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their nominal size? We address these questions using data generated from a series of
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as long as the variance in hours worked due to a given shock is above the remarkably
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1. Introduction

Sims’s (1980) seminal paper, Macroeconomics and Reality, argued that vector autoregression

(VAR)-based procedures would be useful to macroeconomists interested in constructing and

evaluating economic models. Given a minimal set of identifying assumptions, structural

VARs allow one to estimate the dynamic effects of economic shocks. The estimated impulse

response functions provide a natural way to choose the parameters of a structural model and

to assess the empirical plausibility of alternative models.1

To be useful in practice, VAR-based procedures must have good sampling properties. In

particular, they should accurately characterize the amount of information in the data about

the effects of a shock to the economy. Also, they should accurately uncover the information

that is there.

These considerations lead us to investigate two key issues. First, do VAR-based confidence

intervals accurately reflect the actual degree of sampling uncertainty associated with impulse

response functions? Second, what is the size of bias relative to confidence intervals, and how

do coverage rates of confidence intervals compare to their nominal size?

We address these questions using data generated from a series of estimated dynamic, sto-

chastic general equilibrium (DSGE) models. We consider real business cycle (RBC) models

and the model in Altig, Christiano, Eichenbaum, and Linde (2005) (ACEL) that embodies

real and nominal frictions. We organize most of our analysis around a particular question

that has attracted a great deal of attention in the literature: how do hours worked respond

to an identified shock? In the case of the RBC model, we consider a neutral shock to technol-

ogy. In the ACEL model, we consider two types of technology shocks, as well as a monetary

policy shock.

We find that, in all of the scenarios, as long as the variance in hours worked due to

a given shock is above the remarkably low number of 1 percent, VAR-based methods for

recovering the response of hours to that shock have good sampling properties. Technology

shocks account for a much larger fraction of the variance of hours worked in the ACEL model

than in the any of our estimated RBC models. Not surprisingly, inference about the effects

of a technology shock on hours worked is much sharper when the ACEL model is the data

generating mechanism.

1See for example Sims (1989), Eichenbaum and Evans (1995), Rotemberg and Woodford (1997), Gali
(1999), Francis and Ramey (2004), Christiano, Eichenbaum, and Evans (2005), and Del Negro, Schorfheide,
Smets, and Wouters (2005).

2



Taken as a whole, our results provide support for the view that structural VARs are a

useful guide to constructing and evaluating DSGE models. Of course, as with any economet-

ric procedure it is possible to find examples in which VAR-based procedures do not do well.

Indeed, we present such an example based on an RBC model in which technology shocks

account for less than 1% percent of the variance in hours. In this example, VAR-based

methods do not work well because bias exceeds sampling uncertainty. While instructive, the

example is based on a model that fits the data poorly and so is unlikely to be of practical

importance.

Having good sampling properties does not mean that structural VARs always deliver

small confidence intervals. It would be a Pyrrhic victory for structural VARs if the best one

could say about them is that sampling uncertainty is always large and the econometrician

would always know it. Fortunately, this is not the case. We describe examples in which

structural VARs are useful for discriminating between competing economic models.

Researchers use two types of identifying restrictions in structural VARs. Blanchard and

Quah (1989), Gali (1999), and others exploit the implications that many models have for

the long-run effects of shocks.2 Other authors exploit short-run restrictions.3 It is useful to

distinguish between these two types of identifying restrictions to summarize our results.

We find that structural VARs perform remarkably well when identification is based on

short-run restrictions. For all the specifications that we consider, the sampling properties

of impulse response estimators are good and sampling uncertainty is small. This good

performance obtains even when technology shocks account for as little as 0.5% of the variance

in hours. Our results are comforting for the vast literature that has exploited short-run

identification schemes to identify the dynamic effects of shocks to the economy. Of course,

one can question the particular short-run identifying assumptions used in any given analysis.

However, our results strongly support the view that if the relevant short-run assumptions are

satisfied in the data generating process, then standard structural VAR procedures reliably

uncover and identify the dynamic effects of shocks to the economy.

2See, for example, Basu, Fernald, and Kimball (2004), Christiano, Eichenbaum, and Vigfusson (2003,
2004), Fisher (2005), Francis and Ramey (2004), King, Plosser, Stock and Watson (1991), Shapiro and
Watson (1988) and Vigfusson (2004). Francis, Owyang, and Roush (2005) pursue a related strategy to
identify a technology shock as the shock that maximizes the forecast error variance share of labor productivity
at a long but finite horizon.

3This list is particularly long and includes at least Bernanke (1986), Bernanke and Blinder (1992),
Bernanke and Mihov (1995), Blanchard and Perotti (2002), Blanchard and Watson (1986), Christiano and
Eichenbaum (1992), Christiano, et al. (2005), Cushman and Zha (1997), Eichenbaum and Evans (1995),
Hamilton (1997), Rotemberg and Woodford (1992), Sims (1986), and Sims and Zha (2006).
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The main distinction between our short and long-run results is that the sampling un-

certainty associated with estimated impulse response functions is substantially larger in the

long-run case. In addition, we find some evidence of bias when the fraction of the variance

in hours worked accounted for by technology shocks is very small. Although this bias is

not large relative to sampling uncertainty, it is still interesting to understand why the bias

occurs. We document that when substantial bias exists, it stems from the fact that with

long-run restrictions one must estimate the sum of VAR coefficients. Given our data gen-

erating processes, the true VAR of the data has infinite lags. However, the econometrician

can only use a finite number of lags in the estimation procedure.4 The resulting specification

error is the reason why in some of our examples the sum of VAR coefficients is difficult to

estimate accurately.

The standard VAR-based estimation strategy based on long-run restrictions requires an

estimate of the zero-frequency spectral density of the data. This strategy uses the spectral

density that is implicit in the VAR itself. When we find bias associated with long-run

restrictions, it is because the sum of the VAR coefficients is poorly estimated, which leads

to a poor VAR-based estimator of the zero-frequency spectral density. To deal with this

problem, we adjust the standard VAR estimator by working with a non-parametric estimator

of the zero-frequency spectral density. In cases when the standard VAR procedure entails

some bias, our adjustment virtually eliminates the bias.

Our results are related to a literature that questions the ability of long-run identified

VARs to reliably estimate the dynamic response of macroeconomic variables to structural

shocks. Perhaps the first critique of this sort was provided by Sims (1972). Although his

paper was written before the advent of VARs, it articulates why estimates of the sum of

regression coefficients might be distorted when there is specification error. Faust and Leeper

(1997) and Pagan and Robertson (1998) make an important related critique of identification

strategies based on long-run restrictions. More recently Erceg, Guerrieri, and Gust (2005)

and Chari, Kehoe, and McGrattan (2005b) (henceforth CKM) also examine the reliability

of VAR-based inference using long-run identifying restrictions.5 Our conclusions regarding

4See Cooley and Dwyer (1998) for the observation that RBC models imply infinite ordered VAR repre-
sentations.

5See also Fernandez-Villaverdez, Rubio-Ramirez, and Sargent (2005) who investigate the circumstances
in which the economic shocks are recoverable from the VAR disturbances. They provide a simple matrix
algebra check to assessing this. They identify models in which the conditions are satisfied and other models
in which they are not satisfied.
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the value of identified VARs differ sharply from those recently reached by CKM. We explain

in detail the reasons that we reach different conclusions than CKM.

The remainder of the paper is organized as follows. Section 2 presents the versions of the

RBC models that we use in our analysis. Section 3 discusses our results for standard VAR-

based estimators of impulse response functions. Section 4 analyzes the differences between

short and long-run restrictions. Section 5 discusses the relation between our work and the

recent critique of VARs offered by CKM. Section 6 summarizes the ACEL model and reports

its implications for VARs. Section 7 contains concluding comments.

2. A Simple Real Business Cycle Model

In this section, we display the real business cycle model that serves as one of the data gener-

ating processes in our analysis. In this model the only shock that affects labor productivity

in the long-run is a shock to technology. This property lies at the core of the identification

strategy used by King, et. al. (1991), Gali (1999) and others to identify the effects of a shock

to technology. We also consider a variant of the model in which agents choose hours worked

before the technology shock is realized. This assumption allows us to identify the effects

of a shock to technology using short-run restrictions, that is, restrictions on the variance-

covariance matrix of the disturbances to a VAR. We describe the conventional VAR-based

strategies for estimating the dynamic impact on hours worked of a shock to technology.

Finally, we discuss parameterizations of our model that we use in our experiments.

2.1. The Model

The representative agent maximizes expected utility over per capita consumption, ct, and

per capita hours worked, lt :

E0

∞X
t=0

(β (1 + γ))t
"
log ct + ψ

(1− lt)
1−σ − 1

1− σ

#
,

subject to the budget constraint:

ct + (1 + τx,t) it ≤ (1− τ l,t)wtlt + rtkt + Tt,

where

it = (1 + γ) kt+1 − (1− δ) kt.
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Here, kt denotes the per capita capital stock at the beginning of period t, wt is the wage

rate, rt is the rental rate on capital, τx,t is an investment tax, τ l,t is the tax rate on labor

income, δ ∈ (0, 1) is the depreciation rate on capital, γ is the growth rate of the population,
Tt represents lump-sum taxes and σ > 0 is a curvature parameter.

The representative competitive firm’s production function is:

yt = kαt (Ztlt)
1−α ,

where Zt is the time t state of technology and α ∈ (0, 1). The stochastic processes for the
shocks are:

log zt = µz + σzε
z
t

τ l,t+1 = (1− ρl) τ l + ρlτ l,t + σlε
l
t+1 (2.1)

τx,t+1 = (1− ρx) τx + ρxτx,t + σxε
x
t+1,

where zt = Zt/Zt−1. In addition, εzt , ε
l
t, and εxt are i.i.d. random variables with mean zero

and unit standard deviation. The parameters, σz, σl, and σx are non-negative scalars. The

constant, µz, is the mean growth rate of technology, τ l is the mean labor tax rate, and τx

is the mean tax on capital. We restrict the autoregressive coefficients, ρl and ρx, to be less

than unity in absolute value.

Finally, the resource constraint is:

ct + (1 + γ) kt+1 − (1− δ) kt ≤ yt.

We consider two versions of the model, differentiated according to timing assumptions.

In the standard or nonrecursive version, all time t decisions are taken after the realization of

the time t shocks. This is the conventional assumption in the real business cycle literature.

In the recursive version of the model the timing assumptions are as follows. First, τ l,t is

observed, after which labor decisions are made. Second, the other shocks are realized and

agents make their investment and consumption decisions.

2.2. Relation of the RBC Model to VARs

We now discuss the relation between the RBC model and a VAR. Specifically, we establish

conditions under which the reduced form of the RBC model is a VAR with disturbances

that are linear combinations of the economic shocks. Our exposition is a simplified version
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of the discussion in Fernandez-Villaverde, et. al. (2005) (see especially their section III). We

include this discussion because it frames many of the issues that we address. Our discussion

applies to both the standard and the recursive versions of the model.

We begin by showing how to put the reduced form of the RBC model into a state-space,

observer form. Throughout, we analyze the log-linear approximations to model solutions.

Suppose the variables of interest in the RBC model are denoted by Xt. Let st denote the

vector of exogenous economic shocks and let k̂t denote the percent deviation from steady

state of the capital stock, after scaling by Zt.
6 The approximate solution for Xt is given by:

Xt = a0 + a1k̂t + a2k̂t−1 + b0st + b1st−1, (2.2)

where

k̂t+1 = Ak̂t +Bst. (2.3)

Also, st has the law of motion:

st = Pst−1 +Qεt, (2.4)

where εt is a vector of i.i.d. fundamental economic disturbances. The parameters of (2.2)and

(2.3) are functions of the structural parameters of the model.

The ‘state’ of the system is composed of the variables on the right side of (2.2):

ξt =

⎛⎜⎜⎝
k̂t
k̂t−1
st
st−1

⎞⎟⎟⎠ .

