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Two Traditions for Constructing GE Models.

• One tradition focusses on at most a handful of key shocks, deliberately
abstracts from smaller shocks:
– Classic example - Kydland and Prescott.
– Conundrum - how do you empirically evaluate models (which contain only

a subset of the shocks) with the data (which are driven by all the shocks)?
– Structural VARs have potential to provide resolution to conundrum
∗ Assess empirical performance of model relative to a particular set of

shocks.

• Another tradition:
– Build macro models with large numbers of shocks - complete characteriza-

tion of DGP.
– Avoids KP conundrum.
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Challenges

• Growing literature calls into question ability of VARs to uncover dynamic
response of macroeconomic variables to structural shocks.

7



Challenges

• Growing literature calls into question ability of VARs to uncover dynamic
response of macroeconomic variables to structural shocks.
– Focuses on long run based identification schemes

8



Challenges

• Growing literature calls into question ability of VARs to uncover dynamic
response of macroeconomic variables to structural shocks.
– Focuses on long run based identification schemes

• Important early contribution - Sims (1972)
– Emphasizes Difficulty of Estimating Sum of Coefficients in Distributed lag

Regressions.
– This is at Heart of Difficulty in With Long-Run Identification
– See also Faust and Leeper and Pagan.

9



Challenges

• Growing literature calls into question ability of VARs to uncover dynamic
response of macroeconomic variables to structural shocks.
– Focuses on long run based identification schemes

• Important early contribution - Sims (1972)
– Emphasizes Difficulty of Estimating Sum of Coefficients in Distributed lag

Regressions.
– This is at Heart of Difficulty in With Long-Run Identification
– See also Faust and Leeper and Pagan.

• More recently EGG and CKM examine reliability of VAR-based inference
using long run identifying restrictions.
– CKM are exceedingly critical.
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Questions That We Investigate

• What are bias properties of VAR based impulse response estimators?
• What are bias properties of standard estimators of sampling uncertainty in the

estimator?
• Are there easy to implement variants of standard procedures which improve

bias properties of response function estimators?

• We address these questions using data generated from dynamic GE models.
– Look at Long Run Restrictions and Short Run Restrictions

• Our conclusion:
– Structural VARs provide valuable information for building empirically

plausible models of aggregate fluctuations.
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Findings for Short Run Restrictions

• DGP: variants of a standard real business cycle model augmented by timing
restrictions..
– Focus on response of hours to technology shock.

• Conclusion:
– VAR’s perform remarkably well
– Virtually no bias - either in point estimates or estimates of sampling

uncertainty.

• Very comforting for vast literature that uses short run restrictions to identify
consequences of shocks to economy.
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Findings for long run restrictions

• When technology shocks account for a substantial fraction of business cycle
fluctuations in output, VAR based analysis is reliable.
– Some evidence of bias when tech shocks play much smaller role relative to

estimates in standard RBC literature.

• First way to eliminate bias:
– When number of variables in VAR exceeds number of important driving

shocks, bias in impulse response estimators is substantially reduced.
∗Widespread consensus: only a handful (e.g., 3-4) of important shocks

drive aggregate fluctuations

• Second way to eliminate bias:
– Integrate Newey-West non-parametric estimator of zero-frequency spectral

density
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Outline

• RBC Models
– Various Parameterizations Considered
– Standard Version (Long Run Restrictions)
– Recursive Version (Short Run Restrictions)

• Structural VAR and the Identification Problem

• Short Run Restrictions Approach to Identification

• Long Run Restrictions Approach to Identification

• Reconciling with CKM

• Concluding Comments
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DGP: A Generic RBC Model

• Preferences:

E

( ∞X
t=0

(β (1 + γ))t
"
log ct + ψ

¡
l̄ − lt

¢
1− σ

1−σ#
|Ω0

)
.

• Constraints:

ct + (1 + τx,t) [(1 + γ) kt+1 − (1− δ) kt] ≤ (1− τ lt)wtlt + rtkt.

ct + (1 + γ) kt+1 − (1− δ) kt ≤ kαt (Ztlt)
1−α .

