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Abstract

This paper analyzes the quality of VAR-based procedures for estimating the response
of the economy to a shock. We focus on two key issues. First, do VAR-based confidence
intervals accurately reflect the actual degree of sampling uncertainty associated with im-
pulse response functions? Second, what is the size of bias relative to confidence intervals,
and how do coverage rates of confidence intervals compare with their nominal size? We
address these questions using data generated from a series of estimated dynamic, sto-
chastic general equilibrium models. We organize most of our analysis around a particular
question that has attracted a great deal of attention in the literature: How do hours
worked respond to an identified shock? In all of our examples, as long as the variance
in hours worked due to a given shock is above the remarkably low number of 1 percent,
structural VARs perform well. This finding is true regardless of whether identification is
based on short-run or long-run restrictions. Confidence intervals are wider in the case of
long-run restrictions. Even so, long-run identified VARs can be useful for discriminating
among competing economic models.
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1. Introduction

Sims’s seminal paper Macroeconomics and Reality (1980) argued that procedures based on
vector autoregression (VAR) would be useful to macroeconomists interested in constructing
and evaluating economic models. Given a minimal set of identifying assumptions, structural
VARs allow one to estimate the dynamic effects of economic shocks. The estimated impulse
response functions provide a natural way to choose the parameters of a structural model and
to assess the empirical plausibility of alternative models.1

To be useful in practice, VAR-based procedures must have good sampling properties. In
particular, they should accurately characterize the amount of information in the data about
the effects of a shock to the economy. Also, they should accurately uncover the information
that is there.
These considerations lead us to investigate two key issues. First, do VAR-based confidence

intervals accurately reflect the actual degree of sampling uncertainty associated with impulse
response functions? Second, what is the size of bias relative to confidence intervals, and how
do coverage rates of confidence intervals compare with their nominal size?
We address these questions using data generated from a series of estimated dynamic, sto-

chastic general equilibrium (DSGE) models. We consider real business cycle (RBC) models and
the model in Altig, Christiano, Eichenbaum, and Linde (2005) (hereafter, ACEL) that embod-
ies real and nominal frictions. We organize most of our analysis around a particular question
that has attracted a great deal of attention in the literature: How do hours worked respond to
an identified shock? In the case of the RBC model, we consider a neutral shock to technology.
In the ACEL model, we consider two types of technology shocks as well as a monetary policy
shock.
We focus our analysis on an unavoidable specification error that occurs when the data

generating process is a DSGE model and the econometrician uses a VAR. In this case the true
VAR is infinite ordered, but the econometrician must use a VAR with a finite number of lags.
We find that as long as the variance in hours worked due to a given shock is above the

remarkably low number of 1 percent, VAR-based methods for recovering the response of hours
to that shock have good sampling properties. Technology shocks account for a much larger
fraction of the variance of hours worked in the ACEL model than in any of our estimated RBC
models. Not surprisingly, inference about the effects of a technology shock on hours worked is
much sharper when the ACEL model is the data generating mechanism.
Taken as a whole, our results support the view that structural VARs are a useful guide to

constructing and evaluating DSGE models. Of course, as with any econometric procedure it is
possible to find examples in which VAR-based procedures do not do well. Indeed, we present
such an example based on an RBC model in which technology shocks account for less than 1
percent of the variance in hours worked. In this example, VAR-based methods work poorly in
the sense that bias exceeds sampling uncertainty. Although instructive, the example is based
on a model that fits the data poorly and so is unlikely to be of practical importance.
Having good sampling properties does not mean that structural VARs always deliver small

1See for example Sims (1989), Eichenbaum and Evans (1995), Rotemberg and Woodford (1997), Gali (1999),
Francis and Ramey (2004), Christiano, Eichenbaum, and Evans (2005), and Del Negro, Schorfheide, Smets, and
Wouters (2005).
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confidence intervals. Of course, it would be a Pyrrhic victory for structural VARs if the best
one could say about them is that sampling uncertainty is always large and the econometrician
will always know it. Fortunately, this is not the case. We describe examples in which structural
VARs are useful for discriminating between competing economic models.
Researchers use two types of identifying restrictions in structural VARs. Blanchard and

Quah (1989), Gali (1999), and others exploit the implications that many models have for
the long-run effects of shocks.2 Other authors exploit short-run restrictions.3 It is useful to
distinguish between these two types of identifying restrictions to summarize our results.
We find that structural VARs perform remarkably well when identification is based on short-

run restrictions. For all the specifications that we consider, the sampling properties of impulse
response estimators are good and sampling uncertainty is small. This good performance obtains
even when technology shocks account for as little as 0.5 percent of the variance in hours. Our
results are comforting for the vast literature that has exploited short-run identification schemes
to identify the dynamic effects of shocks to the economy. Of course, one can question the
particular short-run identifying assumptions used in any given analysis. However, our results
strongly support the view that if the relevant short-run assumptions are satisfied in the data
generating process, then standard structural VAR procedures reliably uncover and identify the
dynamic effects of shocks to the economy.
The main distinction between our short and long-run results is that the sampling uncertainty

associated with estimated impulse response functions is substantially larger in the long-run case.
In addition, we find some evidence of bias when the fraction of the variance in hours worked
that is accounted for by technology shocks is very small. However, this bias is not large relative
to sampling uncertainty as long as technology shocks account for at least 1 percent of the
variance of hours worked. Still, the reason for this bias is interesting. We document that, when
substantial bias exists, it stems from the fact that with long-run restrictions one requires an
estimate of the sum of the VAR coefficients. The specification error involved in using a finite-
lag VAR is the reason that in some of our examples, the sum of VAR coefficients is difficult
to estimate accurately. This difficulty also explains why sampling uncertainty with long-run
restrictions tends to be large.
The preceding observations led us to develop an alternative to the standard VAR-based

estimator of impulse response functions. The only place the sum of the VAR coefficients appears
in the standard strategy is in the computation of the zero-frequency spectral density of the
data. Our alternative estimator avoids using the sum of the VAR coefficients by working with
a nonparametric estimator of this spectral density. We find that in cases when the standard
VAR procedure entails some bias, our adjustment virtually eliminates the bias.
Our results are related to a literature that questions the ability of long-run identified VARs

to reliably estimate the dynamic response of macroeconomic variables to structural shocks.

2See, for example, Basu, Fernald, and Kimball (2004), Christiano, Eichenbaum, and Vigfusson (2003, 2004),
Fisher (2006), Francis and Ramey (2004), King, Plosser, Stock and Watson (1991), Shapiro and Watson (1988)
and Vigfusson (2004). Francis, Owyang, and Roush (2005) pursue a related strategy to identify a technology
shock as the shock that maximizes the forecast error variance share of labor productivity at a long but finite
horizon.

3This list is particularly long and includes at least Bernanke (1986), Bernanke and Blinder (1992), Bernanke
and Mihov (1998), Blanchard and Perotti (2002), Blanchard and Watson (1986), Christiano and Eichenbaum
(1992), Christiano, Eichenbaum and Evans (2005), Cushman and Zha (1997), Eichenbaum and Evans (1995),
Hamilton (1997), Rotemberg and Woodford (1992), Sims (1986), and Sims and Zha (2006).
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Perhaps the first critique of this sort was provided by Sims (1972). Although his paper was
written before the advent of VARs, it articulates why estimates of the sum of regression coeffi-
cients may be distorted when there is specification error. Faust and Leeper (1997) and Pagan
and Robertson (1998) make an important related critique of identification strategies based on
long-run restrictions. More recently Erceg, Guerrieri, and Gust (2005) and Chari, Kehoe, and
McGrattan (2005b) (henceforth CKM) also examine the reliability of VAR-based inference us-
ing long-run identifying restrictions.4 Our conclusions regarding the value of identified VARs
differ sharply from those recently reached by CKM. One parameterization of the RBC model
that we consider is identical to the one considered by CKM. This parameterization is included
for pedagogical purposes only, as it is overwhelmingly rejected by the data.
The remainder of the paper is organized as follows. Section 2 presents the versions of the

RBCmodels that we use in our analysis. Section 3 discusses our results for standard VAR-based
estimators of impulse response functions. Section 4 analyzes the differences between short and
long-run restrictions. Section 5 discusses the relation between our work and the recent critique
of VARs offered by CKM. Section 6 summarizes the ACEL model and reports its implications
for VARs. Section 7 contains concluding comments.

2. A Simple RBC Model

In this section, we display the RBC model that serves as one of the data generating processes
in our analysis. In this model the only shock that affects labor productivity in the long-run
is a shock to technology. This property lies at the core of the identification strategy used
by King, et al (1991), Gali (1999) and other researchers to identify the effects of a shock to
technology. We also consider a variant of the model which rationalizes short run restrictions
as a strategy for identifying a technology shock. In this variant, agents choose hours worked
before the technology shock is realized. We describe the conventional VAR-based strategies for
estimating the dynamic effect on hours worked of a shock to technology. Finally, we discuss
parameterizations of the RBC model that we use in our experiments.

2.1. The Model

The representative agent maximizes expected utility over per capita consumption, ct, and per
capita hours worked, lt :

E0

∞X
t=0

(β (1 + γ))t
"
log ct + ψ

(1− lt)
1−σ − 1

1− σ

#
,

subject to the budget constraint:

ct + (1 + τx,t) it ≤ (1− τ l,t)wtlt + rtkt + Tt,

where
it = (1 + γ) kt+1 − (1− δ) kt.

4See also Fernandez-Villaverdez, Rubio-Ramirez, and Sargent (2005) who investigate the circumstances in
which the economic shocks are recoverable from the VAR disturbances. They provide a simple matrix algebra
check to assess recoverability. They identify models in which the conditions are satisfied and other models in
which they are not.
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Here, kt denotes the per capita capital stock at the beginning of period t, wt is the wage rate,
rt is the rental rate on capital, τx,t is an investment tax, τ l,t is the tax rate on labor income,
δ ∈ (0, 1) is the depreciation rate on capital, γ is the growth rate of the population, Tt represents
lump-sum taxes and σ > 0 is a curvature parameter.
The representative competitive firm’s production function is:

yt = kαt (Ztlt)
1−α ,

where Zt is the time t state of technology and α ∈ (0, 1). The stochastic processes for the shocks
are:

log zt = µz + σzε
z
t

τ l,t+1 = (1− ρl) τ l + ρlτ l,t + σlε
l
t+1 (2.1)

τx,t+1 = (1− ρx) τx + ρxτx,t + σxε
x
t+1,

where zt = Zt/Zt−1. In addition, εzt , ε
l
t, and εxt are independently and identically distributed

(i.i.d.) random variables with mean zero and unit standard deviation. The parameters, σz, σl,
and σx are non-negative scalars. The constant, µz, is the mean growth rate of technology, τ l
is the mean labor tax rate, and τx is the mean tax on capital. We restrict the autoregressive
coefficients, ρl and ρx, to be less than unity in absolute value.
Finally, the resource constraint is:

ct + (1 + γ) kt+1 − (1− δ) kt ≤ yt.

We consider two versions of the model, differentiated according to timing assumptions. In
the standard or nonrecursive version, all time t decisions are taken after the realization of
the time t shocks. This is the conventional assumption in the RBC literature. In the recursive
version of the model the timing assumptions are as follows. First, τ l,t is observed, and then labor
decisions are made. Second, the other shocks are realized and agents make their investment
and consumption decisions.

2.2. Relation of the RBC Model to VARs

We now discuss the relation between the RBC model and a VAR. Specifically, we establish
conditions under which the reduced form of the RBC model is a VAR with disturbances that
are linear combinations of the economic shocks. Our exposition is a simplified version of the
discussion in Fernandez-Villaverde, Rubio-Ramirez, and Sargent (2005) (see especially their
section III). We include this discussion because it frames many of the issues that we address.
Our discussion applies to both the standard and the recursive versions of the model.
We begin by showing how to put the reduced form of the RBC model into a state-space,

observer form. Throughout, we analyze the log-linear approximations to model solutions. Sup-
pose the variables of interest in the RBC model are denoted by Xt. Let st denote the vector
of exogenous economic shocks and let k̂t denote the percent deviation from steady state of the
capital stock, after scaling by Zt.

