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Abstract

We investigate what happens to hours worked after a positive
shock to technology, using the aggregate technology series com-
puted in Basu, Fernald and Kimball (1999). We conclude that
hours worked rise after such a shock.

1 Introduction

At least since the seminal contribution of Kydland and Prescott (1982),
economists have struggled to understand the role in aggregate fluctu-
ations of shocks to technology. Stimulated by the contribution of Gali
(1999), there is an important strand of the literature that uses time series
techniques, coupled with minimal identifying assumptions, to estimate
the dynamic response of key macroeconomic variables to these shocks.
These estimates are useful for assessing the source of business cycle fluc-
tuations, and for constructing dynamic general equilibrium models.

A key issue is how to identify shocks to technology. One approach
implemented by Gali (1999), Kiley (1997) and others, proceeds indirectly
by exploiting the assumption that innovations to technology are the only
shocks that have a long-run impact on labor productivity. This assump-
tion is satisfied by a large class of business cycle models.! An alterna-
tive approach, pursued by Basu, Fernald and Kimball (1999) (BFK),

*The first two authors are grateful for the financial support of grants from the
NSF to the National Bureau of Economic Research. The authors are also grateful to
John Fernald for insightful discussions, and for the hours and technology data from
Basu, Fernald and Kimball (1999).

1See for example the real business cycle models in Christiano (1988), King, Plosser,
Stock and Watson (1991) and Christiano and Eichenbaum (1992) which assume that
technology shocks are a difference stationary process.



estimates an innovation to technology using direct measures of technol-
ogy. BFK’s measure of technology is arguably the state-of-the-art in the
literature that builds on Solow-residual accounting.? An important ad-
vantage of the BFK approach is that it does not rely on the potentially
questionable assumption that the only shocks with a permanent impact
on labor productivity are technology shocks. For example, the presence
of persistent shocks to the capital income tax rate may distort indirect
estimates of the innovation to technology, but not direct estimates.

The literature on long-run identification using labor productivity
reaches conflicting conclusions about whether hours worked rise or fall
after a technology shock. This conflict stems from the fact that inference
is sensitive to modeling details, especially details about the treatment of
the low frequency component of hours worked. For example, quadrati-
cally detrending or first differencing log, per capita hours worked typi-
cally leads to the conclusion that hours fall after a positive technology
shock. Quadratically detrending all variables, or modelling per capita
hours as stationary in levels typically leads to the conclusion that hours
rise. Christiano, Eichenbaum and Vigfusson (2003) (CEV) apply an
encompassing approach for assessing the relative plausibility these con-
flicting conclusions. They find that, on balance, the evidence based
on long-run identification using labor productivity favors the view that
hours worked rise in response to a positive technology shock.

BFK develop a measure of aggregate technology based on industry-
level data. They conclude that hours worked fall after a positive technol-
ogy shock. So, there is a conflict between the conclusions of BFK, and
those reached in CEV (2003). The purpose of this paper is to resolve
this conflict.

The two key assumptions underlying BFK’s analysis are as follows.
First, their measure of technology is exogenous. Second, hours worked is
difference stationary. We find evidence against both these assumptions.
When we replace the assumptions by alternatives that are easier to de-
fend, we find that hours worked rise after a positive technology shock.
On this basis, we conclude that the approach based on long-run identifi-
cation with labor productivity and direct measures of technology shocks
give rise to similar conclusions. In addition, the results help mitigate
concerns alluded to above about the possibility that long run identi-

fication based on labor productivity is confounded by non-technology
shocks.?

2See also Shea (1998), who assesses technological change using data on patents.

3This conclusion is reinforced by other evidence. One potentially important non-
technology shock is a permanent disturbance to the capital income tax rate. Gali
(2003) shows that this tax rate is not highly correlated with estimates of the in-




We now briefly summarize our argument in more detail. BFK’s exo-
geneity assumption implies that the one-step-ahead innovation in their
measure of technology coincides with the innovation to true technol-
ogy and that technology is not Granger-caused by other variables.* We
find evidence that the level of hours worked helps forecast the growth
rate of technology. There are two ways to interpret this result. One is
that while true technology is exogenous, BFK’s measure is confounded
by measurement error. The presence of measurement error naturally
induces Granger-causality.® We think it is also likely to confound the
one-step-ahead forecast errors in technology. The sort of measurement
errors we have in mind are the transient, high-frequency discrepancies
between true and measured outputs and inputs that occur as a result of
the way the economy adjusts to shocks. Examples include labor hoard-
ing, capacity utilization and unmeasured investment.