• Shocks:

log (Zt) = µZ + log (Zt−1) + σzε
z
t ,

τ lt+1 = (1− ρl) τ̄ l + ρlτ lt + σlε
d
t+1,

τxt+1 = (1− ρx) τ̄ x + ρxτxt + σxε
x
t+1.
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Parameterizing the Model

• As in CKM we assume

β = 0.97221/4, θ = 0.35, δ = 1− (1− .0464)1/4,

ψ = 2.24, γ = 1.0151/4 − 1, l̄ = 1300,
τ̄ x = 0.3, τ̄ l = 0.27388, µz = 1.016

1/4 − 1, σ = 1.

• Different versions of the RBC model, distinguished by the nature of exogenous
shocks.
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Parameterizing the Model ...

KP Specification

• Technology shock process (Prescott (1986))

log zt = µZ + 0.011738× εzt .

• EGG (2005) update Prescott’s analysis, estimate σz to be 0.0148.
– To be conservative, we use Prescott’s estimate.

• Law of motion for τ l,t as follows.
– Household / firm FONC’s imply:

τ l,t = 1− ct
yt

lt
l̄ − lt

ψ

1− θ
.

τ l,t = (1− 0.9934)× 0.2660 + 0.9934× τ l,t−1 + .0062× εlt.

• Percent of variance in HP-filtered, log output due to technology shocks is 73%.
– Consistent with key claim of KP. 22



Parameterizing the Model ...

CKM Benchmark Specification

log zt = µZ + log zt = µZ + 0.00581× εzt
τ lt = (1− ρl) τ̄ l + ρlτ l,t−1 + 0.00764× εlt, ρl = 0.93782.

• Percent of variance in HP-filtered, log output due to technology shocks is only
23%.

• Irony:
– CKM use this specification to criticize Gali (1999).
– Embodies Gali’s main hypothesis that technology shocks play only a very

small role in business cycle fluctuations.
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Parameterizing the Model ...

Other Specifications

• Vary σ and σl
– Important quantitative effect on contribution of technology shocks to

volatility of output.
• Three Shocks, Two Important Specification

– Additional (Unimportant) Shock, Capital Tax Rate

τxt = τ̄ x + 0.0001× εxt

– Three Variables in VAR Analysis:

at ≡ log

µ
yt
lt

¶
, log lt, log

µ
ct
yt

¶
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Parameterizing the Model ...

• Three Shocks, Three Important Specification
– As in CKM:

τxt = (1− 0.9) τ̄ x + 0.9× τx,t−1 + 0.01ε
x
t .

– Three Variables in VAR Analysis
• Four Shocks, Three Important Specification

– Capital Tax as in CKM
– Four Variables in VAR Analysis

at ≡ log

µ
yt
lt

¶
, log lt, log

µ
ct
yt

¶
, τxt + wt

wt v N(0, 0.0001)
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Two Versions of Model

• Differentiated by timing assumptions.

• Standard version
– All time t decisions taken after realization of the time t shocks.

• Recursive version

– First, τ lt is observed. Then, labor decision made.
– Second, other shocks are realized.
– Then, agents make their investment and consumption decisions.
– Finally, labor, investment, consumption, and output occur
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Estimating the Effects of a Positive Technology
Shock in VAR

• VAR:
Xt = B1Xt−1 +B2Xt−2 + ... +BpXt−p + ut,

Eutu
0
t = V, ut = Cet, Eete0t = I, CC 0 = V

Xt =

⎛⎝ ∆ log at
log lt
xt

⎞⎠ , C = [C1
...C2...C3] , εt =

⎛⎝ ε1t
ε2t
ε3t

⎞⎠ , at =
Yt
lt
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0
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Xt =
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⎞⎠ , C = [C1
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⎛⎝ ε1t
ε2t
ε3t

⎞⎠ , at =
Yt
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• Impulse Response to Positive Technology Shock (Say, ε1t = εzt ):

Xt −Et−1Xt = C1ε1t, EtXt+1 −Et−1Xt+1 = B1C1ε1t
EtXt+2 −Et−1Xt+2 = B2

1C1ε1t +B2C1ε1t
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Estimating the Effects of a Positive Technology
Shock in VAR

