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A Appendix: Proofs of Results for Model

A1. Share of Commodities in Production

In the text, we adopt the following production function for the final good, Q, as a function of the commodity,

q :

Q = qδ,
1

2
< δ < 1.

Our assumption on the size of δ may give the impression that the share of the commodity in the production

of final goods must be very high for our analysis to be relevant. Here, we point out that our δ is consistent

with the notion that the share of commodities in production is quite low. To do this, we extend the model

to include another input, say x. Thus, suppose that the production function for Q is given by

Q = qδ̃xω, ω, δ̃ ≥ 0, 0 < ω + δ̃ < 1. (A.1)

The market price of q and x are P and w, respectively. Note that the technology exhibits decreasing

returns to scale, which affects our implicit assumption that in addition to q and x, the producer also

possesses a fixed amount of another factor (e.g., managerial talent). Profits represent the return on that

factor.

Profits are given by

PQg (q, x)− Pq − wx.

Profit maximization leads to the following first order conditions:

δ̃PQQ = Pq (A.2)

ωPQQ = wx, (A.3)

so that, after taking ratios,
ω

δ̃
Pq = wx.

Using this and (A.2), we can express profits as follows

PQQ− Pq − wx =

(
1

δ
− 1

)
Pq,
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where

δ ≡ δ̃

1− ω
.

Thus, δ ∈ (1/2, 1) is consistent with a small share of the commodity, q, in final good production.

A2. Deriving Equilibrium Pricing Functions

Substituting for Hw,Hb and Ho into (15) from (7), (12) and (14), respectively, we obtain

E (P − F )

αvar (P − F )
− λq1

δ
+ (1− 2λ) s

σ2
η

σ2
ε

= 0. (A.4)

Reproducing (11) we have,

P = D0 −Dqq + θ + ε. (A.5)

We guess that

F = F0 + Fθθ + Fss, (A.6)

where F0, Fθ, Fs are to be determined.

Substituting for P and F from (A.5) and (A.6) into (A.4), using var (P − F ) = σ2
ε , we obtain

D0 − F0 + (1− Fθ) θ − dq +
[
(1− 2λ)ασ2

η − Fs
]
s = 0, (A.7)

where

d ≡ Dq + λασ2
ε/δ. (A.8)

We guess that q = q0 + qθθ + qss. We use the first order condition for q, (6), to express q0, qθ and qs in

terms of the equilibrium future’s pricing function given in (A.6):

F0 + Fθθ + Fss = c̄+ cq0 + cqθθ + cqss

From this we see that

q0 =
F0 − c̄
c

, qθ =
Fθ
c
, qs =

Fs
c
. (A.9)

Substituting, from (A.9) into (A.7) and solving for the future’s pricing function:

D0 − F0 − d
F0 − c̄
c

+

(
1− Fθ − d

Fθ
c

)
θ +

[
(1− 2λ)ασ2

η − Fs − d
Fs
c

]
s = 0
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or, after using (A.8),

F0 =
cD0 +Dq + λασ2

ε/δc̄

c+Dq + λασ2
ε/δ

(A.10)

Fθ =
c

c+Dq + λασ2
ε/δ

Fs =
c (1− 2λ)ασ2

η

c+Dq + λασ2
ε/δ

,

Substituting from (A.10) and (A.8) into (A.9), we have

q0 =
D0 − c̄

c+Dq + λασ2
ε/δ

, qθ =
1

c+Dq + λασ2
ε/δ

, qs =
(1− 2λ)σ2

ηα

c+Dq + λασ2
ε/δ

. (A.11)

We now develop the equilibrium price function. Substituting the equilibrium q function from (A.11) into

(A.5), we obtain

P = P0 + Pθθ + Pss+ ε, (A.12)

where

P0 =
D0 (c+ d)−Dq (D0 − c̄)

c+Dq + λασ2
ε/δ

(A.13)

Pθ =
c+ λασ2

ε/δ

c+Dq + λασ2
ε/δ

Ps = −
Dq (1− 2λ)

σ2
η

σ2
ε
ασ2

ε

c+Dq + λασ2
ε/δ

,

where d is defined in (A.7). Also,

R = EP − F = R0 +Rθθ +Rss. (A.14)

where

R0 =
(D0 − c̄)λασ2

ε/δ

c+Dq + λασ2
ε/δ

(A.15)

Rθ =
λασ2

ε/δ

c+Dq + λασ2
ε/δ

Rs = −
(Dq + c) (1− 2λ)ασ2

η

c+Dq + λασ2
ε/δ

.

