for which B̂p;f (1) = 0; when the
B̂p;f
j 's are constructed as in (2.12).
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Note that if ´ = 0; then this reduces to the IID case just discussed. However, with ´ positive, no

matter how small, fx(!) diverges to in¯nity for ! ! 0: Outside of a small region around ! = 0; the

spectrum of xt in the Near IID case looks like the one in the IID case: constant at unity. In this case,

the solution to (2.7), for p = f; is

Near IID case: B̂p;f
j = Bj +

¢

1 + 2p
; j = 0; §1; :::;§p; (2.14)

where

¢ = ¡
2
4B0 + 2

pX

j=1

Bj

3
5 ;

and the Bj 's are de¯ned in (1.3).17 In this case, it is optimal to truncate the ideal band pass ¯lter and

then adjust all the weights by a constant to ensure B̂p;f (1) = 0: This di®ers from the Random Walk

case discussed in the introduction. In the latter, optimality dictates truncating the ideal band pass

¯lter, and then only adjusting the highest order terms to ensure B̂p;f (1) = 0:

Figure 2 allows us to assess the impact on the optimal ¯lter approximations of the three speci-

¯cations of fx already described and of the fourth one that will be described shortly. We begin by

comparing B̂12;12(e¡i!) in the Near IID and IID cases (see Figures 2a and 2b). We can think of

the Near IID case as adapting B̂12;12(e¡i!) from the IID case by shifting it up towards zero in the

neighborhood of ! = 0. This improvement is achieved at the cost of making B̂12;12(e¡i!) diverge from

B(e¡i!) for values of ! slightly above zero. In the IID case, when fx(!) = 1 for all !, this cost

outweighs the improvement. In the Near IID case, when fx(0) = 1; the situation is reversed. For

frequencies well above ! = 0; B̂12;12(e¡i!) for the two cases essentially coincide. The example shows

that shifting power towards one frequency range causes the optimal ¯lter to become more accurate in

that range, at the expense of doing poorly in another range.

We now compare B̂12;12(e¡i!) in the Near IID and Random Walk cases (see Figure 2b). The

spectrum of xt in the Random Walk case resembles the one in the Near IID case in that it diverges

to in¯nity for ! ! 0: However, it declines more slowly as ! increases above zero.18 As a result,

17Verifying this is only a little more complicated than the problem of verifying (2.12), discussed in footnote 12. Consider
the case, p = f; so that the solution to (2.7) is symmetric with B̂p;f

j = B̂p;f
¡j for j = 0; :::; p (this symmetry property is an

unsurprising feature of the p = f case, and is established rigorously in Appendix A.) The p + 1 unknown B̂p;f
j 's may be

found by solving the condition, B̂p;f (1) = 0; and the p ¯rst order conditions associated with (2.7):

Z ¼

¡¼
B(e¡i!)e¡i!jfx(!)d! =

Z ¼

¡¼
B̂p;f (e¡i!)e¡i!jfx(!)d!;

for j = 0; :::; p¡ 1: That these indeed are the ¯rst order conditions can be veri¯ed with some algebra, but in any case is
established carefully in Appendix A. It is easily veri¯ed that the B̂p;f

j 's in (2.14) satisfy these conditions.
18In the random walk case, fx(!) = 1= [2(1¡ cos(!))] :

10



by comparison with the IID case, the Random Walk case assigns relatively heavy weight to the low

frequencies and relatively low weight to the others. The e®ects on the optimal ¯lter are evident in

Figure 2b: the Random Walk case does better than the Near IID case in the region of ! = 0; but at

the cost of performing relatively poorly at the higher frequencies.

A ¯nal case, the Persistent case, is studied in Figure 2c. There,

µ(z) = 1 + z + ::: + z13: (2.15)

Taking the Random Walk case as a benchmark, this case goes to the opposite extreme relative to the

Near IID case. The Persistent case tilts power in xt even more towards frequency zero and away from

the higher frequencies. It almost corresponds to the case in which it is not the ¯rst di®erence, but the

second di®erence of xt; that is a white noise. We compare B̂12;12(e¡i!) for these two cases in Figure

2c. Note how B̂12;12(e¡i!) for the Persistent case does better in a neighborhood of ! = 0 than the

Random Walk case. This is achieved in exchange for a very pronounced deterioration in performance

in the higher frequencies.

3. Quantitative Assessment of Various Filters

A key purpose of this section is to explore the quantitative importance of three factors in the solution

to (2.7). We examine the role of asymmetry and time nonstationarity of the B̂p;f 's. We also assess the

importance of knowing the details of the time series representation of xt: Clearly, the importance of

these three factors depends on the actual time series properties of xt: To make the analysis interesting,

we use di®erence stationary and trend stationary time series representations that ¯t standard US

macroeconomic data.

Our ¯ndings are as follows. First, in minimizing (1.1), the biggest gains come from allowing

the ¯lter weights to vary over time. These gains re°ect that allowing nonstationarity substantially

increases the amount of information in x that can be used in estimating ŷt: Second, allowing the

¯lter weights to be asymmetric further increases the amount of information in x that can be used

in constructing ŷt; though by a lesser amount. So, we ¯nd that nonstationarity and asymmetry are

valuable in minimizing the distance metric. It turns out that the cost of these features is relatively

minor. We display evidence that the degree of asymmetry and nonstationary in the optimally ¯ltered

data is quantitatively small.19 Finally, we ¯nd that there is relatively little gain in knowing the precise

19This is similar to results obtained for the Hodrick-Prescott ¯lter, which is also nonstationary and asymmetric. Chris-
tiano and den Haan (1996) show that, apart from data at the very beginning and end of the data set, the degree of
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details of the time series representation generating the xt's. In particular, the gain from using the true

time series representation of xt to compute ŷt rather than proceeding as though xt is a random walk,

is minimal in practice. These are the ¯ndings that lead us to the view that an adequate, though not

optimal, procedure for isolating frequency bands in macroeconomic time series is to proceed as if the

data were a random walk and use ¯lters that are optimal in that case.

The second purpose of this section is to evaluate other ¯ltering approaches used in the literature.

These include the band-pass ¯ltering approach recommended by Baxter and King (1999) and the ¯lter

proposed by Hodrick and Prescott (1997) (HP). In addition, we consider the band-pass approxima-

tion based on regressing data on sine and cosine functions, as described in Christiano and Fitzgerald

(1998, Appendix) and Hamilton (1994, pages 158-163). We call this last procedure the Trigonometric

Regression procedure.

The ¯rst subsection describes the statistics that we use in our analysis. The next subsection studies

the properties of the solution to (2.7). The third subsection compares these properties with those of

alternative ¯lters that are used in the literature. The second and third subsections are based on unit

root representations of the data. The ¯nal subsection considers robustness of our results by considering

trend stationary representations instead.

3.1. Some Useful Statistics

We evaluate the ¯ltering procedures by studying the dynamic correlations, corrt(ŷt; yt¡¿ ); and the

relative standard deviations, (vart(ŷt)=var(yt))
1=2 ; for various t:20 This section explains why we look

at these statistics, and how we compute them.

These statistics have three features which make them useful for our purposes. First, when the

ŷ0ts are based on variable lag ¯lters, they are non-trivial functions of time. We use the quantitative

magnitude of this variation to assess the degree of non-stationarity in ŷt: Of course, statistics based on

yt alone, or statistics based on ŷt when ¯xed lag ¯lters are used, are invariant with respect to t; given

the data generating mechanisms that we consider. Second, for ¯lters that solve a projection problem,

nonstationarity in this ¯lter is quantitatively small.
20Following convention, a statistic for a particular date is de¯ned across the ensemble of realizations for the underlying

stochastic process at that date.
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the projection criterion, E[(yt ¡ ŷt)
2j­t]; is a simple function of the correlation between yt and ŷt:

21

E[(yt ¡ ŷt)
2j­t] =

h
1 ¡ corrt(ŷt; yt)

2
i
var(yt):

Here, ­t is the relevant information set in the projection.22 This relation indicates that we are free to

think of the projection criterion in terms of corrt(ŷt; yt); an object that we ¯nd easier to interpret than

E[(yt ¡ ŷt)
2j­t] itself. In evaluating our results, it is useful to be aware of two other results that are

true when ŷt solves a projection problem:

corrt(ŷt; yt) =

·
vart(ŷt)

var(yt)

¸1=2
; vart(ŷt) · var(yt):

Third, one of our concerns is to quantify the phase shifts that exist between yt and ŷt when the latter

is computed using non-symmetric ¯lters. As explained below, the dynamic correlations between yt and

ŷt are useful for this.

We now brie°y discuss how we compute these statistics. We evaluate the variance of yt using the

following relation:23

var(yt) =
1

¼

Z b

a
fx(!)d!:

21This is a standard result. To see it, note that by the orthogonality property of projections, we can write yt = ŷt + "t;
where "t is orthogonal to ­t and, hence, ŷt itself. Then,

vart(yt ¡ ŷt) = var(yt)¡ vart(ŷt) = var(yt)
·
1¡ vart(ŷt)

var(yt)

¸
= var(yt)

£
1¡ ½t(0)2

¤
:

The last equality follows from the following observation:

corrt(ŷt; yt) =
covt(ŷt; yt)

[vart(ŷt)vart(yt)]
1=2

=
vart(ŷt)

[vart(ŷt)vart(yt)]
1=2

=

µ
V art(ŷt)

V art(yt)

¶1=2

:

22That is, ­t = fx1; :::; xT g for all t in the case of Optimal, xt¡12; :::; x0; :::; xt+12 in the case of Optimal Fixed,
p = f = 12; etc.
23In practice, we approximate an integral like this by the Riemann sum:

1

¼

Z b

a

fx(!)d! ¼ b¡ a
¼

1

N

NX

j=1

fx(!j) =
b¡ a
¼

1

N

NX

j=1

µ(e¡i!j )µ(ei!j )

2 (1¡ cos(!j))
; !j = a+

b¡ a
N

j; j = 1; :::; N

To guarantee that var(yt) is accurately computed, and because it only needs to be computed a few times, we set N to a
very high value, 10; 000:
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We evaluate the variance of ŷt using the following expression:24

vart(ŷt) =
1

¼

Z ¼

0
jB̂p;f (e¡i!)j2fx(!)d!:

Here, var is a non-trivial function of time when p and f vary with t.

