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This note exposits Woodford’s (2004) strategy for solving the model with capital in
Woodford (2003)’s chapter 5. In this model, the capital used by firms is completely firm-
specific, and so the standard assumption that there are aggregate rental markets in capital
services is ruled out. Similarly, there is no economy-wide market for labor. The assumption
that factors are firm-specific only complicates the computation of the parameters in the
reduced form equation characterizing aggregate inflation dynamics. All the other equilibrium
conditions coincide with the standard ones that occur in the version of Woodford’s model in
which capital and labor are homogeneous and are traded in economy-wide factor markets.
This is why this note focuses specifically on the equilibrium equation characterizing aggregate
inflation dynamics.
Woodford’s (2004) strategy for computing the parameters of the reduced form inflation

equation as a function of model parameters is based on undetermined coefficients. MATLAB
programs for doing these calculations are available on the author’s web site.2

The details of the equation governing aggregate inflation dynamics depend on the details
of the model. It turns out that the undetermined coefficient method discussed here is quite
flexible. It has been extended to incorporate Kimball (1995)’s specification of demand by
Eichenbaum and Fisher (2004). It has been extended to a model with higher-order adjust-
ment costs in investment and sticky wages in Altig, Christiano, Eichenbaum, and Linde
(2004). For a discussion of the motivation for analyzing models with firm-specific factors
of production, see the recent papers by Altig, Christiano, Eichenbaum and Linde (2004),
Coenen and Levin (2004), de Walque, Smets and Wouters (2004) and Sveen and Weinke
(2004a,b).

1 The Model

The preferences of households are as follows:
∞X
t=0

βt

∙
u(Ct,Mt/Pt)−

Z 1

0

v(Ht(j))dj

¸
,

where u is increasing and concave in its first argument, v is increasing and convex, and

βt =
1

(1 + rn0 ) (1 + rn1 ) · · ·
¡
1 + rnt−1

¢ ,
for t = 1, 2, ... . Also, β0 ≡ 1 and

βt+1
βt

=
1

1 + rnt
.

1In preparing this note I have benefitted greatly from discussions with Jonas Fisher and Roc Armenter.
2The url for the software is
http://www.faculty.econ.northwestern.edu/faculty/christiano/research/firmspecific/computegamma.zip
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Each household supplies every type of labor, j ∈ (0, 1). Here, Ct denotes consumption and
Mt denotes the household’s end-of-period t stock of money. Finally, Pt denotes the price of
the consumption good. The household’s flow budget constraint is:

PtCt +Mt +Bt+1 ≤Mt−1 +Bt(1 + it+1) +

Z 1

0

Ptwt(j)Ht(j)dj + Tt, (1)

where Bt denotes the beginning-of-period t stock of bonds, purchased in period t− 1. Also,
wt(j) denotes the real wage rate paid to type j labor, and Tt denotes lump sum profits
and transfers from the government. We suppose there is a lower bound constraint on Bt.
Households are competitive in goods and labor markets.
Final goods are produced using intermediate goods by a representative, competitive firm

using the following Dixit-Stiglitz production function:

Yt =

∙Z 1

0

yt(j)
θ−1
θ di

¸ θ
θ−1

, θ > 1.

The first order condition for profit maximization by the final good firm is:µ
Yt

yt(j)

¶ 1
θ

=
Pt(j)

Pt
. (2)

The ith intermediate good is produced by a monopolist using the following technology:

yt(i) = Kt(i)f

µ
ht(i)

Kt(i)

¶
. (3)

Here, Kt(i) is the capital owned by the monopolist, and ht(i) is the quantity of labor hired.
The firm is competitive in the market for type i labor, and takes the wage rate, wt(i), as
given.3 Investment by the ith monopolist produces new capital in the next period according
to the following adjustment cost function:

It(i) = I

µ
kt+1(i)

kt(i)

¶
kt(i). (4)

Here, investment, It(i), corresponds to purchases of the final good. Also, I(1) = δ, I 0(1) = 1,
I 00(1) = �ψ > 0.