We now provide a proof of Lemma 1, which we restate here for readability,

The equilibrium return and production rules given in (16) and (17) satisfy: Rθ > 0, Rs < 0, and

qθ, qs > 0.
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Proof: Substituting for d from (A.8) into (A.15), we have that

Rθ =
λασ2

ε/δ

c+Dq + λασ2
ε/δ

> 0.

Inspection of (A.15) shows that Rs < 0.

Substituting from (A.10) into (A.9), we obtain,

q0 =
D0 − c̄
c+ d

, qθ =
1

c+ d
, qs =

(1− 2λ)
(

1− σ2
ν

σ2
ε

)
ασ2

ε

c+ d
.

Clearly, qθ, qs > 0. Q.E.D.

A3. Proof of Proposition1

Proof:

Under the assumption Hb, Ho > 0, we have, from (18),

oi = λHb + n,

so that

cov (oi, R) = λcov
(
Hb, R

)
+ cov (n,R) .

Thus, cov (oi, R) > cov (n,R) if and only if cov
(
Hb, R

)
> 0.

Using (21) and the equilibrium rule for q, (17),

Hb = Hb
0 + qθ

(
1− 1

δ
+
λ

δ

)
θ + qs

(
1− 1

δ
+
λ

δ

)
s− (1− 2λ)

σ2
η

σ2
ε

s,

where Hb
0 is a constant. Using (16), the covariance between Hb andR is

cov
(
Hb, R

)
= qθ

(
1− 1

δ
+
λ

δ

)
Rθσ

2
θ +

[
qs

(
1− 1

δ
+
λ

δ

)
− (1− 2λ)

σ2
η

σ2
ε

]
Rsσ

2
s .

From Lemma 1, qθ,Rθ > 0, so that under (23) it follows that the first term in the covariance is positive.

Also from Lemma 1 Rs < 0, so that cov
(
Hb, R

)
> 0 if the expression in square brackets is negative. To

show that the expression in square brackets is negative, substitute for qs from (A.11) to obtain

qs

(
1− 1

δ
+
λ

δ

)
− (1− 2λ)

σ2
η

σ2
ε

= − (1− 2λ)
σ2
η

σ2
ε

[
ασ2

ε (1− δ) + δ (c+Dq)

δ (c+Dq) + αλσ2
ε

]
< 0,

so that cov
(
Hb, R

)
> 0.
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To show that a value for σ2
s exists that sets cov (n,R) = (1− 2λ) cov (Ho, R) = 0, substitute for

equilibrium production, q, from (17) into (22) to obtain

Ho = Ho
0 +

[
λqθ

1

δ
θ + λqs

1

δ
s+ 2λ

σ2
η

σ2
ε

s

]
, (A.16)

where Ho
0 is a constant. Using (A.14) and (A.16), we have

cov (Ho, R) = λqθ
1

δ
Rθσ

2
θ +

[
λqs

1

δ
+ 2λ

σ2
η

σ2
ε

]
Rsσ

2
s . (A.17)

Since qθ, Rθ, qs > 0 andRs < 0, it follows immediately that there exists a value for σ2
s that sets cov (n,R) =

0. Q.E.D.

A4. Proof of Lemma 3

For readability, we reproduce the statement of Lemma 3 here.

Lemma 3. Holding the measure of participating outsiders, 1−2λ, fixed, the surplus from participation,

UP − Unp, is increasing in σ2
θ and σ2

s . Furthermore, if s̄ is sufficiently large and λ is sufficiently close to

1/2, then the surplus is decreasing in σ2
ε .