The dynamic correlations between yt and ŷt are computed using the following the expression:

corrt(ŷt; yt¡¿ ) =
covt(ŷt; yt¡¿ )p
vart(ŷt)var(yt)

=

1
¼

R b
a real

h
rp;f (e¡i!)ei[µ(!;p;f)+!k]fx(!)

i
d!

p
vart(ŷt)var(yt)

:

For convenience, we have written B̂p;f in polar form:

B̂p;f (e¡i!) = rp;f (e¡i!)eiµ(!;p;f);

where rp;f (e¡i!) is real and the function µ(!; p; f) is the phase of B̂p;f (e¡i!) (see Sargent (1987, chapter

XI).25 We use the location of the peak of this correlation function to determine whether there is a phase

shift between yt and ŷt: To see the rationale for this, consider the following special cases. When B̂p;f

is symmetric, so that µ(!; p; f) ´ 0 and there is no phase shift between yt and ŷt; then it is easily

veri¯ed that corrt(ŷt; yt¡¿ ) is symmetric about ¿ = 0:26 When B̂p;f is not symmetric, so that there

is a non-zero phase shift between yt and ŷt, then this symmetry property of the correlation function

fails. Consider, for example, the extreme case in which B̂p;f (L) = Lh and h 6= 0; so that rp;f (e¡i!) = 1

and µ(!; p; f) = ¡h!: In this case, it is easy to see that corrt(ŷt; yt¡¿ ) is symmetric about ¿ = h: In

general, when symmetry fails the phase of B̂p;f (e¡i!) does not satisfy this proportionality property,

24The integrand in the expression for vart(ŷt) exhibits substantial variation, particularly in the region about ! = a
and ! = b: To ensure that these integrals are computed accurately, we divided the interval, ! 2 (0; ¼) into ¯ve regions:
(0; a ¡ ¢1); (a ¡ ¢1; a + ¢1); (a + ¢1; b ¡ ¢2); (b ¡ ¢2; b + ¢2); (b + ¢2; ¼); with ¢1; ¢2 > 0: The integral in each
region was evaluated using the Riemann approximation formula described in the previous footnote, with N = 100 in each
interval.
25To verify our covariance formula, note ¯rst from the results in Sargent (1987, chapter XI), that

cov(ŷt; yt¡k) =
1

2¼

Z ¼

¡¼
B̂p;f (e¡i!)B(ei!)ei!kfx(!)d!:

Then, note that the integral from 0 to ¼ is the complex conjugate of the integral from ¡¼ to 0: Finally, we have taken
into account of the de¯nition of B to limit the range of integration.
26The connection between the symmetry of B̂p;f and its phase was pointed out in a previous footnote. To see why

symmetry of B̂p;f also implies symmetry of the covariance function, note that when µ ´ 0; the covariance can be written

1

¼

Z ¼

0

B(e¡i!)rp;f (e¡i!)ei!kfx(!)d!

which is the covariance function of a stochastic process whose spectral density is B(e¡i!)rp;f (e¡i!)fx(!) . The result
follows from the symmetry about k = 0 of the covariance function of a stochastic process.

14



and so the asymmetry in B̂p;f (e¡i!) is manifested in more exotic forms of asymmetry in ½t(¿).

3.2. Di®erence Stationary Data Generating Mechanisms

We estimated time series models of the form (2.8) for four data sets often studied in macroeconomic

analysis. In each case, we ¯t a model to the monthly, quarterly and annual data. The variables,

xt; considered are: in°ation, output (GDP for the annual and quarterly frequencies and industrial

production for monthly), the rate of interest (measured by the three-month return on US Treasury

bills) and the unemployment rate. In°ation is measured as the ¯rst di®erence of the log of the consumer

price index (CPI); the rate of interest is measured as the logarithm of the net rate; and output was

transformed using the logarithm. The data set covers the period 1960-1997. The estimation results

are presented in Table 1. With one exception, the Box-Pierce statistic (`Q') indicates little evidence

of serial correlation in the errors, as indicated by the p¡values in the table. In the exceptional case,

monthly in°ation, the addition of higher order lags does not raise the p¡value.

The spectral density of (1 ¡ L)xt for each model is graphed in Figure 3. Note that the spectral

densities of output, interest rates and unemployment are very similar. They exhibit relatively high

power in the low frequencies. Quarterly and monthly in°ation deviates from this pattern in having

relatively more power in the higher frequencies.

15



Table 1: Time Series Representations for Selected US Data

(1 ¡ L)xt = "t + µ1"t¡1 + µ2"t¡2 + µ3"t¡3 + µ4"t¡4 + µ5"t¡5; E"2t = ¾2"

variable, xt ¾" µ1 µ2 µ3 µ4 µ5 Q Frequency

log(CPIt=CPIt¡1) 0.0021 -0.75 0.00 (36-1) M

0.0042 -0.23 -0.27 0.32 0.11 (30-3) Q

0.015 0.81 0.34 (9-1) A

log(GDPt) 0.0075 0.28 0.21 0.20 0.16 0.20 (36-4) M

0.0088 0.25 0.16 0.10 0.12 0.09 (30-4) Q

0.021 0.34 0.89 (9-1) A

log(Tbillt) 0.064 0.26 0.05 (36-1) M

0.105 0.45 -.16 0.24 (30-2) Q

0.21 0.58 0.54 (9-1) A

Unemploymentt 0.18 -0.02 0.19 0.17 0.20 0.05 0.021 (36-5) M

0.27 0.65 0.48 0.41 0.66 (30-3) Q

0.96 0.28 0.80 (9-1) A

Note: All time series models estimated using the RATS command, boxjenk. Data

cover the period 1960-1997. Q denotes the p¡value of the Box-Pierce test of the

null hypothesis of zero autocorrelation in the residuals. In (n;m), n denotes number

of autocorrelations in residuals used, and m denotes degrees of freedom of chi-square

test statistic.

3.3. Properties of the Optimal Filter Approximation

We evaluate various procedures for computing ŷt under a variety of speci¯cations of the time series

representation for xt; various data sampling intervals and frequency bands. The procedures we consider

are listed in Table 2. Comparison of Optimal Symmetric and Optimal Fixed permits us to assess the

importance of time stationarity in the ¯lter. Comparison of Optimal and Optimal Symmetric permits

us to assess the importance of symmetry. Comparison of Optimal and Random Walk permits us to

assess the importance of getting the details of the time series representation of xt just right.
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Table 2: Band Pass Filter Approximation Procedures Considered

Name De¯nition

Optimal Optimal

Random Walk Optimal, assuming random walk xt ((1.2)-(??))

Optimal, Symmetric Optimal, subject to p = f

Optimal, Fixed Optimal, subject to p = f = 36

Random Walk, Fixed Optimal, subject to p = f = 36; assuming random walk xt

Note: (i) The various procedures optimize (1.1) subject to the indicated constraints.

Where the time series representation of xt is not indicated, it will be clear from the

context. (ii) We use p = 36 because this is recommended by Baxter and King (1999).

This section reports our results, based on the unit root representations in Table 1, and on the

Near IID ((2.13) with ´ = :01) and Persistent, (2.15), representations considered in the previous

section. Given the evidence in Figure 3, it is not surprising that the ¯ndings for many of the time

series representations in Table 1 are very similar. Therefore, of the time series representations in Table

1, we only present results for in°ation. We selected this time series representation because it provides

the weakest support for our contention that the Random Walk ¯lter is close to optimal. Results based

on the Persistent representation are similar to those for the other representations in Table 1, and so

we do not present these. Results based on annual, monthly and quarterly data sampling intervals are

also very similar. Consequently, we only present the ¯ndings based on the monthly sampling interval.

We consider three frequency bands: 1:5 to 8 years, 8 to 20 years, and 20 to 40 years.

The results we present are based on two monthly time series representations: the one estimated

using in°ation (see Figure 4) and the Near IID representation (Figure 5). Consider Figure 4 ¯rst. The

¯rst, second and third columns of the ¯gure provide information on corrt(ŷt; yt); [vart(ŷt)=var(yt)]
1=2 ;

and corrt(ŷt; yt¡k); respectively. We report results for t = 1; :::; 240; since statistics are symmetric across

the ¯rst and second halves of the sample. The ¯rst, second and third rows in the ¯gure correspond to

three di®erent frequency bands: 1:5 to 8 years; 8¡20 years; and 20¡40 years, respectively. Each panel

in the ¯rst column contains four curves, di®erentiated according to the procedure used to compute ŷt:

Optimal, Random Walk, Optimal Symmetric, or Optimal Fixed. Results for Optimal and Random

Walk are presented for t = 1; :::; T=2: Results for Optimal Symmetric and Optimal Fixed are presented

for t = 37; :::; T=2; since we set p = f = 36. Here, T = 480; which is slightly more than the number of

monthly observations in the estimation period for the monthly time series representations in Table 1.

The second column contains results for Optimal and Random Walk alone. Here, results for Optimal
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are simply repeated for convenience from the ¯rst column. As discussed above, for ¯lters that solve a

projection problem, the correlation and relative standard deviation coincide. Finally, the third column

reports corrt(ŷt; yt¡k) for ¯ve di®erent values of t: t = 1; 31; 61; 121; 240: In each case, k ranges from

¡24 to 24: Also, the location of k = 0 is indicated by a `+'.

The main ¯ndings in Figure 4 are as follows. First, the e±ciency di®erences between Random Walk

and Optimal are very small (column 1). A minor exception to this can be found in the business cycle

frequencies for t = 4; :::; 11: For these dates, the di®erence between corrt(ŷt; yt) based on Optimal and

Random Walk is between 0:08 and 0:12: Although these di®erences are noticeable, they do not seem

quantitatively large. Moreover, the di®erences between Random Walk and Optimal are barely visible

when the analysis is based on the other time series representations in Table 1.

Second, imposing symmetry (see Optimal Symmetric) results in a relatively small loss of e±ciency

in the center of the data set, but that loss grows in the tails. Third, imposing stationarity in addition to

symmetry (Optimal Fixed) results in a noticeable loss of e±ciency throughout the data set. However,

the e±ciency losses due to the imposition of symmetry and stationarity are comparatively small in the

business cycle frequencies. They are dramatic in the lowest frequencies.

Fourth, ŷt based on Optimal and Random Walk appears to be reasonably stationary, except in an

area in the tails. This tail area is fairly small (about 1.5 years) for the business cycle frequencies, but

it grows for the lower frequencies (columns 1 and 2). Fifth, Random Walk seems to imply little phase

shift between ŷt and yt (column 3). There is essentially no phase shift, even at the lowest frequencies.

We conclude from these results that the noticeable e±ciency gains obtained by ¯lters that use all

the data come at little cost in terms of nonstationarity and phase shift. However, the gains of going

from a simple procedure like Random Walk to Optimal are quite small.

These ¯ndings apply to all the time series models in Table 1, as well as to the Persistent time series

representation. One time series representation where these ¯ndings do not hold up is the Near IID

case, which is reported in Figure 5. In particular, the ¯nding that Random Walk is nearly optimal

and roughly stationary no longer holds (columns 1 and 2). However, the other conclusions continue to

hold. For example, Optimal is still nearly stationary outside of tail areas. Also, imposing symmetry

and time-stationarity on the ¯lter imposes substantial e±ciency costs, especially in the low frequencies.

3.4. Properties of Alternative Filter Approximations

Next we discuss three alternative band pass ¯lter approximations that have been used in the literature.

The ¯rst of these, the one due to Baxter and King (1999), is the ¯xed-lag, symmetric ¯lter de¯ned in

(2.14). This ¯lter can do no better than Optimal Fixed, discussed in the previous section. That ¯lter
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is dominated by Random Walk, which is nearly optimal for the time series models reported in Table 1.