• VAR:
Xt = B1Xt−1 +B2Xt−2 + ... +BpXt−p + ut,

Eutu
0
t = V, ut = Cet, Eete0t = I, CC 0 = V

Xt =

⎛⎝ ∆ log at
log lt
xt

⎞⎠ , C = [C1
...C2...C3] , εt =

⎛⎝ ε1t
ε2t
ε3t

⎞⎠ , at =
Yt
lt

• Impulse Response to Positive Technology Shock (Say, ε1t = εzt ):

Xt −Et−1Xt = C1ε1t, EtXt+1 −Et−1Xt+1 = B1C1ε1t
EtXt+2 −Et−1Xt+2 = B2

1C1ε1t +B2C1ε1t

• Need: B1, ..., Bp, C1.
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Identification Problem

• From Applying OLS To Both Equations in VAR, We ‘Know’:

B1, ..., Bp, V

• Problem, Need first Column of C, C1
• Restrictions (Bivariate Case): three equations in four unknowns

CC 0 = V

• Identification Problem:

Not Enough Restrictions to Pin Down C1

• Need More Restrictions
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The Recursive Version of the Model

• First, τ lt is observed. Then, labor decision made. Consequently,

ulΩ,t = γεlt, u
l
Ω,t ≡ P [lt|Ωt−1]

• Second, other shocks are realized, so

uaΩ,t = α1ε
z
t + α2ε

l
t, u

a
Ω,t ≡ P [at|Ωt−1]

• Regression:

uaΩ,t = βulΩ,t + α1ε
z
t , β =

cov(uaΩ,t, u
l
Ω,t)

V
³
ulΩ,t

´ ,

• Perform Analogous Calculations in VAR
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The Recursive Version of the Model ...

Yt =

⎛⎝ log lt
∆ log at

xt

⎞⎠ ,

ut =

⎛⎝ ult
uat
uxt

⎞⎠
ut = Cεt, Eεtε0t = I, CC 0 = V

ε2t ˜ ε
z
t

• For Response of Yt to εzt , need B1, ..., Bq and second column of C.
– Compute CC 0 = V, where C is lower triangular Choleski decomposition of
V.

– Take second column of C.
• Potential Source of Specification Error: Differences Between One-Step-Ahead

Forecast Errors in Model and VAR.
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Experiments

• Simulate 1000 data sets, each of length 180 observations, using GE model as
DGP.
– Shocks εzt , εlt and possibly εxt are drawn from i.i.d. standard normal

distributions.

• Estimate a four lag VAR.
– Report Mean Impulse Response Function over 1000 synthetic data sets.
– Measure of sampling uncertainty associated with the estimated dynamic

response functions.
∗ Calculate standard deviation of points in estimated impulse response

functions across the 1000 synthetic data sets (Grey Area).
∗ Also calculate middle 95% of the estimated coefficients in dynamic

response functions across the 1000 synthetic data sets (Red lines).
– Report Mean of Econometrician’s Confidence Interval
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Figure 2: Analysis of Short−Run Identification AssumptionFigure 2: Analysis of Short−Run Identification Assumption
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Summary of Findings with Short Run Restrictions

• No evidence of bias in the estimated impulse response functions.

• An econometrician wouldn’t be misled in inference using standard procedures
for constructing confidence intervals.

• SVAR’s perform remarkably well.
– Absent specification error, standard structural VAR procedures reliably

uncover and identify the dynamic effects of shocks to the economy.