The law of motion of the state is:

ξt = Fξt−1 +Dεt, (2.5)

where F and D are constructed from A, B, Q, P. The econometrician observes the vector of

variables, Yt.We assume Yt is equal to Xt plus iid measurement error, vt, which has diagonal

variance-covariance, R. Then:

Yt = Hξt + vt. (2.6)

Here, H is defined so that Xt = Hξt, i.e., relation (2.2) is satisfied. In (2.6) we abstract

from the constant term. Hamilton (1994, section 13.4) shows how the system formed by

6Let k̃t = kt/Zt−1. Then, k̂t =
³
k̃t − k̃

´
/k̃, where k̃ denotes the value of k̃t in non-stochastic steady

state.
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(2.5) and (2.6) can be used to construct the exact Gaussian density function for a series of

observations, Y1, ..., YT .We use this approach when we estimate versions of the RBC model.

We now use (2.5) and (2.6) to establish conditions under which the reduced form rep-

resentation for Xt implied by the RBC model is a VAR with disturbances that are linear

combinations of the economic shocks. In this discussion, we set vt = 0, so that Xt = Yt. In

addition, we assume that the number of elements in εt coincides with the number of elements

in Yt.

We begin by substituting (2.5) into (2.6) to obtain:

Yt = HFξt−1 + Cεt, C ≡ HD. (2.7)

Our assumption on the dimensions of Yt and εt implies that the matrix C is square. In

addition, we assume C is invertible. Then:

εt = C−1Yt − C−1HFξt−1. (2.8)

Substituting (2.8) into (2.5), we obtain:

ξt =Mξt−1 +DC−1Yt,

where

M =
£
I −DC−1H

¤
F. (2.9)

As long as the eigenvalues of M are less than unity in absolute value,

ξt = DC−1Yt +MDC−1Yt−1 +M2DC−1Yt−2 + ... . (2.10)

Using (2.10) to substitute out for ξt−1 in (2.8), we obtain:

εt = C−1Yt − C−1HF
£
DC−1Yt−1 +MDC−1Yt−2 +M2DC−1Yt−3 + ...

¤
, (2.11)

or, after rearranging:

Yt = B1Yt−1 +B2Yt−2 + ... + ut, (2.12)

where

ut = Cεt (2.13)

Bj = HFM j−1DC−1, j = 1, 2, ... (2.14)

Expression (2.12) is an infinite order VAR, because ut is orthogonal to Yt−j, j ≥ 1.
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Proposition 2.1. (Fernandez-Villaverde, Rubio-Ramirez, and Sargent) If C is invertible

and the eigenvalues ofM are less than unity in absolute value, then the RBC model implies:

• Yt has the infinite order VAR representation in (2.12)

• The linear one-step-ahead forecast error Yt given past Yt’s is ut, which is related to the
economic disturbances by (2.13)

• The variance-covariance of ut is CC 0

• The sum of the VAR lag matrices is given by:

B (1) ≡
∞X
j=1

Bj = HF [I −M ]−1DC−1.

We will use the last of these results below.

Relation (2.12) motivates why researchers interested in constructing DSGE models find

it useful to analyze VARs. At the same time, this relationship clarifies some of the potential

pitfalls in the use of VARs. First, in practice the econometrician must work with finite

lags. Second, the assumption that C is square and invertible may not be satisfied. Whether

C satisfies these conditions depends on how Yt is defined. Third, there may be significant

measurement errors. Fourth, the matrix,M , may not have eigenvalues inside the unit circle.

In this case, the economic shocks are not recoverable from the VAR disturbances.7 Implicitly,

the econometrician who works with VARs assumes that these pitfalls are not quantitatively

important.

2.3. VARs in Practice and the RBC Model

We are interested in the use of VARs as a way to estimate the response of Xt to economic

shocks, i.e., elements of εt. In practice, macroeconomists use a version of (2.12) with finite

lags, say q. A researcher can estimate B1, ..., Bq and V = Eutu
0
t. To obtain the impulse re-

sponse functions, however, the research needs the Bi’s and the column of C corresponding to

the shock in εt that is of interest. It is not possible to compute the required column of C, the

Bi’s, and V. That is, the required column of C is not identified without additional identifying

assumptions. In practice, two types of assumptions are used. short-run assumptions take the

7For an early example of this, see Hansen and Sargent (1980, footnote 12). Sims and Zha (2006) discuss
the possibility that, while a given economic shock may not lie exactly in the space of current and past Yt, it
may nevertheless be ‘close’. They discuss methods to detect this case.
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form of direct restrictions on the matrix C. long-run assumptions place indirect restrictions

on C which stem from restrictions on the long-run response of Xt to a shock in an element

of εt. In this section we use our RBC model to discuss these two types of assumptions and

how they are imposed on VARs in practice.

2.3.1. The Standard Version of the Model

The log-linearized equilibrium laws of motion for capital and hours in this model can be

written as follows:

log k̂t+1 = γ0 + γk log k̂t + γz log zt + γlτ l,t + γxτx,t, (2.15)

and

log lt = a0 + ak log k̂t + az log zt + alτ l,t + axτx,t. (2.16)

From (2.15) and (2.16), it is clear that all shocks only have a temporary impact on lt and

k̂t.
8 The only shock that has a permanent effect on labor productivity, at ≡ yt/lt, is εzt . The

other shocks do not have a permanent effect on at. Formally, this exclusion restriction is:

lim
j→∞

[Etat+j −Et−1at+j] = f (εzt only) . (2.17)

In our linear approximation to the model solution f is a linear function. The model also

implies the sign restriction that f is an increasing function. In (2.17), Et is the expectation

operator, conditional on the information set Ωt =
³
log k̂t−s, log zt−s, τ l,t−s, τx,t−s; s ≥ 0

´
.

The exclusion and sign restrictions have been used by King, et. al. (1991), Gali (1999), and

others to identify the dynamic impact on macroeconomic variables of a positive shock to

technology.

In practice, researchers impose the exclusion and sign restrictions on a VAR to compute

εzt and identify its dynamic effects on macroeconomic variables. Consider the N × 1 vector,
Yt. The VAR for Yt is given by:

Yt+1 = B (L)Yt + ut+1, Eutu
0
t = V, (2.18)

B(L) ≡ B1 +B2L+ ...+BqL
q−1,

Yt =

⎛⎝ ∆ log at
log lt
xt

⎞⎠ .

8Cooley and Dwyer (1998) argue that in the standard RBC model, if technology shocks have a unit root,
then per capita hours work will be difference stationary. This claim, which plays an important role in their
analysis of VARs, is incorrect.
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Here, xt is an additional vector of variables that may be included in the VAR. Motivated

by the type of reasoning discussed in the previous subsection, researchers assume that the

fundamental economic shocks are related to ut as follows:

ut = Cεt, Eεtε0t = I, CC 0 = V. (2.19)

Without loss of generality, we assume that the first element in εt is εzt . It is easy to verify

that:

lim
j→∞

h
Ẽtat+j − Ẽt−1at+j

i
= τ [I −B(1)]−1Cεt, (2.20)

where τ is a row vector with all zeros, except unity in the first location. Here:

B(1) ≡ B1 + ...+Bq.

Also, Ẽt is the expectation operator, conditional on Ω̃t = {Yt, ..., Yt−q+1} . As mentioned
above, to compute the dynamic effects of εzt , we require B1, ..., Bq and C1, the first column

of C.

The symmetric matrix, V, and the Bi’s can be computed using ordinary least squares

regressions. However, the requirement that CC 0 = V is not sufficient to determine a unique

value of C1. Adding the exclusion and sign restrictions does uniquely determine C1. Relation

(2.20) implies that these restrictions are:

exclusion restriction: [I −B(1)]−1C =

"
number 0

1×(N−1)
numbers numbers

#
,

and

sign restriction: (1, 1) element of [I −B(1)]−1C is positive.

There are many matrices, C, that satisfy CC 0 = V as well as the exclusion and sign restric-

tions. It is well-known that the first column, C1, of each of these matrices is the same. We

prove this result here, because elements of the proof will be useful to analyze our simulation

results. Let

D ≡ [I −B(1)]−1C.

Let SY (ω) denote the spectral density of Yt at frequency ω that is implied by the qth order

VAR. Then:

DD0 = [I −B(1)]−1 V [I −B(1)0]
−1
= SY (0) . (2.21)
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The exclusion restriction requires that D has a particular pattern of zeros:

D =

⎡⎣ d11
1×1

0
1×(N−1)

D21
(N−1)×1

D22
(N−1)×(N−1)

⎤⎦ ,
so that

DD0 =

∙
d211 d11D

0
21

D21d11 D21D
0
21 +D22D

0
22

¸
=

∙
S11Y (0) S21Y (0)

0

S21Y (0) S22Y (0)

¸
,

where

SY (ω) ≡
∙
S11Y (ω) S21Y (ω)

0

S21Y (ω) S22Y (ω)

¸
.

The exclusion restriction implies:

d211 = S11Y (0) , D21 = S21Y (0) /d11. (2.22)

There are two solutions to (2.22). The sign restriction

d11 > 0, (2.23)

selects one of the two solutions to (2.22). So, the first column of D, D1, is uniquely deter-

mined. By our definition of C, we have

C1 = [I −B(1)]D1. (2.24)

We conclude that C1 is uniquely determined.

2.3.2. The Recursive Version of the Model

In the recursive version of the model, the policy rule for labor involves log zt−1 and τx,t−1

because these variables help forecast log zt and τx,t :

log lt = a0 + ak log k̂t + ãlτ l,t + ã0z log zt−1 + ã0xτx,t−1.

Since labor is a state variable at the time the investment decision is made, the equilibrium

law of motion for k̂t+1 is:

log k̂t+1 = γ0 + γk log k̂t + γ̃z log zt + γ̃lτ l,t + γ̃xτx,t

+γ̃0z log zt−1 + γ̃0xτx,t−1.

As in the standard model, the only shock that affects at in the long run is a shock to

technology. So, the long-run identification strategy discussed in section 2.3.1 applies to the
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recursive version of the model. However, there is an alternative procedure for identifying

εzt that applies to this version of the model. We refer to this alternative procedure as the

‘short-run’ identification strategy, because it involves recovering εzt using only the realized

one-step-ahead forecast errors in labor productivity and hours, as well as the second moment

properties of those forecast errors.

Let uaΩ,t and ulΩ,t denote the population one-step-ahead forecast errors in at and log lt,

conditional on the information set, Ωt−1. The recursive version of the model implies:

uaΩ,t = α1ε
z
t + α2ε

l
t, u

l
Ω,t = γεlt,

where α1 > 0, α2, and γ are functions of the model parameters. The projection of uaΩ,t on

ulΩ,t is given by:

uaΩ,t = βulΩ,t + α1ε
z
t , where β =

cov(uaΩ,t, u
l
Ω,t)

var
¡
ulΩ,t

¢ . (2.25)

Since we normalize the standard deviation of εzt to unity, α1 is given by:

α1 =
q
var

¡
uaΩ,t

¢
− β2var

¡
ulΩ,t

¢
. (2.26)

In practice, we implement the previous procedure using the one-step-ahead forecast errors

generated from a VAR in which the variables in Yt are ordered as follows:

Yt =

⎛⎝ log lt
∆ log at

xt

⎞⎠ .

We write the vector of VAR one-step-ahead forecast errors, ut, as:

ut =

⎛⎝ ult
uat
uxt

⎞⎠ .

We identify the technology shock with the second element in εt in (2.19). To compute the

dynamic response of the variables in Yt to the technology shock we need B1, ..., Bq in (2.18)

and the second column, C2, of the matrix C, in (2.19). We obtain C2 in two steps. First, we

identify the technology shock using:

εzt =
1

α̂1

³
uat − β̂ult

´
,

where

β̂ =
cov(uat , u

l
t)

var
¡
ult
¢ , α̂1 =

q
var (uat )− β̂

2
var

¡
ult
¢
.
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The required variances and covariances are obtained from the estimate of V in (2.18). Second,

we regress ut on εzt to obtain:
9

C2 =

⎛⎜⎝
cov(ul,εz)
var(εz)

cov(ua,εz)
var(εz)

cov(ux,εz)
var(εz)

⎞⎟⎠ =

⎛⎜⎝ 0
α̂1

1
α̂1

³
cov(uxt , u

a
t )− β̂cov

¡
uxt , u

l
t

¢´
⎞⎟⎠ .