Below, we provide a detailed analysis of two other ¯lters: the HP ¯lter and Trigonometric Regression.

Again, we ¯nd that Random Walk is nearly optimal and dominates the HP ¯lter and Trigonometric

Regression.

3.4.1. Hodrick-Prescott Filter

Proponents of the HP ¯lter o®er several interpretations of what it does (see section 4 below for an

elaboration). The interpretation that we adopt here is that it approximates a band pass ¯lter designed

to isolate, in quarterly data, frequencies corresponding to the business cycle and higher.27 We identify

these with cycles of period 8 years and less. We display evidence which suggests that, for data like

US GDP, unemployment and the CPI, our Random Walk ¯lter is nearly optimal and outperforms the

HP ¯lter. This ¯nding also applies when these ¯lters are used to obtain real-time estimates of yt: We

stress this here because the HP ¯lter is sometimes used in a macroeconomic stabilization context, when

estimates of current yt are needed.

Our discussion in this section is divided into two parts. We ¯rst discuss the evidence on ŷt in

Columns 1 and 2 of Figure 6, ignoring the ¯rst 2-5 years' observations. We then focus separately on

those observations and on the information in Column 3 because this allows us to assess the value of

the ¯lters for obtaining real-time estimates of yt:

The ¯rst column in Figure 6 displays corrt(ŷt; yt) associated with the HP ¯lter, Random Walk, and

Optimal Fixed for t = 1; :::; 80 and for the indicated three quarterly time series models. We do not

display these statistics for Optimal, because they are virtually indistinguishable from Random Walk.

Interestingly, despite the fact that HP uses all the data, it nevertheless performs less well than Optimal

Fixed. Moreover, it does notably less well than Random Walk, particularly for Unemployment and

GDP. Outside of a tail area of roughly two years, corrt(ŷt; yt) exceeds 0:95 and it is closer to 0.99

towards the middle of the data set for Random Walk. For GDP and Unemployment, this statistic

based on the HP ¯lter never exceeds 0:90:

Column 2 shows that, outside of a ¯ve year tail area, the performance of Random Walk is similar

to that of the HP ¯lter, in terms of the standard deviation of ŷt: Random Walk undershoots V ar(yt)

somewhat while HP overshoots.

Another way to compare HP ¯lter and Random Walk focuses on the metric, (1.1), that we use to

construct optimal ¯lters. In particular, we consider Rt; the absolute size of the typical estimation error,

27The HP ¯lter parameter, ¸; is set to 1600, as is typical in applications using quarterly data.
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ŷt ¡ yt (measured by its standard deviation), to the absolute size of the typical value of yt (measured

by its standard deviation): Rt = [V art(ŷt ¡ yt)=V ar(yt)]
1=2 :28 A large value of Rt indicates a poor

¯lter approximation. In the extreme case when Rt is greater than or equal to unity, then the ¯lter

approximation is literally useless. In this case one can do just as well, or better, estimating yt by its

mean with ŷt ´ 0. In the case of Random Walk, Rt is 0:14 towards the middle of the data set and Rt

is no greater than 0:31 if we ignore the ¯rst two years' data. In the case of the HP ¯lter, this number

is 0:49 for Unemployment and GDP and around 0:37 for In°ation. These results are the basis for our

conclusion that, outside of the tail area, Random Walk outperforms the HP ¯lter.

We now turn to the implications of the results in Figure 6 for the real time performance of the

¯lters. We do this because it is of interest in the context of stabilization policy, when current estimates

of the output and unemployment gaps are used. For example, John Taylor has argued persuasively that

monetary policy makers set current policy as a function of the current output gap, among other things.29

The output gap is the log di®erence between actual GDP and `potential' GDP, and the unemployment

gap is the di®erence between actual unemployment and the `natural' rate of unemployment. One

interpretation of potential GDP and the natural rate of unemployment is that they correspond to the

HP trend in actual GDP and unemployment, respectively.30 For this reason, we now investigate how

e®ective HP ¯lter, Random Walk and Optimal are in estimating yt in real time.

At the outset, it should be clear that estimating the current value of yt is likely to be a di±cult

task. Suppose, for example, that the variable, xt; has recently changed value. How is one to decide

whether that change is temporary (i.e., part of yt) or more persistent (i.e., part of ~xt)? No doubt we

can con¯dently answer this question with a su±cient passage of time, with more data. In the light of

hindsight, it is relatively easy to determine whether a given change in a variable was just a blip or a

28Here,

Rt =

·
V art(ŷt ¡ yt)
V ar(yt)

¸1=2
=

(
1 +

µ
V art(ŷt)

V ar(yt)

¶1=2
"µ

V art(ŷt)

V ar(yt)

¶1=2

¡ 2corrt(ŷt; yt)
#)1=2

:

As noted before, when ŷt is the result of projecting yt on x; then corrt(ŷt; yt) = V art(ŷt)=V ar(yt); so that Rt reduces to
(1 ¡ corrt(ŷt; yt)2)1=2. This formula does not hold for HP ¯lter, since it is not the result of the indicated projection. It
only holds approximately for Random Walk. Although that ¯lter is the result of a projection of yt on x, that projection
incorporates a speci¯cation error by falsely assuming the data are generated by a random walk.
29See Taylor (1999). See also Orphanides (1999), who discusses the pitfalls of conditioning policy actions on current

gap measures.
30For example, according to Orphanides and van Norden (1999, p. 1), `The di®erence between [actual output and

potential output] is commonly referred to as the business cycle or the output gap (italics added).' In practice, the concept
of output and unemployment gaps varies among practioners and does not always coincide with the one used here: the
deviation between the actual data series and its `trend', de¯ned as the component with °uctuations having period 8 years
and longer. Alternative gap concepts are based on di®erent notions of trend. For them, the trend corresponds to the
`nonaccelerating in°ation' level of the variable: the level which, if it obtained, would produce a forecast of zero change in
the rate of in°ation in the near future. Gap concepts like this are fundamentally multivariate. To see how the HP ¯lter
can be adapted to correspond more closely to this alternative gap concept, see Laxton and Tetlow (1992) and St-Amant
and van Norden (1997).
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movement in the trend. But, in real time without the advantage of hindsight, we can expect that even

our best estimates of yt will be noisy. That is the case for Random Walk and HP Filter. However, we

show that the estimate based on HP ¯lter is noisier than that based on Random Walk.

Recall the symmetry properties of the statistics in Columns 1 and 2 in Figure 6: their properties

in the second half of the sample are the mirror image of their properties in the ¯rst half. As a result,

the statistics at the left end-point of these two columns provide evidence on the real-time performance

of the ¯lters being considered. That is because, by symmetry, these statistics can be viewed as being

based upon the estimate, ŷT ; of `current' yT ; where T = 160: (In the case of Random Walk, ŷT is

computed using the one-sided ¯lter, (1.4).) Note that the correlation between ŷt and yt is at its lowest

for t = T (t = 1) for both Random Walk and HP ¯lter. That is, the real time correlation between the

estimated and actual gaps is lower than what it is after the arrival of new data.31 The drop is fairly

substantial.

The evidence in Column 2 shows that, for the three time series representations considered, the

real-time variance of ŷt computed using Random Walk is less than what it is after new data arrives. In

this sense, the estimate of the trend implicit in this ¯ltering procedure (and Optimal) tends to follow

the actual data more closely in real time than after the arrival of new data.32 We do not know if this

is a general property of Random Walk, true for all time series representations. Evidently, it is not a

general property of the HP ¯lter. With the data generating mechanisms based on GDP and in°ation,

we see that the real time variance of ŷt is at its global maximum for t = T and t = 1:33

We now compare Random Walk and HP ¯lter using the Rt statistic described above, for t = T:

Using Random Walk, RT = 0:77, 0:78, and 0:69 for GNP, unemployment, and in°ation respectively.

Note that these numbers are substantially larger than what they are for data points closer to the

middle. Still, they indicate Random Walk provides at least some information about yT . Now consider

HP ¯lter. For GDP, RT = 1:01: For unemployment and in°ation, RT is 1:03 and 0:80; respectively.

Evidently, these statistics indicate that Random Walk dominates HP ¯lter in real time. Moreover, for

purposes of estimating the GDP and unemployment gaps in real time, HP ¯lter is worse than useless.

The estimate, ŷT = 0; produces a smaller error than using the HP ¯lter estimate, ŷT :

The statistics on the real-time properties of the ¯lters that we have just considered abstract from

scale. The evidence in Column 3 exhibits the magnitude of the error in real-time gap estimates for our

31The evidence in Columns 1 and 2 actually do not allow us to literally infer what happens with the arrival of new
data. The data set underlying the experiments in these columns are based on a ¯xed sample of length 160.
32In our context, the estimated trend is dt; where dt equals x̂t plus the drift in the data, where x̂t = xt ¡ ŷt (recall our

decomposition, (2.1).)
33These are counterexamples to the conjectures by Barrell and Sefton (1995, p. 68) and St-Amant and van Norden

(1997, p. 11).
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variables. We consider the standard deviation of the error , yt¡ ŷt; for a ¯xed date, t = 160: We display

this statistic for the time when t is the current date and continuing as new data become available and

the data set becomes correspondingly larger. These results allow us to quantify the value of hindsight

when estimating yt:

We study [var160(ŷ160 ¡ y160)]
1=2 for T = 160; 161, ..., 200, based on Random Walk, Optimal and HP

¯lter. For Random Walk and Optimal, the standard deviations are based on ŷ160 = P [y160jx1; :::; xT ];

for T = 160; :::; 200: In the case of HP; they are based on ŷ160; the 160th observation in the HP

¯ltered x1; :::; xT ; for T = 160; 161; :::; 200: There are several things worth emphasizing in the third

column of Figure 6. First, Random Walk and Optimal essentially coincide, and both dominate the

HP ¯lter. Second the error in estimating y160 declines by roughly one-half in the ¯rst year after

t = 160: Thereafter, further declines in the error come more slowly. Third, after initially falling with

the arrival of the ¯rst two years' data, the error of the HP ¯lter asymptotes to a relatively high level.

