Assessing Structural VARs

by Lawrence J. Christiano, Martin Eichenbaum and Robert Vigfusson

- One tradition focusses on at most a handful of key shocks, deliberately abstracts from smaller shocks:
 - Classic example Kydland and Prescott.

- One tradition focusses on at most a handful of key shocks, deliberately abstracts from smaller shocks:
 - Classic example Kydland and Prescott.
 - Conundrum how do you empirically evaluate models (which contain only a subset of the shocks) with the data (which are driven by *all* the shocks)?

- One tradition focusses on at most a handful of key shocks, deliberately abstracts from smaller shocks:
 - Classic example Kydland and Prescott.
 - Conundrum how do you empirically evaluate models (which contain only a subset of the shocks) with the data (which are driven by *all* the shocks)?
 - Structural VARs have potential to provide resolution to conundrum
 - * Assess empirical performance of model relative to a particular set of shocks.

- One tradition focusses on at most a handful of key shocks, deliberately abstracts from smaller shocks:
 - Classic example Kydland and Prescott.
 - Conundrum how do you empirically evaluate models (which contain only a subset of the shocks) with the data (which are driven by *all* the shocks)?
 - Structural VARs have potential to provide resolution to conundrum
 - * Assess empirical performance of model relative to a particular set of shocks.
- Another tradition:
 - Build macro models with large numbers of shocks complete characterization of DGP.

- One tradition focusses on at most a handful of key shocks, deliberately abstracts from smaller shocks:
 - Classic example Kydland and Prescott.
 - Conundrum how do you empirically evaluate models (which contain only a subset of the shocks) with the data (which are driven by *all* the shocks)?
 - Structural VARs have potential to provide resolution to conundrum
 - * Assess empirical performance of model relative to a particular set of shocks.
- Another tradition:
 - Build macro models with large numbers of shocks complete characterization of DGP.
 - Avoids KP conundrum.

• Growing literature calls into question ability of VARs to uncover dynamic response of macroeconomic variables to structural shocks.

- Growing literature calls into question ability of VARs to uncover dynamic response of macroeconomic variables to structural shocks.
 - Focuses on long run based identification schemes

- Growing literature calls into question ability of VARs to uncover dynamic response of macroeconomic variables to structural shocks.
 - Focuses on long run based identification schemes
- Important early contribution Sims (1972)
 - Emphasizes Difficulty of Estimating Sum of Coefficients in Distributed lag Regressions.
 - This is at Heart of Difficulty in With Long-Run Identification
 - See also Faust and Leeper and Pagan.

- Growing literature calls into question ability of VARs to uncover dynamic response of macroeconomic variables to structural shocks.
 - Focuses on long run based identification schemes
- Important early contribution Sims (1972)
 - Emphasizes Difficulty of Estimating Sum of Coefficients in Distributed lag Regressions.
 - This is at Heart of Difficulty in With Long-Run Identification
 - See also Faust and Leeper and Pagan.
- More recently EGG and CKM examine reliability of VAR-based inference using long run identifying restrictions.
 - CKM are exceedingly critical.

• What are bias properties of VAR based impulse response estimators?

- What are bias properties of VAR based impulse response estimators?
- What are bias properties of standard estimators of sampling uncertainty in the estimator?

- What are bias properties of VAR based impulse response estimators?
- What are bias properties of standard estimators of sampling uncertainty in the estimator?
- Are there easy to implement variants of standard procedures which improve bias properties of response function estimators?

- What are bias properties of VAR based impulse response estimators?
- What are bias properties of standard estimators of sampling uncertainty in the estimator?
- Are there easy to implement variants of standard procedures which improve bias properties of response function estimators?
- We address these questions using data generated from dynamic GE models.
 Look at Long Run Restrictions and Short Run Restrictions

- What are bias properties of VAR based impulse response estimators?
- What are bias properties of standard estimators of sampling uncertainty in the estimator?
- Are there easy to implement variants of standard procedures which improve bias properties of response function estimators?
- We address these questions using data generated from dynamic GE models.
 Look at Long Run Restrictions and Short Run Restrictions
- Our conclusion:
 - Structural VARs provide valuable information for building empirically plausible models of aggregate fluctuations.

Findings for Short Run Restrictions

- DGP: variants of a standard real business cycle model augmented by timing restrictions..
 - Focus on response of hours to technology shock.
- Conclusion:
 - VAR's perform *remarkably* well
 - Virtually no bias either in point estimates or estimates of sampling uncertainty.
- Very comforting for vast literature that uses short run restrictions to identify consequences of shocks to economy.

Findings for long run restrictions

- When technology shocks account for a substantial fraction of business cycle fluctuations in output, VAR based analysis is reliable.
 - Some evidence of bias when tech shocks play much smaller role relative to estimates in standard RBC literature.
- First way to eliminate bias:
 - When number of variables in VAR exceeds number of important driving shocks, bias in impulse response estimators is substantially reduced.
 - * Widespread consensus: only a handful (e.g., 3-4) of important shocks drive aggregate fluctuations
- Second way to eliminate bias:
 - Integrate Newey-West non-parametric estimator of zero-frequency spectral density

Outline

- RBC Models
 - Various Parameterizations Considered
 - Standard Version (Long Run Restrictions)
 - Recursive Version (Short Run Restrictions)
- Structural VAR and the Identification Problem
- Short Run Restrictions Approach to Identification
- Long Run Restrictions Approach to Identification
- Reconciling with CKM
- Concluding Comments

• Preferences:

$$E\left\{\sum_{t=0}^{\infty}\left(\beta\left(1+\gamma\right)\right)^{t}\left[\log c_{t}+\psi\frac{\left(\bar{l}-l_{t}\right)^{1-\sigma}}{1-\sigma}\right]|\Omega_{0}\right\}.$$

• Constraints:

$$c_{t} + (1 + \tau_{x,t}) \left[(1 + \gamma) k_{t+1} - (1 - \delta) k_{t} \right] \leq (1 - \tau_{lt}) w_{t} l_{t} + r_{t} k_{t}.$$

$$c_{t} + (1 + \gamma) k_{t+1} - (1 - \delta) k_{t} \leq k_{t}^{\alpha} (Z_{t} l_{t})^{1 - \alpha}.$$

• Shocks:

$$\log (Z_t) = \mu_Z + \log (Z_{t-1}) + \sigma_z \varepsilon_t^z,$$

$$\tau_{lt+1} = (1 - \rho_l) \overline{\tau}_l + \rho_l \tau_{lt} + \sigma_l \varepsilon_{t+1}^d,$$

$$\tau_{xt+1} = (1 - \rho_x) \overline{\tau}_x + \rho_x \tau_{xt} + \sigma_x \varepsilon_{t+1}^x.$$

• As in CKM we assume

$$\begin{split} \beta &= 0.9722^{1/4}, \ \theta = 0.35, \ \delta = 1 - (1 - .0464)^{1/4}, \\ \psi &= 2.24, \ \gamma = 1.015^{1/4} - 1, \ \bar{l} = 1300, \\ \bar{\tau}_x &= 0.3, \ \bar{\tau}_l = 0.27388, \ \mu_z = 1.016^{1/4} - 1, \ \sigma = 1. \end{split}$$

• Different versions of the RBC model, distinguished by the nature of exogenous shocks.