5 The approximate solution for Xt is given by:

Xt = a0 + a1k̂t + a2k̂t−1 + b0st + b1st−1, (2.2)

5Let k̃t = kt/Zt−1. Then, k̂t =
³
k̃t − k̃

´
/k̃, where k̃ denotes the value of k̃t in nonstochastic steady state.
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where
k̂t+1 = Ak̂t +Bst. (2.3)

Also, st has the law of motion:
st = Pst−1 +Qεt, (2.4)

where εt is a vector of i.i.d. fundamental economic disturbances. The parameters of (2.2)and
(2.3) are functions of the structural parameters of the model.
The ‘state’ of the system is composed of the variables on the right side of (2.2):

ξt =

⎛⎜⎜⎝
k̂t
k̂t−1
st
st−1

⎞⎟⎟⎠ .

The law of motion of the state is:
ξt = Fξt−1 +Dεt, (2.5)

where F and D are constructed from A, B, Q, P. The econometrician observes the vector of
variables, Yt. We assume Yt is equal to Xt plus iid measurement error, vt, which has diagonal
variance-covariance, R. Then:

Yt = Hξt + vt. (2.6)

Here, H is defined so that Xt = Hξt, that is, relation (2.2) is satisfied. In (2.6) we abstract from
the constant term. Hamilton (1994, section 13.4) shows how the system formed by (2.5) and
(2.6) can be used to construct the exact Gaussian density function for a series of observations,
Y1, ..., YT . We use this approach when we estimate versions of the RBC model.
We now use (2.5) and (2.6) to establish conditions under which the reduced form representa-

tion for Xt implied by the RBC model is a VAR with disturbances that are linear combinations
of the economic shocks. In this discussion, we set vt = 0, so that Xt = Yt. In addition, we
assume that the number of elements in εt coincides with the number of elements in Yt.

We begin by substituting (2.5) into (2.6) to obtain:

Yt = HFξt−1 + Cεt, C ≡ HD.

Our assumption on the dimensions of Yt and εt implies that the matrix C is square. In addition,
we assume C is invertible. Then:

εt = C−1Yt − C−1HFξt−1. (2.7)

Substituting (2.7) into (2.5), we obtain:

ξt =Mξt−1 +DC−1Yt,

where
M =

£
I −DC−1H

¤
F. (2.8)

As long as the eigenvalues of M are less than unity in absolute value,

ξt = DC−1Yt +MDC−1Yt−1 +M2DC−1Yt−2 + ... . (2.9)
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Using (2.9) to substitute out for ξt−1 in (2.7), we obtain:

εt = C−1Yt − C−1HF
£
DC−1Yt−1 +MDC−1Yt−2 +M2DC−1Yt−3 + ...

¤
,

or, after rearranging:
Yt = B1Yt−1 +B2Yt−2 + ... + ut, (2.10)

where

ut = Cεt (2.11)

Bj = HFM j−1DC−1, j = 1, 2, ... (2.12)

Expression (2.10) is an infinite-order VAR, because ut is orthogonal to Yt−j, j ≥ 1.

Proposition 2.1. (Fernandez-Villaverde, Rubio-Ramirez, and Sargent) If C is invertible and
the eigenvalues of M are less than unity in absolute value, then the RBC model implies:

• Yt has the infinite-order VAR representation in (2.10)

• The linear one-step-ahead forecast error Yt given past Yt’s is ut, which is related to the
economic disturbances by (2.11)

• The variance-covariance of ut is CC 0

• The sum of the VAR lag matrices is given by:

B (1) ≡
∞X
j=1

Bj = HF [I −M ]−1DC−1.

We will use the last of these results below.
Relation (2.10) indicates why researchers interested in constructing DSGE models find it

useful to analyze VARs. At the same time, this relationship clarifies some of the potential pitfalls
in the use of VARs. First, in practice the econometrician must work with finite lags. Second,
the assumption that C is square and invertible may not be satisfied. Whether C satisfies
these conditions depends on how Yt is defined. Third, significant measurement errors may
exist. Fourth, the matrix, M , may not have eigenvalues inside the unit circle. In this case, the
economic shocks are not recoverable from the VAR disturbances.6 Implicitly, the econometrician
who works with VARs assumes that these pitfalls are not quantitatively important.

2.3. VARs in Practice and the RBC Model

We are interested in the use of VARs as a way to estimate the response ofXt to economic shocks,
i.e., elements of εt. In practice, macroeconomists use a version of (2.10) with finite lags, say q.
A researcher can estimate B1, ..., Bq and V = Eutu

0
t. To obtain the impulse response functions,

however, the researcher needs theBi’s and the column of C corresponding to the shock in εt that

6For an early example, see Hansen and Sargent (1980, footnote 12). Sims and Zha (forthcoming) discuss the
possibility that, although a given economic shock may not lie exactly in the space of current and past Yt, it may
nevertheless be ‘close’. They discuss methods to detect this case.
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is of interest. However, to compute the required column of C requires additional identifying
assumptions. In practice, two types of assumptions are used. Short-run assumptions take the
form of direct restrictions on the matrix C. Long-run assumptions place indirect restrictions
on C that stem from restrictions on the long-run response of Xt to a shock in an element of εt.
In this section we use our RBC model to discuss these two types of assumptions and how they
are imposed on VARs in practice.

2.3.1. The Standard Version of the Model

The log-linearized equilibrium laws of motion for capital and hours in this model can be written
as follows:

log k̂t+1 = γ0 + γk log k̂t + γz log zt + γlτ l,t + γxτx,t, (2.13)

and
log lt = a0 + ak log k̂t + az log zt + alτ l,t + axτx,t. (2.14)

From (2.13) and (2.14), it is clear that all shocks have only a temporary effect on lt and k̂t.
7

The only shock that has a permanent effect on labor productivity, at ≡ yt/lt, is εzt . The other
shocks do not have a permanent effect on at. Formally, this exclusion restriction is:

lim
j→∞

[Etat+j −Et−1at+j] = f (εzt only) . (2.15)

In our linear approximation to the model solution f is a linear function. The model also implies
the sign restriction that f is an increasing function. In (2.15), Et is the expectation operator,

conditional on the information set Ωt =
³
log k̂t−s, log zt−s, τ l,t−s, τx,t−s; s ≥ 0

´
.

In practice, researchers impose the exclusion and sign restrictions on a VAR to compute εzt
and identify its dynamic effects on macroeconomic variables. Consider the N × 1 vector, Yt.
The VAR for Yt is given by:

Yt+1 = B (L)Yt + ut+1, Eutu
0
t = V, (2.16)

B(L) ≡ B1 +B2L+ ...+BqL
q−1,

Yt =

⎛⎝ ∆ log at
log lt
xt

⎞⎠ .

Here, xt is an additional vector of variables that may be included in the VAR. Motivated by the
type of reasoning discussed in the previous subsection, researchers assume that the fundamental
economic shocks are related to ut as follows:

ut = Cεt, Eεtε0t = I, CC 0 = V. (2.17)

Without loss of generality, we assume that the first element in εt is εzt . We can easily verify
that:

lim
j→∞

h
Ẽtat+j − Ẽt−1at+j

i
= τ [I −B(1)]−1Cεt, (2.18)

7Cooley and Dwyer (1998) argue that in the standard RBC model, if technology shocks have a unit root,
then per capita hours worked will be difference stationary. This claim, which plays an important role in their
analysis of VARs, is incorrect.
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where τ is a row vector with all zeros, but with unity in the first location. Here:

B(1) ≡ B1 + ...+Bq.

Also, Ẽt is the expectation operator, conditional on Ω̃t = {Yt, ..., Yt−q+1} . As mentioned above,
to compute the dynamic effects of εzt , we require B1, ..., Bq and C1, the first column of C.
The symmetric matrix, V, and the Bi’s can be computed using ordinary least squares re-

gressions. However, the requirement that CC 0 = V is not sufficient to determine a unique value
of C1. Adding the exclusion and sign restrictions does uniquely determine C1. Relation (2.18)
implies that these restrictions are:

exclusion restriction: [I −B(1)]−1C =

∙
number 0
numbers numbers

¸
,

where 0 is a row vector and

sign restriction: (1, 1) element of [I −B(1)]−1C is positive.

There are many matrices, C, that satisfy CC 0 = V as well as the exclusion and sign restrictions.
It is well-known that the first column, C1, of each of these matrices is the same. We prove this
result here, because elements of the proof will be useful to analyze our simulation results. Let

D ≡ [I −B(1)]−1C.

Let SY (ω) denote the spectral density of Yt at frequency ω that is implied by the qth-order
VAR. Then:

DD0 = [I −B(1)]−1 V [I −B(1)0]
−1
= SY (0) . (2.19)

The exclusion restriction requires that D have a particular pattern of zeros:

D =

⎡⎣ d11
1×1

0
1×(N−1)

D21
(N−1)×1

D22
(N−1)×(N−1)

⎤⎦ ,
so that

DD0 =

∙
d211 d11D

0
21

D21d11 D21D
0
21 +D22D

0
22

¸
=

∙
S11Y (0) S21Y (0)

0

S21Y (0) S22Y (0)

¸
,

where

SY (ω) ≡
∙
S11Y (ω) S21Y (ω)

0

S21Y (ω) S22Y (ω)

¸
.

The exclusion restriction implies that

d211 = S11Y (0) , D21 = S21Y (0) /d11. (2.20)

There are two solutions to (2.20). The sign restriction

d11 > 0 (2.21)

selects one of the two solutions to (2.20). So, the first column of D, D1, is uniquely determined.
By our definition of C, we have

C1 = [I −B(1)]D1. (2.22)

We conclude that C1 is uniquely determined.
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2.3.2. The Recursive Version of the Model

In the recursive version of the model, the policy rule for labor involves log zt−1 and τx,t−1
because these variables help forecast log zt and τx,t :

log lt = a0 + ak log k̂t + ãlτ l,t + ã0z log zt−1 + ã0xτx,t−1.

Because labor is a state variable at the time the investment decision is made, the equilibrium
law of motion for k̂t+1 is:

log k̂t+1 = γ0 + γk log k̂t + γ̃z log zt + γ̃lτ l,t + γ̃xτx,t

+γ̃0z log zt−1 + γ̃0xτx,t−1.

As in the standard model, the only shock that affects at in the long run is a shock to technology.
So, the long-run identification strategy discussed in section 2.3.1 applies to the recursive version
of the model. However, an alternative procedure for identifying εzt applies to this version of
the model. We refer to this alternative procedure as the ‘short-run’ identification strategy
because it involves recovering εzt using only the realized one-step-ahead forecast errors in labor
productivity and hours, as well as the second moment properties of those forecast errors.
Let uaΩ,t and ulΩ,t denote the population one-step-ahead forecast errors in at and log lt,

conditional on the information set, Ωt−1. The recursive version of the model implies that

uaΩ,t = α1ε
z
t + α2ε

l
t, u

l
Ω,t = γεlt,

where α1 > 0, α2, and γ are functions of the model parameters. The projection of uaΩ,t on ulΩ,t
is given by

uaΩ,t = βulΩ,t + α1ε
z
t , where β =

cov(uaΩ,t, u
l
Ω,t)

var
¡
ulΩ,t

¢ . (2.23)

Because we normalize the standard deviation of εzt to unity, α1 is given by:

α1 =
q
var

¡
uaΩ,t

¢
− β2var

¡
ulΩ,t

¢
.

In practice, we implement the previous procedure using the one-step-ahead forecast errors
generated from a VAR in which the variables in Yt are ordered as follows:

Yt =

⎛⎝ log lt
∆ log at

xt

⎞⎠ .

We write the vector of VAR one-step-ahead forecast errors, ut, as:

ut =

⎛⎝ ult
uat
uxt

⎞⎠ .

We identify the technology shock with the second element in εt in (2.17). To compute the
dynamic response of the variables in Yt to the technology shock we need B1, ..., Bq in (2.16)

10



and the second column, C2, of the matrix C, in (2.17). We obtain C2 in two steps. First, we
identify the technology shock using:

εzt =
1

α̂1

³
uat − β̂ult

´
,

where

β̂ =
cov(uat , u

l
t)

var
¡
ult
¢ , α̂1 =

q
var (uat )− β̂

2
var

¡
ult
¢
.

The required variances and covariances are obtained from the estimate of V in (2.16). Second,
we regress ut on εzt to obtain:

8

C2 =

⎛⎜⎝
cov(ul,εz)
var(εz)

cov(ua,εz)
var(εz)

cov(ux,εz)
var(εz)

⎞⎟⎠ =

⎛⎜⎝ 0
α̂1

1
α̂1

³
cov(uxt , u

a
t )− β̂cov

¡
uxt , u

l
t

¢´
⎞⎟⎠ .