The reason is that, as the size of the data set grows, the HP ¯lter does not asymptote to a band

pass ¯lter. By contrast, both Random Walk and Optimal do. If T were allowed to grow inde¯nitely,

[var160(ŷ160 ¡ y160)]
1=2 would shrink to zero for Random Walk and Optimal. The information in Figure

6 suggests that this requires a very large value of T: These results are the basis for our conclusion that

Random Walk is nearly optimal and outperforms the HP ¯lter in terms of real-time performance.34

In this discussion, we have emphasized the di®erences in the performance of the Hodrick-Prescott

¯lter and Random Walk. We note, however, that the quantitative magnitude of the di®erences is not

very great for some purposes. For example, in Appendix B we display business cycle statistics based on

US data using various ¯lter approximations and the HP ¯lter, and there is little quantitative di®erence

between them. The di®erences seem relatively larger when we consider real-time estimation of yt: The

HP ¯lter performs very poorly on this dimension. Indeed, in the case of GDP it is useless.35 However,

even the optimal procedure seems relatively unreliable in this case.36

34Our results for the unemployment gap can be compared with those reported, using a very di®erent conceptual and
econometric framework, by Staiger, Stock and Watson (1997). Their estimated standard deviations of this gap range from
0.46 to 1.25 percentage points, depending on the data used in the analysis. They note how wide this range is and so it is
not surprising that our estimates fall inside it.
35These conclusions about the real time performance of the HP ¯lter complement those obtained using di®erent methods

by others, including Laxton and Tetlow (1992), Orphanides (1999) and St-Amant and van Norden (1997).
36We have abstracted from several real-time issues which could make the HP ¯lter, Optimal and Random Walk seem

even worse at estimating yt in real time. We abstract from possible breaks in the underlying time series representation,
and data revisions. A more complete analysis would also take these factors into account in characterizing the accuracy
of real time estimates of the business cycle and higher frequency components of the data. For further discussion, see
Orphanides (1999) and Orphanides and van Norden (1999).
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3.4.2. Trigonometric Regression

We now discuss the Trigonometric Regression procedure. This procedure makes use of the entire

dataset, x1; :::; xT ; to estimate each yt, as follows:

ŷt = Bt(L)xt; t = 1; :::; T;

where

Bt(L)xt =
t¡1X

l=t¡T

8
<
:

2
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X

j2J
cos (!jl)
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Here, J indexes the set of frequencies we wish to isolate, and is a subset of the integers 1; :::; T=2:37 It

is easy to see that Bt(1) = 0; so that Bt(L) has a unit root for t = 1; 2; :::; T:38 Evidently, Bt(L) only

has a second unit root for t in the middle of the data set, when Bt(L) is symmetric.39 For this reason,

it is important to drift adjust xt prior to ¯ltering.

37We assume T is even. Also, J is the set of integers between j1 and j2; where j1 = T=pu and j2 = T=pl. The
representation of ŷt given in the text, while convenient for our purposes, is not the conventional one. The conventional
representation is based on the following relation:

ŷt =
X

j2J
faj cos(!jt) + bj sin(!jt)g ;

where the aj 's and bj 's are coe±cients computed by ordinary least squares regression of xt on the indicated sine and
cosine functions. The regression coe±cients are:

aj =
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The expression in the text is obtained by collecting terms in xt and making use of the trigonometric identity, cos(x) cos(y)+
sin(x) sin(y) = cos(x¡ y):
38To see that Bt(1) = 0 when T=2 =2 J; simply evaluate the sum of the coe±cients on x1; x2; :::; xT for each t :
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because 1¡ ei!jT = 1¡ e¡i!jT = 1¡ cos(2¼j) + sin(2¼j) = 1 for all integers, j:
When T=2 2 J; the expression for Bt(1) includes

Pt¡1
l=t¡T

©
1
T cos (¼(t¡ l)) cos(¼t)

ª
: This expression is simply the sum

of an even number of 1's and -1's, so it sums to 0.
39When T is even, then there cannot be an exact second unit root since it rules out the existence of a date precisely in

the middle of the dataset. By Bt(L) having n unit roots we mean that it can be expressed as ~Bt(L)(1¡L)n; where ~Bt(L)
is a ¯nite ordered polynomial. The discussion of two unit roots in the text exploits the fact that the roots of a symmetric
polynomial come in pairs.
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Our basic ¯nding is that when the when the data are generated by the time series representations

in Table 1, the performance of Trigonometric Regression is worse than that of Random Walk. Since

the results based on these time series representations are fairly similar, we present only those based

on the data generating mechanism for in°ation. These are displayed in Figure 7, which has the same

format as Figures 4 and 5. The results for Random Walk and Optimal in Figure 7 correspond to those

reported in Figure 4, and are reproduced here for convenience. In Column 1, we see that in terms of

corrt(ŷt; yt); Trigonometric Regression is outperformed in all frequency ranges by Random Walk, which

is nearly optimal. Column 2 shows that the estimates of yt based on Trigonometric Regression overshoot

V ar(yt); sometimes by a great deal, and performs worse on this dimension than either Random Walk

or Optimal. The relative performance of Trigonometric Regression is particularly poor in the lower

frequencies. Trigonometric Regression also performs poorly in real time. For example, RT = 1:04,

which is even worse than HP ¯lter. Column 3 displays the dynamic cross correlations between ŷt and

yt when the former are computed by Trigonometric Regression. The evidence shows that there is very

little phase shift between the variables, but there appears to be a substantial departure from covariance

stationarity. The correlations in the tails of the data set are notably smaller than they are in the middle.

Although Trigonometric Regression appears in Figure 7 to be substantially worse than Random

Walk, for some purposes the poor performance may not be quantitatively important. For example,

in Appendix B we ¯nd that, for standard business cycle statistics, Trigonometric Regression produces

results quite similar to Random Walk.

3.5. Robustness of Analysis to Trend Stationarity

The quantitative analysis of our ¯lters has been based, up to now, on the assumption that the data

are generated by a di®erence stationary process estimated for one of the standard macroeconomic data

series. Our basic ¯nding is that Random Walk is nearly Optimal. Here, we show that - with a slight

quali¯cation - the same basic conclusion holds, even if we assume the data are trend stationary.

Our ¯rst step in the analysis was to redo the calculations in Table 2, by ¯tting moving average

representations to the residuals from regressions of log GDP, in°ation, the interest rate and unem-

ployment on a constant and time trend. We then repeated the preceding calculations, using Optimal,

Random Walk, HP ¯lter and Trigonometric regression. Although the results are fairly similar across

di®erent time series representations, the model for in°ation poses a modestly greater challenge for

Random Walk. This is why we decided to only present results based on the time series representation

for monthly in°ation.

Results are presented in Figure 8, which is in the same format as Figures 4, 5, and 7. There are
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two things worth emphasizing here. First, consider the results for Random Walk. As in the di®erence

stationary case (see Figure 4), Random Walk is nearly optimal in the business cycle frequencies, if

we ignore the ¯rst and last two years' observations. However, some discrepancies between Random

Walk and Optimal are apparent in the lower frequencies. Still, in the 8-20 year frequencies, there

is no noticeable di®erence if we ignore the ¯rst and last ¯ve years' observations. Second, note that

Trigonometric Regression still performs worse than Random Walk. Any concerns about Random Walk

that might be raised by the results in Figure 8 do not warrant adopting the Trigonometric Regression

procedure. If anything, they suggest adopting something closer to Optimal.

4. Related Literature

We now brie°y relate our analysis to the existing literature. Early work by Engle (1974) argued

forcefully the case that economic hypotheses are usefully cast in the frequency domain. One of the

examples studied in the next section of this paper, an analysis of the relationship between money

growth and in°ation, is inspired in part by Engle's work on the same subject.

On a methodological level, the closest work to ours is that of Baxter and King (1999). They

emphasize the potential usefulness of the band pass ¯lter for constructing statistics to characterize the

dynamics in the data. They confront the same practical problem that we do. Namely, to apply the band

pass ¯lter in a ¯nite data set requires approximating it in some way. As noted above, the approximation

that they recommend is the ¯lter de¯ned in (2.14). Together with Baxter (1994), Hornstein (1998),

King and Watson (1994), and Stock and Watson (1998). They show how the Baxter-King recommended

¯lter can be used to address interesting empirical questions.

Our analysis can be compared with Baxter and King's in three ways. First, our approach to

approximating the band pass ¯lter di®ers from theirs. We select the approximation which minimizes

(1.1). Baxter and King adopt a di®erent optimization criterion. They require that the approximating

¯lter optimize (2.7) with fx ´ 1, subject to the requirement, B̂(1) = 0: This is equivalent to optimizing

(2.7) under the assumption that xt has a Near IID time series representation. This is the representation

analyzed in the previous section, in which the spectral density is °at over most frequencies, and then

rises sharply in a small neighborhood of zero. This observation is useful because it clari¯es the set of

circumstances in which the Baxter-King ¯lter is expected to work well, in the sense of (1.1).40 Second,

we supply formulas for the optimal approximation to the band pass ¯lter that apply in a broad class of

time series representations. This provides alternatives to the Baxter-King ¯lter, which is suitable for

40We have not established that the Near IID representation is the only one that rationalizes the Baxter-King ¯lter as
the optimal one.
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cases when the Near IID assumption is a poor one. We do not expect the Near IID representation

to be well suited for many macroeconomic variables. As noted by Granger (1966) (see also Sargent

(1987, pp. 280-281)), the `typical spectral shape' of macroeconomic time series is one in which there

is substantial power in a signi¯cant range of low frequencies. Third, the Baxter-King approach works

with symmetric, ¯xed lag ¯lters. In the previous section we presented experiments which suggest

that adopting ¯lters which use all the data, and which are therefore asymmetric and time-varying,

improves the estimate of yt: There is a valid basis for concern that ¯lters like this might result in

nonstationary ŷt's and/or might induce phase shifts between ŷt and yt: However, we ¯nd that with

time series representations like those that ¯t several key postwar macroeconomic data series, these

e®ects are not quantitatively large.

Our approach can also be compared to that of Hodrick and Prescott (1997). They provide a linear

¯lter of the data, which has three interpretations. Under the ¯rst interpretation, their ¯lter is viewed

as solving a particular projection problem: extract a signal from a data series that is the sum of

a signal and an orthogonal noise. As is evident from (2.1) and the discussion thereafter, optimally

extracting a particular band of frequencies from the data requires solving the same kind of problem.

The di®erence between the two approaches is that, under this interpretation of the HP ¯lter, it is based

on a particular statistical model of the data while ours is not.41 Under this interpretation, the HP ¯lter

has two shortcomings: (i) The underlying model has the same di±culty of interpretation as do other

trend-cycle decompositions: the concepts of `signal' and `noise' they seek to extract from the data do

not correspond to meaningful economic objects in standard business cycle models. The data generated

by these business cycle models do contain components that could perhaps loosely be characterized as

trend and noise. But, they do not satisfy the orthogonality conditions posited by typical trend-cycle

decompositions, including the one underlying the HP ¯lter (see Christiano and Eichenbaum (1990)).

(ii) Under the ¯rst interpretation of the HP ¯lter, one has to take the underlying statistical model

seriously. For example, a parameter ¸; which corresponds to the relative variance of the signal and

noise in the underlying model, needs to be estimated. This gives rise to numerous estimation and

model evaluation issues that, from our perspective, are tangential. The decomposition we focus on is

guaranteed to exist under very general conditions by the Spectral Representation Theorem.42 In our

approach, the decomposition selected simply re°ects the research interests of the analyst. Focusing on

41Lucas (1980) also adopts a structural model like that of Hodrick-Prescott. Both assume that the data, xt; are the
sum of a signal, st; and a noise, nt: The signal and noise are assumed to be orthogonal, and the noise is uncorrelated over
time. Lucas assumes the signal has the representation, st = ½st¡1 + vt; where vt is a white noise and j½j < 1: Hodrick
and Prescott assume st = 2st¡1 ¡ st¡2 + vt:
42For a formal analysis of the Spectral Decomposition Theorem, see Koopmans (1974). A simpli¯ed discussion appears

in Christiano and Fitzgerald (1998, Appendix).
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a particular decomposition does not require a commitment to any particular model of the data, beyond

the relatively weak assumptions needed for the Spectral Representation Theorem to hold.