• We did not include capital as a variable in the VAR.
– Claims in CKM to contrary, omitting economically relevant state variable

capital does not in and of itself pose a problem for inference using structural
VAR’s.
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Long-Run Restrictions

• Two Key Properties of Model:
– Exclusion Restriction:

lim
j→∞

[Etat+j −Et−1at+j] = f (εzt only)

– Sign Restriction:

f increasing in εzt

• Exploit Analogous Properties in VAR to Identify Technology Shocks and their
Effects
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Applying Analogous Restrictions to VAR

• Note:
Ẽt[at+1]− Ẽt−1[at+1] = Ẽt[∆at+1 +∆at]− Ẽt−1[∆at+1 +∆at]

=
£
Ẽt∆at+1 − Ẽt−1∆at+1

¤
+
£
∆at − Ẽt−1∆at

¤
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Applying Analogous Restrictions to VAR

• Note:
Ẽt[at+1]− Ẽt−1[at+1] =

£
Ẽt∆at+1 − Ẽt−1∆at+1

¤
+
£
∆at − Ẽt−1∆at

¤
• Then (p = 1)

Ẽt[at+1]− Ẽt−1[at+1] = (1, 0) [B + I ]Cεt

Ẽt[at+2]− Ẽt−1[at+2] = (1, 0)
£
B2 +B + I

¤
Cεt

Ẽt[at+j]− Ẽt−1[at+j] = (1, 0)
£
Bj +Bj−1 + ... +B2 +B + I

¤
Cεt
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Applying Analogous Restrictions to VAR

• Note:
Ẽt[at+1]− Ẽt−1[at+1] =

£
Ẽt∆at+1 − Ẽt−1∆at+1

¤
+
£
∆at − Ẽt−1∆at

¤
• Then (p = 1)

Ẽt[at+1]− Ẽt−1[at+1] = (1, 0) [B + I ]Cεt

Ẽt[at+2]− Ẽt−1[at+2] = (1, 0)
£
B2 +B + I

¤
Cεt

Ẽt[at+j]− Ẽt−1[at+j] = (1, 0)
£
Bj +Bj−1 + ... +B2 +B + I

¤
Cεt

as j →∞:
lim
j→∞

Ẽt[at+j]− Ẽt−1[at+j]

= lim
j→∞

(1, 0)
£
... +Bj +Bj−1 + ... +B2 +B + I

¤
Cεt

= (1, 0) [I −B]−1Cεt
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Applying Analogous Restrictions to VAR ...

• As j →∞ (for arbitrary p) :

lim
j→∞

Ẽt[at+j]− Ẽt−1[at+j] = (1, 0, ..., 0) [I −B(1)]−1Cεt

B(1) = B1 +B2 + ... +Bp

• Ẽt ~ Expectation, Conditional on Information Set in VAR
– Potential Specification Error
∗ Too Few Variables in VAR
∗ Too Few Lags in VAR
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Applying Analogous Restrictions to VAR ...

• The VAR:

Xt = B1Xt−1 +B2Xt−2 + ... +BpXt−p + ut

• Identification: Solve for C Such that -

(exclusion restriction) [I −B(1)]−1C =

∙
number 0, ..., 0
numbers numbers

¸
(sign restriction) (1, 1) element of [I −B(1)]−1C is positive

CC 0 = V

• There Are Many C That Satisfy These Constraints. All Have the Same C1.
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Standard Algorithm for Computing C1

• Step 1: Compute Lower Triangular Choleski Decomposition, D

DD0 = [I −B(1)]−1 V [I −B(1)0]
−1
= S0 (‘Spectral Density of Xt at Frequency Zero’)

subject to D(1, 1) > 0.
• Step 2: Solve

C = [I −B(1)]D.

• Remark: this C Satisfies all Restrictions
CC 0 = [I −B(1)]DD0 [I −B(1)0] = V

(exclusion restriction) [I −B(1)]−1C=
∙

x 0, ..., 0
numbers numbers

¸
(sign restriction) x > 0
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Figure 3a: Analysis of the Long−Run Identification Assumption with Kydland−Prescott Specification
Standard Estimator
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Solid line − mean response, Gray area − mean response plus/minus two standard errors,      
Starred line − true response, Dashed line − 95.5 percent probability interval of responses,
Circles − average value of econometrician estimated plus/minus two standard errors.        



Long Run Restrictions: KP Specification

• Virtually no bias in point estimates.
• Considerable sampling uncertainty, but econometrician wouldn’t be misled

with respect to inference.