2.4. Parameterization of the Model

We consider different specifications of the RBC model that are distinguished by the parame-
terization of the laws of motion of the exogenous shocks. In all specifications we assume, as in
CKM , that:

β = 0.981/4, θ = 0.33, δ = 1− (1− .06)1/4, ψ = 2.5, γ = 1.011/4 − 1 (2.24)

τx = 0.3, τ l = 0.242, µz = 1.016
1/4 − 1, σ = 1.

2.4.1. Our MLE Parameterizations

We estimate two versions of our model. In the two-shock maximum likelihood estimation (MLE)
specification we assume that σx = 0, so that there are two shocks, τ l,t and log zt. We estimate
the parameters ρl, σl, and σz, by maximizing the Gaussian likelihood function of the vector,
Xt = (∆ log yt, log lt)

0 , subject to (2.24).9 Our results are given by:

log zt = µz + 0.00953ε
z
t ,

τ l,t = (1− 0.986) τ̄ l + 0.986τ l,t−1 + 0.0056εlt.

The three-shock MLE specification incorporates the investment tax shock, τx,t, into the
model. We estimate the three-shock MLE version of the model by maximizing the Gaussian
likelihood function of the vector, Xt = (∆ log yt, log lt,∆ log it)

0, subject to the parameter values
in (2.24). The results are:

log zt = µz + 0.00968ε
z
t ,

τ l,t = (1− 0.9994) τ l + 0.9994τ l,t−1 + 0.00631εlt,
τx,t = (1− 0.9923) τx + 0.9923τx,t−1 + 0.00963εxt .

8We implement the procedure for estimating C2 by computing CC 0 = V, where C is the lower triangular
Cholesky decomposition of V, and setting C2 equal to the second column of C.

9We use the standard Kalman filter strategy discussed in Hamilton (1994, section 13.4). We remove the
sample mean from Xt prior to estimation and set the measurement error in the Kalman filter system to zero,
i.e., R = 0 in (2.6).
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The estimated values of ρx and ρl are close to unity. This finding is consistent with other
research that also reports that shocks in estimated general equilibrium models exhibit high
degrees of serial correlation.10

2.4.2. CKM Parameterizations

The two-shock CKM specification has two shocks, zt and τ l,t. These shocks have the following
time series representations:

log zt = µz + 0.0131ε
z
t ,

τ l,t = (1− 0.952) τ l + 0.952τ l,t−1 + 0.0136εlt.

The three-shock CKM specification adds an investment shock, τx,t, to the model, and has the
following law of motion:

τx,t = (1− 0.98) τx + 0.98τx,t−1 + 0.0123εxt . (2.25)

As in our specifications, CKM obtain their parameter estimates using maximum likelihood
methods. However, their estimates are very different from ours. For example, the variances of
the shocks are larger in the two-shock CKM specification than in our MLE specification. Also,
the ratio of σ2l to σ2z is nearly three times larger in the two-shock CKM specification than in
our two-shock MLE specification. Section 5 below discusses the reasons for these differences.

2.5. The Importance of Technology Shocks for Hours Worked

Table 1 reports the contribution, Vh, of technology shocks to three different measures of the
volatility in the log of hours worked: (i) the variance of the log hours, (ii) the variance of
HP-filtered, log hours and (iii) the variance in the one-step-ahead forecast error in log hours.11

With one exception, we compute the analogous statistics for log output. The exception is (i),
for which we compute the contribution of technology shocks to the variance of the growth rate
of output.
The key result in this table is that technology shocks account for a very small fraction of the

volatility in hours worked. When Vh is measured according to (i), it is always below 4 percent.
When Vh is measured using (ii) or (iii) it is always below 8 percent. For both (ii) and (iii), in
the CKM specifications, Vh is below 2 percent.12 Consistent with the RBC literature, the table
also shows that technology accounts for a much larger movement in output.
10See, for example, Christiano (1988), Christiano, et al. (2004), and Smets and Wouters (2003).
11We compute forecast error variances based on a four lag VAR. The variables in the VAR depend on whether

the calculations correspond to the two or three shock model. In the case of the two-shock model, the VAR has
two variables, output growth and log hours. In the case of the three-shock model, the VAR has three variables:
output growth, log hours and the log of the investment to output ratio. Computing Vh requires estimating
VARs in artificial data generated with all shocks, as well as in artificial data generated with only the technology
shock. In the latter case, the one-step ahead forecast error from the VAR is well defined, even though the VAR
coefficients themselves are not well defined due to multicollinearity problems.
12When we measure Vh according to (i), Vh drops from 3.73 in the two-shock MLE model to 0.18 in the

three-shock MLE model. The analogous drop in Vh is an order of magnitude smaller when Vh is measured using
(ii) or (iii). The reason for this difference is that ρl goes from 0.986 in the two-shock MLE model to 0.9994
in the three-shock MLE model. In the latter specification there is a near-unit root in τ l,t, which translates
into a near-unit root in hours worked. As a result, the variance of hours worked becomes very large at the
low frequencies. The near-unit root in τ lt has less of an effect on hours worked at high and business cycle
frequencies.
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Figure 1 displays visually how unimportant technology shocks are for hours worked. The
top panel displays two sets of 180 artificial observations on hours worked, simulated using the
standard two-shock MLE specification. The volatile time series shows how log hours worked
evolve in the presence of shocks to both zt and τ l,t. The other time series shows how log hours
worked evolve in response to just the technology shock, zt. The bottom panel is the analog of
the top figure when the data are generated using the standard two-shock CKM specification.

3. Results Based on RBC Data Generating Mechanisms

In this section we analyze the properties of conventional VAR-based strategies for identifying
the effects of a technology shock on hours worked. We focus on the bias properties of the
impulse response estimator, and on standard procedures for estimating sampling uncertainty.
We use the RBC model parameterizations discussed in the previous section as the data

generating processes. For each parameterization, we simulate 1,000 data sets of 180 observations
each. The shocks εzt , ε

l
t, and possibly εxt , are drawn from i.i.d. standard normal distributions.

For each artificial data set, we estimate a four-lag VAR. The average, across the 1,000 data
sets, of the estimated impulse response functions, allows us to assess bias.
For each data set we also estimate two different confidence intervals: a percentile-based

confidence interval and a standard-deviation based confidence interval.13 We construct the
intervals using the following bootstrap procedure. Using random draws from the fitted VAR
disturbances, we use the estimated four lag VAR to generate 200 synthetic data sets, each
with 180 observations. For each of these 200 synthetic data sets we estimate a new VAR
and impulse response function. For each artificial data set the percentile-based confidence
interval is defined as the top 2.5 percent and bottom 2.5 percent of the estimated coefficients
in the dynamic response functions. The standard-deviation-based confidence interval is defined
as the estimated impulse response plus or minus two standard deviations where the standard
deviations are calculated across the 200 simulated estimated coefficients in the dynamic response
functions.
We assess the accuracy of the confidence interval estimators in two ways. First, we compute

the coverage rate for each type of confidence interval. This rate is the fraction of times, across
the 1,000 data sets simulated from the economic model, that the confidence interval contains
the relevant true coefficient. If the confidence intervals were perfectly accurate, the coverage
rate would be 95 percent. Second, we provide an indication of the actual degree of sampling
uncertainty in the VAR-based impulse response functions. In particular, we report centered 95
percent probability intervals for each lag in our impulse response function estimators.14 If the
confidence intervals were perfectly accurate, they should on average coincide with the boundary
of the 95 percent probability interval.
When we generate data from the two-shock MLE and CKM specifications, we set Yt =

13Sims and Zha (1999) refer to what we call the percentile-based confidence interval as the ‘other-percentile
bootstrap interval’. This procedure has been used in several studies, such as Blanchard and Quah (1989), Chris-
tiano, Eichenbaum, and Evans (1999), Francis and Ramey (2004), McGrattan (2006), and Runkle (1987). The
standard-deviation based confidence interval has been used by other researchers, such as Christiano Eichenbaum,
and Evans (2005), Gali (1999), and Gali and Rabanal (2004).
14For each lag starting at the impact period, we ordered the 1,000 estimated impulse responses from smallest

to largest. The lower and upper boundaries correspond to the 25th and the 975th impulses in this ordering.
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(∆ log at, log lt)
0. When we generate data from the three-shock MLE and CKM specifications,

we set Yt = (∆ log at, log lt, log it/yt)0.

3.1. Short-Run Identification

Results for the two- and three- Shock MLE Specifications

Figure 2 reports results generated from four different parameterizations of the recursive
version of the RBCmodel. In each panel, the solid line is the average estimated impulse response
function for the 1,000 data sets simulated using the indicated economic model. For each model,
the starred line is the true impulse response function of hours worked. In each panel, the gray
area defines the centered 95 percent probability interval for the estimated impulse response
functions. The stars with no line indicate the average percentile-based confidence intervals
across the 1,000 data sets. The circles with no line indicate the average standard-deviation-
based confidence intervals.
Figures 3 and 4 graph the coverage rates for the percentile-based and standard-deviation-

based confidence intervals. For each case we graph how often, across the 1,000 data sets simu-
lated from the economic model, the econometrician’s confidence interval contains the relevant
coefficient of the true impulse response function.
The 1,1 panel in Figure 2 exhibits the properties of the VAR-based estimator of the response

of hours to a technology shock when the data are generated by the two-shock MLE specification.
The 2,1 panel corresponds to the case when the data generating process is the three-shock MLE
specification.
The panels have two striking features. First, there is essentially no evidence of bias in the

estimated impulse response functions. In all cases, the solid lines are very close to the starred
lines. Second, an econometrician would not be misled in inference by using standard procedures
for constructing confidence intervals. The circles and stars are close to the boundaries of the
gray area. The 1,1 panels in Figures 3 and 4 indicate that the coverage rates are roughly 90
percent. So, with high probability, VAR-based confidence intervals include the true value of
the impulse response coefficients.

Results for the CKM Specification

The second column of Figure 2 reports the results when the data generating process is
given by variants of the CKM specification. The 1,2 and 2,1 panels correspond to the two and
three-shock CKM specification, respectively.
The second column of Figure 2 contains the same striking features as the first column. There

is very little bias in the estimated impulse response functions. In addition, the average value
of the econometrician’s confidence interval coincides closely with the actual range of variation
in the impulse response function (the gray area). Coverage rates, reported in the 1,2 panels
of Figures 3 and 4, are roughly 90 percent. These rates are consistent with the view that
VAR-based procedures lead to reliable inference.
A comparison of the gray areas across the first and second columns of Figure 2, clearly

indicates that more sampling uncertainty occurs when the data are generated from the CKM
specifications than when they are generated from the MLE specifications (the gray areas are
wider). VAR-based confidence intervals detect this fact.
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3.2. Long-run Identification

Results for the two- and three- Shock MLE Specifications

The first and second rows of column 1 in Figure 5 exhibit our results when the data are
generated by the two- and three- shock MLE specifications. Once again there is virtually
no bias in the estimated impulse response functions and inference is accurate. The coverage
rates associated with the percentile-based confidence intervals are very close to 95 percent
(see Figure 3). The coverage rates for the standard-deviation-based confidence intervals are
somewhat lower, roughly 80 percent (see Figure 4). The difference in coverage rates can be
seen in Figure 5, which shows that the stars are shifted down slightly relative to the circles.
Still, the circles and stars are very good indicators of the boundaries of the gray area, although
not quite as good as in the analog cases in Figure 2.
Comparing Figures 2 and 5, we see that Figure 5 reports more sampling uncertainty. That

is, the gray areas are wider. Again, the crucial point is that the econometrician who computes
standard confidence intervals would detect the increase in sampling uncertainty.