A second interpretation of the HP ¯lter is that it is a particular band pass ¯lter. For ¸ = 1600;

it has been argued that the ¯lter does well at isolating frequencies 8 years and higher (see Prescott

(1986), King and Rebelo (1993), and Singleton (1988)). No claim has ever been made that the HP ¯lter

is an optimal approximation to this band pass ¯lter in any sense. This is consistent with our ¯ndings

in section 3.4.1 which show that the Random Walk and Optimal ¯lters dominate HP, especially for

computing real-time estimates of yt. Still, it is shown in the Appendix that these di®erences are not

quantitatively large enough to produce substantial di®erences in the computation of standard business

cycle statistics. A problem is that when one wants to isolate di®erent frequency bands or use monthly or

annual data, it is not clear how to proceed under this interpretation of the Hodrick-Prescott approach.43

The framework of this paper, which focuses on developing optimal approximations to the band pass

¯lter, provides a straightforward way to proceed in these cases.

A third interpretation of the HP ¯lter is that it is a precisely stated algorithm which simply draws

a smooth line through the data. All the other ¯lters discussed in this paper do this too.

We ¯nd the second two interpretations of the HP ¯lter appealing. Under these interpretations, the

band pass ¯lter represents a natural extension of the work of Hodrick and Prescott. The band pass

¯lter performs similarly to the HP ¯lter in situations for which the latter was designed: extracting the

business cycle component from quarterly time series data (see Appendix B). However, the band pass

¯lter - particularly the approach advocated here - can be used to construct ¯lters that are e®ective in

isolating other frequency bands as well. The next subsection describes empirical applications where

¯lters of this type are of interest.

5. Applications

We illustrate the use of our recommended ¯lter, presented in the introduction, using two examples.

The ¯rst focuses on the relationship between unemployment and in°ation, and the second examines

the relationship between money growth and in°ation.

We divide the annual data available for the period 1900 to 1997 into two parts: 1900-1960 and

43The perspective adopted in this paper does o®er one strategy: optimize, by choice of ¸; the version of (2.7) with
Bp;f replaced by the Hodrick-Prescott ¯lter. This strategy produces a value of ¸ that is time-dependent and dependent
upon the properties of the true time series representation. We suspect that closed form solutions for the values of ¸
that solve these optimization problems do not exist. We think that this strategy for ¯ltering the data is not a good one.
First, implementing it is likely to be computationally burdensome. Second, as this paper shows, identifying the optimal
band-pass ¯lter approximation is straightforward.
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1961-1997. In each case, the data are broken into three sets of frequencies: those corresponding to

2-8 years (the business cycle), 8-20 years and 20-40 years. With respect to the Phillips curve, we ¯nd

that in the pre-1960 sample, the correlation between in°ation and unemployment is negative at all

frequencies. Loosely, we characterize this as re°ecting that all frequencies of the data exhibit a Phillips

curve trade-o®.. The most signi¯cant change in the post-1960 sample is that the 20-40 year correlation

appears to have switched to positive, with unemployment lagging in°ation by several years. We assess

this evidence in light of the Barro-Gordon model of in°ation.

We then turn to the in°ation-money growth relation. We ¯nd that in the pre-1960 period, the

two variables move closely together in all frequencies. The relationship remains positive in the low

frequencies in the post-1960s data. However, at the business cycle and 8-20 year frequencies, there is

a substantial change.

5.1. The Phillips Curve

We consider annual data for the 1900-1960 and 1960-1997 periods separately. Figure 9a displays the

raw unemployment and in°ation data for the ¯rst sample. For convenience, the ¯gure also depicts the

NBER business cycle peak and trough dates. Casual inspection suggests a negative relationship (i.e.,

a `Phillips curve') at all frequencies.44 The various frequency components of the data are displayed in

Figures 9b - 9d, and they con¯rm this impression. The contemporaneous correlations between ¯ltered

in°ation and unemployment are reported in Table 4, Panel A. The table also reports p¡values under

the null hypothesis that there is no relationship between the variables in any frequency band.45 The

negative correlation in the business cycle frequencies is particularly signi¯cant, statistically. In light of

these observations, it is not surprising that the scatter plot of in°ation and unemployment, exhibited

in Figure 9b, also shows a negative relationship. This is just the classic Phillips curve, of textbook

fame.46

44It is worth emphasizing that, by `Phillips Curve', we mean a statistical relationship, and not necessarily a relationship
exploitable by policy.
45These are computed by ¯tting separate q-lag scalar autoregressive representations to the level of in°ation (¯rst

di®erence, log CPI) and to the level of the unemployment rate, and using the ¯tted disturbances and actual historical
initial conditions to simulate 2,000 arti¯cial data sets on in°ation and unemployment. For annual data, q = 3; for monthly,
q = 12; and for quarterly, q = 8: The data sets on unemployment and in°ation are independent by construction. In each
arti¯cial data set we compute correlations between the various frequency components, as we did in the actual data. In
the data and the simulations, we dropped the ¯rst and last three years of the ¯ltered data before computing sample
correlations. The numbers in parentheses in Table 4 are the frequency of times that the simulated correlation is greater
(less) than the positive (negative) estimated correlation. These are p-values under the null hypothesis that there is no
relationship between the in°ation and unemployment data.
46The slope of the regression line drawn through the scatter plot of points in Figure 9b is ¡0:42; with a t¡statistic of

3.77 and an R2 of 0:20:
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Table 4: Phillips Curve and Money Growth-In°ation Correlations

Sample H. Frequency Bus. Cyc. Frequency 8-20 years 20-40 years

Panel A: CPI In°ation and Unemployment

1900-1960 (A) -0.57 (0.00) -0.32 (0.19) -0.51 (0.23)

1961-1997 (A) -0.38 (0.11) -0.16 (0.41) 0.45 (0.32)

1961, Q2 - 1997, Q4 (Q) -0.37 (0.00) -0.65 (0.00) -0.30 (0.29) 0.25 (0.34)

1961, Jan. - 1997, Dec. (M) -0.24 (0.00) -0.69 (0.00) -0.27 (0.30) 0.23 (0.40)

Panel B: CPI In°ation and M2 Growth

1900-1960 (A) 0.45 (0.00) 0.59 (0.04) 0.95 (0.01)

1961 - 1997 (A) -0.72 (0.00) -0.77 (0.02) 0.90 (0.10)

1961, Q2 - 1997, Q4 (Q) -0.34 (0.00) -0.67 (0.00) -0.71 (0.05) 0.87 (0.09)

1961, Jan. - 1997, Dec. (M) -0.13 (0.02) -0.66 (0.00) -0.74 (0.04) 0.87 (0.10)

Note: Contemporaneous correlation between indicated two variables, over indicated sample

periods and frequencies. Numbers in parentheses are p¡ values, in decimals, against the null

hypothesis of zero correlation at all frequencies. For further details, see the text and footnote 25.

The post 1960 monthly in°ation and unemployment data are analyzed in Figures 10a-f.47 There is

a surprising degree of similarity between the pre and post 1960s data. For example, it is plain from

the raw data in Figure 10a that for frequencies in the neighborhood of the business cycle, in°ation

and unemployment covary negatively. That is, the Phillips curve seems to be a pronounced feature

of the higher frequency component of the data. At the same time, the Phillips curve appears to have

vanished in the very lowest frequencies. The data in Figure 10a show a slow trend rise in unemployment

throughout the 1960s and 1970s, which is reversed starting in early 1983. A similar pattern occurs

in in°ation, though the turnaround in in°ation begins in April 1980, roughly three years before the

turnaround in unemployment. The low frequency component of the data dominates in the scatter plot

of in°ation versus unemployment, exhibited in Figure 10b. That ¯gure suggests that the relationship

between in°ation and unemployment is positive, in contrast with the pre-1960's data, which suggest

otherwise (see Figure 9b). Clearly, this scatter plot exaggerates the degree to which the in°ation-

47Figure 10 exhibits monthly observations on in°ation and unemployment. To reduce the high frequency °uctuations
in in°ation, Figure 10a exhibits the annual average of in°ation, rather than monthly in°ation rate. The scatter plot
in Figure 10b is based on the same data used in Figure 10a. Figures 10c-10f are based on monthly in°ation, i.e.,
1200log(CPIt=CPIt¡1) and unemployment. The line in Figure 10b represents regression line drawn through the scatter
plot. The slope of that line, based on monthly data covering the period 1959:2 - 1998:1, is 0.47 with a t¡statistic of 5.2.
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unemployment dynamics have changed in the post-1960s data.48

Impressions based on casual inspection of the raw data can be formalized and quanti¯ed using the

band pass ¯ltered data reported in Figures 10c - 10f. Thus, the frequency range from two months to

20 years (see Figures 10c and 10e) is characterized by a noticeable Phillips curve. Table 4 shows that

the correlation in the range of high frequencies (when available) and in the business cycle frequencies

is signi¯cantly negative. The correlation between in°ation and unemployment is also negative in the

8-20 year range, but it is not statistically signi¯cantly di®erent from zero in this case. Presumably,

this re°ects the relative paucity of information about these frequencies in the post-1960s data. Finally,

Figure 10f indicates that the correlation between 20-40 year components is now positive, with unem-

ployment lagging in°ation. These results are consistent with the hypothesis that the Phillips curve

changed relatively little in the 2-20 year frequency range, and that the changes that did occur are

primarily concentrated in the very low frequencies.

Formal tests of this hypothesis, presented in Panel A of Table 5, fail to reject it. The table displays

p¡values for the null hypothesis that the post-1960s data on in°ation and unemployment are generated

by the bivariate vector autoregression (VAR) that generated the pre-1960s data. We implement the

test using 2,000 arti¯cial post-1960s data sets obtained by simulating a three-lag VAR and its ¯tted

residuals estimated using the pre-1960s unemployment and in°ation data.49 In each arti¯cial data set

we compute correlations between ¯ltered in°ation and unemployment just like we did in the actual

post 1960s data. Table 5 indicates that 9 percent of correlations between the business cycle component

of in°ation and unemployment exceed the ¡0:38 value reported in Table 4 for the post-1960s data, so

that the null hypothesis fails to be rejected at the 5 percent level. The p¡value for the 8 ¡ 20 year

correlation is quite large, and is consistent with the null hypothesis at any signi¯cance level.