3At first glance, this may seem odd, because according to the formalism in the text, the jth intermediate
good producer is the only employer of type j labor. This suggests that the producer must be a monopsonist.
We follow an alternative interpretation suggested by Woodford (2003), which rationalizes competitive labor
markets. Think of the jth intermediate good producer as being a member of an industry composed of
intermediate goods producers with indeces lying in a small neighborhood, J, of j. Suppose there is a finite,
but large, number of such industries that do not intersect, but whose union is the unit interval. Imagine
that instead of there being a continuum of labor types in the household utility function, there is a discrete
number as in the Riemann approximation to the integral of the household utility function. Each of these
labor types works in one of the industries. With this setup, there is a continuum of suppliers and demanders
in the labor market corresponding to each industry, so that competition makes sense. This is the case even
for intervals, J, whose length is very small. This is how we interpret the model. For further discussion, see
Woodford (2003, pp. 148-149).
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The ith intermediate good firm faces frictions in the setting of its price, Pt(i). With
probability 1− α it may set its price optimally, and with probability α is must set

Pt(i) = Pt−1(i)π
(
t−1, 0 ≤ ( ≤ 1, (5)

where ( controls the degree of inflation indexation and πt = Pt/Pt−1.
The present discounted value of profits of the intermediate good firm are:

Et

∞X
j=0

βt+jΛt+j {(1 + τ)Pt+j(i)yt+j(i)− Pt+jwt+j(i)ht+j(i)− Pt+jIt+j(i)} . (6)

Here, Λt denotes the shadow value of a dollar to the household, the owner of the intermediate
good firm. It is the multiplier on (1) in the Lagrangian representation of the household’s
problem. Also, the subsidy, τ , is designed to eliminate the distorting effects of monopoly
power in the model. I assume

1 + τ =
θ

θ − 1 .

The ith intermediate good firm chooses Pt+j(i), yt+j(i), ht+j(i), It+j(i) to maximize profits,
subject to (2), (3), (4), as well as its price-setting constraints. The firm takes Pt+j, Yt+j , τ
and wt+j(i) as given.
The resource constraint is:

Ct + It +Gt = Yt,

where

It =

Z 1

0

It(i)di.

To fully close the model requires specifying how the monetary authority controls it. This
could be done in a variety of ways. However, they do not impact on the equation that
characterizes inflation dynamics, which is what interests us here. For for our purposes it is
enough to simply specify that it take on some value on steady state.
When the curvature on investment adjustment costs, �ψ, is large, then the stock of capital

is a constant. The elastic investment case corresponds to smaller values of �ψ.

2 Equilibrium Conditions

This section develops the equations that characterize equilibrium for the model. The first
order necessary conditions for household optimization include a transversality condition and:

v0(Ht(j))

u0t
= wt(j)

u0t =
1

1 + rnt
u0t+1

1 + it
πt+1

um,t

u0t
=

it
1 + it
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Here, u0t denotes the marginal utility of consumption. The first equation is the intratemporal
Euler equation for labor. The second equation is the intertemporal Euler equation associated
with the household saving decision. The third equation is the Euler equation associated with
real balances. From here on, I assume u0t is not a function of Mt/Pt, and I ignore the last
first order condition.
The first order necessary condition associated with the optimal choice of capital by the

ith firm is:

I 0
µ
kt+1(i)

kt(i)

¶
=

1

(1 + it) /πt+1

½
ρt+1(i)− I

µ
kt+2(i)

kt+1(i)

¶
+ I 0

µ
kt+2(i)

kt+1(i)

¶
kt+2(i)

kt+1(i)

¾
. (7)

Here, I have made use of the household’s intertemporal Euler equation and the fact, Λt =
uc,t/Pt. With some algebra it can be shown that ρt+1(i) in (7) can be written:

ρt+1(i) = wt+1(i)
f(h̄t+1(i))− h̄t+1(i)f

0(h̄t+1(i))

f 0(h̄t+1(i))
. (8)

One interpretation of ρt+1(i) is that it is the real rental rate of capital that would rationalize
the amount of capital used by the intermediate good firm in t+1, if there were a competitive
capital rental market.4

If the ith firm has the opportunity to reoptimize its price, then it does so, taking into
account that it must satisfy its demand curve and that it will not be able to reoptimize
again, with probability α. The firm’s first order condition is, after some algebra,

∞X
j=0

αjβt+jλt+jP
θ
t+jYt+j

½
pt+j(i)−

θ

(θ − 1) (1 + τ)
st+j(i)

¾
= 0, (9)

where

pt+j(i) =
Pt(i)

Pt+j
,

where Pt(i) is the price set in period t. Also, st+j(i) is the marginal cost of producing an
extra unit of output:

st(i) =
wt(i)

f 0
³

ht(i)
Kt(i)

´ . (10)

According to (9), the firm sets its price to an after-tax markup over marginal cost on average.