KP Specification

• Technology shock process (Prescott (1986))

$$\log z_t = \mu_Z + 0.011738 \times \varepsilon_t^z.$$

• EGG (2005) update Prescott's analysis, estimate σ_z to be 0.0148.

- To be conservative, we use Prescott's estimate.
- Law of motion for $\tau_{l,t}$ as follows.
 - Household / firm FONC's imply:

$$\tau_{l,t} = 1 - \frac{c_t}{y_t} \frac{l_t}{\overline{l} - l_t} \frac{\psi}{1 - \theta}.$$

 $\tau_{l,t} = (1 - 0.9934) \times 0.2660 + 0.9934 \times \tau_{l,t-1} + .0062 \times \varepsilon_t^l.$

Percent of variance in HP-filtered, log output due to technology shocks is 73%.
 – Consistent with key claim of KP.
 22

CKM Benchmark Specification

$$\log z_t = \mu_Z + \log z_t = \mu_Z + 0.00581 \times \varepsilon_t^z$$

$$\tau_{lt} = (1 - \rho_l) \,\overline{\tau}_l + \rho_l \tau_{l,t-1} + 0.00764 \times \varepsilon_t^l, \ \rho_l = 0.93782.$$

- Percent of variance in HP-filtered, log output due to technology shocks is only 23%.
- Irony:
 - CKM use this specification to criticize Gali (1999).
 - Embodies Gali's main hypothesis that technology shocks play only a very small role in business cycle fluctuations.

Other Specifications

• Vary σ and σ_l

- Important quantitative effect on contribution of technology shocks to volatility of output.

• Three Shocks, Two Important Specification

- Additional (Unimportant) Shock, Capital Tax Rate

 $\tau_{xt} = \bar{\tau}_x + 0.0001 \times \varepsilon_t^x$

- Three Variables in VAR Analysis:

$$a_t \equiv \log\left(\frac{y_t}{l_t}\right), \ \log l_t, \ \log\left(\frac{c_t}{y_t}\right)$$

• *Three Shocks, Three Important* Specification – As in CKM:

$$\tau_{xt} = (1 - 0.9)\,\bar{\tau}_x + 0.9 \times \tau_{x,t-1} + 0.01\varepsilon_t^x.$$

- Three Variables in VAR Analysis
- Four Shocks, Three Important Specification
 - Capital Tax as in CKM
 - Four Variables in VAR Analysis

$$a_t \equiv \log\left(\frac{y_t}{l_t}\right), \ \log l_t, \ \log\left(\frac{c_t}{y_t}\right), \ \tau_{xt} + w_t$$
$$w_t \ \backsim \ N(0, 0.0001)$$

• Differentiated by timing assumptions.

- Standard version
 - All time t decisions taken after realization of the time t shocks.
- Recursive version
 - First, τ_{lt} is observed. Then, labor decision made.
 - Second, other shocks are realized.
 - Then, agents make their investment and consumption decisions.
 - Finally, labor, investment, consumption, and output occur

Estimating the Effects of a Positive Technology Shock in VAR

• VAR:

$$X_t = B_1 X_{t-1} + B_2 X_{t-2} + \dots + B_p X_{t-p} + u_t,$$

 $Eu_tu'_t = V, u_t = Ce_t, Ee_te'_t = I, CC' = V$

$$X_t = \begin{pmatrix} \Delta \log a_t \\ \log l_t \\ x_t \end{pmatrix}, \ C = \begin{bmatrix} C_1 : C_2 : C_3 \end{bmatrix}, \ \varepsilon_t = \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \\ \varepsilon_{3t} \end{pmatrix}, \ a_t = \frac{Y_t}{l_t}$$

Estimating the Effects of a Positive Technology Shock in VAR

• VAR:

$$X_t = B_1 X_{t-1} + B_2 X_{t-2} + \dots + B_p X_{t-p} + u_t,$$

 $Eu_tu'_t = V, u_t = Ce_t, Ee_te'_t = I, CC' = V$

$$X_t = \begin{pmatrix} \Delta \log a_t \\ \log l_t \\ x_t \end{pmatrix}, \ C = [C_1:C_2:C_3], \ \varepsilon_t = \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \\ \varepsilon_{3t} \end{pmatrix}, \ a_t = \frac{Y_t}{l_t}$$

• Impulse Response to Positive Technology Shock (Say, $\varepsilon_{1t} = \varepsilon_t^z$):

$$X_{t} - E_{t-1}X_{t} = C_{1}\varepsilon_{1t}, \ E_{t}X_{t+1} - E_{t-1}X_{t+1} = B_{1}C_{1}\varepsilon_{1t}$$
$$E_{t}X_{t+2} - E_{t-1}X_{t+2} = B_{1}^{2}C_{1}\varepsilon_{1t} + B_{2}C_{1}\varepsilon_{1t}$$

Estimating the Effects of a Positive Technology Shock in VAR

• VAR:

$$X_t = B_1 X_{t-1} + B_2 X_{t-2} + \dots + B_p X_{t-p} + u_t,$$

 $Eu_tu'_t = V, u_t = Ce_t, Ee_te'_t = I, CC' = V$

$$X_t = \begin{pmatrix} \Delta \log a_t \\ \log l_t \\ x_t \end{pmatrix}, \ C = \begin{bmatrix} C_1 : C_2 : C_3 \end{bmatrix}, \ \varepsilon_t = \begin{pmatrix} \varepsilon_{1t} \\ \varepsilon_{2t} \\ \varepsilon_{3t} \end{pmatrix}, \ a_t = \frac{Y_t}{l_t}$$

• Impulse Response to Positive Technology Shock (Say, $\varepsilon_{1t} = \varepsilon_t^z$):

$$\begin{split} X_t - E_{t-1} X_t \ &= \ C_1 \varepsilon_{1t}, \ E_t X_{t+1} - E_{t-1} X_{t+1} = B_1 C_1 \varepsilon_{1t} \\ E_t X_{t+2} - E_{t-1} X_{t+2} \ &= \ B_1^2 C_1 \varepsilon_{1t} + B_2 C_1 \varepsilon_{1t} \\ \bullet \text{ Need: } B_1, \dots, B_p, C_1. \end{split}$$

Identification Problem

• From Applying OLS To Both Equations in VAR, We 'Know':

 B_1, \ldots, B_p, V

- Problem, Need first Column of C, C_1
- Restrictions (Bivariate Case): three equations in four unknowns

$$CC' = V$$

• Identification Problem:

Not Enough Restrictions to Pin Down C_1

• Need More Restrictions

The Recursive Version of the Model

• First, τ_{lt} is observed. Then, labor decision made. Consequently,

$$u_{\Omega,t}^{l} = \gamma \varepsilon_{t}^{l}, \ u_{\Omega,t}^{l} \equiv P\left[l_{t} | \Omega_{t-1}\right]$$

• Second, other shocks are realized, so

$$u_{\Omega,t}^{a} = \alpha_{1}\varepsilon_{t}^{z} + \alpha_{2}\varepsilon_{t}^{l}, \ u_{\Omega,t}^{a} \equiv P\left[a_{t}|\Omega_{t-1}\right]$$

• Regression:

$$u_{\Omega,t}^{a} = \beta u_{\Omega,t}^{l} + \alpha_{1} \varepsilon_{t}^{z}, \ \beta = \frac{cov(u_{\Omega,t}^{a}, u_{\Omega,t}^{l})}{V\left(u_{\Omega,t}^{l}\right)},$$

• Perform Analogous Calculations in VAR

The Recursive Version of the Model ...

$$Y_t = \begin{pmatrix} \log l_t \\ \Delta \log a_t \\ x_t \end{pmatrix},$$

$$u_t = \begin{pmatrix} u_t^l \\ u_t^a \\ u_t^x \end{pmatrix},$$

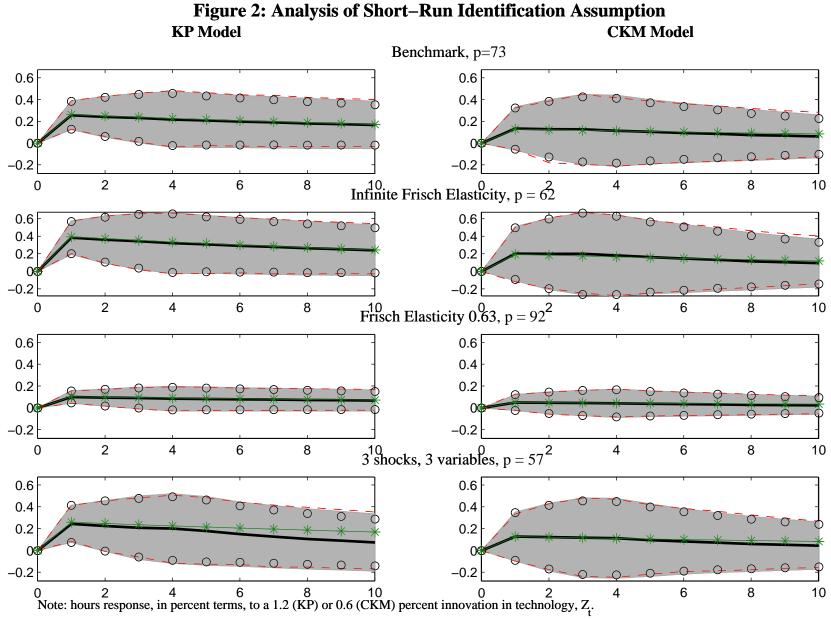
$$u_t = C\varepsilon_t, E\varepsilon_t\varepsilon'_t = I, CC' = V$$

 $\varepsilon_{2t} \ \tilde{\varepsilon}_t^z$

- For Response of Y_t to ε_t^z , need $B_1, ..., B_q$ and second column of C.
 - Compute CC' = V, where C is lower triangular Choleski decomposition of V.
 - Take second column of C.
- Potential Source of Specification Error: Differences Between One-Step-Ahead Forecast Errors in Model and VAR.

Experiments

- Simulate 1000 data sets, each of length 180 observations, using GE model as DGP.
 - Shocks ε_t^z , ε_t^l and possibly ε_t^x are drawn from *i.i.d.* standard normal distributions.
- Estimate a four lag VAR.
 - Report Mean Impulse Response Function over 1000 synthetic data sets.
 - Measure of sampling uncertainty associated with the estimated dynamic response functions.
 - * Calculate standard deviation of points in estimated impulse response functions across the 1000 synthetic data sets (Grey Area).
 - * Also calculate middle 95% of the estimated coefficients in dynamic response functions across the 1000 synthetic data sets (Red lines).
 - Report Mean of Econometrician's Confidence Interval



Solid line – mean response, Gray area – mean response plus/minus two standard errors, Starred line – true response, Dashed line – 95.5 percent probability interval of responses, Circles – average value of econometrician estimated plus/minus two standard errors.

Summary of Findings with Short Run Restrictions

- No evidence of bias in the estimated impulse response functions.
- An econometrician wouldn't be misled in inference using standard procedures for constructing confidence intervals.
- SVAR's perform remarkably well.
 - Absent specification error, standard structural VAR procedures reliably uncover and identify the dynamic effects of shocks to the economy.
- We did *not* include capital as a variable in the VAR.
 - Claims in CKM to contrary, omitting economically relevant state variable capital does not in and of itself pose a problem for inference using structural VAR's.

Long-Run Restrictions

- Two Key Properties of Model:
 - Exclusion Restriction:

$$\lim_{j \to \infty} \left[E_t a_{t+j} - E_{t-1} a_{t+j} \right] = f(\varepsilon_t^z \text{ only})$$

– Sign Restriction:

f increasing in ε_t^z

• Exploit Analogous Properties in VAR to Identify Technology Shocks and their Effects

Applying Analogous Restrictions to VAR

• Note: $\tilde{E}_t[a_{t+1}] - \tilde{E}_{t-1}[a_{t+1}] = \tilde{E}_t[\Delta a_{t+1} + \Delta a_t] - \tilde{E}_{t-1}[\Delta a_{t+1} + \Delta a_t]$ $= \left[\tilde{E}_t \Delta a_{t+1} - \tilde{E}_{t-1} \Delta a_{t+1}\right] + \left[\Delta a_t - \tilde{E}_{t-1} \Delta a_t\right]$

Applying Analogous Restrictions to VAR

• Note:

$$\tilde{E}_t[a_{t+1}] - \tilde{E}_{t-1}[a_{t+1}] = \left[\tilde{E}_t \Delta a_{t+1} - \tilde{E}_{t-1} \Delta a_{t+1}\right] + \left[\Delta a_t - \tilde{E}_{t-1} \Delta a_t\right]$$

Applying Analogous Restrictions to VAR

• Note:

$$\tilde{E}_t[a_{t+1}] - \tilde{E}_{t-1}[a_{t+1}] = \left[\tilde{E}_t \Delta a_{t+1} - \tilde{E}_{t-1} \Delta a_{t+1}\right] + \left[\Delta a_t - \tilde{E}_{t-1} \Delta a_t\right]$$

• Then $(p = 1)$

$$\tilde{E}_{t}[a_{t+1}] - \tilde{E}_{t-1}[a_{t+1}] = (1,0) [B+I] C\varepsilon_{t}$$
$$\tilde{E}_{t}[a_{t+2}] - \tilde{E}_{t-1}[a_{t+2}] = (1,0) [B^{2} + B + I] C\varepsilon_{t}$$
$$\tilde{E}_{t}[a_{t+j}] - \tilde{E}_{t-1}[a_{t+j}] = (1,0) [B^{j} + B^{j-1} + \dots + B^{2} + B + I] C\varepsilon_{t}$$