The statistical evidence against the null hypothesis that there has been no change in the 20 ¡ 40

year component of the data is also not strong. This may in part re°ect a lack of power stemming from

the relatively small amount of information in the sample about the 20 ¡ 40 year frequency component

of the data. But, the p¡value may also be overstated for bias reasons. The table indicates that there is

a small sample bias in this correlation, since the small sample mean, ¡0:35; is substantially larger than

the corresponding probability limit of ¡0:45: This bias may, at least in part, be the reason the VAR's

48Consistent with these observations, when in°ation and unemployment are detrended using a linear trend with a break
in slope (not level) in 1980:4 for in°ation and 1983:1 for unemployment, the scatter plot of the detrended variables show a
negative relationship. The regression of detrended in°ation on detrended unemployment has a coe±cient of ¡0:31; with
t statistic of -4.24 and R2 = 0:037: The slope coe±cient is similar to what was obtained in an earlier footnote for the
pre-1960s period, but the R2 is considerably smaller.
49We redid the calculations in both panels of Table 4 using a 5-lag VAR and found that the results were essentially

unchanged. The only notable di®erences in the results are that the p¡value for the business cycle correlations between
in°ation and unemployment is 0:06 and the p¡value for these correlations in the 20¡ 40 year range is 0:11.
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small sample mean overstates the pre-1960s sample mean of ¡0:51: A bias-adjustment procedure would

adjust the coe±cients of the estimated pre-1960s VAR so that the implied small sample mean lines up

better with the pre-1960s empirical estimate. Presumably, such an adjustment procedure would shift

the simulated correlations to the left, reducing the p¡value. It is beyond the scope of our analysis to

develop a suitable bias adjustment method.50 However we suspect that, given the large magnitude of

the bias, the bias-corrected p¡value would be substantially smaller than the 14 percent value reported

in the table.51

50One could be developed along the lines pursued by Kilian (1998).
51To get a feel for the likely quantitative magnitude of the e®ects of bias adjustment, we redid the bootstrap simulations

by adjusting the variance-covariance matrix of the VAR disturbances used in the bootstrap simulations. Let V = [V ]ij
denote the variance-covariance matrix. In the pre-1960s estimation results, V1;2 = ¡0:1024; V1;1 = 0:0018, V2;2 = 6:0653.
When we set the value of V1;2 to ¡0:0588 and recomputed the entries in Table 4, we found that the mean correlations were
as follows: business cycle, ¡0:75 (0:01); 8-20 year: ¡0:54 (0:09); 20-40 year: ¡0:51 (0:06). The numbers in parentheses
are the analogs of the p¡values in Table 4. Note how the mean correlation in the 20-40 year frequency coincides with
the empirical estimate reported in the ¯rst row of Panel A of Table 4, and that the p¡value has dropped substantially,
from 0:23 to 0:06. This con¯rms our conjecture that bias adjustment may have an important impact on the p¡value for
the 20-40 year correlation. However, the other numbers indicate that the bias adjustment procedure that we applied, by
varying V1;2 only, is not a good one. Developing a superior bias adjustment method is clearly beyond the scope of this
paper.
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Table 5: Testing Null Hypothesis That Post-1960s Equal pre-1960s Correlations

Small Sample Std. Dev., Small

Frequency Plim Mean Sample Mean p¡value

Panel A: DGM, Bivariate VAR with CPI In°ation (x) and Unemployment (y)

2-8 year -0.66 -0.61 0.0036£
p

2000 0.09

8-20 year -0.36 -0.38 0.0079£
p

2000 0.25

20-40 year -0.45 -0.35 0.0129£
p

2000 0.14

Panel B: DGM, Bivariate VAR with CPI In°ation (x) and M2 Growth (y)

2-8 year 0.49 0.48 0.0044£
p

2000 0.00

8-20 year 0.73 0.64 0.0062£
p

2000 0.00

20-40 year 0.78 0.64 0.0099£
p

2000 0.37

Notes: (i) Data Generating Mechanism (DGM) in all cases is 3-lag, Bivariate VAR

¯t to pre-1960s data. (ii) P-value: frequency, in 2000 arti¯cial post-1960s data sets,

that contemporaneous correlation between indicated frequency components of x and

y exceeds, in absolute value, corresponding post 1960s estimate. (iii) Plim: mean, over

1,000 arti¯cial samples of length 2,000 observations each, of correlation.

(iv) Small Sample Mean: mean of correlation, across 2000 arti¯cial post-1960s data sets.

(v) Std. dev., small sample (product of Monte Carlo std. error for mean and
p

2000) :

standard deviation, across 2000 arti¯cial post-1960s data sets, of correlations.

The low-frequency observations on unemployment have been documented using other methods (see,

for example, Barro (1987, Chapter 16)). Similarly, using the Baxter-King band-pass ¯ltering approach,

the presence of the Phillips curve in the business cycle frequency range has been documented by King

and Watson (1994) and Stock and Watson (1998) (see also Sargent (1999, p.12)). What has not been

documented is how far the Phillips curve extends into the low frequencies of the post war data. In

addition, we draw attention to the evidence that in°ation leads unemployment in the low frequency

range. We think these frequency domain properties of in°ation and unemployment are interesting

because we suspect that they pose a challenge for at least simple versions of conventional interpretations

of the post war data.

One such interpretation is articulated by the theory developed in Kydland and Prescott (1977)

and Barro and Gordon (1983), which builds on the idea of the expectations-augmented Phillips curve
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initially suggested by Friedman (1968) and Phelps (1968).52 The basic idea is that institutional im-

pediments that had previously constrained US monetary policy, such as the gold standard, ceased

to do so by the early 1960s. With institutional constraints impeding discretionary monetary policy

minimized, a new monetary regime was initiated, in which the monetary authority set out to improve

economic performance by attempting to actively exploit the Phillips curve. But, according to this

view, the Phillips curve is merely a statistical relation, and does not represent a menu of in°ation,

unemployment levels that can be selected by policy makers. The simplest version of the Barro-Gordon

theory predicts that the new monetary regime should have caused it to disappear, and be replaced by

a deterministic, positive relationship between in°ation and unemployment.53

Our scatter diagrams show that before the 1960s in°ation and unemployment are negatively related,

while they are positively related after the 1960s. At ¯rst glance, this appears to be a resounding victory

for the Barro-Gordon theory. However, evidence that is plain from casual inspection of the raw time

series and is formalized using the band pass ¯lter suggests a di®erent picture. The simple version of the

Barro-Gordon theory implies that, after 1960, the Phillips curve relationship should have evaporated,

not just at the low frequencies, but at all frequencies. It also implies that in°ation and unemployment

should be perfectly in phase. Both these implications appear to be contradicted by the data.

Barro and Gordon (1983, pp. 601-602) recognize these extreme implications of their theory and

describe an extension to their model that is designed to deal with them. The extension involves making

the (plausible) assumption that the monetary authority's control over in°ation is imperfect, perhaps

because of lags in the e®ects of monetary actions. Under these conditions, in°ation surprises occur,

thus opening up the possibility that the forecast errors between in°ation and unemployment might be

52Our discussion builds on Ireland (1998), who emphasizes the importance of evaluating the time series implications of
the Barro-Gordon model.
53For convenience, we brie°y remind the reader of the Barro-Gordon model. The loss function of the monetary authority

is
£
(u¡ kuN )2 + °¼2

¤
=2; where ° > 0 is a parameter that speci¯es the relative social cost associated with in°ation, ¼;

u is the actual unemployment rate; and uN is the natural rate of unemployment, i.e., the rate that would prevail if
in°ation were at its expected level. Also, 0 < k < 1: In°ation surprises generate a fall in the unemployment rate according
to the `expectations augmented Phillips curve': u ¡ uN = ¡® (¼ ¡ ¼e) ; ® > 0; where ¼e is expected in°ation. At
the time the monetary authority chooses its action, ¼e is a state variable. The policy maker's objective is to minimize:

L(¼j¼e; uN) =
n£
® (¼ ¡ ¼e)¡ (1¡ k)uN

¤2
+ °¼2

o
=2: Let ¼

£
¼e; uN

¤
= argminL(¼j¼e; uN): Conventionally, the Markov

equilibrium concept is used, in which equilibrium ¼ and ¼e depend only on uN ; and not the past history of central bank
actions. This equilibrium concept has the advantage that, in the Barro-Gordon model, it is unique. The equilibrium
is an expectation function, ¼¤(uN ); with the property ¼¤(uN ) = ¼

£
¼¤(uN ); uN

¤
; so that, in a Markov equilibrium,

u = uN : Examining the ¯rst order condition associated with the monetary authority's problem and imposing the ¯xed
point condition, implies

¼ = Ãu; Ã =
®(1¡ k)

°
> 0:

The microeconomic environment in the Barro-Gordon theory is speci¯ed at the reduced form level. Environments in
which preferences and technology are stated explicitly, and which capture elements of the Barro-Gordon analysis may be
found in Ireland (1997), and Chari, Christiano and Eichenbaum (1998).

33



negatively correlated. In turn, this may put the model into better conformity with the observation

that there is a Phillips curve in the high frequencies, but not in the low frequencies.

Perhaps it is possible to reconcile the last observation with plausible implementation delays.54

However, we suspect that it will be di±cult to identify variations on the model that make it consistent

with the observation that in°ation leads unemployment in the low frequency range.55 This phase

relationship calls into question a basic feature of the Barro-Gordon model, according to which policy

makers set in°ation in response to developments in unemployment. A fruitful approach may be to

explore modi¯cations of the theory, in which policymakers' incentives to in°ate are driven by variables

that exhibit a more plausible timing relationship to in°ation than unemployment.

We hope that this discussion demonstrates that statistics based on approximations to the band

pass ¯lter have a potentially useful role to play in helping us think about the in°ation, unemployment

dynamics. This is true, whether they are used for evaluating a Barro-Gordon type conception of the

in°ation process, or some other conception.56

54Ireland (1998) introduces a one period lag, and he shows that this is this is strongly rejected by the data. In addition
to considering longer implementation lags, another potentially useful modi¯cation would introduce rigidities that lead
in°ation surprises to have long-lasting e®ects. In the standard Barro-Gordon model, the e®ect of such a surprise is only
contemporaneous.
55Our skepticism is based in part on analysis of an extension of Ireland (1998)'s version of the Barro-Gordon model in

which a one-period implementation lag is replaced by a p > 0 period implementation lag in policy. Thus, we replace the
policymaker's objective in footnote 37 with E¡p

£
(u¡ uN)2 + °¼2

¤
=2: Actual in°ation, ¼; is ¼ = ¼̂ + µ ¤ ´; where ¼̂ is a

variable chosen p periods in the past by the policy maker, and µ ¤ ´ captures the shocks that impact on ¼ between the
time ¼̂ is set and ¼ is realized. Here,

µ ¤ ´t =
¡
µ0 + µ1L+ :::+ µp¡1L

p¡1¢´t;

where ´t is a white noise and L is the lag operator. The policymaker's problem is optimized by setting ¼̂ = ÃûN ; where
ûN is the forecast of the natural rate of unemployment available at the time ¼̂ is selected. As in footnote 37, we suppose
that uN is a random walk with innovation º, so that uN = ûN + g ¤ º, where

g ¤ ºt = (1 + L+ :::+ Lp¡1)ºt:

Suppose the Lucas supply curve is u = uN ¡ ®(¼ ¡ ¼e) + "; where " is a shock. We impose rational expectations, which
implies ¼e = ¼̂: Then, it is easy to verify that in°ation and unemployment evolve according to

¼t = Ã
Lp

1¡ Lºt + µ(L)´t; ut =
1

1¡ Lºt ¡ ®µ(L)´t + "t;

respectively. We make the simplifying assumption that all shocks are uncorrelated with each other. Then, the cross
spectrum between these variables is:

g¼u(!) = Ã¾
2
º

·
e¡ip!