• Hansen Indivisible Labor model, σ = 0.0001.
– Bias associated with estimator increases (very) slightly.
∗ Percent of variance in HP-filtered, log output due to technology shocks

is 62%.
– Econometrician wouldn’t be misled about sampling uncertainty.

• EGG: σ = 1.24 (Frisch elasticity = 0.63)
– Bias almost disappears, and the sampling uncertainty shrinks drastically.
– Percent of variance in HP-filtered, log output due to technology shocks is

92%.
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Long Run Restrictions: KP Specification ...

• Three variable, three shock version of model.

– Noticeable degree of bias associated with the estimated impulse response
function.
∗ But relatively small in relation to the sampling variation.
∗ Econometrician’s estimated confidence interval is roughly correct, on

average.
∗ Percent of variance in HP-filtered, log output due to technology shocks

is 57%
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Why Does Bias Appear in Last Case?

• Sims (1972) : can characterize the VAR parameter estimates econometrician
would obtain in large sample (B̂1, ..., B̂q and V̂ )

V̂ = V + min
B̂1,...,B̂q

1

2π

Z π

−π

h
B
¡
e−iω

¢
− B̂

¡
e−iω

¢i
SY (ω)

h
B
¡
eiω
¢
− B̂

¡
eiω
¢i0

dω

– SY (ω) is associated spectral density, at frequency ω.

• Econometrician chooses VAR lag matrices to minimize a quadratic form in
difference between estimated and true lag matrices
– Assigns greatest weight to frequencies where spectral density is greatest.
– If there’s specification error, then B̂ 6= B and V > V̂ .

• Specification error:
– Model Implies q =∞, But Econometrician uses q = 4.
– Model May Call for More Variables in Analysis.
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Why Does Bias Appear in Last Case? ...

• Two key ingredients to computing impact effects of shocks:
– Estimate of variance covariance matrix, V, of VAR disturbances and spectral

density of Yt at frequency zero, S0.
– V Estimated Precisely.
– Problem with spectral density at frequency zero.
∗ Standard VAR approach uses sum of estimated VAR matrices.
∗ No particular reason for this to be estimated precisely by ordinary least

squares.
∗ Sum of lag VAR matrices corresponds to ω = 0 and least squares will

pay attention to this only if SY (ω) happens to be relatively large in a
neighborhood of ω = 0.

• Replace S0 with Newey-West estimator:

S0 =
T−1X

k=−(T−1)
g(k)Ĉ (k) , g(k) =

∙
1− k

r

¸
where Ĉ(k) Sample Estimate of EYtY 0t−k, g(k) = 0 for k > r (r = 150).

• Figure 3
– Bias is reduced
– Less sampling uncertainty. 49



Figure 3: Analysis of the Long−Run Identification Assumption with Kydland−Prescott Specification
Standard Estimator Newey−West Spectral Estimator
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Solid line − mean response, Gray area − mean response plus/minus two standard errors,      
Starred line − true response, Dashed line − 95.5 percent probability interval of responses,
Circles − average value of econometrician estimated plus/minus two standard errors.        



CKM Long Run Results

• Benchmark CKM: substantial bias
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Figure 5a: Analysis of the Long−Run Identification Assumption with CKM Specification
Standard Estimator
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CKM Long Run Results ...

• Key Difference Between CKM and KP Model: Fraction of Variance Due to
Technology Very Small (23%)
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Figure 4a: Analysis of the Long−Run Identification Assumption with CKM Specification

Standard Estimator
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.

Solid line − mean response, Gray area − mean response plus/minus two standard errors,
Starred line − true response, Dashed line − 95.5 percent probability interval of responses,
Circles − average value of econometrician estimated plus/minus two standard errors.



CKM Long Run Results ...

• Distortions in CKM Model Reduced if you
– Have One More Variable Than Important Shocks
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Figure 6: The Long−Run Identification Assumption: Adding Variables and Shocks to the CKM BenchmarkFigure 6: The Long−Run Identification Assumption: Adding Variables and Shocks to the CKM Benchmark
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Starred line − true response, Dashed line − 95.5 percent probability interval of responses,
Circles − average value of econometrician estimated plus/minus two standard errors.        