Results for the CKM Specification

The third and fourth rows of column 1 in Figure 5 report results for the two and three -
shock CKM specifications. Consistent with results reported in CKM, there is substantial bias in
the estimated dynamic response functions. For example, in the Two-shock CKM specification,
the contemporaneous response of hours worked to a one-standard-deviation technology shock
is 0.3 percent, while the mean estimated response is 0.97 percent. This bias stands in contrast
to our other results.
Is this bias big or problematic? In our view, bias cannot be evaluated without taking

into account sampling uncertainty. Bias matters only to the extent that the econometrician
is led to an incorrect inference. For example, suppose sampling uncertainty is large and the
econometrician knows it. Then the econometrician would conclude that the data contain little
information and, therefore, would not be misled. In this case, we say that bias is not large.
In contrast, suppose sampling uncertainty is large, but the econometrician thinks it is small.
Here, we would say bias is large.
We now turn to the sampling uncertainty in the CKM specifications. Figure 5 shows that

the econometrician’s average confidence interval is large relative to the bias. Interestingly,
the percentile confidence intervals (stars) are shifted down slightly relative to the standard-
deviation-based confidence intervals (circles). On average, the estimated impulse response
function is not in the center of the percentile confidence interval. This phenomenon often
occurs in practice.15 Recall that we estimate a four lag VAR in each of our 1,000 synthetic data
sets. For the purposes of the bootstrap, each of these VARs is treated as a true data generating
process. The asymmetric percentile confidence intervals show that when data are generated by
these VARs, VAR-based estimators of the impulse response function have a downward bias.
Figure 3 reveals that for the two- and three-shock CKM specifications, percentile-based

coverage rates are reasonably close to 95 percent. Figure 4 shows that the standard deviation

15An extreme example, in which the point estimates roughly coincide with one of the boundaries of the
percentile-based confidence interval, appears in Blanchard and Quah (1989).
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based coverage rates are lower than the percentile-based coverage rates. However even these
coverage rates are relatively high in that they exceed 70 percent.
In summary, the results for the MLE specification differ from those of the CKM specifications

in two interesting ways. First, sampling uncertainty is much larger with the CKM specification.
Second, the estimated responses are somewhat biased with the CKM specification. But the bias
is small: It has no substantial effect on inference, at least as judged by coverage rates for the
econometrician’s confidence intervals.

3.3. Confidence Intervals in the RBC Examples and a Situation in Which VAR-
Based Procedures Go Awry

Here we show that the more important technology shocks are in the dynamics of hours worked,
the easier it is for VARs to answer the question, ‘how do hours worked respond to a technology
shock’. We demonstrate this by considering alternative values of the innovation variance in the
labor tax, σl, and by considering alternative values of σ, the utility parameter that controls the
Frisch elasticity of labor supply.
Consider Figure 6, which focuses on the long-run identification schemes. The first and

second columns report results for the two-shock MLE and CKM specifications, respectively.
For each specification we redo our experiments, reducing σl by a half and then by a quarter.
Table 1 shows that the importance of technology shocks rises as the standard deviation of the
labor tax shock falls. Figure 6 indicates that the magnitude of sampling uncertainty and the
size of confidence intervals fall as the relative importance of labor tax shocks falls.16

Figure 7 presents the results of a different set of experiments based on perturbations of the
two-shock CKM specification. The 1,1 and 2,1 panels show what happens when we vary the
value of σ, the parameter that controls the Frisch labor supply elasticity. In the 1,1 panel we
set σ = 6, which corresponds to a Frisch elasticity of 0.63. In the 2,1 panel, we set σ = 0, which
corresponds to a Frisch elasticity of infinity. As the Frisch elasticity is increased, the fraction of
the variance in hours worked due to technology shocks decreases (see Table 1). The magnitude
of bias and the size of confidence intervals are larger for the higher Frisch elasticity case. In
both cases the bias is still smaller than the sampling uncertainty.
We were determined to construct at least one example in which the VAR-based estimator of

impulse response functions have bad properties, i.e., bias is larger than sampling uncertainty.
We display such an example in the 3,1 panel of Figure 7. The data generating process is a
version of the two-shock CKM model with an infinite Frisch elasticity and double the standard
deviation of the labor tax rate. Table 1 indicates that with this specification, technology shocks
account for a trivial fraction of the variance in hours worked. Of the three measures of Vh,
two are 0.46 percent and the third is 0.66 percent . The 3,1 panel of Figure 7 shows that
the VAR-based procedure now has very bad properties: the true value of the impulse response
function lies outside the average value of both confidence intervals that we consider. This
example shows that constructing scenarios in which VAR-based procedures go awry is certainly
possible. However, this example seems unlikely to be of practical significance given the poor fit
to the data of this version of the model.
16As σl falls, the total volatility of hours worked falls, as does the relative importance of labor tax shocks. In

principle, both effects contribute to the decline in sampling uncertainty.
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3.4. Are Long-Run Identification Schemes Informative?

Up to now, we have focused on the RBC model as the data generating process. For empiri-
cally reasonable specifications of the RBC model, confidence intervals associated with long-run
identification schemes are large. One might be tempted to conclude that VAR-based long-run
identification schemes are uninformative. Specifically, are the confidence intervals so large that
we can never discriminate between competing economic models? Erceg, Guerrieri, and Gust
(2005) show that the answer to this question is ‘no’. They consider an RBC model similar to
the one discussed above and a version of the sticky wage-price model developed by Christiano,
Eichenbaum, and Evans (2005) in which hours worked fall after a positive technology shock.
They then conduct a series of experiments to assess the ability of a long-run identified structural
VAR to discriminate between the two models on the basis of the response of hours worked to
a technology shock.
Using estimated versions of each of the economic models as a data generating process,

they generate 10,000 synthetic data sets each with 180 observations. They then estimate a
four-variable structural VAR on each synthetic data set and compute the dynamic response
of hours worked to a technology shock using long-run identification. Erceg, Guerrieri, and
Gust (2005) report that the probability of finding an initial decline in hours that persists for
two quarters is much higher in the model with nominal rigidities than in the RBC model (93
percent versus 26 percent). So, if these are the only two models contemplated by the researcher,
an empirical finding that hours worked decline after a positive innovation to technology will
constitute compelling evidence in favor of the sticky wage-price model.
Erceg, Guerrieri, and Gust (2005) also report that the probability of finding an initial rise

in hours that persists for two quarters is much higher in the RBC model than in the sticky
wage-price model (71 percent versus 1 percent). So, an empirical finding that hours worked
rises after a positive innovation to technology would constitute compelling evidence in favor of
the RBC model versus the sticky wage-price alternative.

4. Contrasting Short- and Long- Run Restrictions

The previous section demonstrates that, in the examples we considered, when VARs are iden-
tified using short-run restrictions, the conventional estimator of impulse response functions is
remarkably accurate. In contrast, for some parameterizations of the data generating process,
the conventional estimator of impulse response functions based on long-run identifying restric-
tions can exhibit noticeable bias. In this section we argue that the key difference between the
two identification strategies is that the long-run strategy requires an estimate of the sum of the
VAR coefficients, B (1) . This object is notoriously difficult to estimate accurately (see Sims,
1972).
We consider a simple analytic expression related to one in Sims (1972). Our expression

shows what an econometrician who fits a misspecified, fixed-lag, finite-order VAR would find
in population. Let B̂1, ..., B̂q and V̂ denote the parameters of the qth-order VAR fit by the
econometrician. Then:

V̂ = V + min
B̂1,...,B̂q

1
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dω, (4.1)
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where

B (L) = B1 +B2L+B3L
2 + ...,

B̂ (L) = B̂1 + B̂2L+ ...+ B̂4L
3.

Here, B (e−iω) and B̂ (e−iω) correspond to B (L) and B̂ (L) with L replaced by e−iω.17 In (4.1),
B and V are the parameters of the actual infinite-ordered VAR representation of the data
(see (2.10)), and SY (ω) is the associated spectral density at frequency ω.18 According to
(4.1), estimation of a VAR approximately involves choosing VAR lag matrices to minimize a
quadratic form in the difference between the estimated and true lag matrices. The quadratic
form assigns greatest weight to the frequencies for which the spectral density is the greatest. If
the econometrician’s VAR is correctly specified, then B̂ (e−iω) = B (e−iω) for all ω, and V̂ = V,

so that the estimator is consistent. If there is specification error, then B̂ (e−iω) 6= B (e−iω) for
some ω and V > V̂ .19 In our context, specification error exists because the true VAR implied
by our data generating processes has q =∞, but the econometrician uses a finite value of q.
To understand the implications of (4.1) for our analysis, it is useful to write in lag-operator

form the estimated dynamic response of Yt to a shock in the first element of εt

Yt =
£
I + θ1L+ θ2L

2 + ...
¤
Ĉ1ε1,t, (4.2)

where the θk’s are related to the estimated VAR coefficients as follows:

θk =
1

2π

Z π

−π

h
I − B̂

¡
e−iω

¢
e−iω

i−1
ekωidω. (4.3)

In the case of long-run identification, the vector Ĉ1 is computed using (2.22), and B̂ (1) and V̂

replace B (1) and V respectively. In the case of short-run identification, we compute Ĉ1 as the
second column in the upper triangular Cholesky decomposition of V̂ .20

17The minimization in (4.1) is actually over the trace of the indicated integral. One interpretation of (4.1)
is that it provides the probability limit of our estimators — what they would converge to as the sample size
increases to infinity. We do not adopt this interpretation, because in practice an econometrician would use a
consistent lag-length selection method. The probability limit of our estimators corresponds to the true impulse
response functions for all cases considered in this paper.
18The derivation of this formula is straightforward. Write (2.10) in lag operator form as follows:

Yt = B(L)Yt−1 + ut,

where Eutu0t = V. Let the fitted disturbances associated with a particular parameterization, B̂ (L) , be denoted
ût. Simple substitution implies:

ût =
h
B (L)− B̂(L)

i
Yt−1 + ut.

The two random variables on the right of the equality are orthogonal, so that the variance of ût is just the
variance of the sum of the two:

var (ût) = var
³h
B (L)− B̂(L)

i
Yt−1

´
+ V.

Expression (4.1) in the text follows immediately.
19By V > V̂ , we mean that V − V̂ is a positive definite matrix.
20In the earlier discussion it was convenient to adopt the normalization that the technology shock is the

second element of εt. Here, we adopt the same normalization as for the long-run identification — namely, that
the technology shock is the first element of εt.
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We use (4.1) to understand why estimation based on short-run and long-run identification
can produce different results. According to (4.2), impulse response functions can be decomposed
into two parts, the impact effect of the shocks, summarized by Ĉ1, and the dynamic part
summarized in the term in square brackets. We argue that when a bias arises with long-run
restrictions, it is because of difficulties in estimating C1. These difficulties do not arise with
short-run restrictions.
In the short-run identification case, Ĉ1 is a function of V̂ only. Across a variety of numerical

examples, we find that V̂ is very close to V.21 This result is not surprising because (4.1) indicates
that the entire objective of estimation is to minimize the distance between V̂ and V. In the
long-run identification case, Ĉ1 depends not only on V̂ but also on B̂ (1) . A problem is that
the criterion does not assign much weight to setting B̂ (1) = B (1) unless SY (ω) happens to
be relatively large in a neighborhood of ω = 0. But, a large value of SY (0) is not something
one can rely on.22 When SY (0) is relatively small, attempts to match B̂ (e−iω) with B (e−iω)

at other frequencies can induce large errors in B̂(1).

The previous argument about the difficulty of estimating C1 in the long-run identification
case does not apply to the θ0ks. According to (4.3) θk is a function of B̂ (e

−iω) over the whole
range of ω’s, not just one specific frequency.
We now present a numerical example, which illustrates Proposition 1 as well as some of the

observations we have made in discussing (4.1). Our numerical example focuses on population
results. Therefore, it provides only an indication of what happens in small samples.
To understand what happens in small samples, we consider four additional numerical ex-

amples. First, we show that when the econometrician uses the true value of B (1), the bias and
much of the sampling uncertainty associated with the Two-shock CKM specification disappears.
Second, we demonstrate that bias problems essentially disappear when we use an alternative to
the standard zero-frequency spectral density estimator used in the VAR literature. Third, we
show that the problems are attenuated when the preference shock is more persistent. Fourth,
we consider the recursive version of the two-shock CKM specification in which the effect of
technology shocks can be estimated using either short- or long-run restrictions.