Applying Analogous Restrictions to VAR

• Note:

$$\tilde{E}_t[a_{t+1}] - \tilde{E}_{t-1}[a_{t+1}] = \left[\tilde{E}_t \Delta a_{t+1} - \tilde{E}_{t-1} \Delta a_{t+1}\right] + \left[\Delta a_t - \tilde{E}_{t-1} \Delta a_t\right]$$

• Then $(p = 1)$

$$\begin{split} \tilde{E}_{t}[a_{t+1}] - \tilde{E}_{t-1}[a_{t+1}] &= (1,0) \left[B + I \right] C \varepsilon_{t} \\ \tilde{E}_{t}[a_{t+2}] - \tilde{E}_{t-1}[a_{t+2}] &= (1,0) \left[B^{2} + B + I \right] C \varepsilon_{t} \\ \tilde{E}_{t}[a_{t+j}] - \tilde{E}_{t-1}[a_{t+j}] &= (1,0) \left[B^{j} + B^{j-1} + \ldots + B^{2} + B + I \right] C \varepsilon_{t} \\ \text{as } j \to \infty: \\ \lim_{j \to \infty} \tilde{E}_{t}[a_{t+j}] - \tilde{E}_{t-1}[a_{t+j}] \\ &= \lim_{j \to \infty} (1,0) \left[\ldots + B^{j} + B^{j-1} + \ldots + B^{2} + B + I \right] C \varepsilon_{t} \\ &= (1,0) \left[I - B \right]^{-1} C \varepsilon_{t} \end{split}$$

Applying Analogous Restrictions to VAR ...

• As $j \to \infty$ (for arbitrary p) :

$$\lim_{j \to \infty} \tilde{E}_t[a_{t+j}] - \tilde{E}_{t-1}[a_{t+j}] = (1, 0, ..., 0) \left[I - B(1)\right]^{-1} C \varepsilon_t$$

$$B(1) = B_1 + B_2 + \dots + B_p$$

- \tilde{E}_t ~ Expectation, Conditional on Information Set in VAR
 - Potential Specification Error
 - * Too Few Variables in VAR
 - * Too Few Lags in VAR

Applying Analogous Restrictions to VAR ...

• The VAR:

$$X_t = B_1 X_{t-1} + B_2 X_{t-2} + \dots + B_p X_{t-p} + u_t$$

 \bullet Identification: Solve for C Such that -

(exclusion restriction)
$$[I - B(1)]^{-1}C = \begin{bmatrix} \text{number } 0, ..., 0 \\ \text{numbers numbers} \end{bmatrix}$$

(sign restriction) (1, 1) element of $[I - B(1)]^{-1}C$ is positive
 $CC' = V$

• There Are Many C That Satisfy These Constraints. All Have the Same
$$C_1$$
.

Standard Algorithm for Computing C₁

• Step 1: Compute Lower Triangular Choleski Decomposition, D

 $DD' = [I - B(1)]^{-1} V [I - B(1)']^{-1} = S_0$ ('Spectral Density of X_t at Frequency Zero')

subject to D(1, 1) > 0.

• Step 2: Solve

$$C = [I - B(1)] D.$$

• Remark: this C Satisfies all Restrictions

$$CC' = [I - B(1)] DD' [I - B(1)'] = V$$

(exclusion restriction)
$$[I - B(1)]^{-1} C = \begin{bmatrix} x & 0, ..., 0 \\ numbers numbers \end{bmatrix}$$

(sign restriction) x > 0

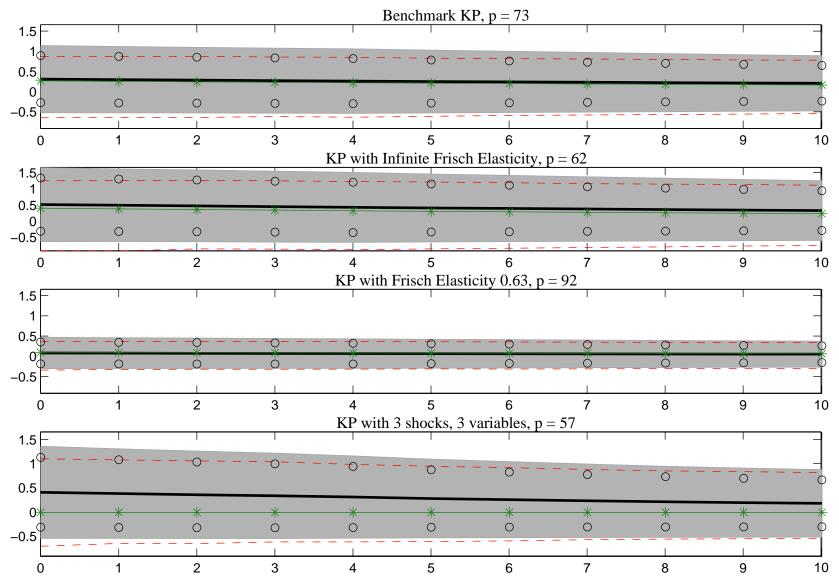


Figure 3a: Analysis of the Long–Run Identification Assumption with Kydland–Prescott Specification Standard Estimator

Note: hours response, in percent terms, to a 1.2 percent innovation in technology, Z.

Solid line – mean response, Gray area – mean response plus/minus two standard errors, Starred line – true response, Dashed line – 95.5 percent probability interval of responses, Circles – average value of econometrician estimated plus/minus two standard errors.

Long Run Restrictions: KP Specification

- Virtually no bias in point estimates.
- Considerable sampling uncertainty, but econometrician wouldn't be misled with respect to inference.
- Hansen Indivisible Labor model, $\sigma = 0.0001$.
 - Bias associated with estimator increases (very) slightly.
 - * Percent of variance in HP-filtered, log output due to technology shocks is 62%.
 - Econometrician wouldn't be misled about sampling uncertainty.
- EGG: $\sigma = 1.24$ (Frisch elasticity = 0.63)
 - Bias almost disappears, and the sampling uncertainty shrinks drastically.
 - Percent of variance in HP-filtered, log output due to technology shocks is 92%.

Long Run Restrictions: KP Specification ...

- Three variable, three shock version of model.
 - Noticeable degree of bias associated with the estimated impulse response function.
 - * But relatively small in relation to the sampling variation.
 - * Econometrician's estimated confidence interval is roughly correct, on average.
 - * Percent of variance in HP-filtered, log output due to technology shocks is 57%

Why Does Bias Appear in Last Case?