CKM Long Run Results ...

• Distortions in CKM Model Also Reduced if you
– Adopt Newey-West Estimator of Spectrum at frequency zero.
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Figure 5: Analysis of the Long−Run Identification Assumption with CKM Specification
Standard Estimator Newey−West Spectral Estimator
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Key Lessons of the RBC Model Analysis

• With Short Run Exclusion Restrictions, VAR Analysis Highly Accurate

• With Long Run Exclusion Restrictions:

– If Technology Shocks Important, Then Inference with VARs Reliable

– Biases Could Occur When Technology Shocks Less Important. Then,

∗ Use 5-6 Variables in VAR
∗ If Can’t Use More Variables and Worried About Possibility that

Technology Shocks Not Important, Use Spectral Estimator.
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Why is Analysis with Short Run Restrictions So
Much More Precise than with Long-Run

Restrictions

• The Finding is Certainly Intuitively Appealing
– Seems Like it Would be Tough to Find, in 50 Years’ Data ‘Only Shock that

Has a Long-Run Effect on Productivity’
– Shocks in Short Run Restrictions Equivalent to Regression Disturbances.
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Why is Analysis with Short Run Restrictions So
Much More Precise than with Long-Run

Restrictions

• The Finding is Certainly Intuitively Appealing
– Seems Like it Would be Tough to Find, in 50 Years’ Data ‘Only Shock that

Has a Long-Run Effect on Productivity’
– Shocks in Short Run Restrictions Equivalent to Regression Disturbances.

• The VAR:
Xt = B1Xt−1 +B2Xt−2 + ... +BpXt−p + ut, Eutu

0
t = V

ut = Cet, CC
0 = V.
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Why is Analysis with Short Run Restrictions So
Much More Precise than with Long-Run

Restrictions

• The Finding is Certainly Intuitively Appealing
– Seems Like it Would be Tough to Find, in 50 Years’ Data ‘Only Shock that

Has a Long-Run Effect on Productivity’
– Shocks in Short Run Restrictions Equivalent to Regression Disturbances.

• The VAR:
Xt = B1Xt−1 +B2Xt−2 + ... +BpXt−p + ut, Eutu

0
t = V

ut = Cet, CC
0 = V.

• Short Run Restrictions:
– To Obtain Impact Effect of Shock, C1
∗ Require Good Estimate of V
∗ That’s Exactly What OLS Does!

– To Obtain Dynamic Effects of Shock:
∗ Require Good Estimates of Bj, first few j’s
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Why is Analysis with Short Run Restrictions So Much More Precise than with Long-Run Restrictio

• Long Run Restrictions:
– To Obtain Impact Effect of Shock, C1
∗ Require Good Estimate of V and

B(1) =

pX
j=1

Bj

∗ OLS Provides Relatively Little Information About B(e−iω), for ω ≈ 0.
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Relationship of Our Findings to
Chari-Kehoe-McGrattan

• CKM Say Nothing About Short Run Restrictions.

• CKM Consider The Consequences other Specification Errors, Such as First
Differencing. We do not Consider that Here (However, see Christiano,
Eichenbaum and Vigfusson, NBER Working Papers W10254 and W9819).

• CKM Overstate the Degree of Sampling Uncertainty in Estimate of Response
of Hours Worked.

– Reflects a Non-Standard Way of Implementing Long Run Restrictions
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Relationship of Our Findings to Chari-Kehoe-McGrattan ...

• Impact of Shocks on Forecast of Productivity in Long-Run:

lim
j→∞

Et[at+j]−Et−1[at+j] = (1, 0) [I −B(1)]−1C1e1t
• Standard Implementation of Long Run Restrictions:

(1, 1) Element of [I −B(1)]−1C1 Must Be Positive (Long Run Effect)
Sign of C11 (Impact Effect of Technology Shock) unrestricted
Could Lead to Contemporaneous Drop in Productivity

• CKM Sign Restriction:

CKM Sign Restriction: C11 > 0,
(1, 1) Element of [I −B(1)]−1C unrestricted
‘Positive Technology Shock Leads to Contemporaneous Rise in Productivity’
Positive Technology Shock Could Lead to Permanent Reduction in Productivity
(This Pattern is Impossible in CKM DGP)
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Relationship of Our Findings to Chari-Kehoe-McGrattan ...