A Numerical Example

Table 2 reports various properties of the two-shock CKM specification. The first six Bj’s in
the infinite-order VAR, computed using (2.12), are reported in Panel A. These Bj’s eventually
converge to zero, however they do so slowly. The speed of convergence is governed by the size
of the maximal eigenvalue of the matrix M in (2.8), which is 0.957. Panel B displays the B̂j’s
that solve (4.1) with q = 4. Informally, the B̂j’s look similar to the Bj’s for j = 1, 2, 3, 4. In line
with this observation, the sum of the true Bj’s, B1+ ...+B4 is similar in magnitude to the sum
of the estimated B̂j’s, B̂ (1) (see Panel C). But the econometrician using long-run restrictions
needs a good estimate of B (1) . This matrix is very different from B1 + ...+B4. Although the

21This result explains why lag-length selection methods, such as the Akaike criterion, almost never suggest
values of q greater than 4 in artificial data sets of length 180, regardless of which of our data generating methods
we used. These lag length selection methods focus on V̂ .
22Equation (4.1) shows that B̂ (1) corresponds to only a single point in the integral. So other things equal, the

estimation criterion assigns no weight at all to getting B̂(1) right. The reason B (1) is identified in our setting
is that the B (ω) functions we consider are continuous at ω = 0.
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remaining Bj’s for j > 4 are individually small, their sum is not. For example, the 1,1 element
of B (1) is 0.28, or six times larger than the 1,1 element of B1 + ...+B4.

The distortion in B̂ (1) manifests itself in a distortion in the estimated zero-frequency spec-
tral density (see Panel D). As a result, there is distortion in the estimated impact vector, Ĉ1
(Panel F).23 To illustrate the significance of the latter distortion for estimated impulse response
functions, we display in Figure 8 the part of (4.2) that corresponds to the response of hours
worked to a technology shock. In addition, we display the true response. There is a substantial
distortion, which is approximately the same magnitude as the one reported for small samples
in Figure 5. The third line in Figure 8 corresponds to (4.2) when Ĉ1 is replaced by its true
value, C1. Most of the distortion in the estimated impulse response function is eliminated by
this replacement. Finally, the distortion in Ĉ1 is due to distortion in B̂ (1) , as V̂ is virtually
identical to V (panel E).
This example is consistent with our overall conclusion that the individual Bj’s and V are well

estimated by the econometrician using a four-lag VAR. The distortions that arise in practice
primarily reflect difficulties in estimating B (1). Our short-run identification results in Figure
2 are consistent with this claim, because distortions are minimal with short-run identification.

Using the True Value of B (1) in a Small Sample

A natural way to isolate the role of distortions in B̂ (1) is to replace B̂ (1) by its true value
when estimating the effects of a technology shock. We perform this replacement for the two-
shock CKM specification, and report the results in Figure 9. For convenience, the 1,1 panel of
Figure 9 repeats our results for the two-shock CKM specification from the 3,1 panel in Figure 5.
The 1,2 panel of Figure 9 shows the sampling properties of our estimator when the true value
of B (1) is used in repeated samples. When we use the true value of B(1) the bias completely
disappears. In addition, coverage rates are much closer to 95 percent and the boundaries of the
average confidence intervals are very close to the boundaries of the gray area.

Using an Alternative Zero-Frequency Spectral Density Estimator

In practice, the econometrician does not know B (1). However, we can replace the VAR-
based zero-frequency spectral density in (2.19) with an alternative estimator of SY (0). Here,
we consider the effects of using a standard Bartlett estimator:24

SY (0) =
T−1X

k=−(T−1)

g(k)Ĉ (k) , g(k) =

½
1− |k|

r
|k| ≤ r

0 |k| > r
, (4.4)

where, after removing the sample mean from Yt :

Ĉ(k) =
1

T

TX
t=k+1

YtY
0
t−k.

23A similar argument is presented in Ravenna (2005).
24Christiano, Eichenbaum and Vigfusson (2006) also consider the estimator proposed by Andrews and Mon-

ahan (1992).
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We use essentially all possible covariances in the data by choosing a large value of r, r = 150.25

In some respects, our modified estimator is equivalent to running a VAR with longer lags.
We now assess the effect of our modified long-run estimator. The first two rows in Figure

5 present results for cases in which the data generating mechanism corresponds to our two-
and three-shock MLE specifications. Both the standard estimator (the left column) and our
modified estimator (the right column) exhibit little bias. In the case of the standard estimator,
the econometrician’s estimator of standard errors understates somewhat the degree of sampling
uncertainty associated with the impulse response functions. The modified estimator reduces
this discrepancy. Specifically, the circles and stars in the right column of Figure 5 coincide
closely with the boundary of the gray area. Coverage rates are reported in the 2,1 panels of
Figures 3 and 4. In Figure 3, coverage rates now exceed 95 percent. The coverage rates in
Figure 4 are much improved relative to the standard case. Indeed, these rates are now close
to 95 percent. Significantly, the degree of sampling uncertainty associated with the modified
estimator is not greater than that associated with the standard estimator. In fact, in some
cases, sampling uncertainty declines slightly.
The last two rows of column 1 in Figure 5 display the results when the data generating

process is a version of the CKM specification. As shown in the second column, the bias is
essentially eliminated by using the modified estimator. Once again the circles and stars roughly
coincide with the boundary of the gray area. Coverage rates for the percentile-based confidence
intervals reported in Figure 3 again have a tendency to exceed 95 percent (2,2 panel). As
shown in the 2,2 panel of Figure 4, coverage rates associated with the standard deviation based
estimator are very close to 95 percent. There is a substantial improvement over the coverage
rates associated with the standard spectral density estimator.
Figure 5 indicates that when the standard estimator works well, the modified estimator

also works well. When the standard estimator results in biases, the modified estimator re-
moves them. These findings are consistent with the notion that the biases for the two CKM
specifications reflect difficulties in estimating the spectral density at frequency zero. Given our
finding that V̂ is an accurate estimator of V , we conclude that the difficulties in estimating the
zero-frequency spectral density in fact reflect problems with B (1) .

The second column of Figure 7 shows how our modified VAR-based estimator works when
the data are generated by the various perturbations on the Two-shock CKM specification. In
every case, bias is substantially reduced.

Shifting Power to the Low Frequencies

Formula (4.1), suggests that, other things being equal, the more power there is near fre-
quency zero, the less bias there is in B̂ (1) and the better behaved is the estimated impulse
response function to a technology shock. To pursue this observation we change the parameter-
ization of the non-technology shock in the two-shock CKM specification. We reallocate power
toward frequency zero, holding the variance of the shock constant by increasing ρl to 0.998 and
suitably lowering σl in (2.1). The results are reported in the 2,1 panel of Figure 9. The bias
associated with the two-shock CKM specification almost completely disappears. This result is

25The rule of always setting the bandwidth, r, equal to sample size does not yield a consistent estimator of the
spectral density at frequency zero. We assume that as sample size is increased beyond T = 180, the bandwidth
is increased sufficiently slowly to achieve consistency.
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consistent with the notion that the bias problems with the two-shock CKM specification stem
from difficulties in estimating B (1) .
The previous result calls into question conjectures in the literature (see Erceg, Guerrieri, and

Gust, 2005). According to these conjectures, if there is more persistence in a non-technology
shock, then the VAR will produce biased results because it will confuse the technology and
non-technology shocks. Our result shows that this intuition is incomplete, because it fails to
take into account all of the factors mentioned in our discussion of (4.1). To show the effect of
persistence, we consider a range of values of ρl to show that the impact of ρl on bias is in fact
not monotone.
The 2,2 panel of Figure 9 displays the econometrician’s estimator of the contemporaneous

impact on hours worked of a technology shock against ρl. The dashed line indicates the true
contemporaneous effect of a technology shock on hours worked in the two-shock CKM spec-
ification. The dot-dashed line in the figure corresponds to the solution of (4.1), with q = 4,

using the standard VAR-based estimator.26 The star in the figure indicates the value of ρl in
the two-shock CKM specification. In the neighborhood of this value of ρl, the distortion in the
estimator falls sharply as ρl increases. Indeed, for ρl = 0.9999, essentially no distortion occurs.
For values of ρl in the region, (−0.5, 0.5) , the distortion increases with increases in ρl.

The 2,2 panel of Figure 9 also allows us to assess the value of our proposed modification
to the standard estimator. The line with diamonds displays the modified estimator of the
contemporaneous impact on hours worked of a technology shock. When the standard estimator
works well, that is, for large values of ρl the modified and standard estimators produce similar
results. However, when the standard estimator works poorly, e.g. for values of ρl near 0.5, our
modified estimator cuts the bias in half.
A potential shortcoming of the previous experiments is that persistent changes in τ l,t do not

necessarily induce very persistent changes in labor productivity. To assess the robustness of
our results, we also considered what happens when there are persistent changes in τx,t. These
do have a persistent impact on labor productivity. In the two-shock CKM model, we set τ l,t to
a constant and allowed τx,t to be stochastic. We considered values of ρx in the range, [−0.5, 1],
holding the variance of τx,t constant. We obtain results similar to those reported in the 2,2
panel of Figure 9.

Short- and Long-Run Restrictions in a Recursive Model

We conclude this section by considering the recursive version of the two-shock CKM spec-
ification. This specification rationalizes estimating the impact on hours worked of a shock to
technology using either the short- or the long-run identification strategy. We generate 1,000
data sets, each of length 180. On each synthetic data set, we estimate a four lag, bivariate VAR.
Given this estimated VAR, we can estimate the effect of a technology shock using the short-
and long-run identification strategy. Figure 10 reports our results. For the long-run identifi-
cation strategy, there is substantial bias. In sharp contrast, there is no bias for the short-run
identification strategy. Because both procedures use the same estimated VAR parameters, the
bias in the long-run identification strategy is entirely attributable due to the use of B̂ (1) .
26Because (4.1) is a quadratic function, we solve the optimization problem by solving the linear first-order

conditions. These are the Yule-Walker equations, which rely on population second moments of the data. We
obtain the population second moments by complex integration of the reduced form of the model used to generate
the data, as suggested by Christiano (2002).
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5. Relation to Chari-Kehoe-McGrattan

In the preceding sections we argue that structural VAR-based procedures have good statistical
properties. Our conclusions about the usefulness of structural VARs stand in sharp contrast to
the conclusions of CKM. These authors argue that, for plausibly parameterized RBC models,
structural VARs lead to misleading results. They conclude that structural VARs are not useful
for constructing and evaluating structural economic models. In this section we present the
reasons we disagree with CKM.

CKM’s Exotic Data Generating Processes

CKM’s critique of VARs is based on simulations using particular DSGEmodels estimated by
maximum likelihood methods. Here, we argue that their key results are driven by assumptions
about measurement error. CKM’s measurement error assumptions are overwhelmingly rejected
in favor of alternatives under which their key results are overturned.
CKM adopt a state-observer setup to estimate their model. Define:

Yt = (∆ log at, log lt,∆ log it,∆ logGt)
0 ,

where Gt denotes government spending plus net exports. CKM suppose that

Yt = Xt + vt, Evtv
0
t = R, (5.1)

where R is diagonal, vt is a 4× 1 vector of i.i.d. measurement errors and Xt is a 4× 1 vector
containing the model’s implications for the variables in Yt. The two-shock CKM specification
has only the shocks, τ l,t and zt. CKM model government spending plus net exports as:

Gt = gt × Zt,

where gt is in principle an exogenous stochastic process. However, when CKM estimate the
parameters of the technology and preferences processes, τ l,t and zt, they set the variance of the
government spending shock to zero, so that gt is a constant. As a result, CKM assume that

∆ logGt = log zt +measurement error.