3 Log-Linearized Equilibrium Conditions

I first develop formulas for the model’s steady state. I then log-linearize the equilibrium
conditions about the steady state.

4See Woodford (2003, p. 355) for an alternative interpretation.
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3.1 Steady State

We first compute the capital-to-output ratio, k, and consumption-to-output ratio, c. In
steady state, (7) reduces to:

1

β
= ρ− δ + 1,

where ρ is the steady state value of the first object in braces in (7). Then, ρ = (1/β)+ δ−1,
which, when combined with (8) evaluated in steady state, yields:

1

β
+ δ − 1 = w

f − h̄f 0

f 0
.

In steady state, all prices are equal, so that pt(i) = 1. This, and the fact that the object in
braces in (9) is zero in steady state imply

s =
(θ − 1) (1 + τ)

θ
.

Combining this with (10), we obtain:

w = f 0
(θ − 1) (1 + τ)

θ
,

which says that the real wage is an after tax markup over the marginal product of labor.
Combining these results and rearranging, we obtain:

k =
(θ − 1) (1 + τ)

θ

µ
φ− 1
φ

¶Ã
1

1
β
+ δ − 1

!
.

where k ≡ K/Y. Finally, note that in steady state:

Y = C + δK +G,

so that
c ≡ C

Y
= 1− δk − g,

where
g =

G

Y
.

3.2 Log-Linear Expansions

Aggregate Goods-Market Clearing

Consider the national income identity:

Yt = Ct + It +Gt,

where Gt denotes the exogenous level of government spending. Then,

Ŷt = Ĉt + Ît + Ĝt.
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Unless otherwise noted, a hat over a variable indicates deviation from steady state, expressed
as a fraction of steady state. That is, ẑt ≡ dzt/z, where z is the steady state value of zt and
dzt is a small deviation, zt − z (I refer to ẑt as the log deviation of zt from steady state, or,
simply, as the ‘log deviation’.) However, in the case of the aggregate quantities appearing
in the national income identity, a hat indicates deviation from steady state, expressed as a
fraction of steady state aggregate output:

Ît =
dIt
Y

, Ŷt =
dYt
Y

, Ĉt =
dCt

Y
, Ĝt =

dGt

Y
.

Household Intertemporal Condition

Log-linearizing the household’s intertemporal Euler equation:

ûc,t = ûc,t+1 − r̂nt + ı̂t − π̂t+1, (11)

where
ı̂t ≡

it − i

1 + i
, r̂nt ≡

rnt − rn

1 + rn
.

It is useful to develop an expression for ûc,t. We have

ûc,t ≡
duc,t
uc

=
uccY

uc
Ĉt

=
uccC

uc

Y

C
Ĉt

= −σ−1Ĉt,

where

σ = σ−1u c > 0

σu = −uccC
uc

Then,
ûct = −σ−1

h
Ŷt − Ît − Ĝt

i
. (12)

Firm Investment

Loglinearizing the ith intermediate good firm’s Euler equation for investment, (7), about
steady state, we obtain:

ûc,t + �ψ
h
k̂t+1(i)− k̂t(i)

i
= (1− δ)βûc,t+1 − r̂nt

+ [1− (1− δ)β]
h
ρyŷt+1(i)− ρkk̂t+1(i)

i
(13)

+β�ψ
h
k̂t+2(i)− k̂t+1(i)

i
,
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where

ρy = σvφ+
ωpφ

φ− 1 , ρk = ρy − σv.