• Sims (1972) : can characterize the VAR parameter estimates econometrician would obtain in large sample $(\hat{B}_1, ..., \hat{B}_q \text{ and } \hat{V})$

$$\hat{V} = V + \min_{\hat{B}_1,\dots,\hat{B}_q} \frac{1}{2\pi} \int_{-\pi}^{\pi} \left[B\left(e^{-i\omega}\right) - \hat{B}\left(e^{-i\omega}\right) \right] S_Y(\omega) \left[B\left(e^{i\omega}\right) - \hat{B}\left(e^{i\omega}\right) \right]' d\omega$$

– $S_Y(\omega)$ is associated spectral density, at frequency ω .

- Econometrician chooses VAR lag matrices to minimize a quadratic form in difference between estimated and true lag matrices
 - Assigns greatest weight to frequencies where spectral density is greatest.
 - If there's specification error, then $\hat{B} \neq B$ and $V > \hat{V}$.
- Specification error:
 - Model Implies $q = \infty$, But Econometrician uses q = 4.
 - Model May Call for More Variables in Analysis.

Why Does Bias Appear in Last Case? ...

- Two key ingredients to computing impact effects of shocks:
 - Estimate of variance covariance matrix, V, of VAR disturbances and spectral density of Y_t at frequency zero, S_0 .
 - V Estimated Precisely.
 - Problem with spectral density at frequency zero.
 - * Standard VAR approach uses sum of estimated VAR matrices.
 - * No particular reason for this to be estimated precisely by ordinary least squares.
 - * Sum of lag VAR matrices corresponds to $\omega = 0$ and least squares will pay attention to this only if $S_Y(\omega)$ happens to be relatively large in a neighborhood of $\omega = 0$.
- Replace S_0 with Newey-West estimator:

$$S_0 = \sum_{k=-(T-1)}^{T-1} g(k)\hat{C}(k), g(k) = \left[1 - \frac{k}{r}\right]$$

where $\hat{C}(k)$ Sample Estimate of $EY_tY'_{t-k}$, g(k) = 0 for k > r (r = 150).

- Figure 3
 - Bias is reduced
 - Less sampling uncertainty.

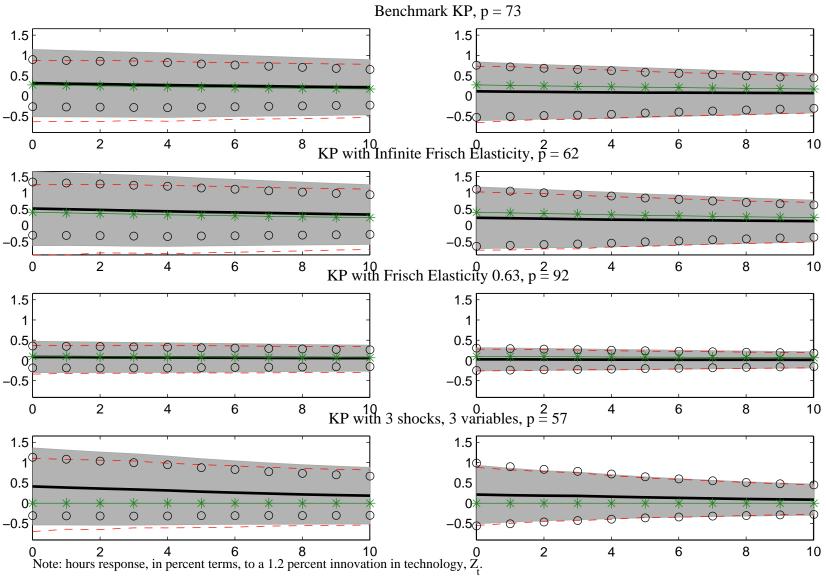


Figure 3: Analysis of the Long–Run Identification Assumption with Kydland–Prescott Specification Standard Estimator Newey–West Spectral Estimator

Solid line – mean response, Gray area – mean response plus/minus two standard errors, Starred line – true response, Dashed line – 95.5 percent probability interval of responses, Circles – average value of econometrician estimated plus/minus two standard errors.

CKM Long Run Results

• Benchmark CKM: substantial bias

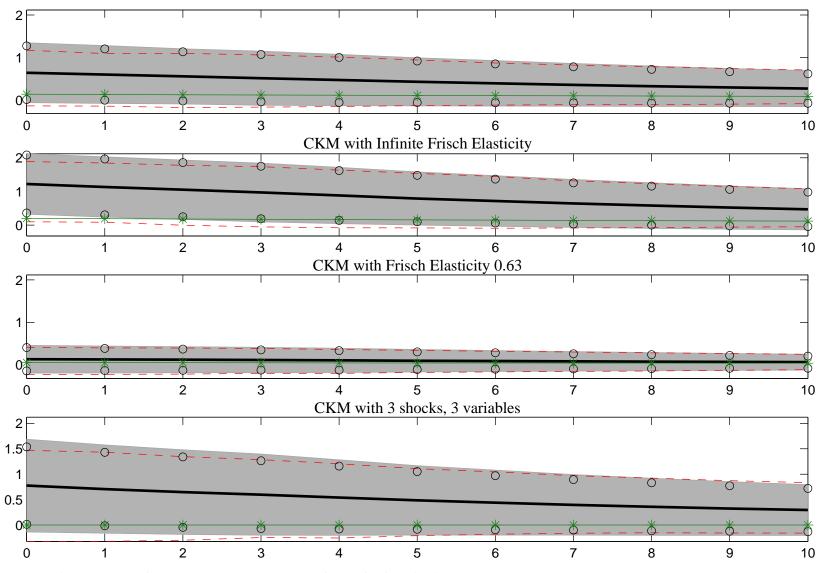


Figure 5a: Analysis of the Long–Run Identification Assumption with CKM Specification Standard Estimator

Benchmark CKM

Note: hours response, in percent terms, to a 0.6 percent innovation in technology, Z_t .

Solid line – mean response, Gray area – mean response plus/minus two standard errors, Starred line – true response, Dashed line – 95.5 percent probability interval of responses, Circles – average value of econometrician estimated plus/minus two standard errors.

CKM Long Run Results ...

• Key Difference Between CKM and KP Model: Fraction of Variance Due to Technology Very Small (23%)

Ó \cap 1 O O 0 0.5 0 Ο 0 \bigcirc 0 1 2 3 4 5 6 7 8 9 10 CKM with Half the Volatility in the Labor Tax Shock, p = 541 0.5 C 0 0 \bigcirc \bigcirc \cap (\cap 2 3 5 6 7 0 4 8 9 10 1 CKM with One-third the Volatility in the Labor Tax Shock, p = 731 0.5 Θ Θ O O 0 Ô Ó Ó 0 0 0 \cap \cap 1 Т

5

4

6

7

8

9

10

Figure 4a: Analysis of the Long–Run Identification Assumption with CKM Specification

Benchmark CKM, p = 23

Standard Estimator

Note: hours response, in percent terms, to a 0.6 percent innovation in technology, Z_t . Solid line – mean response, Gray area – mean response plus/minus two standard errors, Starred line – true response, Dashed line – 95.5 percent probability interval of responses,

3

Circles - average value of econometrician estimated plus/minus two standard errors.