2.4. Parameterization of the Model

We consider different specifications of the RBC model that are distinguished by the para-

meterization of the laws of motion of the exogenous shocks. In all specifications we assume,

as in CKM , that:

β = 0.981/4, θ = 0.33, δ = 1− (1− .06)1/4, ψ = 2.5, γ = 1.011/4 − 1 (2.27)

τx = 0.3, τ l = 0.242, µz = 1.016
1/4 − 1, σ = 1.

Our MLE Parameterizations

We estimate two versions of our model. In the Two-shock MLE specification we assume

σx = 0, so that there are two shocks, τ l,t and log zt. We estimate the parameters, ρl, σl, and

σz, by maximizing the Gaussian likelihood function of the vector, Xt = (∆ log yt, log lt)
0 ,

subject to (2.27).10 Our results are given by:

log zt = µz + 0.00953ε
z
t

τ l,t = (1− 0.986) τ̄ l + 0.986τ l,t−1 + 0.0056εlt

The three-shock MLE specification incorporates the investment tax shock, τx,t, into the

model. We estimate the three-shock MLE version of the model by maximizing the Gaussian

likelihood function of the vector, Xt = (∆ log yt, log lt,∆ log it)
0, subject to the parameter

values in (2.27). The results are:

log zt = µz + 0.00968ε
z
t

τ l,t = (1− 0.9994) τ l + 0.9994τ l,t−1 + 0.00631εlt,

τx,t = (1− 0.9923) τx + 0.9923τx,t−1 + 0.00963εxt .
9We implement this procedure for estimating C2 by computing CC0 = V, where C is the lower triangular

Cholesky decomposition of V, and taking the second column of C.
10We use the standard Kalman filter strategy discussed in Hamilton (1994, section 13.4). We remove the

sample mean from Xt prior to estimation and set the measurement error in the Kalman filter system to zero,
i.e., R = 0 in (2.6).
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The estimated values of ρx and ρl are close to unity. This finding is consistent with other

research which also reports that shocks in estimated general equilibrium models exhibit high

degrees of serial correlation.11

CKM Parameterizations

The two-shock CKM specification has two shocks, zt and τ l,t. These shocks have the

following time series representations:

log zt = µz + 0.0131ε
z
t

τ l,t = (1− 0.952) τ l + 0.952τ l,t−1 + 0.0136εlt.

The three-shock CKM specification adds an investment shock, τx,t, to the model, and has

the following law of motion:

τx,t = (1− 0.98) τx + 0.98τx,t−1 + 0.0123εxt . (2.28)

CKM also obtain their parameter estimates using maximum likelihood methods. How-

ever, their estimates are very different from ours. For example, the variances of the shocks

are larger in the two-shock CKM specification than in our MLE specification. Also, the

ratio of σ2l to σ
2
z is nearly three times larger in the two-shock CKM specification than in our

two-shock MLE specification. Below, we discuss the reasons for these differences.

2.5. The Importance of Technology Shocks For Hours Worked

All of the specifications we discuss above share a key characteristic. Technology shocks

account for a very low fraction of the variance of hours worked. We are confronting VARs

with the following task: ‘deduce the response of hours worked to a technology shock using

data in which almost all the movement in hours worked is due to non-technology shocks.’

Table 1 reports various measures, Vh, of the contribution of technology shocks to the

variation in log hours worked. We use three different measures of variation: (i) the variance

of the log of hours worked, (ii) the variance of HP-filtered, log hours and (iii) the variance

in the one-step-ahead error in forecasting the log of hours worked.12 With one exception, we
11See, for example, Christiano (1988), Christiano, et al. (2004), and Smets and Wouters (2003).
12We compute forecast error variances based on a four lag VAR. The variables in the VAR depend on

whether the calculations correspond to the two or three shock model. In the case of the two-shock model,
the VAR has two variables, output growth and log hours. In the case of the three-shock model, the VAR
has three variables: output growth, log hours and the log of the investment to output ratio. The results
are based on 300 VARs, each fit to a data set of 5,000 artificial observations, each generated by the model
reported in the first column. The results correspond to averages across the 300 VARs.
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compute the analogous statistics for log output. The exception is (i), where we compute the

contribution of technology shocks to the variance of the growth rate of output.

The key feature of this table is that technology shocks account for a very small fraction

of the movement in hours worked. When Vh is measured according to (i), it is always below

4 percent. When Vh is measured using (ii) or (iii) it is always below 8 percent. For both (ii)

and (iii), in the CKM specifications, Vh is below 2 percent.13

Figure 1 displays visually how unimportant technology shocks are for hours worked. The

top figure displays 2 sets of 200 artificial observations on hours worked, simulated using the

standard two-shock MLE specification. The volatile time series shows how log hours worked

evolve in the presence of shocks to both zt and τ l,t. The other time series shows how log hours

worked evolve in response to just the technology shock, zt. The bottom figure is the analog of

the top figure when the data are generated using the standard two-shock CKM specification.

When Vh has to fall below 3 percent before VAR-based impulse response functions display

any bias. Moreover, Vh has to fall below 1 percent before this bias becomes large relative to

sampling uncertainty.

3. Results Based on RBC Data Generating Mechanisms

In this section we analyze the properties of conventional VAR-based strategies for identifying

the effects of a technology shock on hours worked. We focus on the bias properties of

the impulse response estimator, as well as standard procedures for estimating sampling

uncertainty.

We use the RBC model parameterizations discussed in the previous section as the data

generating processes. For each parameterization, we simulate 1,000 data sets of 180 obser-

vations each. The shocks εzt , ε
l
t, and possibly εxt , are drawn from i.i.d. standard normal

distributions. For each artificial data set, we estimate a four lag VAR. The average, across

the 1,000 data sets, of the estimated impulse response functions, allows us to assess bias.

For each data set we also estimate two different confidence intervals: a percentile-based

13When we measure Vh according to (i), Vh drops from 3.73 in the two-shock MLE model to 0.18 in the
three-shock MLE model. The analogous drop in Vh is an order of magnitude smaller when Vh is measured
using (ii) or (iii). The reason for this difference is that ρl goes from 0.986 in the two-shock MLE model
to 0.9994 in the three-shock MLE model. In the latter specification there is a near-unit root in τ l,t, which
translates into a near-unit root in hours worked. As a result, the variance of hours worked becomes very
large at the low frequencies. The near-unit root in τ lt has less of an impact on hours worked at high and
business cycle frequencies.
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confidence interval and a standard-deviation based confidence interval.14 We construct the

intervals using the following bootstrap procedure. Using random draws from the fitted VAR

disturbances, we use the estimated four lag VAR to generate 200 synthetic data sets, each of

length 180 observations. For each of these 200 synthetic data sets we estimate a new VAR

and impulse response function. For each artificial data set the percentile-based confidence

interval is defined as the top 2.5% and bottom 2.5% of the estimated coefficients in the

dynamic response functions. The standard deviation based confidence interval is defined as

the estimated impulse response plus or minus two standard deviations where the standard

deviations are calculated across the 200 simulated estimated coefficients in the dynamic

response functions

We assess the accuracy of the confidence interval estimators in two ways. First, we

compute the coverage rate for each type of confidence interval. This rate is the fraction of

times, across the 1,000 data sets simulated from the economic model, that the confidence

interval contains the relevant true coefficient. If the confidence intervals were perfectly

accurate, the coverage rate would be 95 percent. Second, we provide an indication of the

actual degree of sampling uncertainty in the VAR-based impulse response functions. In

particular, we report centered 95 percent probability intervals for each lag in our impulse

response function estimators.15 If the confidence intervals were perfectly accurate, they

should on average coincide with the boundary of the 95 percent probability interval.

When we generate data from the two-shock MLE and CKM specifications, we set Yt =

(∆ log at, log lt)
0.When we generate data from the Three-shockMLE and CKM specifications,

we set Yt = (∆ log at, log lt, log it/yt)0.

3.1. Short-Run Identification

Results for the two- and three- Shock MLE Specifications

Figure 2 reports results generated from four different parameterizations of the recursive

version of the RBC model. In each plot, the solid line is the average estimated impulse

14Sims and Zha (1999) refer to what we call the percentile-based confidence interval as the ‘other-percentile
bootstrap interval’. This procedure has been used in several studies, such as Blanchard and Quah (1989),
Christiano, Eichenbaum, and Evans (1999), Francis and Ramey (2004), McGrattan (2005), and Runkle
(1987). The standard-deviation based confidence interval has been used by other researchers, such as Chris-
tiano et. al. (2005), Gali (1999), and Gali and Rabanal (2004).
15For each lag starting at the impact period, we ordered the 1,000 estimated impulse responses from

smallest to largest. The lower and upper boundaries correspond to the 25th and the 975th impulses in this
ordering.
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response function for the 1,000 data sets simulated using the indicated economic model. For

each model, the starred line is the true impulse response function of hours worked. In each

plot, the grey area defines the centered 95% probability interval for the estimated impulse

response functions. The stars with no line report the average percentile based confidence

intervals across the 1,000 data sets. The circles with no line indicate the average standard

deviation based confidence intervals.

Figures 3 and 4 graph the coverage rates for the percentile based and standard-deviation

based confidence intervals. For each case we graph how often, across the 1,000 data sets

simulated from the economic model, the econometrician’s confidence interval contains the

relevant coefficient of the true impulse response function.

The top left graph in Figure 2 exhibits the properties of the VAR-based estimator of the

response of hours to a technology shock when the data are generated by the two-shock MLE

specification. The bottom row of the first column corresponds to the case when the data

generating process is the three-shock MLE specification.

The first column of Figure 2 has two striking features. First, there is essentially no

evidence of bias in the estimated impulse response functions. In all cases, the solid lines are

very close to the starred lines. Second, an econometrician would not be misled in inference

using standard procedures for constructing confidence intervals. The circles and stars are

close to the boundaries of the grey area. Figures 3 and 4 indicate that the coverage rates

are roughly 90%. So, with high probability, VAR-based confidence intervals will include the

true value of the impulse response coefficients.

Results for the CKM Specification

The right hand column of Figure 2 reports the results when the data generating process

is given by variants of the CKM specification. The top and bottom right hand graph corre-

sponds to the two and three - shock CKM specification, respectively.

The second column of Figure 2 contains the same striking features as the first column.

There is very little bias in the estimated impulse response functions. In addition, the average

value of the econometrician’s confidence interval coincides closely with the actual range of

variation in the impulse response function (the grey area). Coverage rates, reported in

Figures 3 and 4, are roughly 90%. These rates are consistent with the view that VAR-based

procedures lead to reliable inference.
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Comparing the grey areas across the first and second columns of Figure 2, it is clear that

there is more sampling uncertainty when the data are generated from the CKM specifications

than from the MLE specifications (the grey areas are wider). VAR-based confidence intervals

detect this fact.

3.2. Long-run Identification

Results for the two- and three- Shock MLE Specifications

The first and second rows of column 1 in Figure 5 exhibit our results when the data are

generated by the two- and three- shock MLE specifications. Once again there is virtually

no bias in the estimated impulse response functions and inference is accurate. The coverage

rates associated with the percentile based confidence intervals are very close to 95% (see

Figure 3). The coverage rates for the standard deviation based confidence intervals are

somewhat lower, roughly 80% (see Figure 4). The difference in coverage rates can be seen

in Figure 5, which shows that the stars are shifted down slightly relative to the circles. Still,

the circles and stars are very good indicators of the boundaries of the grey area, although

not quite as good as in the analog cases in Figure 2.

Comparing Figures 2 and 5, we see that there is now more sampling uncertainty. That is,

the grey areas are wider. Again, the crucial point is that the econometrician who computes

standard confidence intervals would detect the increase in sampling uncertainty.

Results for the CKM Specification

The third and fourth rows of column 1 in Figure 5 report results for the two and three

- shock CKM specifications. Consistent with results reported in CKM, there is substantial

bias in the estimated dynamic response functions. For example, in the Two-shock CKM

specification, the contemporaneous response of hours worked to a one-standard-deviation

technology shock is 0.3%, while the mean estimated response is 0.97%. This bias stands in

contrast to our other results.

Is this bias big or problematic? In our view, bias cannot be evaluated without taking

into account sampling uncertainty. Bias only matters to the extent that the econometrician

is led to an incorrect inference. For example, suppose sampling uncertainty is large and the

econometrician knows it. Then he would conclude there is little information in the data,

and he would not be misled. In this case, we would say that bias is not large. In contrast,
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suppose sampling uncertainty is large, but the econometrician thinks it is small. Here, we

would say bias is large.