CKM fix the elements on the diagonal of R exogenously to a “small number”, leading to the
remarkable implication that government purchases plus net exports.
To demonstrate the sensitivity of CKM’s results to their specification of the magnitude of

R, we consider the different assumptions that CKM make in different drafts of their paper. In
the draft of May 2005, CKM set the diagonal elements of R to 0.0001. In the draft of July 2005,
CKM set the ith diagonal element of R equal to 0.01 times the variance of the ith element of Yt.
The 1,1 and 2,1 panels in Figure 11 report results corresponding to CKM’s two-shock spec-

ifications in the July and May drafts, respectively.27 These panels display the log likelihood

27To ensure comparability of results we use CKM’s computer code and data, available on Ellen McGrattan’s
webpage. The algorithm used by CKM to form the estimation criterion is essentially the same as the one we
used to estimate our models. The only difference is that CKM use an approximation to the Gaussian function
by working with the steady state Kalman gain. We form the exact Gaussian density function, in which the
Kalman gain varies over dates, as described in Hamilton (1994). We believe this difference is inconsequential.
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value (see LLF ) of these two models and their implications for VAR-based impulse response
functions (the 1,1 panel is the same as the 3,1 panel in Figure 5). Surprisingly, the log-likelihood
of the July specification is orders of magnitude worse than that of the May specification.
The 3,1 panel in Figure 11 displays our results when the diagonal elements of R are included

among the parameters being estimated.28 We refer to the resulting specification as the “CKM
free measurement error specification”. First, both the May and the July specifications are
rejected relative to the free measurement error specification. The likelihood ratio statistic
for testing the May and July specifications are 428 and 6,266, respectively. Under the null
hypothesis that the May or July specification is true, these statistics are realizations of a
chi-square distribution with 4 degrees of freedom. The evidence against CKM’s May or July
specifications of measurement error is overwhelming.
Second, when the data generating process is the CKM free measurement error specification,

the VAR-based impulse response function is virtually unbiased (see the 3,1 panel in Figure
11). We conclude that the bias in the two-shock CKM specification is a direct consequence of
CKM’s choice of the measurement error variance.
As noted above, CKM’s measurement error assumption has the implication that ∆ logGt is

roughly equals to log zt. To investigate the role played by this peculiar implication, we delete
∆ logGt from Yt and reestimate the system. We present the results in the right column of
Figure 11. In each panel of that column, we re-estimate the system in the same way as the
corresponding panel in the left column, except that ∆ logGt is excluded from Yt. Comparing
the 2,1 and 2,2 panels, we see that, with the May measurement error specification, the bias
disappears after relaxing CKM’s ∆ logGt = log zt assumption. Under the July specification of
measurement error, the bias result remains even after relaxing CKM’s assumption (compare the
1,1 and 1,2 graphs of Figure 11). As noted above, the May specification of CKM’s model has a
likelihood that is orders of magnitude higher than the July specification. So, in the version of
the CKMmodel selected by the likelihood criterion (i.e., the May version), the ∆ logGt = log zt
assumption plays a central role in driving the CKM’s bias result.
In sum, CKM’s examples which imply that VARs with long-run identification display sub-

stantial bias, are not empirically interesting from a likelihood point of view. The bias in their
examples is due to the way CKM choose the measurement error variance. When their mea-
surement error specification is tested, it is overwhelmingly rejected in favor of an alternative in
which the CKM bias result disappears.

Stochastic Process Uncertainty

CKM argue that there is considerable uncertainty in the business cycle literature about the
values of parameters governing stochastic processes such as preferences and technology. They
argue that this uncertainty translates into a wide class of examples in which the bias in structural
VARs leads to severely misleading inference. The right panel in Figure 12 summarizes their
argument. The horizontal axis covers the range of values of (σl/σz)

2 considered by CKM. For
each value of (σl/σz)

2 we estimate, by maximum likelihood, four parameters of the two-shock

28When generating the artificial data underlying the calculations in the 3,1 panel of Figure 11, we set the
measurement error to zero. (The same assumption was made for all the results reported here.) However,
simulations that include the estimated measurement error produce results that are essentially the same.
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model: µz, τ l, σl and ρl.
29 We use the estimated model as a data generating process. The left

vertical axis displays the small sample mean of the corresponding VAR-based estimator of the
contemporaneous response of hours worked to a one-standard deviation technology shock.
Based on a review the RBC literature, CKM report that they have a roughly uniform prior

over the different values of (σl/σz)
2 considered in Figure 12. The figure indicates that for many

of these values, the bias is large (compare the small sample mean, the solid line, with the
true response, the starred line). For example, there is a noticeable bias in the 2-shock CKM
specification, where (σl/σz)

2 = 1.1.

We emphasize three points. First, as we stress repeatedly, bias cannot be viewed in isolation
from sampling uncertainty. The two dashed lines in the figure indicate the 95 percent probability
interval. These intervals are enormous relative to the bias. Second, not all values of (σl/σz)

2

are equally likely, and for the ones with greatest likelihood there is little bias. On the horizontal
axis of the left panel of Figure 12, we display the same range of values of (σl/σz)

2 as in the
right panel. On the vertical axis we report the log-likelihood value of the associated model. The
peak of this likelihood occurs close to the estimated value in the two-shock MLE specification.
Note how the log-likelihood value drops sharply as we consider values of (σl/σz)

2 away from
the unconstrained maximum likelihood estimate. The vertical bars in the figure indicate the
95 percent confidence interval for (σl/σz)

2 .30 Figure 12 reveals that the confidence interval is
very narrow relative to the range of values considered by CKM, and that within the interval,
the bias is quite small.
Third, the right axis in the right panel of Figure 12 plots Vh, the percent of the variance

in log hours due to technology, as a function of (σl/σz)
2 . The values of (σl/σz)

2 for which
there is a noticeable bias correspond to model economies where Vh is less than 2 percent. Here,
identifying the effects of a technology shock on hours worked is tantamount to looking for a
needle in a haystack.

The Metric for Assessing the Performance of Structural VARs

CKM emphasize comparisons between the true dynamic response function in the data gener-
ating process and the response function that an econometrician would estimate using a four-lag
VAR with an infinite amount of data. In our own analysis in section 4, we find population
calculations with four lag VARs useful for some purposes. However, we do not view the proba-
bility limit of a four lag VAR as an interesting metric for measuring the usefulness of structural
VARs. In practice econometricians do not have an infinite amount of data. Even if they did,
they would certainly not use a fixed lag length. Econometricians determine lag length endoge-
nously and, in a large sample, lag length would grow. If lag lengths grow at the appropriate
rate with sample size, VAR-based estimators of impulse response functions are consistent. The
interesting issue (to us) is how VAR-based procedures perform in samples of the size that prac-
titioners have at their disposal. This is why we focus on small sample properties like bias and
sampling uncertainty.

Over-Differencing

29We use CKM’s computer code and data to ensure comparability of results.
30The bounds of this interval are the upper and lower values of (σl/σz)

2 where twice the difference of the
log-likelihood from its maximal value equals the critical value associated with the relevant likelihood ratio test.
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The potential power of the CKM argument lies in showing that VAR-based procedures are
misleading, even under circumstances when everyone would agree that VARs should work well,
namely when the econometrician commits no avoidable specification error. The econometrician
does, however, commit one unavoidable specification error. The true VAR is infinite ordered,
but the econometrician assumes the VAR has a finite number of lags. CKM argue that this
seemingly innocuous assumption is fatal for VAR analysis. We have argued that this conclusion
is unwarranted.
CKM present other examples in which the econometrician commits an avoidable specifica-

tion error. Specifically, they study the consequences of over differencing hours worked. That is,
the econometrician first differences hours worked when hours worked are stationary.31 This er-
ror gives rise to bias in VAR-based impulse response functions that is large relative to sampling
uncertainty. CKM argue that this bias is another reason not to use VARs.
However, the observation that avoidable specification error is possible in VAR analysis is

not a problem for VARs per se. The possibility of specification error is a potential pitfall for any
type of empirical work. In any case, CKM’s analysis of the consequences of over differencing is
not new. For example, Christiano, Eichenbaum and Vigfusson (2003, hereafter, CEV) study a
situation in which the true data generating process satisfies two properties: Hours worked are
stationary and they rise after a positive technology shock. CEV then consider an econometrician
who does VAR-based long-run identification when Yt in (2.16) contains the growth rate of hours
rather than the log level of hours. CEV show that the econometrician would falsely conclude
that hours worked fall after a positive technology shock. CEV do not conclude from this exercise
that structural VARs are not useful. Rather, they develop a statistical procedure to help decide
whether hours worked should be first differenced or not.

CKM Ignore Short-Run Identification Schemes

We argue that VAR-based short-run identification schemes lead to remarkably accurate and
precise inference. This result is of interest because the preponderance of the empirical litera-
ture on structural VARs explores the implications of short-run identification schemes. CKM
are silent on this literature. McGrattan (2006) dismisses short-run identification schemes as
“hokey.” One possible interpretation of this adjective is that McGrattan can easily imagine
models in which the identification scheme is incorrect. The problem with this interpretation
is that all models are a collection of strong identifying assumptions, all of which can be char-
acterized as “hokey”. A second interpretation is that in McGrattan (2006)’s view, the type
of zero restrictions typically used in short run identification are not compatible with dynamic
equilibrium theory. This view is simply incorrect (see Sims and Zha (2006)). A third possible
interpretation is that no one finds short-run identifying assumptions interesting. However, the
results of short-run identification schemes have had an enormous effect on the construction of
dynamic, general equilibrium models. See Woodford (2003) for a summary in the context of
monetary models.

Sensitivity of Some VAR Results to Data Choices

31For technical reasons, CKM actually consider ‘quasi differencing’ hours worked using a differencing para-
meter close to unity. In small samples this type of quasi differencing is virtually indistinguishable from first
differencing.
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CKM argue that VARs are very sensitive to the choice of data. Specifically, they review the
papers by Francis and Ramey (2004), CEV, and Gali and Rabanal (2004), which use long-run
VAR methods to estimate the response of hours worked to a positive technology shock. CKM
note that these studies use different measures of per capita hours worked and output in the VAR
analysis. The bottom panel of Figure 13 displays the different measures of per capita hours
worked that these studies use. Note how the low frequency properties of these series differ.
The corresponding estimated impulse response functions and confidence intervals are reported
in the top panel. CKM view it as a defect in VAR methodology that the different measures of
hours worked lead to different estimated impulse response functions. We disagree. Empirical
results should be sensitive to substantial changes in the data. A constructive response to the
sensitivity in Figure 13 is to carefully analyze the different measures of hours worked, see which
is more appropriate, and perhaps construct a better measure. It is not constructive to dismiss
an econometric technique that signals the need for better measurement.
CKM note that the principle differences in the hours data occur in the early part of the

sample. According to CKM, when they drop these early observations they obtain different
impulse response functions. However, as Figure 13 shows, these impulse response functions are
not significantly different from each other.

6. A Model with Nominal Rigidities

In this section we use the model in ACEL to assess the accuracy of structural VARs for estimat-
ing the dynamic response of hours worked to shocks. This model allows for nominal rigidities
in prices and wages and has three shocks: a monetary policy shock, a neutral technology shock,
and a capital-embodied technology shock. Both technology shocks affect labor productivity in
the long run. However, the only shock in the model that affects the price of investment in the
long run is the capital-embodied technology shock. We use the ACEL model to evaluate the
ability of a VAR to uncover the response of hours worked to both types of technology shock
and to the monetary policy shock. Our strategy for identifying the two technology shocks is
similar to the one proposed by Fisher (2006). The model rationalizes a version of the short-run,
recursive identification strategy used by Christiano, Eichenbaum and Evans (1999) to iden-
tify monetary shocks. This strategy corresponds closely to the recursive procedure studied in
section 2.3.2.

6.1. The Model

The details of the ACEL model, as well as the parameter estimates, are reported in Appendix
A. Here, we limit our discussion to what is necessary to clarify the nature of the shocks in
the ACEL model. Final goods, Yt, are produced using a standard Dixit-Stiglitz aggregator of
intermediate goods, yt (i) , i ∈ (0, 1). To produce a unit of consumption goods, Ct, one unit of
final goods is required. To produce one unit of investment goods, It, Υ−1t units of final goods
are required. In equilibrium, Υ−1t is the price, in units of consumption goods, of an investment
good. Let µΥ,t denote the growth rate of Υt, let µΥ denote the nonstochastic steady state value
of µΥ,t, and let µ̂Υ,t denote the percent deviation of µΥ,t from its steady state value:

µΥ,t =
Υt

Υt−1
, µ̂Υ,t =

µΥ,t − µΥ
µΥ

. (6.1)
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The stochastic process for the growth rate of Υt is:

µ̂Υ,t = ρµΥµ̂Υ,t−1 + σµΥεµΥ,t, σµΥ > 0. (6.2)

We refer to the i.i.d. unit variance random variable, εµΥ,t, as the capital-embodied technology
shock. ACEL assume that the intermediate good, yt (i) , for i ∈ (0, 1) is produced using a
Cobb-Douglas production function of capital and hours worked. This production function is
perturbed by a multiplicative, aggregate technology shock denoted by Zt. Let zt denote the
growth rate of Zt, let z denote the nonstochastic steady state value of zt, and let ẑt denote the
percentage deviation of zt from its steady state value:

zt =
Zt

Zt−1
, ẑt =

zt − z

z
. (6.3)

The stochastic process for the growth rate of Zt is:

ẑt = ρz ẑt−1 + σzε
z
t , σz > 0, (6.4)

where the i.i.d. unit variance random variable, εzt , is the neutral shock to technology.
We now turn to the monetary policy shock. Let xt denote Mt/Mt−1, where Mt denotes

the monetary base. Let x̂t denote the percentage deviation of xt from its steady state, i.e.,
(x̂t − x)/x. We suppose that x̂t is the sum of three components. One, x̂Mt, represents the
component of x̂t reflecting an exogenous shock to monetary policy. The other two, x̂zt and x̂Υt,
represent the endogenous response of x̂t to the neutral and capital-embodied technology shocks,
respectively. Thus monetary policy is given by:

x̂t = x̂zt + x̂Υt + x̂Mt. (6.5)

ACEL assume that

x̂M,t = ρxM x̂M,t−1 + σMεM,t, σM > 0

x̂z,t = ρxzx̂z,t−1 + czε
z
t + cpzε

z
t−1 (6.6)

x̂Υ,t = ρxΥx̂Υ,t−1 + cΥεµΥ,t + cpΥεµΥ,t.