2

0

1

CKM Long Run Results ...

- Distortions in CKM Model Reduced if you
 - Have One More Variable Than Important Shocks

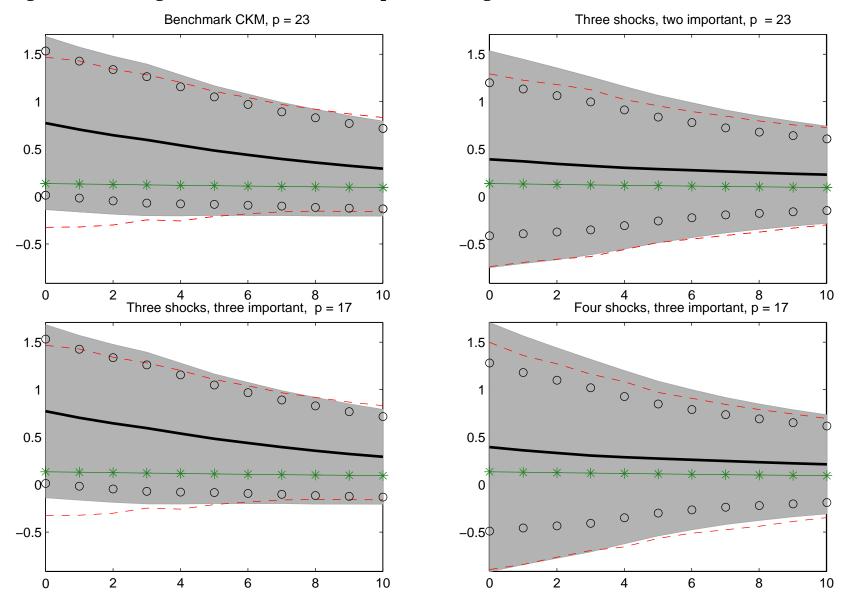


Figure 6: The Long–Run Identification Assumption: Adding Variables and Shocks to the CKM Benchmark

Note: hours response, in percent terms, to a 0.6 percent innovation in technology, Z.

Estimation results for Standard VAR estimator.

Solid line – mean response, Gray area – mean response plus/minus two standard errors, Starred line – true response, Dashed line – 95.5 percent probability interval of responses, Circles – average value of econometrician estimated plus/minus two standard errors.

CKM Long Run Results ...

- Distortions in CKM Model Also Reduced if you
 - Adopt Newey-West Estimator of Spectrum at frequency zero.

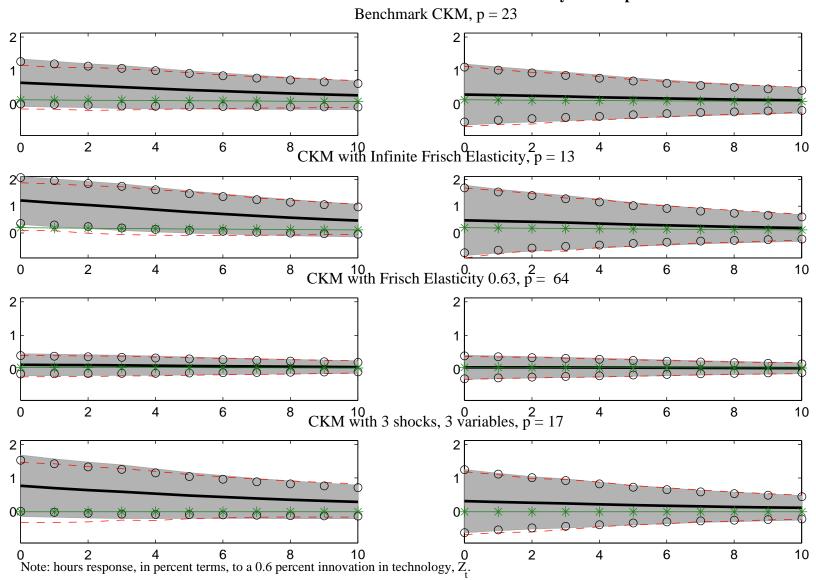


Figure 5: Analysis of the Long–Run Identification Assumption with CKM Specification Standard Estimator Newey–West Spectral Estimator

Solid line – mean response, Gray area – mean response plus/minus two standard errors, Starred line – true response, Dashed line – 95.5 percent probability interval of responses, Circles – average value of econometrician estimated plus/minus two standard errors.

Key Lessons of the RBC Model Analysis

- With Short Run Exclusion Restrictions, VAR Analysis Highly Accurate
- With Long Run Exclusion Restrictions:
 - If Technology Shocks Important, Then Inference with VARs Reliable
 - Biases Could Occur When Technology Shocks Less Important. Then,
 - * Use 5-6 Variables in VAR
 - * If Can't Use More Variables and Worried About Possibility that Technology Shocks Not Important, Use Spectral Estimator.

Why is Analysis with Short Run Restrictions So Much More Precise than with Long-Run Restrictions

- The Finding is Certainly Intuitively Appealing
 - Seems Like it Would be Tough to Find, in 50 Years' Data 'Only Shock that Has a Long-Run Effect on Productivity'
 - Shocks in Short Run Restrictions Equivalent to Regression Disturbances.

Why is Analysis with Short Run Restrictions So Much More Precise than with Long-Run Restrictions

- The Finding is Certainly Intuitively Appealing
 - Seems Like it Would be Tough to Find, in 50 Years' Data 'Only Shock that Has a Long-Run Effect on Productivity'
 - Shocks in Short Run Restrictions Equivalent to Regression Disturbances.
- The VAR:

$$X_t = B_1 X_{t-1} + B_2 X_{t-2} + \dots + B_p X_{t-p} + u_t, \ E u_t u'_t = V$$

$$u_t = C e_t, \ C C' = V.$$

Why is Analysis with Short Run Restrictions So Much More Precise than with Long-Run Restrictions

- The Finding is Certainly Intuitively Appealing
 - Seems Like it Would be Tough to Find, in 50 Years' Data 'Only Shock that Has a Long-Run Effect on Productivity'
 - Shocks in Short Run Restrictions Equivalent to Regression Disturbances.
- The VAR:

$$X_t = B_1 X_{t-1} + B_2 X_{t-2} + \dots + B_p X_{t-p} + u_t, \ E u_t u'_t = V$$

$$u_t = C e_t, \ C C' = V.$$

- Short Run Restrictions:
 - To Obtain Impact Effect of Shock, C_1
 - * Require Good Estimate of ${\cal V}$
 - * That's *Exactly* What OLS Does!
 - To Obtain Dynamic Effects of Shock:
 - * Require Good Estimates of B_j , first few j's

Why is Analysis with Short Run Restrictions So Much More Precise than with Long-Run Restrictio

• Long Run Restrictions:

– To Obtain Impact Effect of Shock, C_1

* Require Good Estimate of V and

$$B(1) = \sum_{j=1}^{p} B_j$$

* OLS Provides Relatively Little Information About $B(e^{-i\omega})$, for $\omega \approx 0$.