We now turn to the sampling uncertainty in the CKM specifications. Figure 5 shows that

the econometrician’s average confidence interval is large relative to the bias. Interestingly,

the percentile confidence intervals (stars) are shifted down slightly relative to the standard

deviation based confidence intervals (circles). On average, the estimated impulse response

function is not in the center of the percentile confidence interval. This phenomenon often

occurs in practice.16 Recall that we estimate a four lag VAR in each of our 1,000 synthetic

data sets. For the purposes of the bootstrap, each of these VARs is treated as a true data

generating process. The asymmetric percentile confidence intervals reflect that when data

are generated by these VARs, then VAR-based estimators of the impulse response function

have a downward bias.

Figure 3 reveals that for the two- and three- shock CKM specifications, percentile interval

based coverage rates are reasonably close to 95 percent. Figure 4 shows that the standard

deviation based coverage rates are lower than the percentile based coverage rates. However

even these coverage rates are relatively high in that they exceed 70 percent.

In summary, there are two interesting differences between the results that we obtain

with the MLE and CKM specifications. First, sampling uncertainty is much larger with the

latter specification. Second, there is some bias in the estimates associated with the CKM

specification. But the bias is small: it does not affect inference in any substantial way, at

least as judged by coverage rates for the econometrician’s confidence intervals.

3.3. Confidence Intervals in the RBC Examples and a Situation Where VAR-
based Procedures go Awry

We find that sampling variation and confidence intervals differ across our data generating

processes. We now discuss why this is the case. Our answer is straightforward. Other things

equal, the more important technology shocks are in the data generating process the smaller

is sampling uncertainty and the smaller are the econometrician’s confidence intervals. In this

sense, the more information there is in the data about a shock, the tighter is VAR-based

inference.

Table 1 reports different measures of technology shocks in the data generating process.

16An extreme example, where the point estimates roughly coincide with one of the boundaries of the
percentile confidence interval, appears in Blanchard and Quah (1989).
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For both the recursive and the non-recursive specifications, there is a clear pattern. The more

important technology shocks are, the less sampling uncertainty there is and the tighter the

confidence intervals are. These observations can be seen by examining Table 1 and Figures

2 and 3.

Figure 6 makes our point in a different way. This figure focuses only on the long-run

identification schemes. Columns 1 and 2 report results for the two-shock MLE specification

and the two-shock CKM specification, respectively. For each specification we redo our ex-

periments, reducing σl, the standard deviation of the labor tax shock by 1/2 and then by

1/4. Table 1 reveals that the importance of technology shocks rises as the standard devi-

ation of the labor tax shock falls. Once again, the magnitude of sampling uncertainty and

the size of confidence intervals falls as the relative importance of labor tax shocks falls. The

absolute decline in sampling uncertainty reflects two effects. When we reduce σl we reduce

the relative volatility of labor tax shocks, and also the total volatility in the data generating

process. We have not yet determined the relative contribution of these two effects.

Figure 7 presents a different set of experiments based on perturbations of the two-shock

CKM specification. The 1,1 and 2,1 entries show what happens when we vary the Frisch

labor supply elasticity by changing the value of σ in the utility function. In the 1,1 entry

we set σ = 6, which corresponds to Frisch elasticity of 0.63. In the 2,1 entry, we set σ = 0,

which corresponds to a Frisch elasticity of infinity. The model has the property that when

the Frisch elasticity is increased, the fraction of variance in hours due to technology decreases

(see Table 1). Although the response of hours to each of technology and the labor tax rate

both increase with an increase in the Frisch elasticity, the former increases by less. Consistent

with our general findings, the size of the confidence interval and of the bias is larger for the

higher Frisch elasticity case. In both cases the bias is still smaller than sampling uncertainty.

We were determined to construct at least one example in which the VAR-based estimator

of impulse response functions had very bad properties. We display this example in the 3,1

element of Figure 7. The data generating process here is a version of the two-shock CKM

model with an infinite Frisch elasticity and double the standard deviation of the labor tax

rate. According to Table 1, in this model technology shocks account for a trivial fraction of

the variance in hours worked. Of the three measures of Vh, two are 0.46% and the third is

0.66% . The 3,1 element of Figure 7 shows that the VAR-based procedure now has very bad

properties: the true value of the impulse response function lies outside the average value of
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both confidence intervals that we consider. This example shows that it is certainly possible

to construct scenarios in which VAR-based procedures go awry. However, this example seems

unlikely to be of practical significance given the poor fit to the data of this version of the

model.

The second column of Figure 7 shows what happens when we redo our experiments using

our modified VAR-based estimator. The evidence of bias is almost completely removed in

the first two cases and substantially reduced in the third.

3.4. Are Long-Run Identification Schemes Informative?

Up to now, we have focused on the RBC model as the data generating process. For em-

pirically reasonable specifications of the RBC model, confidence intervals associated with

long-run identification schemes are large. One might be tempted to conclude that VAR-

based long-run identification schemes are uninformative. Specifically, are the confidence

intervals associated with them so large that we can never discriminate between competing

economic models? Erceg, et. al. (2005) show that the answer to this question is ’no’. They

consider an RBC model similar to the one discussed above and a version of Christiano, et.

al.’s (2005) sticky wage-price model in which hours worked fall after a positive technology

shock. They then conduct a series of experiments to assess the ability of long-run identified

structural VAR to discriminate between the two models on the basis of the response of hours

worked to a technology shock.

Using estimated versions of each of the economic models as a data generating process,

they generate 10,000 synthetic data sets each of length 180 observations. They then estimate

a four variable structural VAR on each synthetic data set and compute the dynamic response

of hours worked to a technology shock using long-run identification. Erceg, et. al. (2005)

report that the probability of finding an initial decline in hours that persists for two quarters

is much higher in the model with nominal rigidities than in the RBC model (93% versus

26%). So, if these are the only two models contemplated by the researcher, an empirical

finding that hours worked decline after a positive innovation to technology would constitute

compelling evidence in favor of the sticky wage-price model.

Erceg, et. al. (2005) also report that the probability of finding an initial rise in hours

that persists for two quarters is much higher in the RBC model than in the sticky wage price

model (71% versus 1%). So, an empirical finding that hours worked rises after a positive

innovation to technology would constitute compelling evidence in favor of the RBC model
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versus the sticky wage-price alternative.

4. Contrasting Short- and Long- Run Restrictions

The previous section demonstrates that, in the examples we considered, when VARs are iden-

tified using short-run restrictions, the conventional estimator of impulse response functions

is remarkably accurate.

In contrast, for some parameterizations of the data generating process, the conventional

estimator of impulse response functions based on long-run identifying restrictions can ex-

hibit noticeable bias. In this section we argue that the key difference between the two

identification strategies is that the long-run strategy requires an estimate of the sum of the

VAR coefficients, B (1) . This object is notoriously difficult to estimate accurately (see Sims

(1972)).

We consider a simple analytic expression related to one in Sims (1972). Our expression

shows what an econometrician who fits a misspecified, fixed-lag, finite order VAR would find

in population. Let B̂1, ..., B̂q and V̂ denote the parameters of the q − th order VAR fit by

the econometrician. Then:

V̂ = V + min
B̂1,...,B̂q

1
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where

B (L) = B1 +B2L+B3L
2 + ...

B̂ (L) = B̂1 + B̂2L+ ...+ B̂4L
3.

Here, B (e−iω) and B̂ (e−iω) correspond to B (L) and B̂ (L) with L replaced by e−iω.17 In

(4.1), B and V are the parameters of the actual infinite-ordered VAR representation of the

data (see (2.12)) and SY (ω) is the associated spectral density, at frequency ω.18 According to

(4.1), estimation of a VAR approximately involves choosing VAR lag matrices to minimize a

17The minimization in (4.1) is actually over the trace of the indicated integral. One interpretation of (4.1)
is that it provides the probability limit of our estimators: what they would converge to as the sample size
increases to infinity. We do not adopt this interpretation, because in practice an econometrician would use
a consistent lag length selection method. The probability limit of our estimators corresponds to the true
impulse response functions for all cases considered in this paper.
18The derivation of this formula is straightforward. Write (2.12) in lag operator form as follows:

Yt = B(L)Yt−1 + ut,

where Eutu
0
t = V. Let the fitted disturbances associated with a particular parameterization, B̂ (L) , be
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quadratic form in the difference between the estimated and true lag matrices. The quadratic

form assigns greatest weight to the frequencies where the spectral density is the greatest. If

the econometrician’s VAR is correctly specified, then B̂ (e−iω) = B (e−iω) for all ω, V̂ = V,

so that the estimator is consistent. If there is specification error, then B̂ (e−iω) 6= B (e−iω)

for some ω and V > V̂ .19 In our context, there is specification error because the true VAR

implied by our data generating processes has q = ∞, but the econometrician uses a finite

value of q.

To understand the implications of (4.1) for our analysis, it is useful to write the estimated

dynamic response of Yt to a shock in the first element of εt shock in lag-operator form:

Yt =
£
I + θ1L+ θ2L

2 + ...
¤
Ĉ1ε1,t, (4.2)

where the θk’s are related to the estimated VAR coefficients as follows:

θk =
1
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ekωidω. (4.3)

In the case of long-run identification, the vector Ĉ1 is computed using (2.24), with B̂ (1) and

V̂ replacing B (1) and V, respectively. In the case of short-run identification, we compute Ĉ1

as the second column in the upper triangular Choleski decomposition of V̂ .20

We use (4.1) to understand why estimation based on short-run and long-run identifica-

tion can produce different results. According to (4.2), impulse response functions can be

decomposed into two parts, the impact effect of the shocks, summarized by Ĉ1, and the

dynamic part summarized in the term in square brackets. We argue that when a bias arises

with long-run restrictions, it is because of difficulties in estimating C1. These difficulties do

not arise with short-run restrictions.

denoted ût. Simple substitution implies:

ût =
h
B (L)− B̂(L)

i
Yt−1 + ut.

The two random variables on the right of the equality are orthogonal, so that the variance of ût is just the
variance of the sum of the two:

var (ût) = var
³h
B (L)− B̂(L)

i
Yt−1

´
+ V.

Expression (4.1) in the text follows immediately.
19By V > V̂ , we mean that V − V̂ is a positive definite matrix.
20In the earlier discussion it was convenient to adopt the normalization that the technology shock is the

second element of εt. Here, we adopt the same normalization as for the long-run identification, namely that
the technology shock is the first element of εt.
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In the short-run identification case, Ĉ1 is a function of V̂ only. Across a variety of

numerical examples, we find that V̂ is very close to V.21 This result is not surprising since

(4.1) indicates that the entire objective of estimation is to minimize the distance between

V̂ and V. In the long-run identification case, Ĉ1 depends not only on V̂ but also on B̂ (1) .

A problem is that the criterion does not assign much weight to setting B̂ (1) = B (1) unless

SY (ω) happens to be relatively large in a neighborhood of ω = 0. But, a large value of

SY (0) is not something one can rely on.22 When SY (0) is relatively small, attempts to

match B̂ (e−iω) with B (e−iω) at other frequencies could induce large errors in B̂(1).

The previous argument about the difficulty of estimating C1 in the long-run identification

case does not apply to the θ0ks. According to (4.3) θk is a function of B̂ (e
−iω) over the whole

range of ω’s, not just one specific frequency.

We now present a numerical example, which illustrates Proposition 1, as well as some of

the observations we have made in discussing (4.1). The example assumes the data generating

process is given by the two-shock CKM specification. The example demonstrates that the

bias arises from difficulties in estimating B (1) .

Our numerical example focuses on population results. Therefore, it only provides an

indication of what happens in small samples, which is where our interest lies. To understand

what happens in small samples, we consider four additional numerical examples. First, we

show that when the econometrician uses the true value of B (1), then the bias and much

of the sampling uncertainty associated with the Two-shock CKM specification disappears.

Second, we show that bias problems essentially disappear when we use an alternative to the

standard zero-frequency spectral density estimator used in the VAR literature. Third, we

show that the problems are attenuated when there is greater persistence in the preference

shock. Fourth, we consider the recursive version of the two-shock CKM specification in which

the effect of technology shocks can be estimated using either short- or long- run restrictions.