Exploiting the symmetry of the steady state equilibrium, we have K̂t =
R 1
0
k̂t(i)di and

Ŷt =
R 1
0
ŷt(i)di. Integrating (13) over all i ∈ (0, 1), we then obtain:5

ûc,t + �ψ
h
K̂t+1 − K̂t

i
= (1− δ)βûc,t+1 − r̂nt

+ [1− (1− δ)β]
h
ρyŶt+1 − ρkK̂t+1

i
(14)

+β�ψ
h
K̂t+2 − K̂t+1

i
.

Note that (14) implies K̂t+1 − K̂t = (1/β)
t
h
K̂1 − K̂0

i
when �ψ =∞. So, the only K̂1 − K̂0

which implies a non-explosive path for the capital stock is one in which K̂1 − K̂0 = 0, in
which case the capital stock is constant. This is what one expects when adjustment costs
are infinite.
Loglinearizing the investment equation, (4):

Ît = k
h
K̂t+1 − (1− δ)K̂t

i
, (15)

where

k =
K

Y
.

4 Aggregate Price Dynamics

This section builds on the results in the previous section to derive a simple expression for
the dynamics of inflation in the model. Fundamentally, the strategy for accomplishing this
coincides with the three-step strategy used in the existing literature on Calvo pricing (see, for
example, Yun, 1996). In the first step, one loglinearizes the equilibrium condition relating
Pt to the intermediate good prices, to obtain a relationship between the prices of price-
optimizing firms and the aggregate inflation rate. In the second step, one uses a loglinearized
version of the first order condition, (9), to obtain an expression for the prices chosen by
price-optimizing firms in terms of aggregate inflation and other aggregate variables. In the
third step, the equations obtained in the first two steps are used to eliminate the prices of
price-optimizing firms, to obtain an expression for aggregate inflation dynamics. The details
are somewhat more complicated here, owing to the fact that price-optimizing firms choose
a different price, depending on how much beginning-of-period capital they own. This is
a complication that is absent in the usual Calvo setting, where all price-optimizing firms
choose the same price. It turns out that, following the logic laid out in Woodford (2004), the
complication can be handled with just a little extra algebra. This logic, suitably adapted
to accommodate inflation indexation, establishes that there is an equilibrium in which the
inflation process is:

∆(π̂t = γŝt + β∆(π̂t+1, (16)

5Expression (14) corresponds to Woodford (2003, equation 3.7, page 356).
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where
∆(π̂t ≡ π̂t − (π̂t−1.

In (16), γ is a function of the structural parameters, and ŝt is marginal cost, averaged across
all firms. I now describe the equations used to compute γ. It is easily verified that the
presence of aggregate uncertainty does not change the basic logic below, and requires only
replacing ∆(π̂t+1 with Et∆(π̂t+1, where Et is the conditional expectation operator.
Step 1 begins by integrating (2) over j ∈ (0, 1) and imposing the final goods firm tech-

nology,

Pt =

∙Z
Pt(j)

1−θdj

¸ 1
1−θ

(17)

=

∙Z
I

P ∗t (i)
1−θdi+

Z
J

Pt(j)
1−θdj

¸ 1
1−θ

,

where i ∈ I corresponds to the firms which have the opportunity to reoptimize in period t
and j ∈ J corresponds to the firms which do not. Dividing both sides of (17) by Pt, making
use of (5), and rearranging,

1 =

Z
I

p∗t (i)
1−θdi+ α

µ
(πt−1)

(

πt

¶1−θ
,

where p∗t (i) = P ∗t (i)/Pt. Taking into account that p∗t (i) = 1 for all i in steady state, one
finds, after loglinearly expanding the last expression:

0 =

Z
I

p̂∗t (i)di− α∆(π̂t. (18)

Following Woodford (2004), I posit (and later verify) that

p̂∗t (i) = p̂∗t − ψk̃t(i), k̃t(i) ≡ k̂t(i)− K̂t, (19)

where ψ is a scalar and p̂∗t is a function of aggregate variables only. Both ψ and p̂∗t are
unknowns that are to be determined. Symmetry of the steady state implies

R 1
0
k̂t(i)di = K̂t.