- CKM Say Nothing About Short Run Restrictions.
- CKM Consider The Consequences other Specification Errors, Such as First Differencing. We do not Consider that Here (However, see Christiano, Eichenbaum and Vigfusson, NBER Working Papers W10254 and W9819).
- CKM Overstate the Degree of Sampling Uncertainty in Estimate of Response of Hours Worked.
 - Reflects a Non-Standard Way of Implementing Long Run Restrictions

• Impact of Shocks on Forecast of Productivity in Long-Run:

 $\lim_{j\to\infty} E_t[a_{t+j}] - E_{t-1}[a_{t+j}] = (1,0) \left[I - B(1)\right]^{-1} C_1 e_{1t}$ • Standard Implementation of Long Run Restrictions:

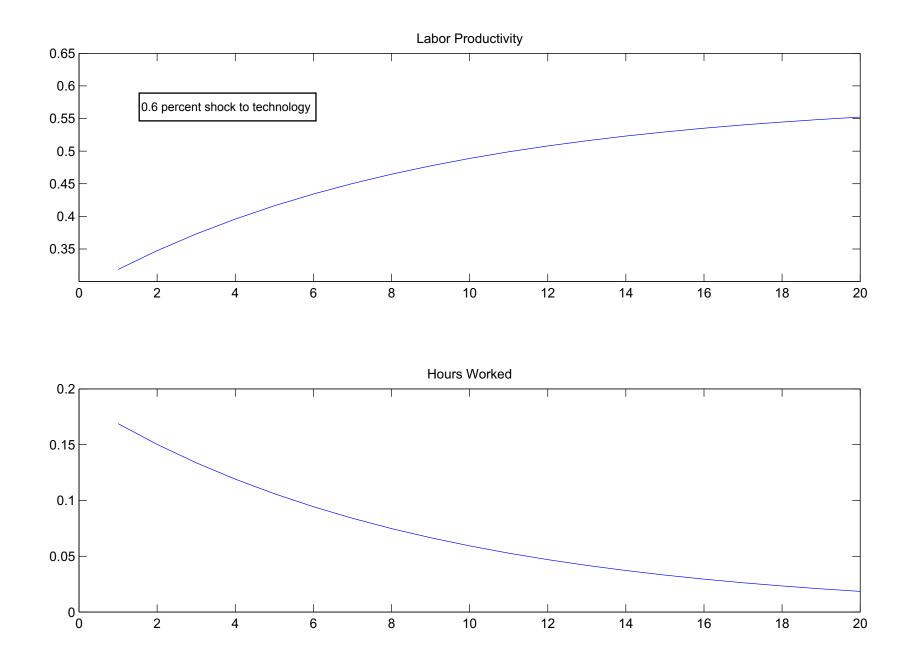
(1,1) Element of $[I - B(1)]^{-1} C_1$ Must Be Positive (Long Run Effect) Sign of C_{11} (Impact Effect of Technology Shock) unrestricted Could Lead to Contemporaneous Drop in Productivity

• CKM Sign Restriction:

CKM Sign Restriction: $C_{11} > 0$, (1, 1) Element of $[I - B(1)]^{-1}C$ unrestricted 'Positive Technology Shock Leads to Contemporaneous Rise in Productivity' Positive Technology Shock Could Lead to Permanent *Reduction* in Productivity (This Pattern is Impossible in CKM DGP)

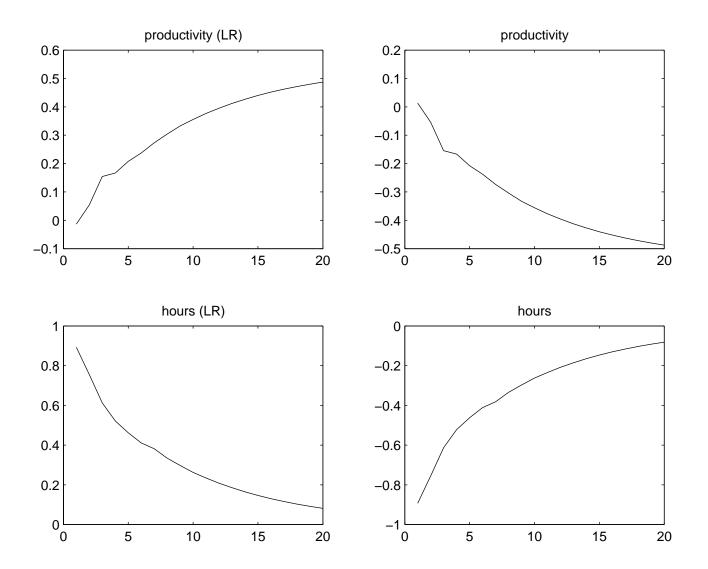
- Benchmark CKM Model
 - Initial Hours Worked Response Strong, Productivity Response Weak (Fig 3)

Response of Hours Worked and Labor Productivity in Benchmark CKM Example

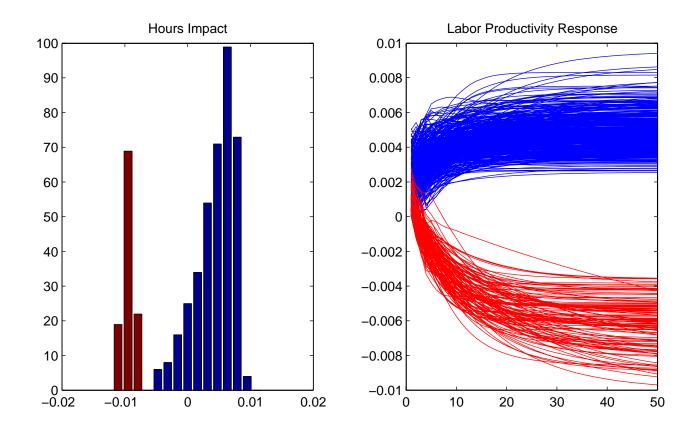


- Benchmark CKM Model
 - Initial Hours Worked Response Strong, Productivity Response Weak (Fig 3)
 - Consequences of CKM Sign Restriction
 - * In Some Samples, Hours Response Very Strong and Initial Productivity Small Negative
 - * CKM Algorithm Calls this a Negative Technology Shock
 - * In These Cases, Their Procedure In Effect Multiplies the Hours Response by -1 (Fig 3a).