A Numerical Example

Table 2 reports various properties of the two-shock CKM specification. The first six

Bj’s in the infinite order VAR, computed using (2.14), are reported in Panel A. These Bj’s

21This result explains why lag length selection methods, such as the Akaike criterion, almost never suggest
values of q greater than 4 in artificial data sets of length 180, regardless of which of our data generating
methods we used. These lag length selection methods focus on V̂ .
22(4.1) shows that B̂ (1) corresponds to only a single point in the integral. So other things equal, the

estimation criterion assigns no weight at all to getting B̂(1) right. The reason B (1) is identified in our
setting is that the B (ω) functions we consider are continuous at ω = 0.
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eventually converge to zero, however they do so slowly. The speed of convergence is governed

by the size of the maximal eigenvalue of the matrix M in (2.9), which is 0.957. Panel B

displays the B̂j’s which solve (4.1) with q = 4. Informally, the B̂j’s look similar to the Bj’s

for j = 1, 2, 3, 4. Consistent with this observation, the sum of the true Bj0s, B1 + ...+B4 is

similar in magnitude to the sum of the estimated B̂0
js, B̂ (1) (see Panel C in Table 2). But

the econometrician using long-run restrictions needs a good estimate of B (1) . This matrix

is very different from B1 + ... + B4. Although the remaining Bj’s for j > 4 are individually

small, their sum is not. For example, the 1,1 element of B (1) is 0.28, or 6 times larger than

the 1,1 element of B1 + ...+B4.

The distortion in B̂ (1) manifests itself in a distortion in the estimated zero-frequency

spectral density (see Panel D in Table 2). As a result, there is distortion in the estimated

impact vector, Ĉ1 (Panel F in Table 2). To see the significance of the latter distortion for

estimated impulse response functions, we display in Figure 8 the part of (4.2) that corre-

sponds to the response of hours worked to a technology shock. In addition, we display the

true response. There is a substantial distortion, which is approximately the same magnitude

as the one reported for small samples in Figure 3. The third line in Figure 8 corresponds

to (4.2) when Ĉ1 is replaced by its true value, C1. Most of the distortion in the estimated

impulse response function is eliminated by this replacement. Finally, the distortion in Ĉ1 is

due essentially entirely to distortion in B̂ (1) , since V̂ is virtually identical to V (see Panel

E, Table 2).

This example is consistent with our overall conclusion that the individual Bj’s and V

are well estimated by the econometrician using a four lag VAR. The distortions that arise

in practice primarily reflect difficulties in estimating B (1). Our results in Figure 2 are

consistent with this claim, because distortions are minimal with short-run identification.

Using the True Value of B (1) in a Small Sample

A natural way to isolate the role of distortions in B̂ (1) is to replace it by its true value

when estimating the effects of a technology shock. We do this for the two-shock CKM

specification, and report the results in Figure 9. The 1,1 element of Figure 9 repeats our

results for the two-shock CKM specification from the 3,1 graph in Figure 5 for convenience.

The 1,2 element of Figure 9 shows the sampling properties of our estimator when the true

value of B (1) is used in repeated samples. When we use the true value of B(1) the bias
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completely disappears. In addition, coverage rates are much closer to 95% and the boundaries

of the average confidence intervals are very close to the boundaries of the grey area.

Using an Alternative Zero-Frequency Spectral Density Estimator

In practice, the econometrician does not know B (1). However, we can replace the VAR-

based zero-frequency spectral density in (2.21) with an alternative estimator of SY (0). Here,

we consider the effects of using a standard Bartlett estimator:23

SY (0) =
T−1X

k=−(T−1)

g(k)Ĉ (k) , g(k) =

½
1− |k|

r
|k| ≤ r

0 |k| > r
, (4.4)

where, after removing the sample mean from Yt :

Ĉ(k) =
1

T

TX
t=k+1

YtY
0
t−k.

We use essentially all possible covariances in the data by choosing a large value of r, r = 150.24

In some respects, our modified estimator is equivalent to running a VAR with longer lags.

We now assess the impact of our modified long-run estimator. The first two rows in

Figure 5 presents results for cases in which the data generating mechanism corresponds

to our two- and three- shock MLE specifications. Both the standard estimator (the left

column) and our modified estimator (the right column) exhibit little bias. In the case

of the standard estimator, the econometrician’s estimator of standard errors understates

somewhat the degree of sampling uncertainty associated with the impulse response functions.

The modified estimator reduces this discrepancy. Specifically, the circles and stars in the

right column of Figure 5 coincide closely with the boundary of the grey area. Coverage

rates, reported in Figures 3 and 4, now exceed 95%. The coverage rates in Figure 4 are

much improved relative to the standard case. Indeed, these rates are now close to 95%.

Significantly, the degree of sampling uncertainty associated with the modified estimator is

not greater than the sampling uncertainty associated with the standard estimator. In fact,

in some cases there is a slight reduction in sampling uncertainty.

The last two rows of column 1 in Figure 5 display the results when the data generating

process is a version of the CKM specification. As shown in the right column, the bias is
23Christiano, et. al. (2006) also consider the estimator proposed by Andrews and Monahan (1992).
24The rule of always setting the bandwidth, r, equal to sample size does not yield a consistent estimator

of the spectral density at frequency zero. We assume that as sample size is increased beyond T = 180, the
bandwidth is increased sufficiently slowly to achieve consistency.
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essentially eliminated by using the modified estimator. Once again the circles and stars in

the right column of Figure 2 roughly coincide with the boundary of the grey area. Coverage

rates for the percentile based confidence intervals reported in Figure 3 again have a tendency

to exceed 95%. Coverage rates associated with the standard deviation based estimator are

very close to 95%. There is a substantial improvement over the coverage rates associated

with the standard spectral density estimator.

Figure 5 indicates that when the standard estimator works well, then the modified esti-

mator also works well. When there are biases associated with the standard estimator, the

modified estimator removes them. These findings indicate that the biases for the two CKM

specifications reflect difficulties in estimating the spectral density at frequency zero. Given

our finding that V̂ estimates V accurately, we conclude that the difficulties in estimating the

zero-frequency spectral density in fact reflect problems with B (1) .

Shifting Power to the Low Frequencies

Formula (4.1), suggests that, other things equal, the more power there is near frequency

zero, the less bias there will be in B̂ (1) and the better behaved will be the estimated impulse

response function to a technology shock. To pursue this observation we change the parame-

terization of the non-technology shock in the two-shock CKM specification. We reallocate

power toward frequency zero, holding the variance of the shock constant by increasing ρl to

0.998 and suitably lowering σl in (2.1). The results are reported in the 2,1 element of Figure

9. The bias associated with the two-shock CKM specification almost completely disappears.

This result is consistent with the notion that the bias problems with the two-shock CKM

specification stem from difficulties in estimating B (1) .

The previous result appears inconsistent with conjectures in the literature (see Erceg, et.

al. (2005)). According to these conjectures, if there is more persistence in a non-technology

shock, then the VAR will produce biased results because it will confuse the technology and

non-technology shocks. Our result shows that this intuition is incomplete, because it does

not take into account all of the factors mentioned in our discussion of (4.1). To show this, we

consider a range of values of ρl to show that the impact of ρl on bias is in fact not monotone.

The 2,2 element of Figure 9 displays the econometrician’s estimator of the contempora-

neous impact on hours worked of a technology shock against ρl. The dashed line indicates

the true contemporaneous impact of a technology shock on hours worked in the two-shock

CKM specification. The dot-dashed line in the figure corresponds to the solution of (4.1),
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with q = 4, using the standard VAR-based estimator.25 The star in the figure indicates the

value of ρl in the two-shock CKM specification. In the neighborhood of this value of ρl, the

distortion in the estimator falls sharply as ρl increases. Indeed, for ρl = 0.9999, there is

essentially no distortion. For values of ρl in the region, (−0.5, 0.5) , the distortion increases
with increases in ρl.

The 2,2 element of Figure 9 also allows us to assess the value of our proposed modifica-

tion to the standard estimator. The line with diamonds displays the modified estimator of

the contemporaneous impact on hours worked of a technology shock. When the standard

estimator works well, i.e., for large values of ρl, then the modified and standard estimators

produce similar results. However, when the standard estimator works poorly, e.g. for values

of ρl near 0.5, then our modified estimator cuts the bias in half.

Short- and Long- Run Restrictions in a Recursive Model

We conclude this section by considering the recursive version of the two-shock CKM

specification. Given this specification it is appropriate to estimate the impact on hours

worked of a shock to technology using either the short- or the long- run identification strategy.

Using this specification of the data generating process, we generate 1,000 data sets, each of

length 180. On each synthetic data set, we estimate a four lag, bivariate VAR. Given this

estimated VAR, we can estimate the effect of a technology shock using the short- and long-

run identification strategy. Figure 10 reports our results. For the long-run identification

strategy, there is a substantial bias. In sharp contrast, there is no bias for the short-run

identification strategy. Since both procedures use the same estimated VAR parameters, the

bias in the long-run identification strategy is entirely attributable due to the use of B̂ (1) .

5. Relation to Chari-Kehoe-McGrattan

In the preceding sections we argue that structural VAR-based procedures have good statis-

tical properties. Our conclusions about the usefulness of structural VARs stand in sharp

contrast to those of CKM. These authors argue that, for plausibly parameterized RBC mod-

els, structural VARs lead to misleading results. They conclude that structural VARs are

25Since (4.1) is a quadratic function, we solve the optimization problem by solving the linear first order
conditions. These are the Yule-Walker equations, which rely on population second moments of the data.
We obtain the population second moments by complex integration of the reduced form of the model used to
generate the data, as suggested by Christiano (2002).
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not useful for constructing and evaluating structural economic models. In this section we

present the reasons we disagree with CKM.

CKM’s Exotic Data Generating Processes

CKM’s critique of VARs is based on simulations using particular DSGE models. Their

assertion that their models have been estimated by maximum likelihood lends credibility to

the analysis. Here, we argue that their models are actually overwhelmingly rejected by the

data.

The data reject CKM’s specifications because CKM adopt a very special assumption

about measurement error. Specifically CKM assume that all of the variables that enter the

likelihood function are polluted by measurement error with an exogenously fixed variance.

This assumption leads CKM’s maximum likelihood estimator to very unlikely regions of the

parameter space. Not only are these regions unlikely in a likelihood ratio sense, they are

also unlikely on a priori grounds. Specifically, the two- and three-shock CKM specifications

embed the remarkable assumption that technology growth can be measured with a high

degree of accuracy by the growth rate of government purchases plus net exports.

When we relax CKM’s assumption that the variance of measurement error is known

a priori, the log likelihood function jumps by orders of magnitude. The resulting estimated

models are similar to our MLE specifications and imply that there is very little bias associated

with VAR based impulse response functions.

To corroborate our claims and to document the sensitivity of inference to CKM’s mea-

surement error assumptions, it is useful to review their estimation strategy. CKM adopt a

state-observer setup to estimate their model. Define:

Yt = (∆ log at, log lt,∆ log it,∆ logGt)
0 ,

where Gt denotes government spending plus net exports. CKM suppose:

Yt = Xt + vt, Evtv
0
t = R, (5.1)

where R is diagonal, vt is a 4× 1 vector of i.i.d. measurement errors and Xt is a 4× 1 vector
containing the model’s implications for the variables in Yt. The two-shock CKM specification

only has the shocks, τ l,t and zt. CKM model government spending plus net exports as:

Gt = gt × Zt,
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where gt is in principal an exogenous stochastic process. However, when CKM estimate the

parameters of the technology and preferences processes, τ l,t and zt, they set the variance of

the government spending shock to zero, so that gt is a constant. As a result, CKM assume:

∆ logGt = log zt +measurement error.

CKM fix the elements on the diagonal of R exogenously to a ‘small number’. Among other

things, the assumption of small measurement error corresponds to the assertion that tech-

nology is well measured by government purchases plus net exports.

To show how results can be sensitive to assumptions about the magnitude of R, we

consider the different assumptions that CKM make in different drafts of their paper. In

CKM (May, 2005) they set the diagonal elements of R to 0.0001. In CKM (July, 2005) they

set the ith diagonal element of R equal to 0.01 times the variance of the ith element of Yt.