We adopt Vigfusson (2002)’s strategy for dealing with this measure-
ment error problem. Specifically, we replace the assumption that mea-
sured technology is exogenous with the assumption that true innova-
tions to technology are the only shock that affects the BFK’s measure
of technology in the long run. In effect, we assume that the measure-

novation to technology based on long-run restrictions and labor productivity data.
Moreover, estimates of the response of macroeconomic variables to the latter shock
conflict in key ways from what one would expect, if these innovations were con-
founded in a significant way with innovations to capital income tax rates. Consider,
for example, a cut in the capital income tax rate in the simple growth model. This
produces a steady state fall in the rental rate of capital and a steady state rise in
the wage rate. Assuming a small, or zero income effect on leisure, the latter implies
a steady state rise in labor while the former and latter together imply a rise in the
capital stock. So, the cut in the capital income tax rate initially leaves the economy
below steady state capital. Transient dynamics in standard models have the property
that labor rises immediately, and converges to the new steady state from above. This
implies an initial fall in labor productivity. This conflicts with the one finding that
is common across all analyses of the response of the economy to a technology shock:
labor productivity increases both in the short and the long run after such a shock. In
addition, consumption is expected to drop initially, to finance the increased invest-
ment necessary to raise the capital stock to its new steady state. This is inconsistent
with evidence in CEV (2003), which suggests that consumption rises immediately.
(For additional discussion of the role of capital income tax rate shocks in equilibrium
models, see Uhlig (2003).)

4We implicitly adopt the standard assumption that agents do not observe or
react to advance signals on the innovation to technology. If they did do so, then the
variables that react to advance signals will Granger-cause true technology. Pursuing
the implications of this sort of possibility is of substantial interest, but beyond the
scope of this paper.

5That is, suppose the past of some variable, say x, is sufficient for forecast pur-
poses. If x;_;, 1 > 0, is in fact measured with error, then past values of other variables
might also be useful because of their correlation with x;_;.



ment distortions in the BFK technology series are only transient. Under
these circumstances, we can apply Gali (1999)’s long-run identification
strategy to recover an estimate of the shock to technology from BFK’s
measure of technology.

The second interpretation of the Granger-causality finding is that
there is a significant endogenous component to technology. Under these
circumstances, all economic shocks in principle have an impact on tech-
nology. If this impact is permanent, then the estimated innovations
to technology produced by the Vigfusson (2002) strategy confound the
effects of various economic shocks. Moreover, to the extent that endo-
geneity causes non-technology shocks to have an immediate impact on
technology, they also defeat the BFK strategy of uncovering innovations
to technology from the one-step-ahead forecast error in measured tech-
nology.% In this paper we assume that the endogenous components of
technology are not important. Investigating the robustness of our results
to the presence of endogeneity in technology would be of interest, but is
beyond the scope of this paper.

We now turn to BFK’s second key assumption, namely, that hours
worked are difference stationary. CEV (2003) report that for the sample
period, 1959I-20011V, there is evidence against this assumption. This
evidence is based on Bruce Hansen (1995)’s covariates adjusted Dickey-
Fuller test.” In this paper, we scale hours by a measure of the population.
We also reject the null hypothesis that per capita hours is difference
stationary. We present additional, complementary, evidence based on an
encompassing argument that also points to the notion that per capita
hours should not be first differenced.

When we apply long-run identification to the BFK measure of tech-
nology and work with the level of hours worked, we find that an inno-
vation to technology leads to a rise in hours worked. We find that the
resulting rise is comparable to the one obtained when long-run identi-
fication is done using a measure of productivity. This is the basis for
our conclusion that inference about the response of hours worked to a
technology shock based on Gali’s approach is robust to incorporating
direct measures of technology. In particular, hours worked rise after a
positive technology shock.