Since the firms which reoptimize their price are chosen at random, it follows that
R
I
k̂t(i)di =

K̂t too, and Z
I

k̃t(i)di = 0. (20)

Substituting (19) and (20) into (18),

p̂∗t =
α

1− α
∆(π̂t. (21)

This completes the discussion of step 1.
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To describe step 2, it is useful to first display two simple relationships. For any firm with
relative price p̂t(i) at time t, which it cannot reoptimize in any period up to, and including,
time t+ j, its relative price at time t+ j is

p̂t+j(i) = p̂t(i)−∆(π̂t+j − ...−∆(π̂t+1, j ≥ 1. (22)

Log-linearizing (10), one obtains (see Woodford (2003, page 358)) the following expression
for the ith firm’s marginal cost:

ŝt(i) = ŝt − θωp̂t(i)− (ω − σv) k̃t(i). (23)

Here, aggregate marginal cost, ŝt, is given by:−σ−1
h
Ŷt − Ît − Ĝt

i
ŝt = ω

³
Ŷt − K̂t

´
+ σvK̂t − ûc,t. (24)

Substituting (22) and (23) into the loglinearized version of (9) and rearranging, one obtains:

p̂∗t (i) =
∞X
j=1

(αβ)j∆(π̂t+j+
1− αβ

1 + θω

∞X
j=0

(αβ)j ŝt+j−(ω − σν)
1− αβ

1 + θω
Êi
t

∞X
j=0

(αβ)j k̃t+j(i). (25)

Here, Êi
tXt+k(i) denotes the expectation of the random variable Xt+k(i), conditional on date

t information and on the event that the ith firm optimizes its price in period t, but does
not do so in any period up to and including t+ k. In principle, the optimally chosen k̃t+1(i)
is a function of prices in all continuation histories after period t for firm i. These histories
include periods in which the ith firm is permitted to reoptimize its price. A frontal assault on
this expectation is computationally overwhelming. However, Woodford (2004)’s insight that
k̃t+1(i) can be represented as a linear function of k̃t(i) and p̂t(i) simplifies the expectation
drastically. In this case, the expectation in (25) only involves prices in future periods when
the firm is not permitted to reoptimize. Consistent with this, I posit (and then verify):

k̃t+1(i) = κ1k̃t(i) + κ2p̂t(i), (26)

where κ1, κ2 are to be determined. For the linear approximation strategy to be reliable,
we will require |κ1| < 1. (This turns out to be the case, for the numerical examples I have
considered.)
To determine the values of the unknown parameters, ψ, κ1, and κ2, and the unknown

function, p̂∗t , I use the fact that (29) and (25) must be satisfied. Ultimately, γ is the object
that we seek, and we shall see that this is a function of ψ, κ1, κ2.
Recursive substitution of (26) yields,

Êi
t k̃t+k(i) = κk1k̃t(i)+

1− κk1
1− κ1

κ2p̂
∗
t (i)−κ2

µ
∆(πt+k−1 + (1 + κ1)∆(πt+k−2 + ...+

1− κk−11

1− κ1
∆(πt+1

¶
.

Using this to evaluate the last expectation in (25), and solving for p̂∗t (i), I obtain (19) with

p̂∗t =
∞X
j=1

(αβ)jEt∆(π̂t+j +
(1− αβκ1) (1− αβ)

(1 + θω) (1− αβκ1) + (ω − σν)αβκ2

∞X
j=0

(αβ)j ŝt+j (27)
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and

ψ =
(ω − σν) (1− αβ)

(1 + θω) (1− αβκ1) + (ω − σν)αβκ2
≡ ψ(κ1, κ2). (28)

This derivation assumes |αβκ1| < 1.
The parameters, κ1 and κ2, must also satisfy the intermediate good firms’ optimality

condition for investment. Subtract (14) from (13), use (2) and rearrange, to obtain:

Et

h
Q(L)k̃t+2(i)

i
= ΞEtp̂t+1(i), (29)

where Et is the expectation operator, conditional on information dated t and earlier, for firm
i. Equation (29) must hold, for all intermediate good firms, whether or not they have the
opportunity to reoptimize their price. In (29), Q(L) and Ξ are defined as follows:

Q(L) = β − φL+ L2,

φ = 1 + β + (1− β(1− δ))ρk�
−1
ψ

Ξ = (1− β(1− δ)) ρyθ�
−1
ψ .