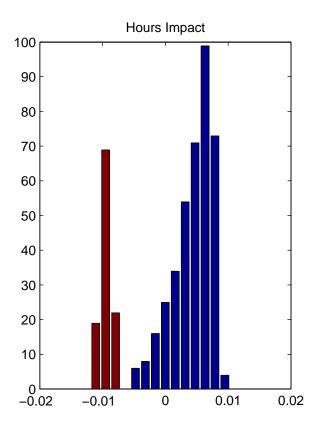
Figure 3a: Example of Mistaken Inference

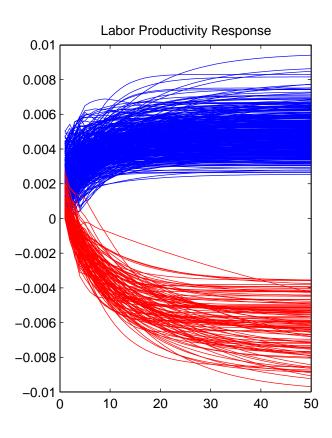


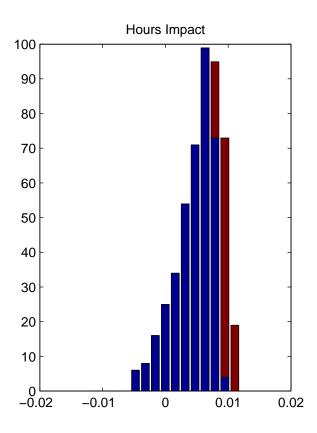
- Benchmark CKM Model
 - Initial Hours Worked Response Strong, Productivity Response Weak (Fig 3)
 - Consequences of CKM Sign Restriction
 - * In Some Samples, Hours Response Very Strong and Initial Productivity Small Negative
 - * CKM Algorithm Calls this a Negative Technology Shock
 - * In These Cases, Their Procedure In Effect Multiplies the Hours Response by -1 (Fig 3a).
 - Is this a Theoretical Curiosum? No...It Happens 23% Of Time.
 - * Leads to Pronounced Bimodal Distribution of Impact Effects (upper panel, Fig 4)

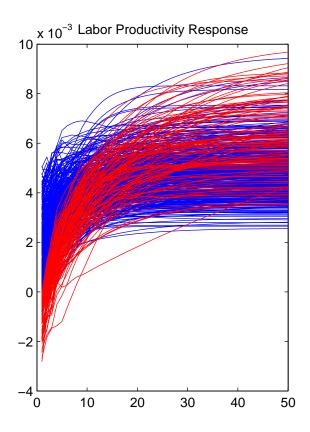


- Benchmark CKM Model
 - Initial Hours Worked Response Strong, Productivity Response Weak (Fig 3)
 - Consequences of CKM Sign Restriction
 - * In Some Samples, Hours Response Very Strong and Initial Productivity Small Negative
 - * CKM Algorithm Calls this a Negative Technology Shock
 - * In These Cases, Their Procedure In Effect Multiplies the Hours Response by -1 (Fig 3a).
 - Is this a Theoretical Curiosum? No...It Happens 23% Of Time.
 - * Leads to Pronounced Bimodal Distribution of Impact Effects (upper panel, Fig 4)
 - * Actual Distribution of Impact Effects Not Bimodal (lower panel, Fig 4).

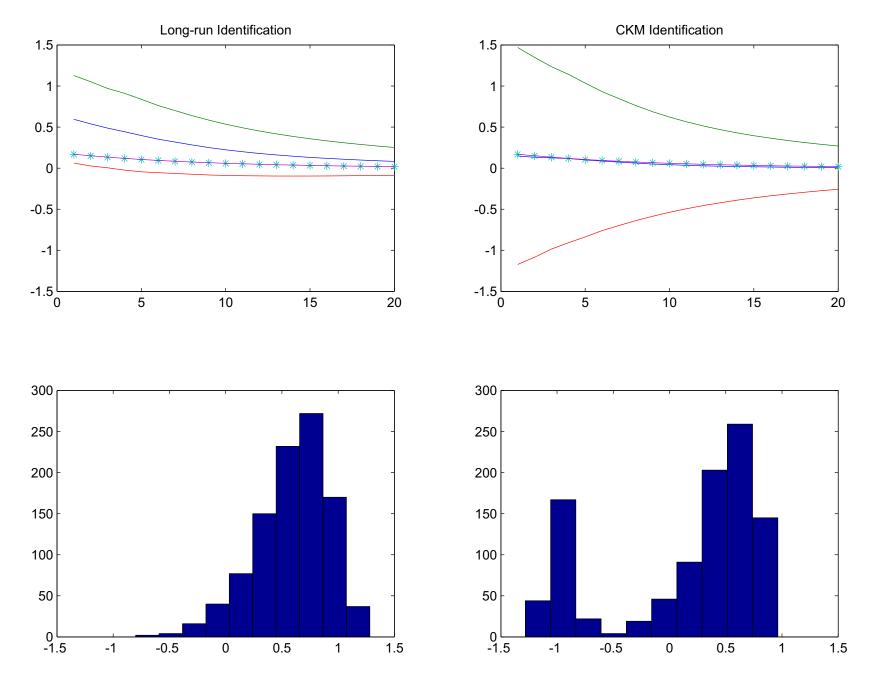








- Benchmark CKM Model
 - Initial Hours Worked Response Strong, Productivity Response Weak (Fig 3)
 - Consequences of CKM Sign Restriction
 - * In Some Samples, Hours Response Very Strong and Initial Productivity Small Negative
 - * CKM Algorithm Calls this a Negative Technology Shock
 - * In These Cases, Their Procedure In Effect Multiplies the Hours Response by -1 (Fig 3a).
 - Is this a Theoretical Curiosum? No...It Happens 23% Of Time.
 - * Leads to Pronounced Bimodal Distribution of Impact Effects (upper panel, Fig 4)
 - * Actual Distribution of Impact Effects Not Bimodal (lower panel, Fig 4).
 - How Does this Affect Standard Errors?
 - * Leads CKM to Substantially Overstate Sampling Uncertainty (Fig. 5)



Impact of CKM Sign Restriction on Sampling Uncertainty

- Studied properties of structural VAR's for uncovering impulse response functions to shocks.
- With short run restrictions, VAR's perform remarkably well.

- Studied properties of structural VAR's for uncovering impulse response functions to shocks.
- With short run restrictions, VAR's perform remarkably well.
- With long run restrictions, with one exception VAR's also perform well.
 - Potentially perform less well when shock under investigation isn't very important.

- Studied properties of structural VAR's for uncovering impulse response functions to shocks.
- With short run restrictions, VAR's perform remarkably well.
- With long run restrictions, with one exception VAR's also perform well.
 - Potentially perform less well when shock under investigation isn't very important.
 - When there are enough variables in VAR, problems are greatly mitigated.

- Studied properties of structural VAR's for uncovering impulse response functions to shocks.
- With short run restrictions, VAR's perform remarkably well.
- With long run restrictions, with one exception VAR's also perform well.
 - Potentially perform less well when shock under investigation isn't very important.
 - When there are enough variables in VAR, problems are greatly mitigated.
- Develop and implement a modified VAR approach
 - Leads to drastic improvement even when technology shocks play a limited role in aggregate fluctuations and a small number of variables are included in VAR.