Finally, we construct a version of BFK’s technology series that is

Tt may be that non-technology shocks affect technology only with a lag. If so,
then BFK strategy would still be appropriate, while Vigfusson (2002)’s would not.
We thank John Fernald for this observation.

"The CADF test statistic has a value of -3.39. Hence using the standard ADF
distribution, which Hansen (1995) notes is actually too conservative, we would reject
at the 97.5 percent significance level.



purged of the effects of non-technology shocks. We find that the resulting
series is smoother than BFK’s original series. In addition, it implies a
smaller likelihood of technical regress.

The remainder of this paper is organized as follows. Section 2 de-
scribes the response of hours to a technology shock under various as-
sumptions. Section 3 displays evidence against the Granger-causality
property of the BFK model. Section 4 argues that per capita hours
worked is best modeled as a stationary process. Section 5 presents a
version of BFK’s technology shock that is purged of measurement error.
Finally, we present concluding remarks.

2 The Response of Hours Worked to a Technology
Shock Under Various Assumptions

In this section we define two models and explore their implications for
the response of hours worked to a technology shock. In both cases, we
work with the following bivariate, two lag vector autoregression (VAR):

Y, = B1Y, 1+ BY, o+ Ce,, CC' =V, Eee, =1,

where ¢, denote the fundamental economic shocks:

o — |E1] _ innovation to technology,
e B other shock

€t

The matrices, By, By, are estimated by ordinary least squares, while V'
is the variance-covariance matrix of the associated regression residuals.
To determine the dynamic response of the macroeconomic variables in
Y, to ey requires knowing the elements in the first column of C. At the
same time, we do not have enough information to recover C. While C
has four unknown elements, CC’" = V represents only three independent
equations. Some additional restriction (‘identification assumption’) is
required.

The data we use are the annual hours worked and technology series
covering the period 1950 to 1989, analyzed in BFK (1999). The data
refers to the non-farm private, business sector of the economy. The hours
worked data are converted to per capita terms by dividing by a measure
of the population.® In both models that we work with the first element
of Y; is As; = s; — s;_1, where s; denotes log, technology.

The model we refer to as the BFK model is defined by two assump-
tions. First, the second element of Y; is Ah;, where h; denotes per capita
hours. This corresponds to the assumption that per capita hours worked

8The data are taken from Citibase and have mnemonic P16.



is difference stationarity. Second, we impose the assumption that s; is
exogenous with respect to hours worked. Following the remarks in the
introduction, this implies that the 1,2 elements of B; and B; are zero
(i.e., Ah; does not Granger-cause technology) and the 1, 2 element of C'is
set to zero (i.e., the one-step-ahead forecast error in As; is proportional
to eyy).

The model we refer to as the CEV model replaces the two BFK as-
sumptions by assumptions that we will argue are more defensible. First,
we drop the assumption that h; is difference stationary and define the
second element of Y; as h;. Second, we drop the assumption that As; is
exogenous. In particular, we do not restrict any element of B; and Bs to
be zero, and we allow the 1,2 element of C' to be non-zero. We replace
the assumption of exogeneity with the restriction that e;; does not have
a long-run impact on s; :

]lgglo Et5t+j - Et715t+j = f(elt)~ (1)

In the CEV model, ey; is estimated using the instrumental variables
approach in Shapiro and Watson (1988). Then, the first column of C' is
estimated by regressing the VAR disturbances, Ce;, on ey;.

Figure 1 reports the response of hours to a technology shock in the
two models. In each case, the gray area represents a 95 percent con-
fidence interval.” Panel A displays the response implied by the BFK
model. Note that hours worked drops by a little over 1 percent in the
year of the shock. Hours are still down in the second year, and they hover
around zero in the years after that. This pattern generally reproduces
the findings in BFK, even though they work with the first difference of
actual hours, while we work with per capita hours. Panel B displays the
response implied by the CEV model. Note that here, hours jumps by 0.5
percent in the year of the shock and the point estimates remain positive
for several years thereafter. Although there is evidence of considerable
sampling uncertainty in the estimated impulse response function, note
that confidence interval clearly excludes the kind of drop implied by the
BFK model.