Here, εM,t represents the shock to monetary policy and is an i.i.d. unit variance random variable.
Table 3 summarizes the importance of different shocks for the variance of hours worked and

output. Neutral and capital-embodied technology shocks account for roughly equal percentages
of the variance of hours worked (40 percent each), while monetary policy shocks account for the
remainder. Working with HP-filtered data reduces the importance of neutral technology shocks
to about 18 percent. Monetary policy shocks become much more important for the variance of
hours worked. A qualitatively similar picture emerges when we consider output.
It is worth emphasizing that neutral technology shocks are much more important in hours

worked in the ACEL model than in the RBC model. This fact plays an important role in
determining the precision of VAR-based inference using long-run restrictions in the ACEL
model.
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6.2. Results

We use the ACEL model to simulate 1,000 data sets each with 180 observations. We report
results from two different VARs. In the first VAR, we simultaneously estimate the dynamic
effect on hours worked of a neutral technology shock and a capital-embodied technology shock.
The variables in this VAR are:

Yt =

⎛⎝ ∆ ln pIt
∆ ln at
ln lt

⎞⎠ ,

where pIt denotes the price of capital in consumption units. The variable, ln (pIt) , corresponds
to ln

¡
Υ−1t

¢
in the model. As in Fisher (2006), we identify the dynamic effects on Yt of the

two technology shocks, using a generalization of the strategy in section 2.3.1.32 The details are
provided in Appendix B.
The 1,1 panel of Figure 14 displays our results using the standard VAR procedure to esti-

mate the dynamic response of hours worked to a neutral technology shock. Several results are
worth emphasizing. First, the estimator is essentially unbiased. Second, the econometrician’s
estimator of sampling uncertainty is also reasonably unbiased. The circles and stars, which
indicate the mean value of the econometrician’s standard-deviation-based and percentile-based
confidence intervals, roughly coincide with the boundaries of the gray area. However, there
is a slight tendency, in both cases, to understate the degree of sampling uncertainty. Third,
confidence intervals are small, relative to those in the RBC examples. Both sets of confidence
intervals exclude zero at all lags shown. This result provides another example, in addition
to the one provided by Erceg, Guerrieri, and Gust (2005), in which long-run identifying re-
strictions are useful for discriminating between models. An econometrician who estimates that
hours drop after a positive technology shock would reject our parameterization of the ACEL
model. Similarly, an econometrician with a model implying that hours fall after a positive
technology shock would most likely reject that model if the actual data were generated by our
parameterization of the ACEL model.
The 2,1 panel in Figure 14 shows results for the response to a capital-embodied technology

shock as estimated using the standard VAR estimator. The sampling uncertainty is somewhat
higher for this estimator than for the neutral technology shock. In addition, there is a slight
amount of bias. The econometrician understates somewhat the degree of sampling uncertainty.
We now consider the response of hours worked to a monetary policy shock. We estimate

this response using a VAR with the following variables:

Yt =

⎛⎝ ∆ log at
log lt
Rt

⎞⎠ .

As discussed in Christiano, Eichenbaum, and Evans (1999), the monetary policy shock is iden-
tified by choosing C to be the lower triangular decomposition of the variance covariance matrix,
V, of the VAR disturbances. That is, we choose a lower triangular matrix, C with positive di-
agonal terms, such that CC 0 = V. Let ut = Cεt.We then interpret the last element of εt as the
monetary policy shock. According to the results in the 1,2 panel of Figure 14, the VAR-based

32Our strategy differs somewhat from the one pursued in Fisher (2006), who applies a version of the instru-
mental variables strategy proposed by Shapiro and Watson (1988).
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estimator of the response of hours worked displays relatively little bias and is highly precise. In
addition, the econometrician’s estimator of sampling uncertainty is virtually unbiased. Suppose
the impulse response in hours worked to a monetary policy shock were computed using VAR-
based methods with data generated from this model. We conjecture that a model in which
money is neutral, or in which a monetary expansion drives hours worked down, would be easy
to reject.

7. Concluding Remarks

In this paper we study the ability of structural VARs to uncover the response of hours worked
to a technology shock. We consider two classes of data generating processes. The first class
consists of a series of real business cycle models that we estimate using maximum likelihood
methods. The second class consists of the monetary model in ACEL. We find that with short-
run restrictions, structural VARs perform remarkably well in all our examples. With long-run
restrictions, structural VARs work well as long as technology shocks explain at least a very
small portion of the variation in hours worked.
In a number of examples that we consider, VAR-based impulse response functions using

long-run restrictions exhibit some bias. Even though these examples do not emerge from em-
pirically plausible data generating processes, we find them of interest. They allow us to diagnose
what can go wrong with long-run identification schemes. Our diagnosis leads us to propose a
modification to the standard VAR-based procedure for estimating impulse response functions
using long-run identification. This procedure works well in our examples.
Finally, we find that confidence intervals with long-run identification schemes are substan-

tially larger than those with short-run identification schemes. In all empirically plausible cases,
the VARs deliver confidence intervals that accurately reflect the true degree of sampling un-
certainty. We view this characteristic as a great virtue of VAR-based methods. When the
data contain little information, the VAR will indicate the lack of information. To reduce large
confidence intervals the analyst must either impose additional identifying restrictions (i.e., use
more theory) or obtain better data.
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A. Appendix A: A Model with Nominal Wage and Price Rigidities

This appendix describes the ACEL model used in section 6. The model economy is composed

of households, firms, and a monetary authority.

There is a continuum of households, indexed by j ∈ (0, 1). The jth household is a monopoly
supplier of a differentiated labor service, and sets its wage subject to Calvo-style wage frictions.

In general, households earn different wage rates and work different amounts. A straightfor-

ward extension of arguments in Erceg, Henderson, and Levin (2000) and in Woodford (1996)

establishes that in the presence of state contingent securities, households are homogeneous with

respect to consumption and asset holdings.33 Our notation reflects this result. The preferences

of the jth household are given by:

Ej
t

∞X
l=0

βl−t
∙
log (Ct+l − bCt+l−1)− ψL

h2j,t+l
2

¸
,

where ψL ≥ 0 and Ej
t is the time t expectation operator, conditional on household j’s time t

information set. The variable, Ct, denotes time t consumption and hjt denotes time t hours

worked. The household’s asset evolution equation is given by:

Mt+1 = Rt [Mt −Qt + (xt − 1)Ma
t ] +Aj,t +Qt +Wj,thj,t

+Dt − (1 + η (Vt))PtCt.

Here, Mt and Qt denote, respectively, the household’s stock of money, and cash balances at

the beginning of period t. The variable Wj,t represents the nominal wage rate at time t. In

addition Dt and Aj,t denote firm profits and the net cash inflow from participating in state-

contingent security markets at time t. The variable, xt, represents the gross growth rate of the

economy-wide per capita stock of money,Ma
t . The quantity (xt−1)Ma

t is a lump-sum payment

to households by the monetary authority. The household deposits Mt −Qt + (xt − 1)Ma
t with

a financial intermediary. The variable, Rt, denotes the gross interest rate. The variable, Vt,

denotes the time t velocity of the household’s cash balances:

Vt =
PtCt

Qt
, (A.1)

where η(Vt) is increasing and convex.34 For the quantitative analysis of our model, we must

specify the level and the first two derivatives of the transactions function, η(V ), evaluated

33Erceg, Christopher J., Dale W. Henderson, and Andrew T. Levin (2000). “Optimal Monetary Policy with
Staggered Wage and Price Contracts,” Journal of Monetary Economics, vol. 46 (October), pp. 281—313.
Woodford, Michael M. (1996). “Control of the Public Debt: A Requirement for Price Stability?” NBER

Working Paper Series 5684. Cambridge, Mass.: National Bureau of Economic Research, July.
34Similar specifications have been used by authors such as Sims (1994) and Schmitt-Grohe and Uribe (2004).

(Schmitt-Grohé, Stefanie, and Martin Uribe (2004). “Optimal Fiscal and Monetary Policy under Sticky Prices,”
Journal of Economic Theory, vol. 114 (February), pp. 198—230. Sims, Christopher, (1994), “A Simple Model
for Study of the Determination of the Price Level and the Interaction of Monetary and Fiscal Policy,” Economic
Theory, vol. 4 (3), 381—99.)
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in steady state. We denote these by η, η0, and η00, respectively. Let denote the interest

semi-elasticity of money demand in steady state:

≡ −
100× d log(Qt

Pt
)

400× dRt
.

Let V and η denote the values of velocity and η (Vt) in steady state. ACEL parameterize the

second-order Taylor series expansion of η (·) about steady state. The values of η, η0, and η00,

are determined by ACEL’s estimates of , V, and η.

The jth household is a monopoly supplier of a differentiated labor service, hjt. It sells this

service to a representative, competitive firm that transforms it into an aggregate labor input,

Lt, using the technology:

Ht =

∙Z 1

0

h
1
λw
j,t dj

¸λw
, 1 ≤ λw <∞.

Let Wt denote the aggregate wage rate, i.e., the nominal price of Ht. The household takes Ht

and Wt as given.

In each period, a household faces a constant probability, 1− ξw, of being able to re-optimize

its nominal wage. The ability to re-optimize is independent across households and time. If a

household cannot re-optimize its wage at time t, it sets Wjt according to:

Wj,t = πt−1µz∗Wj,t−1,

where πt−1 ≡ Pt−1/Pt−2. The presence of µz∗ implies that there are no distortions from wage

dispersion along the steady state growth path.

At time t a final consumption good, Yt, is produced by a perfectly competitive, representative

final good firm. This firm produces the final good by combining a continuum of intermediate

goods, indexed by i ∈ [0, 1], using the technology

Yt =

∙Z 1

0

yt(i)
1
λf di

¸λf
, (A.2)

where 1 ≤ λf < ∞ and yt(i) denotes the time t input of intermediate good i. The firm takes

its output price, Pt, and its input prices, Pt(i), as given and beyond its control.

Intermediate good i is produced by a monopolist using the following technology:

yt(i) =

½
Kt(i)

α (Ztht(i))
1−α − φz∗t if Kt(i)

α (Ztht(i))
1−α ≥ φz∗t

0 otherwise
(A.3)

where 0 < α < 1. Here, ht(i) and Kt(i) denote time t labor and capital services used to produce

the ith intermediate good. The variable Zt represents a time t shock to the technology for

producing intermediate output. The growth rate of Zt, Zt/Zt−1, is denoted by µzt. The non-

negative scalar, φ, parameterizes fixed costs of production. To express the model in terms of a

stochastic steady state, we find it useful to define the variable z∗t as:

z∗t = Υ
α

1−α
t Zt, (A.4)
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where Υt represents a time t shock to capital-embodied technology. The stochastic process

generating Zt is defined by (6.3) and (6.4). The stochastic process generating Υt is defined by

(6.1) and (6.2).

Intermediate good firms hire labor in perfectly competitive factor markets at the wage rate,

Wt. Profits are distributed to households at the end of each time period. We assume that the

firm must borrow the wage bill in advance at the gross interest rate, Rt.

In each period, the ith intermediate goods firm faces a constant probability, 1− ξp, of being

able to re-optimize its nominal price. The ability to re-optimize prices is independent across

firms and time. If firm i cannot re-optimize, it sets Pt(i) according to:

Pt(i) = πt−1Pt−1(i). (A.5)

Let K̄t (i) denote the physical stock of capital available to the ith firm at the beginning of

period t. The services of capital, Kt (i) are related to stock of physical capital, by:

K̄t(i) = ut(i)K̄t(i).