It is useful to first simplify the conditional expectation to the right of (29). Following
the lead in Woodford (2004), I use (19), (21) and (22), to obtain, after rearranging:

Etp̂t+1(i) = αp̂t(i)− (1− α)ψk̃t+1(i). (30)

Substitute (26) and (30) into (29), to obtain, after rearranging,£
1− φκ1 + βκ21 − (1− α)ψ (βκ2 − Ξ)κ1

¤
k̃t(i)

+

∙
−φκ1 + βκ21 + βκ1α− Ξα

κ1
κ2
− (1− α)ψ (βκ2 − Ξ)κ1

¸
κ2
κ1
p̂t(i) = 0.

For this to be satisfied for all possible k̃t(i) and p̂t(i) requires that the coefficients on k̃t(i)
and p̂t(i) be zero:

1− φκ1 + βκ21 = (1− α)ψ (βκ2 − Ξ)κ1

−φκ1 + βκ21 + βκ1α− Ξα
κ1
κ2

= (1− α)ψ (βκ2 − Ξ)κ1

Subtracting and rearranging,

κ2 =
Ξακ1

βκ1α− 1
≡ κ2(κ1). (31)

I conclude that equation (31), together with

f(κ1, κ2, ψ) = 0, (32)

where

f(κ1, κ2, ψ) ≡ −φκ2 + βκ1κ2 + βκ2α− β (1− α)κ2ψκ2 − Ξα+ (1− α)Ξψκ2.
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are required for (29) to be satisfied for all possible k̃t(i) and p̂t(i) (the argument assumes
κ1 6= 0, κ2 6= 0). This completes the discussion of step 2.
Turning to step 3, use (21) to substitute out for p̂∗t in (27) and suitably difference the

result, to obtain (16) with

γ =
(1− α) (1− αβ)

α

(1− αβκ1)

(1 + θω) (1− αβκ1) + (ω − σν)αβκ2
. (33)

So, to find γ in (16) one must first find κ1, κ2, ψ that satisfy the three equations composed
of (31), (32) and (28), subject to |αβκ1| < 1. These equations can be solved by a one-
dimensional nonlinear search for a value of κ1 with the property, g(κ1) = 0, where

g(κ1) ≡ f (κ1, κ2 (κ1) , ψ (κ1, κ2 (κ1))) . (34)

Here, f(κ1, κ2, ψ), κ2(κ1) and ψ (κ1, κ2) are defined in (32), (31) and (28), respectively. I
summarize these results in the form of a proposition:
Proposition A.1. Suppose κ1 satisfies g(κ1) = 0, for g defined in (34) and |βακ1| < 1.

Let κ2 = κ2(κ1) for κ2(·) defined in (31) and ψ = ψ(κ1, κ2), for ψ(·, ·) defined in (28). If
there is an equilibrium in the linearized economy, then aggregate inflation in that equilibrium
satisfies (16), with γ given in (33).

5 Closing Remarks

The linearization strategy pursued here has simplified the problem of computing equilibrium
even more than is usually the case with linearizations. Because the capital stock is a state
variable for an individual firm, in principle the distribution of capital across firms matters for
determining aggregate equilibrium outcomes. In addition, in principle the evolution of that
distribution over time is a part of the equilibrium that has to be computed. Because of the
symmetry properties of the linearized equilibrium, only the aggregate capital stock matters in
our linear approximation of the equilibrium. So, the linearization strategy in effect is a device
for avoiding the computationally burdensome problem of computing a distribution and its
law of motion.6 Whether this is of interest ultimately depends on whether the linearization
strategy is accurate. Whether this is so deserves to be investigated further. If the strategy
does turn out to have good accuracy properties, it would be interesting to investigate wether
the linearization strategy investigated here works well in other models where distributions
matter in principle.

6Jeff Campbell analyzed an example in which linearization simplifies the computation of equliibrium in a
model in which distributions matter (for a brief description, see Christiano (1992).) However, in his example
the distribution still has to be at least approximated. In the example in this paper, the linearization strategy
allows one to dispense with the problem of computing distributions altogether.
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