3 BFK Technology is Granger-Caused by Hours
Worked

When we test the null hypothesis that the 1,2 elements in B; and B,
are zero against the alternative that they are non-zero in the BFK VAR,

9The confidence intervals were computed by first simulating 1000 artificial impulse
response functions. Each was obtained by fitting a VAR to artificial data obtained
by bootstrap simulation of the relevant VAR. The reported reported intervals are
plus and minus two standard deviation intervals.
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we obtain an F'—statistic of Fap = 2.39. Using conventional sampling
theory, this has a p—value of 10 percent, indicating little evidence against
the null hypothesis. However, when the test is carried out in a version
of the VAR which incorporates h; in Y; rather than Ah;, we obtain an F’
statistic of Fj, = 4.66. Conventional sampling theory suggests p—value
of 1.6 percent. This rejects the null hypothesis.

Which test should we believe? If we believe the one based on the
first difference of hours worked, we fail to reject the no-Granger-causality
null hypothesis. If we believe the one based on the level, we reject the
hypothesis. This situation is similar to the one reported by Eichenbaum
and Singleton (1986), who found that money seems not to Granger-
cause output when the variables are measured in first differences, and
does seem to Granger-cause output when they are measured in levels.
Christiano and Ljungqvist (1988) analyzed these results, and found that
by applying a particular encompassing methodology, the conclusion that
money does Granger-cause output turns out to be the most plausible one.
Here, we apply the same methodology and reach a similar conclusion:
the most plausible result is the one based on the level of hours worked.

There are at least four ways to interpret the observation, F} = 4.66
and Fap, = 2.39. One is that the BFK VAR is specified correctly, so
that the low test statistic, Fa, =2.39, is the one sending the ‘correct’
signal. A necessary condition for this conclusion to be appealing is that
BFK VAR ‘explain’ the low p value associated with F}, as reflecting some
sort of distortion, perhaps the inappropriate application of conventional
sampling theory. Another interpretation is that the CEV VAR is cor-
rectly specified, so that it is the large test statistic, Fj, = 4.66, that
is sending the ‘correct’ signal. For this interpretation to be appealing,
the CEV VAR must be able to explain the low value of Fa; as reflect-
ing some sort of distortion, perhaps distortions due to first differencing.
Logically, there are two other possible interpretations: the BFK VAR
estimated without the restriction that the 1,2 elements of B; and B, are
zero, and the CEV VAR with that restriction imposed.

For each of the four data generating mechanisms, we simulated 1000
data sets by sampling randomly from the estimated VAR residuals, Ce;.
In each artificial data set we computed (Fj, Fap) using the same method
used in the actual data. For the two data generating mechanisms that
involve Ah;, we obtain artificial time series on h; by setting an initial
condition on h; and cumulating subsequent values of Ah;.

The results are displayed in the four scatter plots in Figure 2. In
each scatter plot, the vertical axis corresponds to F} and the horizontal
to Fap. The bold dot represents the empirical result, Fj, = 4.66, Faj, =
2.39. In each case, three percentages are displayed. These represent



the percent of the observations lying in the corresponding quadrant.
Consider the 1,2 figure first. That displays the implications of the BFK
VAR, with no Granger-causality (i.e., the 1,2 elements of By and B, set
to zero). Note that the percent of times that Fa, > 2.39 is 10.3, which
roughly coincides with the p—value implied by conventional sampling
theory. This can be seen by adding the percentages in the right two
quadrants. That this p—value is so close to the one reported above
means that, given our sample size, asymptotic sampling theory is a good
approximation. Note that the percent of times that Fj, > 4.66 is only
2.3. Thus, the level F' statistic is too large to be consistent with the
null hypothesis under the maintained hypothesis of the BFK VAR. Its
magnitude is grounds for rejecting that VAR.

Now consider the version of the BFK VAR which allows for Granger-
causality. Results for this are reported in the 1,1 graph in Figure 2.
These results indicate that the observed value of F}, is also too high for
that model. The 2,2 graph in Figure 2 shows that the VAR involving
the level of hours, estimated subject to the constraint that h; does not
Granger-cause As;, also cannot easily account for the high value of Fj,.
The p—value for the observed Fj, is 1.7 percent. This corresponds roughly
to the p—value computed based on conventional sampling theory.