• Benchmark CKM Model
– Initial Hours Worked Response Strong, Productivity Response Weak (Fig

3)
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Relationship of Our Findings to Chari-Kehoe-McGrattan ...

• Benchmark CKM Model
– Initial Hours Worked Response Strong, Productivity Response Weak (Fig

3)
– Consequences of CKM Sign Restriction
∗ In Some Samples, Hours Response Very Strong and Initial Productivity

Small Negative
∗ CKM Algorithm Calls this a Negative Technology Shock
∗ In These Cases, Their Procedure In Effect Multiplies the Hours Response

by -1 (Fig 3a).
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Figure 3a: Example of Mistaken Inference
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Relationship of Our Findings to Chari-Kehoe-McGrattan ...

• Benchmark CKM Model
– Initial Hours Worked Response Strong, Productivity Response Weak (Fig

3)
– Consequences of CKM Sign Restriction
∗ In Some Samples, Hours Response Very Strong and Initial Productivity

Small Negative
∗ CKM Algorithm Calls this a Negative Technology Shock
∗ In These Cases, Their Procedure In Effect Multiplies the Hours Response

by -1 (Fig 3a).
– Is this a Theoretical Curiosum? No...It Happens 23% Of Time.
∗ Leads to Pronounced Bimodal Distribution of Impact Effects (upper

panel, Fig 4)
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Relationship of Our Findings to Chari-Kehoe-McGrattan ...

• Benchmark CKM Model
– Initial Hours Worked Response Strong, Productivity Response Weak (Fig

3)
– Consequences of CKM Sign Restriction
∗ In Some Samples, Hours Response Very Strong and Initial Productivity

Small Negative
∗ CKM Algorithm Calls this a Negative Technology Shock
∗ In These Cases, Their Procedure In Effect Multiplies the Hours Response

by -1 (Fig 3a).
– Is this a Theoretical Curiosum? No...It Happens 23% Of Time.
∗ Leads to Pronounced Bimodal Distribution of Impact Effects (upper

panel, Fig 4)
∗ Actual Distribution of Impact Effects Not Bimodal (lower panel, Fig 4).
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Relationship of Our Findings to Chari-Kehoe-McGrattan ...

• Benchmark CKM Model
– Initial Hours Worked Response Strong, Productivity Response Weak (Fig

3)
– Consequences of CKM Sign Restriction
∗ In Some Samples, Hours Response Very Strong and Initial Productivity

Small Negative
∗ CKM Algorithm Calls this a Negative Technology Shock
∗ In These Cases, Their Procedure In Effect Multiplies the Hours Response

by -1 (Fig 3a).
– Is this a Theoretical Curiosum? No...It Happens 23% Of Time.
∗ Leads to Pronounced Bimodal Distribution of Impact Effects (upper

panel, Fig 4)
∗ Actual Distribution of Impact Effects Not Bimodal (lower panel, Fig 4).

– How Does this Affect Standard Errors?
∗ Leads CKM to Substantially Overstate Sampling Uncertainty (Fig. 5)
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Conclusion

• Studied properties of structural VAR’s for uncovering impulse response
functions to shocks.

• With short run restrictions, VAR’s perform remarkably well.
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– Potentially perform less well when shock under investigation isn’t very
important.
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Conclusion

• Studied properties of structural VAR’s for uncovering impulse response
functions to shocks.

• With short run restrictions, VAR’s perform remarkably well.
• With long run restrictions,with one exception VAR’s also perform well.

– Potentially perform less well when shock under investigation isn’t very
important.

– When there are enough variables in VAR, problems are greatly mitigated.
• Develop and implement a modified VAR approach

– Leads to drastic improvement even when technology shocks play a limited
role in aggregate fluctuations and a small number of variables are included
in VAR.
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