Proof. We begin by proving the first part of the lemma. Consider var0 (Ho) : Rθ = λασ2
ε/δ

c+Dq+λασ2
ε/δ

var0 (Ho) = var0

(
ER

ασ2
ε

+ s
σ2
η

σ2
ε

)
=

(
Rθ

ασ2
ε

)2

σ2
θ +

[
Rs

ασ2
ε

+
σ2
η

σ2
ε

]2

σ2
s

=

(
λ/δ

c+Dq + λασ2
ε/δ

)2

σ2
θ +

[
−

(Dq + c) (1− 2λ)σ2
η/σ

2
ε

c+Dq + λασ2
ε/δ

+
σ2
η

σ2
ε

]2

σ2
s

=

(
λ/δ

c+Dq + λασ2
ε/δ

)2

σ2
θ +

[
− (Dq + c) (1− 2λ) + c+Dq + λασ2

ε/δ

c+Dq + λασ2
ε/δ

]2(σ2
η

σ2
ε

)2

σ2
s

=

(
λ/δ

c+Dq + λασ2
ε/δ

)2

σ2
θ +

[
(Dq + c) 2λ+ λασ2

ε/δ

c+Dq + λασ2
ε/δ

]2(σ2
η

σ2
ε

)2

σ2
s

Substituting from (A.14), we have, after some manipulation,

var0 (Ho) =

(
Rθ

ασ2
ε

)2

σ2
θ +

[
Rs

ασ2
ε

+
σ2
η

σ2
ε

]2

σ2
s

=

(
Rθ

ασ2
ε

)2

σ2
θ +

[
Rs

ασ2
ε

+
σ2
η

σ2
ε

]2

σ2
s
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var0 (Ho) =

[
2λ (c+Dq) + λασ2

ε/δ

c+Dq + λασ2
ε/δ

]2 σ2
ησ

2
s

σ2
ε

+

[(
λ/δ

c+Dq + λασ2
ε/δ

)]2

σ2
θ . (A.18)

Consider next E0H
o

E0H
o = s̄

σ2
η

σ2
ε

+
R0 +Rss̄

ασ2
ε

.

Substituting from (A.14), after some manipulation we have

E0H
0 =

[
σ2
η

σ2
ε

(
2λ (c+Dq) + λασ2

ε/δ

c+Dq + λασ2
ε/δ

)]
s̄+

(D0 − c̄)λ/δ
c+Dq + λασ2

ε/δ
. (A.19)

From (A.18), we see that var0(Ho) is increasing in σ2
θ and σ2

s . From (A.19) does not dependent on σ2
θ and

σ2
s . It follows immediately that surplus is increasing in σ2

θ and σ2
s .

To prove the second part of the lemma, it is convenient to let h = σεH
o. We show that the derivative

of (E0h)2 can be made arbitrarily negative by setting s̄ sufficiently large and λ sufficiently close to 1/2.

Note that this derivative is given by

2E0 (h)× dE0 (h)

dσ2
ε

,

where from (A.19) we have

E0h =

[
σ2
η

σε

(
2λ (c+Dq) + λασ2

ε/δ

c+Dq + λασ2
ε/δ

)]
s̄+

σε (D0 − c̄)λ/δ
c+Dq + λασ2

ε/δ
.

Clearly, E0h is increasing in s̄. Next, note that if λ = 1/2, then the derivative of Eh can be made arbitrarily

negative ifs̄ is sufficiently large. By continuity this derivative is arbitrarily negative forλ sufficiently close to

1/2. Thus, the derivative of (E0h)2 can be made arbitrarily negative.

Consider next var0 (h) . From (A.18) we have

var0 (h) =

[
2λ (c+Dq) + λασ2

ε/δ

c+Dq + λασ2
ε/δ

]2

σ2
ησ

2
s +

[
σελ/δ

c+Dq + λασ2
ε/δ

]2

σ2
θ .

The derivative of var0 (ho) with respect to σ2
ε is independent of s̄. Thus, it follows that the surplus of

participating outsiders is decreasing σ2
ε if s̄ is sufficiently large and λ is sufficiently close to 1/2.
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