According to the results in Figure 2, the only model that can ac-
count for the observed (Fj, Fap) is the CEV VAR. We interpret this
as indicating that there is valuable information in the level of hours,
over and above what is in the first differences, for forecasting technol-
ogy growth. These results reject, at conventional significance levels, the
Granger-causality assumption in the BFK model.

4 Hours Worked Should Not Be Differenced

Based on the results of the previous section, we drop the restriction in
the BFK model that hours do not Granger-cause technology growth. In
addition, we identify the innovation to technology using the identification
condition, (1). We call the resulting model, By, By and C, the ‘difference
VAR’. We refer to the CEV model as the ‘level VAR'. The only difference
between the difference and level VAR’s has to do with the treatment of
hours worked.

To see what these models imply for the response of hours worked to
a technology shock, consider Figure 3. The first graph in that figure
displays results for the levels case. This reproduces, for convenience,
the results in Panel A of Figure 1. Panel B of Figure 3 displays results
for the first difference model. Note how the drop in hours worked in
the difference model is even greater than it was in BFK (see Panel B,
Figure 1). The drop in the second year is now statistically significant



and the point estimates indicate that hours remain low for all the years
displayed. Clearly, whether one works with first differences or levels of
hours has a substantial impact on the outcome of the analysis.

We now apply the encompassing analysis proposed in CEV (2003),
to argue that the results based the level of hours worked are more plau-
sible. Before turning to the quantitative analysis, we sketch some of the
relevant a priori considerations (for a more detailed discussion, see CEV,
2003).

4.1 A Priori Considerations

Specification error considerations suggest that the results based on the
level VAR are more plausible. However, once sampling issues are taken
into account it is less clear on a priori grounds alone which result is more
likely.

If the level VAR is right, then the analysis based on first differenc-
ing hours worked entails specification error.!® For example, suppose
hy = phi_1 + ;. Then, Ah; = pAh;_1 + €, — €;_1, and Ah; does not
have a finite-ordered (or even infinite-ordered!) autoregressive represen-
tation. The conventional practice of working with finite-ordered VAR'’s
would be misspecified in this case. Now suppose the difference VAR is
correct. In this case, there is no specification error in working with levels
since that simply fails to impose a true restriction. Specification error
considerations alone suggest an asymmetry in the assessment of the two
models. If the results based on levels and difference specifications had
been similar, one should be roughly indifferent between the two specifi-
cations. But, given that the results are very different, this is consistent
with the notion that the difference specification is misspecified and the
level specification is closer to the truth. Although this simple specifi-
cation error analysis correctly anticipates the conclusion we eventually
reach, it oversimplifies.

There are sampling issues to consider too. For example, suppose the
level VAR encompassed the results from the difference VAR, but at the
cost of predicting large serial correlation in the fitted residuals in that
VAR. This would deflate our confidence in the level VAR because the
fitted difference VAR in fact displays very little serial correlation in its
residuals. There are also sampling concerns related to the difference
VAR. As explained in CEV (2003), if the difference specification is true,
then the Shapiro and Watson (1988) instrumental variables procedure we
use for estimating the innovation to technology has a weak instrument
problem. Suppose the difference VAR managed to encompass the level

0By specification error we mean that the true parameter values are not contained
in the econometrician’s parameter space.



results, but at the cost of predicting that the analyst using the level
VAR should have failed to reject the weak instrument null hypothesis.
This would deflate our confidence in the difference VAR. This is because
a conventional statistic for detecting weak instruments in the level data
in fact rejects the weak instruments hypothesis.

4.2 Quantitative Results

We begin by asking whether the level VAR can encompass the hours
response estimated for the difference VAR, and vice versa. Figure 4
displays the results. Each panel reproduces the estimated response of
hours worked to a technology shock. In addition, there is a mean re-
sponse predicted by the indicated DGP. The gray area indicates the
associated 95 percent confidence region. DGP’s were simulated using a
standard bootstrap procedure, by drawing randomly with replacement
from the underlying fitted VAR disturbances.