(1¡ e¡i!)(1¡ ei!) ¡
®

Ã
µ(e¡i!)µ(e¡i!)¸

¸
;

where ¸ = ¾2´=¾
2
º : The phase angle, µ(!); between in°ation and unemployment is:

µ(!) = tan¡1
·
imaginary [g¼u(!)]

real [g¼u(!)]

¸
= tan¡1

·
¡ sin(p!)

cos(p!)¡ 2(1¡ cos(!))®Ã µ(e¡i!)µ(ei!)¸

¸
;

subject to ¡¼ · µ(!) · ¼: It is easy to verify that for ! su±ciently small, µ(!)=! = p; so that in°ation lags unemployment
by p periods at these frequencies.
56An alternative approach, based on the assumption that policy makers have bounded rationality, is pursued in Sargent
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5.2. Money Growth and In°ation

Figure 11a displays annual M2 growth and CPI in°ation for in the pre-1960s period. The ¯gure suggests,

and the results in Table 4 con¯rm, that the two variables move very closely with each other. The

primary exception appears to be the period of the second world war, when M2 growth was strong and

in°ation rose relatively less. But, this presumably re°ects the e®ects of wage and price controls. The

impression of the strong contemporaneous correlation at all frequencies is con¯rmed by the evidence in

Figures 11b - 11d. Now consider Figures 12a-d. These depict the same data over the post-1960 period.

Note ¯rst that there is essentially no di®erence in the 20-40 year frequency. In this band, money growth

and in°ation are highly correlated and there is very little phase shift between the two. However, there

is a striking change in the relationship at the higher frequencies. The two variables are now strongly

negatively correlated. According to Table 5, the null hypothesis that the business cycle and 8-20 year

correlations in the post-1960s coincide with the corresponding pre-1960s correlation is strongly rejected.

The change appears to be that in these frequencies, in°ation now lags money growth by a few years.

We think these are interesting statistics which a good model of money ought to confront.57

6. Conclusion

The theory of spectral analysis informs us that data can be viewed as the sum of uncorrelated compo-

nents with di®erent frequencies of °uctuation. This way of thinking about the data makes rigorous a

perspective that is standard in macroeconomics: that the data are the sum of low frequency compo-

nents, a business cycle component and a high frequency component. The various components can in

principle be extracted by a suitably chosen `ideal' band-pass ¯lter.

Unfortunately, application of the ideal band pass ¯lter requires substantially more data than is

available in typical macroeconomic time series. This is not surprising. A subinterval of frequencies in a

time series is composed of a continuum of objects, and in general there is no way that a discrete set of

observations can pin these down. However, if something is known about the time series representation

that generated the data, then it is possible to use projection theory to extrapolate from the observed

time series to the frequency components of interest. We derive a set of formulas for this that are valid

(1999) and Sims (1988). Sargent (1999, chapter 9) argues that this approach also has empirical problems too. In particular,
it has di±culty accounting for the burst of in°ation in the late 1970s.
57Lucas (1980) was also interested in examining the relationship between the low frequency components of in°ation and

money growth. However, rather than using an approximation to the band pass ¯lter, he used an early precursor to what
later became known as the Hodrick-Prescott ¯lter. Our comments on the Hodrick-Prescott ¯lter, stated in the previous
section, also apply to Lucas' ¯lter. We think the band pass ¯lter represents an advance over that ¯lter. In a comment
on Lucas (1980), Whiteman (1984) presents a useful reminder of the pitfalls of trying to interpret statistics like those
discussed in this paper without the assistance of explicit economic theory.
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under standard time series representations, and are easy to implement. We identify one approximation

which, though it is only optimal for one particular time series representation, nevertheless works well

for standard macroeconomic time series. It is displayed in the introduction.

To illustrate the use of our recommended ¯lter approximation, we use it to characterize the change

in the nature of the Phillips curve and the money-in°ation relation before and after the 1960s. We ¯nd

that there is surprisingly little change in the Phillips curve and substantial change in money growth-

in°ation relation. In this analysis, we display a bootstrap methodology for conducting statistical

inference on statistics computed using ¯ltered data.
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A. Derivation of the Filter

This Appendix derives the optimal ¯ltering formulas analyzed in the body of the paper.

A.1. The Problem

In our discussion we feature the unit root case (i.e., µ(1) 6= 0 in (2.8)) and indicate later how to adjust

things to accommodate covariance stationarity. The problem is to optimize (2.7):

min
B̂p;fj ;j=¡f;:::;p

Z ¼

¡¼
±(!)±(¡!)fx(!)d!;

where fx(!) is de¯ned in (2.9) and,

±(!) = B(e¡i!) ¡ B̂f;p(e¡i!):

A necessary condition for an optimum is B̂f;p(1) = 0: Without this, the criterion is in¯nite. With this

condition,

b(z) =
B̂f;p(z)

1 ¡ z
;

is a ¯nite-ordered polynomial in z:

b(z) = bp¡1zp¡1 + bp¡2zp¡2 + ::: + b0 + ::: + b¡f+1z
¡f+1 + b¡fz

¡f ;

with

bj = ¡
pX

i=j+1

B̂f;p
i ; j = p ¡ 1; :::; ¡f: (A.1)

We suppose that p ¸ 0 and f ¸ 0 are `large' in the sense that p + f > 0 and p + f ¸ 2q:

Write the criterion as follows:

min
bj ;j=p¡1;:::;¡f

Z ¼

¡¼
~±(!)~±(¡!)g(e¡i!)d!;

where

~±(!) = ~B(e¡i!) ¡ b(e¡i!);

and

~B(z) =
B(z)

1 ¡ z
:

1



To obtain the ¯rst order conditions, note ¯rst that

d~±(!)

dbj
= ¡e¡i!j; j = p ¡ 1; :::;¡f;

so that,

d~±(!)~±(¡!)

dbj
= ~±(!)

d~±(¡!)

dbj
+ ~±(¡!)

d~±(!)

dbj

= ¡
h
~±(!)ei!j + ~±(¡!)e¡i!j

i
; j = p ¡ 1; :::;¡f:

Then, the ¯rst order conditions are:

Z ¼

¡¼

h
~±(!)ei!j + ~±(¡!)e¡i!j

i
g(e¡i!)d! = 0; j = p ¡ 1; :::; ¡f;

or, Z ¼

¡¼

h
~B(e¡i!)ei!j + ~B(ei!)e¡i!j

i
g(e¡i!)d! =

Z ¼

¡¼

h
b(e¡i!)ei!j + b(ei!)e¡i!j

i
g(e¡i!)d!;

j = p ¡ 1; :::; ¡f: This expression reduces further to:

Z ¼

¡¼
~B(e¡i!)g(e¡i!)ei!jd! =

Z ¼

¡¼
b(e¡i!)g(e¡i!)ei!jd!; (A.2)

j = p ¡ 1; :::;¡f:1 Our strategy for computing the B̂f;p
j 's is to translate the p + f equations, (A.2) into

a system of linear equations in B̂f;p
j ; j = p; :::;¡f: We obtain the p + f + 1st equation in the B̂f;p

j 's

from the fact, B̂f;p(1) = 0:

We begin by replacing the system of p + f equations, (A.2), with another system composed of the

equation with j = ¡f and the p + f ¡ 1 equations formed by subtracting the j ¡ 1th equation in (A.2)

from the jth; j = p ¡ 1; :::; ¡f + 1:

1To see this, note that

R ´
Z ¼

¡¼
f(!)d! =

Z ¼

0

f(!)d! +

Z 0

¡¼
f(!)d!

=

Z ¼

0

[f(!) + f(¡!)] d!;

so that R is real. Consequently, Z ¼

¡¼
f(!)d! =

Z ¼

¡¼
f(¡!)d!;

and

2

Z ¼

¡¼
f(!)d! =

Z ¼

¡¼
[f(!) + f(¡!)] d!:

2



A.2. Representing the Solution as a Solution to a System of Linear Equations

Consider the term on the left of (A.2). That term, evaluated at j; minus itself at j ¡ 1; for j =

p ¡ 1; :::; ¡f + 1; is:

Z ¼

¡¼
f ~B(e¡i!)ei!j ¡ ~B(e¡i!)ei!(j¡1)gg(e¡i!)d!

=
Z ¼

¡¼
~B(e¡i!)(1 ¡ e¡i!)ei!jg(e¡i!)d! (A.3)

=
Z ¼

¡¼
B(e¡i!)g(e¡i!)ei!jd!:

To evaluate this integral and others like it, we ¯nd it convenient to apply the well-known results:

Z ¼

¡¼
ei!hd! = 0; for h = §1; § 2; :::

= 2¼; for h = 0:

With this, it is easy to see that the integral in (A.3) is the product of 2¼ and the constant (i.e., the

coe±cient on z0) in the polynomial in z; B(z)g(z)z¡j :

To evaluate the integral in (A.3), consider ¯rst the case q = 0; so that g(e¡i!) = µ20: In this case,

(A.3) reduces to 2¼Bjµ20, where Bj is de¯ned in (1.3). When q > 0;

Z ¼

¡¼
B(e¡i!)g(e¡i!)ei!jd! (A.4)

= 2¼

Ã
Bjc0 +

qX

i=1

h
Bjjj+i + Bjjjj¡ij

i
ci

!

The reason why the absolute value of j; jjj; appears in this expression is that the constant term in

B(z)g(z)z¡j corresponding to a given value of j; coincides with the constant term associated with ¡j:

This is because B(z)g(z) = B(z¡1)g(z¡1):

Now consider the term on the right of (A.2). For j = p ¡ 1; :::;¡f + 1; subtract that term minus

itself at j ¡ 1 to obtain:

Z ¼

¡¼

h
b(e¡i!)ei!j ¡ b(e¡i!)ei!(j¡1)

i
g(e¡i!)d!