The 1,1 and 2,1 graphs in Figure 11 report results corresponding to the CKM (July, 2005)

and CKM (May, 2005) two-shock specifications, respectively.26 These graphs display the log

likelihood value (see LLF ) of these two models and their implications for VAR-based impulse

response functions (the 1,1 graph is the same as the 3,1 graph in Figure 3). In assessing the

different properties of the two systems, it is important to notice that the CKM (July 2005)

specification has a log likelihood value of −329 while the CKM (May, 2005) specification has

a log likelihood value of 2590. So, the earlier measurement error specification is much more

plausible, from a likelihood perspective, than the later specification.

The 3,1 graph in Figure 11 displays our results when the diagonal elements of R are

included in the parameters being estimated.27 We refer to the resulting specification as the

‘CKM free measurement error specification’. First, both the May and July specifications are

overwhelmingly rejected relative to the free measurement error specification. The likelihood

ratio statistic for testing the May and July specifications are 428 and 6,266, respectively.

Under the null hypothesis that the May or July specifications are true, these statistics are

realizations of a chi-square distribution with four degrees of freedom. The evidence against

CKM’s May and July specifications is clearly overwhelming.
26To ensure comparability of results we use CKM’s computer code and data, available on Ellen McGrattan’s

web page. The algorithm used by CKM to form the estimation criterion is essentially the same as ours. The
only difference is that CKM use an approximation to the Gaussian function by working with the steady state
Kalman gain. We form the exact Gaussian density function, in which the Kalman gain varies over dates, as
described in Hamilton (1997). We believe this difference is inconsequential.
27When generating the artificial data underlying the calculations in the 3,1 element of Figure 11, mea-

surement error is set to zero. We alsoperform the calculations with the estimated measurement error. The
results are essentially the same. In all elements of Figure 11, measurement error was set to zero.
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Second, when the data generating process is the CKM free measurement error specifica-

tion, there is virtually no bias associated with the VAR-based impulse response function (see

the 3,1 graph in Figure 11). We conclude that the bias in the two-shock CKM specification

is due to the way CKM fix the size of the measurement error.

We now investigate the impact on CKM’s analysis of their ∆G = z assumption, i.e.,

∆ logGt is roughly equal to log zt. To assess the impact of this assumption we delete ∆Gt

from Yt and re-estimate the system. We present the results in the right column of Figure 11.

In each figure of that column, we re-estimate the system in the same way as the correspond-

ing entry in the left column, except that ∆ logGt is excluded from Yt. Comparing the 2,1

and 2,2 graphs, we see that with the May measurement error specification, the bias results

in the impulse response functions are due to CKM’s ∆G = z assumption. Under the July

specification of measurement error, the bias result is not due to the ∆G = z assumption

(compare the 1,1 and 1,2 graphs of Figure 11). The question arises: why would anyone

consider the July specification, when the May specification has a likelihood value that is

immensely higher? Even if, for unknown reasons, the July measurement error specification

is adopted as a benchmark, that model is overwhelming rejected by the free measurement

error specification, whether ∆ logGt is included in Yt or not. In addition, the free measure-

ment error specification models imply there is little bias in the estimated impulse response

functions (see the 3,1 and 3,2 graphs).

In sum, CKM’s examples, which imply that VARs with long-run identification display

substantial bias, are not empirically interesting from a likelihood point of view. The bias in

their examples is due to the way CKM choose the measurement error variance. When their

specification is tested, it is overwhelmingly rejected.

Stochastic Process Uncertainty

CKM argue that there is considerable uncertainty in the business cycle literature about

the values of parameters governing stochastic processes such as preferences and technology.

They argue that this uncertainty translates into a wide class of examples in which the bias

in structural VARs leads to severely misleading inference. The right panel in Figure 12

summarizes their argument. There, the horizontal axis indicates the same range of values of

(σl/σz)
2 that CKM consider. For each value of (σl/σz)

2 we estimate, by maximum likelihood,

four parameters of the two-shock model: µz, τ l, σl and ρl.
28 The estimated model is then

28We use CKM’s computer code and data to ensure comparability of results.
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used as a data generating process. The left-hand vertical axis displays the small sample

mean of the corresponding VAR-based estimator of the contemporaneous response of hours

worked to a one-standard deviation technology shock.

After reviewing the RBC literature, CKM conclude that one should have a roughly

uniform prior over the different values of (σl/σz)
2 that we report. Figure 12 indicates that

for many of these values, the bias is large (compare the small sample mean, the solid line,

with the true response, the starred line).

We emphasize three critical points. First, as we stress repeatedly, bias cannot be viewed

in isolation from sampling uncertainty. The two dashed lines in the figure indicate the 95%

probability interval. These confidence intervals are enormous relative to the bias. So, no

econometrician would be misled. Second, the likelihood assigns an extremely low value to

most of the values of (σl/σz)
2 considered in the figure. To see this, consider the left panel

of Figure 12. On the horizontal axis we display the same range of values of (σl/σz)
2 as in

the right panel. On the vertical axis we report the log-likelihood value of the associated

model. The peak of this likelihood occurs close to the estimated value in the two-shock

MLE specification. The log-likelihood value drops sharply as we consider values of (σl/σz)
2

away from the unconstrained maximum likelihood estimate. The vertical bars in the figure

indicate the 95% confidence interval for (σl/σz)
2 .29 Figure 12 reveals that the confidence

interval is very narrow relative to the range of values considered by CKM, and that within

the interval, the bias is quite small.

Third, and most importantly, the right axis in the right panel of Figure 12 plots Vh, the

percent of the variance in log hours due to technology, as a function of (σl/σz)
2 . The values

of (σl/σz)
2 where there is a noticeable bias correspond to model economies where Vh is less

than 2%. According to the figure, for a practitioner to be concerned that structural VARs

lead to a substantial bias, he would have to believe that technology shocks account for a

trivial fraction of the variation in hours worked.

The Metric for Assessing the Performance of Structural VARs

CKM emphasize comparisons between the true dynamic response function in the data

generating process and the response function that an econometrician would estimate using

29The bounds of this interval are the upper and lower values of (σl/σz)
2 where twice the difference of the

log-likelihood from its maximal value equals the critical value associated with the relevant likelihood ratio
test.
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a four lag VAR with an infinite amount of data. In our own analysis in Section 4, we find

population calculations with four lag VARs very useful for some purposes. However, we do

not view the probability limit of a four lag VAR as an interesting metric for measuring the

usefulness of structural VARs. In practice econometricians do not have an infinite amount

of data. Even if they did, they would certainly not use a fixed lag length. Econometricians

determine lag length endogenously and, in a large sample, lag length would grow. If lag

lengths grow at the appropriate rate with sample size, VAR based estimators of impulse

response functions are consistent.

The interesting issue (to us) is how VAR-based procedures perform in samples of the size

that practitioners have at their disposal. This is why we focus on small sample properties

like bias and sampling uncertainty.

CKM’s metric leads them to exaggerate the failings of structural VARs. Consider, for

example, the two-shock, MLE parameterization. In this case, the contemporaneous response

of hours worked to a one percent technology shock is 0.23%. An econometrician who fits a

four lag, bivariate VAR would in population estimate the hours response to be 0.47%. The

expected value of this number for an econometrician working with a sample of 180 observa-

tions is 0.31%, with a standard deviation of 0.35% across 10,000 simulations. Working with

the large sample metric, CKM are led to the conclusion that the econometrician overstates

the true response by 104 percent. However, when we consider the kind of samples that actual

econometricians have at their disposal the mean bias is smaller, 35%. Most importantly, our

approach allows us to factor in the impact of sampling uncertainty. When we do so, we see

that small sample bias is small relative to sampling uncertainty. Indeed, even the distortion

implied by CKM’s metric is small relative to sampling uncertainty.

Over-Differencing

The potential power of the CKM argument lies in showing that VAR-based procedures are

misleading, even under circumstances when everyone would agree that VARs should work

well, namely in a situation when the econometrician commits no avoidable specification

error. The econometrician does, however, commit one unavoidable specification error. The

true VAR is infinite ordered, but the econometrician assumes the VAR has a finite number

of lags. CKM argue that this seemingly innocuous assumption is fatal for VAR analysis. We

have argued that this conclusion is not warranted.
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CKM present other examples in which the econometrician commits an avoidable speci-

fication error. Specifically, they study the consequences of over differencing hours worked.

That is, the econometrician first differences hours worked when hours worked are station-

ary.30 This error gives rise to bias in VAR-based impulse response functions which is large

relative to sampling uncertainty. CKM argue that this bias is another reason not to use

VARs.

However, the observation that avoidable specification error is possible in VAR analysis

is not a problem for VARs per se. The possibility of specification error is a potential pitfall

for any type of empirical work. In any case, CKM’s analysis of the consequences of over

differencing is not new. For example, Christiano, et. al. (2003) (CEV) study a situation in

which the true data generating process satisfies two properties: hours worked is stationary

and hours worked rise after a positive technology shock. They then consider an econometri-

cian who does VAR-based long-run identification when Yt in (2.18) contains the growth rate

of hours rather than the log level of hours. CEV show that the econometrician would falsely

conclude that hours worked fall after a positive technology shock. CEV do not conclude

from this exercise that structural VARs are not useful. Rather, they develop a statistical

procedure to help decide whether hours worked should be first differenced or not.

CKM Ignore short-run Identification Schemes

We argue that VAR-based short-run identification schemes lead to remarkably accurate

and precise inference. This result is of interest because the preponderance of the empirical

literature on structural VARs explores the implications of short-run identification schemes.

CKM are simply silent on this literature. McGrattan (2006) dismisses short-run identification

schemes as ‘hokey’. One possible interpretation of this adjective is that McGrattan can

easily imagine models in which the identification scheme is incorrect. The problem with

this interpretation is that all models are a collection of strong identifying assumptions, all of

which can be characterized as ‘hokey’. Another interpretation is that no one finds short-run

identifying assumptions interesting. However, the results of short-run identification schemes

have had an enormous impact on the construction of dynamic, general equilibrium models.

See Woodford (2003) for a summary in the context of monetary models.

30For technical reasons, CKM actually consider ‘quasi differencing’ hours worked using a differencing
parameter close to unity. In small samples this type of quasi differencing is virtually indistinguishable from
first differencing.
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Sensitivity of Some VAR Results to Data Choices

CKM argue that VARs are very sensitive to the choice of data. Specifically, they review

the papers by Francis and Ramey (2004), CEV, and Gali and Rabanal (2004), which use long-

run VAR methods to estimate the response of hours worked to a positive technology shock.

CKM note that these studies use different measures of per capita hours worked and output in

the VAR analysis.31 Figure 13 displays the different measures of per capita hours worked that

these studies use. The corresponding estimated response functions and confidence intervals

are also reported in Figure 13. CKM view it as a defect in VAR methodology that these

different measures of hours worked lead to different estimated impulse response functions.

There is no defect here. Empirical results should be sensitive to substantial changes in the

data. A constructive response to this sensitivity is to carefully analyze the different measures

of hours worked and see which is more appropriate and perhaps construct a better measure.

It is not constructive to dismiss an econometric technique that signals the need for better

measurement.

CKM note that the principle differences in the hours data occur in the early part of the

sample. According to CKM, when they drop these early observations, they obtain different

impulse response functions. However, as Figure 13 shows, these impulse response functions

are not significantly different from each other.

6. A Model with Nominal Rigidities

In this section, we use the model developed and estimated in ACEL to assess the accuracy of

structural VARs for estimating the dynamic response of hours worked to shocks. The model

in ACEL allows for nominal rigidities in prices and wages. The ACEL model has three

shocks. The first two shocks are well known in the literature: neutral shocks to technology

and shocks to monetary policy. The third shock is a shock to capital-embodied technology

which - like the neutral technology shock - affects labor productivity in the long run. A key

property of the model is that the only shock that affects the price of investment in the long

run is the capital-embodied technology shock. We use this model to evaluate the ability of

a VAR to uncover the response of hours worked to both types of technology shock and the

31Francis and Ramey use data on business labor productivity and a demographically adjusted measure
of hours worked. CEV use a measure of business labor productivity and the corresponding measure of
hours worked. Gali and Rabanal use nonfarm business productivity and the corresponding measure of hours
worked.
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monetary policy shock. Our strategy for identifying the two technology shocks is similar

to the one proposed by Fisher (2005). The model rationalizes a version of the short-run,

recursive identification strategy used by Christiano, et. al. (1999). This strategy corresponds

closely to the recursive procedure studied in section 2.3.2.