Note from Panel A in Figure 4 that the level VAR easily predicts
the estimated impulse response function corresponding to the difference
VAR. According to the level VAR, the true sign of the response of hours
worked is positive and the negative sign estimated in the difference VAR
is a consequence of specification error due to first differencing. Now
consider Panel B. Note the difference VAR’s counterfactual prediction
that the hours response in the level VAR is negative. That is, in terms
of the mean, the difference VAR does not encompass the level VAR
results. This is not surprising in view of the a priori considerations
discussed above. At the same time, note from the width of the gray area
that the difference VAR’s prediction for the level VAR’s hours response
is very noisy. Indeed, there is so much noise that, technically, any results
including the level VAR estimates are encompassed.

We quantify the implications of the results in Figure 4 as follows. Let
() denote the event that hours rise on average in the first six periods after
a shock in the level VAR, and that hours fall on average over the same
period. Then, bootstrap simulation implies P(Q|level VAR) = 0.84 and
P(Q|difference VAR) = 0.41. This implies that, under a uniform prior
distribution, the posterior odds in favor of the level VAR are 2.1 to one.!!

The reason the difference VAR does as well as it does in this en-
compassing analysis is because of the noisiness of its prediction for the
results in the level VAR. This prediction reflects the implication of the
difference model that the level analysis has a weak instrument problem.!?

UThat is, 0.84/0.41 equals 2.1, after rounding.

12Tn particular, in applying the Shapiro-Watson method to recover the innovation
to technology, the growth in hours worked is instrumented by its level. When hours
worked has a unit root, the lagged level is a ‘weak instrument’. To see this, note
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When we apply a standard test to determine whether the lag log, level
of hours is a good instrument for the first difference of log hours, the
resulting test statistic is ' = 11.50, which exceeds the Staiger and Stock
(1997) recommended value of 10. Thus, the null hypothesis that lagged
hours is a weak instrument is rejected. Interestingly, this corresponds to
Bruce Hansen (1995)’s covariates adjusted Dickey Fuller test for the null
hypothesis that hours worked has a unit root. This rejection in effect
rejects the unit root specification on classical grounds.

To integrate the weak instrument consideration into the analysis, we
add the result of the weak instrument test to the event, (), discussed
above. In particular, we add the event that the weak instrument test
statistic is inside the interval defined by the actual test statistic, plus
and minus unity.

The weak instrument issue raises a concern about the plausibility of
the difference specification. As discussed above, there is an analogous
concern related to the level specification. Recall that the specification’s
ability to account for the difference result is a result of the level VAR’s
implication that the first difference specification is misspecified. One
might expect this specification error to manifest itself in the form of
significant serial correlation in the bivariate, two-lag difference VAR’s
estimated in artificial data generated by the level VAR. If so, this would
be a count against the level VAR. This is because the Box-Pierce ¢
statistic for testing the null hypothesis of no serial correlation in the
fitted disturbances of the difference specification is 10.73.'® The associ-
ated p—value is 0.22 using conventional sampling theory, indicating little
evidence of serial correlation.

To integrate this serial correlation concern into the analysis, we add
the Box-Pierce ¢ statistic to the event, (). We add the event that the
Box-Pierce ¢ statistic lies in an interval [9.73,11.73] defined by the actual
Box-Pierce statistic, plus or minus one.

Let the event of interest to our analysis be the four dimensional

that under the unit root hypothesis the level of hours worked is heavily influenced by
shocks occuring in the distant past, while the first difference of hours worked is not.
As a result, there is relatively little overlap in the shocks driving the first difference
of hours and the shocks driving its level. See CEV (2003) for a detailed discussion.

13We do tests using the multivariate Ljung-Box portmanteau (or Q) test for white
noise by Hosking (1980) that is described in Johansen (1995, 22). We use four lags
in the test. The resulting degrees of freedom are 8.