=
Z ¼

¡¼
b(e¡i!)(1 ¡ e¡i!)ei!jg(e¡i!)d! (A.5)

=
Z ¼

¡¼
B̂f;p(e¡i!)g(e¡i!)ei!jd!:

This integral is the product of 2¼ and the constant term in the polynomial in z; B̂f;p(z)g(z)z¡j; for

3



j = p ¡ 1; :::; ¡f + 1: When q = 0; this is 2¼B̂f;p
j µ20: When q > 0;

Z ¼

¡¼
B̂f;p(e¡i!)ei!jg(e¡i!)d! = 2¼AjB̂

f;p; (A.6)

where B̂f;p is a p + f + 1 column vector:

B̂f;p =
h
B̂f;p
p ; B̂f;p

p¡1; :::; B̂
f;p
0 ; :::B̂f;p

¡f+1; B̂
f;p
¡f

i0
;

and Aj is a p + f + 1 row vector; j = p ¡ 1; :::;¡f + 1: For p ¡ q ¸ j ¸ q ¡ f :

Aj =

2
64 0; :::; 0| {z }
1£(p¡j¡q)

; c; 0; :::; 0| {z }
1£(j¡q+f)

3
75 ; (A.7)

where c = [cq; cq¡1; :::; c0; :::; cq¡1; cq] : When j = p ¡ q; the ¯rst set of zeros is absent in Aj, and when

j = q ¡ f; the second set of zeros is absent. When j > p ¡ q; the ¯rst set of zeros is absent in Aj; and

the ¯rst j ¡ (p ¡ q) elements of c are absent too. When j < q ¡ f; the last set of zeros is absent in Aj ,

and the last q ¡ f ¡ j elements of c are absent too.

We now consider equation (A.2) for j = ¡f :

Z ¼

¡¼
~B(e¡i!)g(e¡i!)e¡i!fd! =

Z ¼

¡¼
b(e¡i!)e¡i!fg(e¡i!)d!:

This equation can be written

Z b

a

"
e¡i!f

1 ¡ e¡i!
+

ei!f

1 ¡ ei!

#
g(e¡i!)d! = 2¼Fb; (A.8)

where b = [bp¡1; bp¡2; :::; b0; ::::; b¡f ]0 is a p + f¡ dimensional column vector and F is the p + f dimen-

sional row vector:

F = [ 0; :::; 0| {z }
1£(p+f¡q¡1)

; cq; cq¡1; :::; c0]: (A.9)

If p + f ¡ q ¡ 1 = 0; the row vector is as above, with the zeros deleted. We want to express the right

hand side of (A.8) in terms of B̂f;p instead of b: We do this using the matrix representation of the

relation, (A.1):

QB̂f;p = b; (A.10)
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where Q is the following (p + f) £ (p + f + 1) matrix:

Q =

2
666666666664

¡1 0 0 ¢ ¢ ¢ 0 0

¡1 ¡1 0 ¢ ¢ ¢ 0 0

¡1 ¡1 ¡1 ¢ ¢ ¢ 0 0
...

...
...

. . .
...

...

¡1 ¡1 ¡1 ¢ ¢ ¢ ¡1 0

3
777777777775

: (A.11)

Substitute (A.10) into (A.6) to get:

Z b

a

"
e¡i!f

1 ¡ e¡i!
+

ei!f

1 ¡ ei!

#
g(e¡i!)d! = 2¼FQB̂f;p = 2¼A¡f B̂

f;p;

say, where A¡f = FQ:

We have now achieved what we set out to do. We have a linear system of p + f + 1 equations in

the p + f + 1 unknown B̂f;p
j 's. We summarize this as follows:

d = AB̂f;p; (A.12)

where

d =

2
666666666664

R ¼
¡¼ B(e¡i!)g(e¡i!)ei!(p¡1)d!

...
R ¼
¡¼ B(e¡i!)g(e¡i!)ei!(¡f+1)d!
R b
a

h
e¡i!f
1¡e¡i! + ei!f

1¡ei!
i
g(e¡i!)d!

0

3
777777777775

; A = 2¼

2
666666666664

Ap¡1
...

A¡f+1

A¡f

1 ¢ ¢ ¢ 1

3
777777777775

; (A.13)

where Aj; j = p ¡ 1; :::; ¡f + 1 is de¯ned in (A.7) and A¡f = FQ; where Q is de¯ned in (A.11) and F

is de¯ned in (A.9).

With a small adjustment to d and A; the ¯lter weights are also determined by an expression like

(A.12) when xt is covariance stationary. To indicate the adjustment, it is convenient to adopt a

notational convention that is di®erent from the one used in section 2 of the paper. In the covariance

stationary case, we specify that xt has the representation

xt = µ(L)"t; E"2t = 1;

where

µ(z) = µ0 + µ1z + ::: + µqz
q; q ¸ 0;
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and the spectral density of µ(L)"t is g(e¡i!); with

g(e¡i!) = µ(e¡i!)µ(ei!) = c0 + c1(e
¡i! + ei!) + ::: + cq(e

¡i!q + ei!q):

Here, c¿ is the covariance function of µ(L)"t: As before, we wish to solve (2.6) subject to (2.5). The

unknown ¯lter weights satisfy the linear system, (A.12), in which all but the last two rows of A and d

are unchanged. The last two rows of d contain
R ¼
¡¼ B(e¡i!)g(e¡i!)ei!ld! for l = p and ¡f; respectively.

The last two rows of A contain Ap and A¡f ; where these are evaluated using (A.7).

A.3. The Solution

We solve for the B̂f;p
j 's using

B̂f;p = A¡1d: (A.14)

When q = 0; this problem is very simple. In this case,

B̂f;p
j = Bj ; j = p ¡ 1; :::;¡f + 1

B̂f;p
¡f =

1

2¼

Z b

a

"
e¡i!f

1 ¡ e¡i!
+

ei!f

1 ¡ ei!

#
d! (A.15)

B̂f;p
p = ¡

¡fX

j=p¡1
B̂f;p
j :

It is of interest to note that, when p = f; B̂p;p(L) is a symmetric polynomial. To see this, note ¯rst

that B̂p;p
j = Bj for j = p¡1; :::; 0; :::; 1¡p and recall that the Bj's are themselves symmetric. But, is it

the case that B̂p;p
p = B̂p;p

¡p? To see that this is indeed the case, note ¯rst from (A.1) that B̂p;p
p = ¡bp¡1:

But, after evaluating (A.2) at j = p ¡ 1; we conclude:

B̂p;p
p = ¡ 1

2¼

Z b

a

"
e¡i!(p¡1)

1 ¡ e¡i!
+

ei!(p¡1)

1 ¡ ei!

#
d!:

Combining this with the middle expression in (A.15), evaluated at f = p; we ¯nd that B̂p;p
p = B̂p;p

¡p if,

and only if Z b

a

"
e¡i!p

1 ¡ e¡i!
+

ei!p

1 ¡ ei!
+

ei!(p¡1)

1 ¡ e¡i!
+

e¡i!(p¡1)

1 ¡ ei!

#
d! = 0:

To see that this relationship indeed is satis¯ed, ¯rst collect terms in ei!p :

ei!p
"

1

1 ¡ ei!
+

e¡i!

1 ¡ e¡i!

#
= ei!p

1 ¡ e¡i! +
¡
1 ¡ ei!

¢
e¡i!

(1 ¡ ei!) (1 ¡ e¡i!)
= 0:
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The same is true for the term in e¡i!p: We conclude,

B̂p;p
p = B̂p;p

¡p ;

so that when p = f and q = 0; the ¯lter produced by this projection is symmetric.

A.4. Computational Note

Note from (A.7), (A.4), (A.13), that, with one exception, we have closed form expressions for all the

objects- that are needed to solve our problem. The exception occurs in the unit root case, with the

expression

R(f) =
Z b

a

"
e¡i!f

1 ¡ e¡i!
+

ei!f

1 ¡ ei!

#
g(e¡i!)d!:

This expression could be solved using a numerical integration procedure. The drawback is that such

computations take time, and, as emphasized in the paper, in practice the expression needs to be

evaluated for many di®erent values of f: For this reason, we now describe a quick way to evaluate this

integral.

Note ¯rst that when f = 0;

R(0) =
Z b

a

·
1

1 ¡ e¡i!
+

1

1 ¡ ei!

¸
g(e¡i!)d!

=
1

2

Z ¼

¡¼
B(e¡i!)g(e¡i!)d!;

since the object in square brackets is unity. The expression, R(0), can be evaluated using (A.4).

R(f) ¡ R(f + 1) =
Z b

a

³
e¡i!f + ei!f

´
g(e¡i!)d!

=
1

2

Z ¼

¡¼
B(e¡i!)g(e¡i!)

³
e¡i!f + ei!f

´
d!

=

Z ¼

¡¼
B(e¡i!)g(e¡i!)e¡i!fd!:

The last integral in this expression can be evaluated using (A.4). This gives us a recursive way to

compute R(0); R(1); :::; using closed-form formulas.
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B. Second Moments of Aggregate Variables

We compare the second moment properties of aggregate time series, ¯ltered using the various procedures

discussed in this paper. Results are presented for various frequencies: the high frequencies with period

of oscillation between 2 and 6 quarters; business cycle frequencies with period of oscillation between 6

and 32 quarters; low frequencies with period of oscillation between 32 and 80 quarters; and very low

frequencies with period of oscillation between 80 and 160 quarters. We also present results based on

combining the high and business cycle frequencies, so that we can do a direct comparison with results

based on the HP ¯lter.

Our ¯ndings are presented in Tables B.1-B.5. The tables are di®erentiated according to the fre-

quency band isolated by the ¯lter method used. The band pass ¯lter approximations considered are

Random Walk, Random Walk Fixed, Random Walk Symmetric, the Baxter-King method (BK), and

Trigonometric Regression. All but the last two of these methods are de¯ned in Table 2. BK is de-

¯ned in (2.14) and Trigonometric Regression is de¯ned in (3.1). The HP ¯lter used in each table is

always the same, and sets ¸ = 1600. The data cover the period 1948 to 1998. In most cases, they are

logged prior to ¯ltering. Exceptions are cases where the variable can potentially be negative. Thus,

`(Ex-Im)/GDP' represents net exports de°ated by GDP, and this is not logged. The same is true for

`Chg Invntry/GDP' which is the change in the stock of inventories (i.e., inventory investment), scaled

by GDP. In addition, interest rates have not been logged.

Our basic ¯nding is that results are very similar across the di®erent ¯ltering methods, except at

the very lowest frequencies. There, they di®er sharply. It is our impression that nothing of substantive

turns on which ¯lter is used to isolate the higher frequency components of the data.

Three observations about the sensitivity of the Random Walk results to the choice of frequency

band are worth noting. First, consistent with ¯ndings in Hornstein (1998), the correlation between

inventory investment and sales is negative in the high frequencies, and positive in the lower frequencies.

Perhaps this re°ects the predominance of di®erent types of shocks in these frequency bands. Second,

consumption is about 25 percent more volatile than output in the very lowest frequencies. This stands

in striking contrast to its behavior in the higher frequencies, where consumption is substantially less

volatile than output. Third, the correlation between the price level and output is more negative in the

low frequencies than in the higher frequencies. On the other hand, the correlation between output and

in°ation increases as one goes from the high frequencies to the low frequencies. The switch in the sign

of the correlation between in°ation and output and the price level and output has been noted before

(see Ball and Mankiw (1994), Christiano (1991), and Cooley and Ohanian (1991)), and has generated

8



considerable discussion. That the phenomenon is more pronounced in the lower frequencies has not

been noted before.
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