6.1. The Model

The details of the ACEL model, as well as the parameter estimates, are reported in the

appendix. Here, we limit our discussion to what is necessary to clarify the nature of the

shocks in the ACEL model. Final goods, Yt, are produced using a standard Dixit-Stiglitz

aggregator of intermediate goods, yt (i) , i ∈ (0, 1). To produce a unit of consumption goods,
Ct, one unit of final goods is required. To produce one unit of investment goods, It, Υ−1t

units of final goods are required. In equilibrium, Υ−1t is the price, in units of consumption

goods, of an investment good. Let µΥ,t denote the growth rate of Υt, let µΥ denote the

nonstochastic steady state value of µΥ,t, and let µ̂Υ,t denote the percent deviation of µΥ,t
from its steady state value:

µΥ,t =
Υt

Υt−1
, µ̂Υ,t =

µΥ,t − µΥ
µΥ

. (6.1)

The stochastic process for the growth rate of Υt is:

µ̂Υ,t = ρµΥµ̂Υ,t−1 + σµΥεµΥ,t, σµΥ > 0. (6.2)

We refer to the i.i.d. unit variance random variable, εµΥ,t, as the capital-embodied technology

shock. ACEL assume that the intermediate good, yt (i) , for i ∈ (0, 1), is produced using a
Cobb-Douglas production function of capital and hours worked. This production function is

perturbed by a multiplicative, aggregate technology shock denoted by Zt. Let zt denote the

growth rate of Zt, let z denote the nonstochastic steady state value of zt, and let ẑt denote

the percent deviation of zt from its steady state value:

zt =
Zt

Zt−1
, ẑt =

zt − z

z
. (6.3)

The stochastic process for the growth rate of Zt is:

ẑt = ρz ẑt−1 + σzε
z
t , σz > 0, (6.4)

where the i.i.d. unit variance random variable, εzt , is the neutral shock to technology.
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We now turn to the monetary policy shock. Let xt denote Mt/Mt−1, where Mt denotes

the monetary base. Let x̂t denote the percent deviation of xt from its steady state, i.e.,

(x̂t − x)/x. We suppose that x̂t is the sum of three components. One, x̂Mt, represents the

component of x̂t reflecting an exogenous shock to monetary policy. The other two, x̂zt and

x̂Υt, represent the endogenous response of x̂t to the neutral and capital-embodied technology

shocks, respectively. Thus monetary policy is given by:

x̂t = x̂zt + x̂Υt + x̂Mt. (6.5)

ACEL assume:

x̂M,t = ρxM x̂M,t−1 + σMεM,t, σM > 0

x̂z,t = ρxzx̂z,t−1 + czε
z
t + cpzε

z
t−1 (6.6)

x̂Υ,t = ρxΥx̂Υ,t−1 + cΥεµΥ,t + cpΥεµΥ,t.

Here, εM,t represents the shock to monetary policy. It is an i.i.d. unit variance random

variable.

Table 3 summarizes the importance of different shocks for the variance of hours worked

and output. Neutral and capital-embodied technology shocks account for roughly equal per-

centages of the variance of hours worked (40% each), while monetary policy shocks account

for the remainder. Working with HP -filtered data reduces the importance of neutral tech-

nology shocks to about 18%. Monetary policy shocks become much more important for the

variance of hours worked. A qualitatively similar picture emerges when we consider output.

It is worth emphasizing that neutral technology shocks are much more important in hours

worked in the ACEL model than in the RBC model. This fact plays an important role in

determining the precision of VAR-based inference using long-run restrictions in the ACEL

model.

6.2. Results

We use the ACEL model to simulate 1,000 data sets, each of length 180 observations. We

report results from two different VARs. In the first VAR, we simultaneously estimate the

dynamic impact on hours worked of a neutral technology shock and a capital-embodied

technology shock. The variables in this VAR are:

Yt =

⎛⎝ ∆ log pIt
∆ log at
log lt

⎞⎠ ,
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where pIT denotes the price of capital. The variable, log (pIt) , corresponds to log
¡
Υ−1t

¢
in the model. Following Fisher (2005), we identify the dynamic effects on Yt of the two

technology shocks, using a generalization of the strategy in section 2.3.1.32 The details are

provided in Appendix B.

Consider the 1,1 graph in Figure 14, which displays our results using the standard VAR

procedure for estimating the dynamic response of hours worked to a neutral technology shock.

There are several results worth emphasizing. First, the estimator is essentially unbiased. The

starred line and the solid line virtually coincide. Second, the econometrician’s estimator of

sampling uncertainty is also roughly unbiased. The circles and stars, which indicate the mean

value of the econometrician’s standard deviation- and percentile- based confidence interval,

roughly coincide with the boundary of the grey area. However, there is a slight tendency,

in both cases, to understate the degree of sampling uncertainty. Third, confidence intervals

are small, relative to those in the RBC examples. Both sets of confidence intervals exclude

zero at all lags shown. This provides an additional example to the one provided by Erceg,

et. al. (2005) in which long-run identifying restrictions are useful for discriminating between

models. An econometrician who estimates that hours drop after a positive technology shock

would reject our parameterization of the ACEL model. Similarly, an econometrician with a

model that implies hours fall after a positive technology shock would likely reject that model

if the actual data were generated by our parameterization of the ACEL model.

The 2,1 graph in Figure 14 shows results for the response to a capital-embodied shock,

using the standard VAR estimator. The sampling uncertainty in this estimator is somewhat

higher than for the neutral technology shock. In addition, there is a slight amount of bias.

The econometrician’s estimator of sampling uncertainty is nearly unbiased.

We now consider the response of hours worked to a monetary policy shock. We estimate

this response using a VAR with the following variables:

Yt =

⎛⎝ ∆ log at
log lt
Rt

⎞⎠ .

As discussed in Christiano, et. al. (1999), the monetary policy shock is identified by choosing

C to be the lower triangular decomposition of the variance covariance matrix, V, of the

VAR disturbances. That is, we choose a lower triangular matrix, C with positive diagonal

32Our strategy differs somewhat from the one pursued in Fisher (2005), who applies a version of the
instrumental variables strategy proposed by Shapiro and Watson (1988).
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terms, such that CC 0 = V. Let ut = Cεt. We then interpret the last element of εt as the

monetary policy shock. According to the results in the 1,2 graph of Figure 14, the VAR-

based estimator of the response of hours worked is virtually unbiased, and highly precise.

In addition, the econometrician’s estimator of sampling uncertainty is virtually unbiased.

Suppose the impulse response in hours worked to a monetary policy shock were computed

using VAR-based methods, in data generated from this model. We conjecture that it would

be easy to reject a model in which money is neutral, or in which a monetary expansion drives

hours worked down.

7. Concluding Remarks

In this paper we study the ability of structural VARs to uncover the response of hours worked

to a technology shock. We consider two classes of data generating processes. The first class

consists of a series of real business cycle models that we estimate using maximum likelihood

methods. The second class consists of the monetary model in ACEL. We find that with

short-run restrictions, structural VARs perform remarkably well in all our examples. With

long-run restrictions we find that structural VARs work well as long as technology shocks

explain at least a very small portion of the variation in hours worked.

In a number of examples that we consider, VAR-based impulse response functions using

long-run restrictions exhibit some bias. Even though these examples do not emerge from

empirically plausible data generating processes, we find them of interest. They allow us

to diagnose what can go wrong with long-run identification schemes. Our diagnosis leads

us to propose a modification to the standard VAR-based procedure for estimating impulse

response functions using long-run identification. This procedure works well in our examples.

Finally, we find that confidence intervals with long-run identification schemes are sub-

stantially larger than those with short-run identification schemes. In all empirically plausible

cases, the VARs deliver confidence intervals that accurately reflect the true degree of sam-

pling uncertainty. We view this as a great virtue of VAR-based methods. When there is

little information in the data, the VAR will indicate the lack of information. To reduce large

confidence intervals the analyst will have to either impose additional identifying restrictions

(i.e., use more theory) or obtain better data.
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A. Appendix: A Model with Nominal Wage and Price Rigidities

This appendix describes the ACEL model used in section 6. The model economy is composed
of households, firms, and a monetary authority.
There is a continuum of households, indexed by j ∈ (0, 1). The jth household is a

monopoly supplier of a differentiated labor service, and sets its wage subject to Calvo-style
wage frictions. In general, households earn different wage rates and work different amounts.
A straightforward extension of arguments in Erceg, Henderson, and Levin (2000) and Wood-
ford (1996) establishes that in the presence of state contingent securities, households are
homogeneous with respect to consumption and asset holdings. Our notation reflects this
result. The preferences of the jth household are given by:

Ej
t

∞X
l=0

βl−t
∙
log (Ct+l − bCt+l−1)− ψL

h2j,t+l
2

¸
,

where ψL ≥ 0 and Ej
t is the time t expectation operator, conditional on household j’s time t

information set. The variable, Ct, denotes time t consumption and hjt denotes time t hours
worked. The household’s asset evolution equation is given by:

Mt+1 = Rt [Mt −Qt + (xt − 1)Ma
t ] +Aj,t +Qt +Wj,thj,t

+Dt − (1 + η (Vt))PtCt.

Here, Mt, Qt, and Wj,t denote the household’s beginning of period t stock of money, cash
balances and time t nominal wage rate, respectively. In addition Dt and Aj,t denote firm
profits and the net cash inflow from participating in state-contingent security markets at
time t. The variable, xt, represents the gross growth rate of the economy-wide per capita
stock of money, Ma

t . The quantity (xt − 1)Ma
t is a lump-sum payment made to households

by the monetary authority. The household deposits Mt −Qt + (xt − 1)Ma
t with a financial

intermediary. The variable, Rt, denotes the gross interest rate. The variable, Vt, denotes the
time t velocity of the household’s cash balances:

Vt =
PtCt

Qt
, (A.1)

where η(Vt) is increasing and convex.33 For the quantitative analysis of our model, we require
the level and the first two derivatives of the transactions function, η(V ), evaluated in steady
state. We denote these by η, η0, and η00, respectively. Let � denote the interest semi-elasticity
of money demand in steady state:

� ≡ −
100× d log(Qt

Pt
)

400× dRt
.

Let V and η denote the values of velocity and η (Vt) in steady state. ACEL parameterize
the second order Taylor series expansion of η (·) about steady state. The values of η, η0, and
η00, are determined by ACEL’s estimates of �, V and η.
The jth household is a monopoly supplier of a differentiated labor service, hjt. It sells

this service to a representative, competitive firm that transforms it into an aggregate labor
input, Lt, using the technology:

Ht =

∙Z 1

0

h
1
λw
j,t dj

¸λw
, 1 ≤ λw <∞.

33Similar specifications have been used by authors such as Sims (1994) and Schmitt-Grohe and Uribe
(2004).
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Let Wt denote the aggregate wage rate, i.e., the nominal price of Ht. The household takes
Ht and Wt as given.
In each period, a household faces a constant probability, 1 − ξw, of being able to re-

optimize its nominal wage. The ability to re-optimize is independent across households and
time. If a household cannot re-optimize its wage at time t, it sets Wjt according to:

Wj,t = πt−1µz∗Wj,t−1,

where πt−1 ≡ Pt−1/Pt−2. The presence of µz∗ implies that there are no distortions from wage
dispersion along the steady state growth path.
At time t a final consumption good, Yt, is produced by a perfectly competitive, repre-

sentative final good firm. This firm produces the final good by combining a continuum of
intermediate goods, indexed by i ∈ [0, 1], using the technology

Yt =

∙Z 1

0

yt(i)
1
λf di

¸λf
, (A.2)

where 1 ≤ λf <∞ and yt(i) denotes the time t input of intermediate good i. The firm takes
its output price, Pt, and its input prices, Pt(i), as given and beyond its control.
Intermediate good i is produced by a monopolist using the following technology:

yt(i) =

½
Kt(i)

α (Ztht(i))
1−α − φz∗t if Kt(i)

α (Ztht(i))
1−α ≥ φz∗t

0 otherwise
(A.3)

where 0 < α < 1. Here, ht(i) and Kt(i) denote time t labor and capital services used
to produce the ith intermediate good. The variable, Zt, represents a time t shock to the
technology for producing intermediate output. The growth rate of Zt, Zt/Zt−1, is denoted
by µzt. The non-negative scalar, φ, parameterizes fixed costs of production. To express the
model in terms of a stochastic steady state, we find it useful to define the variable z∗t as:

z∗t = Υ
α

1−α
t Zt, (A.4)

where Υt represents a time t shock to capital embodied technology. The stochastic process
generating Zt is defined by (6.3) and (6.4). The stochastic process generating Υt is defined
by (6.1) and (6.2).
Intermediate good firms hire labor in perfectly competitive factor markets at the wage

rate, Wt. Profits are distributed to households at the end of each time period. We assume
that the firm must borrow the wage bill in advance at the gross interest rate, Rt.
In each period, the ith intermediate goods firm faces a constant probability, 1 − ξp, of

being able to re-optimize its nominal price. The ability to re-optimize prices is independent
across firms and time. If firm i cannot re-optimize, it sets Pt(i) according to:

Pt(i) = πt−1Pt−1(i). (A.5)

Let K̄t (i) denote the physical stock of capital available to the ith firm at the beginning
of period t. The services of capital, Kt (i) are related to stock of physical capital, by:

K̄t(i) = ut(i)K̄t(i).