11



object, @Q'. Here,

Q) average hours implied by level VAR positive
, | Q5| | average hours implied by difference VAR negative
@ = Q4| | weak instrument test statistic, plus and minus one
Q) serial correlation test statistic, plus and minus one

Table 1 displays prob(Q|level VAR) and prob(Q}|difference VAR). It
also displays the probabilities of the joint events, prob(Q;, Q;,|level
VAR) and prob(Q%, Q;, ,|difference VAR), for i = 1, 3, as well as prob(Q)’|level
VAR) and prob(Q’|difference VAR). Finally, the last column provides the
posterior odds, under a uniform prior, in favor of the level specification.

Table 1: Probability of Different Events and Posterior Odds
prob(Q}|level VAR) prob(Q|difference VAR) Posterior Odds

Qs 0.88 0.41 2.14
Q- 0.96 0.92 1.04
Qs 0.13 0.01 13.02
Qq 0.18 0.17 1.04
Q1N Q, 0.84 0.37 2.29
Q3N Q4 0.02 0.00 9.82
Q1N Q; 0.11 0.01 14.56
Q' 0.02 0.00 13.00

There are several things worth noting in the table. First, prob(Qj%|difference
VAR) is very small. This reflects, in results not displayed here, that the
difference VAR substantially underpredicts the weak instruments test
statistic. At the same time, prob(Qj|level VAR) is relatively large. As
a consequence, the implied posterior odds favor the level model very
strongly. Second, prob(Q}|level VAR) and prob(Q)}|difference VAR) are
of similar magnitude, so that the posterior odds of the two models rel-
ative to that statistic are near unity. This statistic does little to move
confidence one way or the other between the alternative specifications.
In results not displayed here, we found that the level VAR does not pre-
dict substantial serial correlation in the fitted residuals of the difference
VAR. (Of course, this result reflects the size of our data sample. We
verified that if the sample had been sufficiently large, the level VAR
would have predicted a sizeable amount of serial correlation in the fitted
residuals.)

The bottom line in the table is the posterior probability in favor of
the level VAR, given the entire joint fact, Q)’. This posterior probability
is very large. We conclude that the level VAR is more plausible than the
difference VAR, and on these grounds we conclude that hours worked
rise in response to a positive technology shock.

12



5 An Improved Estimate of Technology

Our analysis is consistent with the notion that there is measurement
error in the BFK measure of technology. The framework also suggests
a way to help purge that measurement error. Given our estimate of the
innovation to technology, we can ask what As;, would have been had
there been only innovations to true technology. The answer is obtained
by simulating the response of the level VAR using only the estimated
technology shocks, and setting the other shocks to zero. The resulting
series are graphed in Figure 5. By construction, these series are less
variable than the original BFK series, which are also displayed.

In addition, they imply a smaller probability of technical regress than
the BFK series do. It is sometimes taken as a measure of the plausibility
of an estimator of technical progress that it not imply the possibility of
technical regress.

6 Conclusion

In CEV (2003), we argued that long-run restrictions, in conjunction with
data on labor productivity, implies hours rise in response to a technology
shock. Here, we argue that the direct evidence on technology constructed
by BFK contains no reason to change that conclusion.

Although this paper emphasizes some points of difference with anal-
yses such as those of Gali (1999, 2003) and Gali, Lopez-Salido and Valles
(2003), it is useful to also note the many points of common ground. For
example, Altig, Christiano, Eichenbaum and Linde (2002), and CEV
(2003) find that, as in Gali (1999), shocks to disembodied technical
progress account for only a small component of business fluctuations. In
addition, Altig, Christiano, Fichenbaum and Linde (2002) argue, as in
Gali, Lopez-Salido and Valles (2002), that monetary policy has played
an important role in determining the nature of the transmission of tech-
nology shocks.

13
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Figure 1: Dynamic Response of Per Capita Hours Worked to Innovation in Technology
Panel A: BFK Model
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Figure 2: Simulating the Granger-Causality Test Statistics
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Figure 3: Response of Hours Worked to Technology: Long Run Restrictions
Panel A: Hours in Levels
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Figure 4: Evaluating The Ability of Each VAR to Encompass the Hours
Response of the Other
Panel A: DGP - Level VAR
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Figure 5: Error-Corrected Version of BFK Technology, Versus Actual
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