Here ut(i) is firm i0s capital utilization rate. The cost, in investment goods, of setting the

utilization rate to ut(i) is a(ut(i))K̄t(i), where a(·) is increasing and convex. We assume that
ut(i) = 1 in steady state and a(1) = 0. These two conditions determine the level and slope of

a(·) in steady state. To implement our log-linear solution method, we must also specify a value
for the curvature of a in steady state, σa = a00(1)/a0(1) ≥ 0.
There is no technology for transferring capital between firms. The only way a firm can

change its stock of physical capital is by varying the rate of investment, It (i) , over time. The

technology for accumulating physical capital by intermediate good firm i is given by:

F (It(i), It−1(i)) = (1− S

µ
It(i)

It−1(i)

¶
)It(i),

where

K̄t+1(i) = (1− δ)K̄t(i) + F (It(i), It−1(i)).

The adjustment cost function, S, satisfies S = S0 = 0, and S00 > 0 in steady state. Given the

log-linearization procedure used to solve the model, we need not specify any other features of

the function S.

The present discounted value of the ith intermediate good’s net cash flow is given by:

Et

∞X
j=0

βjυt+j
©
Pt+j(i)yt+j(i)−Rt+jWt+jht(i)− Pt+jΥ

−1
t+j

£
It+j(i) + a (ut+j(i)) K̄t+j(i)

¤ª
,

(A.6)

where Rt denotes the gross nominal rate of interest.

The monetary policy rule is defined by (6.5) and (6.6). Financial intermediaries receive

Mt − Qt + (xt − 1)Mt from the household. Our notation reflects the equilibrium condition,

36



Ma
t = Mt. Financial intermediaries lend all of their money to intermediate good firms, which

use the funds to pay labor wages. Loan market clearing requires that:

WtHt = xtMt −Qt. (A.7)

The aggregate resource constraint is:

(1 + η(Vt))Ct +Υ−1t
£
It + a(ut)K̄t

¤
≤ Yt. (A.8)

Tables B1 and B2 report the parameter values of the model. We refer the reader to ACEL

for a description of how the model is solved and for the methodology used to estimate the model

parameters. The data and programs, as well as an extensive technical appendix, may be found

at the following website:

www.faculty.econ.northwestern.edu/faculty/christiano/research/ACEL/acelweb.htm.

B. Appendix B: Long-Run Identification of Two Technology Shocks

This appendix generalizes the strategy for long-run identification of one shock to two shocks,

using the strategy of Fisher (2006). As before, the VAR is:

Yt+1 = B (L)Yt + ut, Eutu
0
t = V,

B(L) ≡ B1 +B2L+ ...+BqL
q−1,

We suppose that the fundamental shocks are related to the VAR disturbances as follows:

ut = Cεt, Eεtε0t = I, CC 0 = V,

where the first two element in εt are εµΥ,t and εzt , respectively. The exclusion restrictions are:

lim
j→∞

h
Ẽtat+j − Ẽt−1at+j

i
= fz

¡
εµΥ,t, ε

z
t , only

¢
lim
j→∞

h
Ẽt log pI,t+j − Ẽt−1 log pI,t+j

i
= fΥ

¡
εµΥ,t, only

¢
.

That is, only technology shocks have a long-run effect on the log-level of labor productivity,

whereas only capital-embodied shocks have a long-run effect on the log-level of the price of

investment goods. According to the sign restrictions, the slope of fz with respect to its second

argument and the slope of fΥ are non-negative. Applying a suitably modified version of the

logic in Section 2.3.1, we conclude that, according to the exclusion restrictions, the indicated

pattern of zeros must appear in the following 3 by 3 matrix:

[I −B(1)]−1C =

⎡⎣ a 0 0
b c 0

number number number

⎤⎦
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The sign restrictions are a, c > 0. To compute the dynamic response of Yt to the two technology

shocks, we require the first two columns of C. To obtain these, we proceed as follows. Let

D ≡ [I −B(1)]−1C, so that:

DD0 = [I −B(1)]−1 V [I −B(1)0]
−1
= SY (0) , (B.1)

where, as before, SY (0) is the spectral density of Yt at frequency-zero, as implied by the

estimated VAR. The exclusion restrictions require that D have the following structure:

D =

⎡⎣ d11 0 0
d21 d22 0
d31 d32 d33

⎤⎦ .
Here, the zero restrictions reflect our exclusion restrictions, and the sign restrictions require

d11, d22 ≥ 0. Then,

DD0 =

⎡⎣ d211 d11d21 d11d31
d21d11 d221 + d222 d21d31 + d22d32
d31d11 d31d21 + d32d22 d231 + d232 + d233

⎤⎦ =
⎡⎣ S11Y (0) S21Y (0) S31Y (0)

S21Y (0) S22Y (0) S32Y (0)
S31Y (0) S32Y (0) S33Y (0)

⎤⎦
and

d11 =
q
S11Y (0), d21 = S21Y (0) /d11, d31 = S31Y (0) /d11

d22 =

s
S11Y (0)S

22
Y (0)− (S21Y (0))

2

S11Y (0)
, d32 =

S32Y (0)− S21Y (0)S
31
Y (0) /d

2
11

d22
.

The sign restrictions imply that the square roots should be positive. The fact that SY (0) is

positive definite ensures that the square roots are real numbers. Finally, the first two columns

of C are calculated as follows: ∙
C1
...C2

¸
= [I −B(1)]

∙
D1
...D2

¸
,

where Ci is the ith column of C and Di is the ith column of D, i = 1, 2.

To construct our modified VAR procedure, simply replace SY (0) in (B.1) by (4.4).
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 Figure 2:  Short−run Identification Results 
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Figure 3: Coverage Rates, Percentile−Based Confidence Intervals
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Figure 4: Coverage Rates, Standard Deviation−Based Confidence Intervals
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Figure 5: Long−run Identification Results
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Figure 6: Analyzing Precision in Inference

0 2 4 6 8 10

0

1

2

Period After Shock

P
er

ce
nt

CKM specification, σ
l
/4



0 2 4 6 8 10
−2

0

2

4

6

Period After Shock

P
er

ce
nt

σ = 6, Standard

0 2 4 6 8 10
−2

0

2

4

6

Period After Shock

P
er

ce
nt

σ = 6, Bartlett

0 2 4 6 8 10
−2

0

2

4

6

Period After Shock

P
er

ce
nt

σ = 0, Standard

0 2 4 6 8 10
−2

0

2

4

6

Period After Shock

P
er

ce
nt

σ = 0, Bartlett

0 2 4 6 8 10
−2

0

2

4

6

Period After Shock

P
er

ce
nt

σ = 0, 2σ
l
, Standard

Figure 7: Varying the Labor Elasticity in the Two−shock CKM Specification
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Figure 9: Analysis of Long−run Identification Results
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Figure 10: Comparing Long− and Short−Run Identification

Recursive Two−Shock CKM Specification
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Figure 11: The Treatment of CKM Measurement Error
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Figure 12: Stochastic Process Uncertainty
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Figure 13: Data Sensitivity and Inference in VARs
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Figure 14: Impulse Response Results when the ACEL Model is the DGP
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Table 1: Contribution of Technology Shocks to Volatility
Measure of Variation

Model specification Unfiltered HP-filtered
One-step-ahead
forecast error

ln lt ∆ ln yt ln lt ln yt ln lt ∆ ln yt
MLE
Base Nonrecursive 3.73 67.16 7.30 67.14 7.23 67.24

Recursive 3.53 58.47 6.93 64.83 0.00 57.08
σl/2 Nonrecursive 13.40 89.13 23.97 89.17 23.77 89.16

Recursive 12.73 84.93 22.95 88.01 0.00 84.17
σl/4 Nonrecursive 38.12 97.06 55.85 97.10 55.49 97.08

Recursive 36.67 95.75 54.33 96.68 0.00 95.51
σ = 6 Nonrecursive 3.26 90.67 6.64 90.70 6.59 90.61

Recursive 3.07 89.13 6.28 90.10 0.00 88.93
σ = 0 Nonrecursive 4.11 53.99 7.80 53.97 7.73 54.14

Recursive 3.90 41.75 7.43 50.90 0.00 38.84
Three Nonrecursive 0.18 45.67 3.15 45.69 3.10 45.72

Recursive 0.18 36.96 3.05 43.61 0.00 39.51
CKM
Base Nonrecursive 2.76 33.50 1.91 33.53 1.91 33.86

Recursive 2.61 25.77 1.81 31.41 0.00 24.93
σl/2 Nonrecursive 10.20 66.86 7.24 66.94 7.23 67.16

Recursive 9.68 58.15 6.88 64.63 0.00 57.00
σl/4 Nonrecursive 31.20 89.00 23.81 89.08 23.76 89.08

Recursive 29.96 84.76 22.79 87.91 0.00 84.07
σ = 6 Nonrecursive 0.78 41.41 0.52 41.33 0.52 41.68

Recursive 0.73 37.44 0.49 40.11 0.00 37.42
σ = 0 Nonrecursive 2.57 20.37 1.82 20.45 1.82 20.70

Recursive 2.44 13.53 1.73 18.59 0.00 12.33
σ = 0
and 2σl

Nonrecursive 0.66 6.01 0.46 6.03 0.46 6.12

Recursive 0.62 3.76 0.44 5.41 0.00 3.40
Three Nonrecursive 2.23 30.73 1.71 31.11 1.72 31.79

Recursive 2.31 23.62 1.66 29.67 0.00 25.62
Note: (a) Vh corresponds to the columns denoted by ln (lt) .
(b) In each case, the results report the ratio of two variances:
the numerator is the variance for the system with only technology shocks
and the denominator is the variance for the system with both
technology shock and labor tax shocks. All statistics are averages of the ratios,
based on 300 simulations of 5000 observations for each model.
(c) ‘Base’ means the two-shock specification, whether MLE or CKM,
as indicated. Three’ means the three-shock specification.
(d) For a description of the procedure used to calculate the forecast error variance,
see footnote 13.
(e) ‘MLE’ and ‘CKM’ refer, respectively, to our and CKM’s estimated models.

.



Table 2: Properties of Two-Shock CKM Specification

Panel A: First Six Lag Matrices in Infinite-Order VAR Representation

B1 =

∙
0.013 0.041
0.0065 0.94

¸
, B2 =

∙
0.012 −0.00
0.0062 −0.00

¸
, B3 =

∙
0.012 −0.00
0.0059 −0.00

¸
,

B4 =

∙
0.011 −0.00
0.0056 −0.00

¸
, B5 =

∙
0.011 −0.00
0.0054 −0.00

¸
, B6 =

∙
0.010 −0.00
0.0051 −0.00

¸
Panel B: Population Estimate of Four-lag VAR

B̂1 =

∙
0.017 0.043
0.0087 0.94

¸
, B̂2 =

∙
0.017 −0.00
0.0085 −0.00

¸
, B̂3 =

∙
0.012 −0.00
0.0059 −0.00

¸
,

B̂4 =

∙
0.0048 −0.0088
0.0025 −0.0045

¸
Panel C: Actual and Estimated Sum of VAR Coefficients

B̂ (1) =

∙
0.055 0.032
0.14 0.94

¸
, B (1) =

∙
0.28 0.022
0.14 0.93

¸
,
P4

j=1Bj =

∙
0.047 0.039
0.024 0.94

¸
Panel D: Actual and Estimated Zero-Frequency Spectral Density

SY (0) =

∙
0.00017 0.00097
0.00097 0.12

¸
, ŜY (0) =

∙
0.00012 0.0022
0.0022 0.13

¸
.

Panel E: Actual and Estimated One-Step-Ahead Forecast Error Variance

V = V̂ =

∙
0.00012 −0.00015
−0.00015 −0.00053

¸
Panel F: Actual and Estimated Impact Vector

C1 =

µ
0.00773
0.00317

¶
, Ĉ1 =

µ
0.00406
0.01208

¶

Table 3: Percent Contribution of Shocks in the ACEL model to the Variation in Hours and in Output
Types of shock

Statistic Monetary Policy Neutral Technology Capital-Embodied
variance of logged hours 22.2 40.0 38.5
variance of HP filtered logged hours 37.8 17.7 44.5
variance of ∆y 29.9 46.7 23.6
variance of HP filtered logged output 31.9 32.3 36.1
Note: Results are average values based on 500 simulations of 3100 observations each.
ACEL: Altig Christiano, Eichenbaum and Linde (2005).