Here ut(i) is firm i0s capital utilization rate. The cost, in investment goods, of setting the
utilization rate to ut(i) is a(ut(i))K̄t(i), where a(·) is increasing and convex. We assume that
ut(i) = 1 in steady state and a(1) = 0. These two conditions determine the level and slope
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of a(·) in steady state. To implement our log-linear solution method, we must also specify a
value for the curvature of a in steady state, σa = a00(1)/a0(1) ≥ 0.
There is no technology for transferring capital between firms. The only way a firm can

change its stock of physical capital is by varying the rate of investment, It (i) , over time.
The technology for accumulating physical capital by intermediate good firm i is given by:

F (It(i), It−1(i)) = (1− S

µ
It(i)

It−1(i)

¶
)It(i),

where
K̄t+1(i) = (1− δ)K̄t(i) + F (It(i), It−1(i)).

The adjustment cost function, S, satisfies S = S0 = 0, and S00 > 0, in steady state. Given
the log-linearization procedure used to solve the model, we do not need to specify any other
features of the function S.
The present discounted value of the ith intermediate good’s net cash flow is given by:

Et

∞X
j=0

βjυt+j
©
Pt+j(i)yt+j(i)−Rt+jWt+jht(i)− Pt+jΥ

−1
t+j

£
It+j(i) + a (ut+j(i)) K̄t+j(i)

¤ª
,

(A.6)
where Rt denotes the gross nominal rate of interest.
The monetary policy rule is defined by (6.5) and (6.6). Financial intermediaries receive

Mt −Qt + (xt − 1)Mt from the household. Our notation reflects the equilibrium condition,
Ma

t =Mt. Financial intermediaries lend all of their money to intermediate good firms, which
use the funds to pay labor wages. Loan market clearing requires that:

WtHt = xtMt −Qt. (A.7)

The aggregate resource constraint is:

(1 + η(Vt))Ct +Υ−1t
£
It + a(ut)K̄t

¤
≤ Yt. (A.8)

Tables 4 and A1 report the parameter values of the model. We refer the reader to ACEL
for a description of how the model is solved and for the methodology used to estimate the
model parameters. The data and programs, as well as an extensive technical appendix may
be found at the following website:
http://www.faculty.econ.northwestern.edu/faculty/christiano/research/ACEL/acelweb.htm.

B. Appendix: Long-Run Identification of Two Technology Shocks

This appendix generalizes the strategy for long-run identification of one shock to two shocks,
using the strategy of Fisher (2005). As before, the VAR is:

Yt+1 = B (L)Yt + ut, Eutu
0
t = V,

B(L) ≡ B1 +B2L+ ...+BqL
q−1,

We suppose that the fundamental shocks are related to the VAR disturbances as follows:

ut = Cεt, Eεtε0t = I, CC 0 = V,
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where the first two element in εt are εµΥ,t and ε
z
t , respectively. The exclusion restrictions are:

lim
j→∞

h
Ẽtat+j − Ẽt−1at+j

i
= fz

¡
εµΥ,t, ε

z
t , only

¢
lim
j→∞

h
Ẽt log pI,t+j − Ẽt−1 log pI,t+j

i
= fΥ

¡
εµΥ,t, only

¢
.

That is, only technology shocks have a long-run effect on the log-level of labor productivity,
whereas only capital-embodied shocks have a long-run effect on the log-level of the price
of investment goods. According to the sign restrictions, the slope of fz with respect to its
second argument and the slope of fΥ are non-negative. Applying a suitably modified version
of the logic in 2.3.1, we conclude that, according to the exclusion restrictions, the indicated
pattern of zeros must appear in the following 3 by 3 matrix:

[I −B(1)]−1C =

⎡⎣ a 0 0
b c 0

number number number

⎤⎦
The sign restrictions are a, c > 0. To compute the dynamic response of Yt to the two tech-
nology shocks, we require the first two columns of C. To obtain these, we proceed as follows.
Let D ≡ [I −B(1)]−1C, so that:

DD0 = [I −B(1)]−1 V [I −B(1)0]
−1
= SY (0) , (B.1)

where, as before, SY (0) is the spectral density of Yt at frequency-zero, as implied by the
estimated VAR. The exclusion restrictions require that D have the following structure:

D =

⎡⎣ d11 0 0
d21 d22 0
d31 d32 d33

⎤⎦ .
Here, the zero restrictions reflect our exclusion restrictions, and the sign restrictions require
d11, d22 ≥ 0. Then,

DD0 =

⎡⎣ d211 d11d21 d11d31
d21d11 d221 + d222 d21d31 + d22d32
d31d11 d31d21 + d32d22 d231 + d232 + d233

⎤⎦ =
⎡⎣ S11Y (0) S21Y (0) S31Y (0)

S21Y (0) S22Y (0) S32Y (0)
S31Y (0) S32Y (0) S33Y (0)

⎤⎦
and

d11 =
q
S11Y (0), d21 = S21Y (0) /d11, d31 = S31Y (0) /d11

d22 =

s
S11Y (0)S

22
Y (0)− (S21Y (0))

2

S11Y (0)
, d32 =

S32Y (0)− S21Y (0)S
31
Y (0) /d

2
11

d22
.

The sign restrictions imply that the square roots should be positive. The fact that SY (0)
is positive definite ensures that the square roots are real numbers. Finally, the first two
columns of C are calculated as follows:∙

C1
...C2

¸
= [I −B(1)]

∙
D1
...D2

¸
,

where Ci is the ith column of C and Di is the ith column of D, i = 1, 2.
To construct our modified VAR procedure, simply replace S0 in (B.1) by (4.4).
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 Figure 2:  Short−run Identification Results 
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Figure 3: Coverage Rates, Percentile−Based Confidence Intervals
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Figure 4: Coverage Rates, Standard Deviation−Based Confidence Intervals
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Figure 5: Long−run Identification Results
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Figure 6: Analyzing Precision in Inference
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Figure 7: Varying the Labor Elasticity in the Two−shock CKM Specification
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Figure 9: Analysis of Long−run Identification Results
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Figure 10: Comparing Long− and Short−Run Identification

Recursive Two−Shock CKM Specification
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Figure 11: The Treatment of CKM Measurement Error
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Figure 12: Stochastic Process Uncertainty
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Figure 13: Data Sensitivity and Inference in VARs
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Figure 14: Impulse Response Results when the ACEL Model is the DGP
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Table 1: Contribution of Technology Shocks to the Variation in the Log of Hours Worked
Contribution of Technology Shocks to Variance of

Model Specification Level HP filtered
One Step Ahead
Forecast Error

Hours (Vh) ∆ ln yt Output Hours Hours ∆ ln yt
MLE
Base Non-recursive 3.73 67.16 67.14 7.30 7.23 67.24

Recursive 3.53 58.47 64.83 6.93 0.00 57.08
σl/2 Non-recursive 13.40 89.13 89.17 23.97 23.77 89.16

Recursive 12.73 84.93 88.01 22.95 0.00 84.17
σl/4 Non-recursive 38.12 97.06 97.10 55.85 55.49 97.08

Recursive 36.67 95.75 96.68 54.33 0.00 95.51
σ = 6 Non-recursive 3.26 90.67 90.70 6.64 6.59 90.61

Recursive 3.07 89.13 90.10 6.28 0.00 88.93
σ = 0 Non-recursive 4.11 53.99 53.97 7.80 7.73 54.14

Recursive 3.90 41.75 50.90 7.43 0.00 38.84
Three Non-recursive 0.18 45.67 45.69 3.15 3.10 45.72

Recursive 0.18 36.96 43.61 3.05 0.00 39.51
CKM
Base Non-recursive 2.76 33.50 33.53 1.91 1.91 33.86

Recursive 2.61 25.77 31.41 1.81 0.00 24.93
σl/2 Non-recursive 10.20 66.86 66.94 7.24 7.23 67.16

Recursive 9.68 58.15 64.63 6.88 0.00 57.00
σl/4 Non-recursive 31.20 89.00 89.08 23.81 23.76 89.08

Recursive 29.96 84.76 87.91 22.79 0.00 84.07
σ = 6 Non-recursive 0.78 41.41 41.33 0.52 0.52 41.68

Recursive 0.73 37.44 40.11 0.49 0.00 37.42
σ = 0 Non-recursive 2.57 20.37 20.45 1.82 1.82 20.70

Recursive 2.44 13.53 18.59 1.73 0.00 12.33
σ = 0
and 2σl

Non-recursive 0.66 6.01 6.03 0.46 0.46 6.12

Recursive 0.62 3.76 5.41 0.44 0.00 3.40
Three Non-recursive 2.23 30.73 31.11 1.71 1.72 31.79

Recursive 2.31 23.62 29.67 1.66 0.00 25.62
Note: These results are the average values based on 300 simulations of 5000 observations
for each model.



Table 2: Properties of Two-Shock CKM Specification

Panel A: First Six Lag Matrices in Infinite-Order VAR Representation

B1 =

∙
0.013 0.041
0.0065 0.94

¸
, B2 =

∙
0.012 −0.00
0.0062 −0.00

¸
, B3 =

∙
0.012 −0.00
0.0059 −0.00

¸
,

B4 =

∙
0.011 −0.00
0.0056 −0.00

¸
, B5 =

∙
0.011 −0.00
0.0054 −0.00

¸
, B6 =

∙
0.010 −0.00
0.0051 −0.00

¸
, ...

Panel B: Population Estimate of Four-lag VAR

B̂1 =

∙
0.017 0.043
0.0087 0.94

¸
, B̂2 =

∙
0.017 −0.00
0.0085 −0.00

¸
, B̂3 =

∙
0.012 −0.00
0.0059 −0.00

¸
,

B̂4 =

∙
0.0048 −0.0088
0.0025 −0.0045

¸
Panel C: Actual and Estimated Sum of VAR Coefficients

B̂ (1) =

∙
0.055 0.032
0.14 0.94

¸
, B (1) =

∙
0.28 0.022
0.14 0.93

¸
,
P4

j=1Bj =

∙
0.047 0.039
0.024 0.94

¸
Panel D: Actual and Estimated Zero-Frequency Spectral Density

SY (0) =

∙
0.00017 0.00097
0.00097 0.12

¸
, ŜY (0) =

∙
0.00012 0.0022
0.0022 0.13

¸
.

Panel E: Actual and Estimated One-Step-Ahead Forecast Error Variance

V = V̂ =

∙
0.00012 −0.00015
−0.00015 −0.00053

¸
Panel F: Actual and Estimated Impact Vector

C1 =

µ
0.00773
0.00317

¶
, Ĉ1 =

µ
0.00406
0.01208

¶



Table 3: The Role of the Different Shocks in the ACEL model
Contribution by

Statistic Monetary Policy Neutral Technology Capital-Embodied
variance of h 22.2 40.0 38.5
HP filtered hours 37.8 17.7 44.5
variance of ∆y 29.9 46.7 23.6
HP filtered output 31.9 32.3 36.1
Note: 500 Simulations of 3100 observations each.
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