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We argue that lack of commitment in monetary policy may bear a large part of the blame. We show that,

in a standard equilibrium model, absence of commitment leads to multiple equilibria, or expectation traps.
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country evidence for key implications of the model.
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Many countries have gone through prolonged periods of costly, high inflation, as well as

prolonged periods of low inflation. Why do high inflation episodes occur? What can be

done to prevent them from occurring again? These are two central questions in monetary

economics.

One tradition for understanding poor inflation outcomes stems from the time inconsis-

tency literature pioneered by Kydland and Prescott (1978) and Barro and Gordon (1983).

This literature points to lack of commitment in monetary policy as the main culprit behind

high inflation. Static versions of the models in this literature have a unique equilibrium. In-

flation rates can fluctuate only if the underlying fundamentals do. In may cases, it is difficult

to see what changes in the underlying fundamentals could have generated the episodes of high

and low inflation. In infinite horizon versions of the Kydland-Prescott and Barro-Gordon

models, trigger strategies can be used to produce the observed inflation outcomes. However,

such models have embarrassingly many equilibria. It is hard to know what observations

would be ruled out by such trigger strategy equilibria.

This paper is squarely within the tradition of the time inconsistency literature in pointing

to lack of commitment as the main culprit behind the observed volatility and persistence

of inflation. We make two contributions. First, we show how the economic forces in the

Kydland-Prescott and Barro-Gordon models can be embedded into a standard general equi-

librium model. Second, we find that once these forces have been embedded into a standard

model, inflation rates can be high for prolonged periods and low for prolonged periods, even

though we explicitly rule out trigger strategies. We find some support in cross-country data

for key implications of the model.

In the Kydland-Prescott and Barro-Gordon models, the key trade-off is between the

benefits of higher output from unexpected inflation and the costs of realized inflation. In our

general equilibrium model, unexpected inflation raises output because some prices are sticky.

This rise in output has benefits for households because producers have monopoly power and

the unexpected inflation reduces the monopoly distortion. In our general equilibrium model,
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realized inflation is costly because households must use previously accumulated cash to

purchase some goods, called cash goods. The realized inflation forces households to substitute

toward other goods, called credit goods. This substitution tends to lower welfare. Thus,

by design, the general equilibrium model captures the trade-offs between the benefits of

unexpected inflation and the costs of realized inflation in the Kydland-Prescott and Barro-

Gordon framework.

Interestingly, this way of capturing the trade-offs leads to multiple equilibria in our general

equilibrium model. Specifically, private agents’ expectations of high or low inflation can lead

these agents to take defensive actions, which then make it optimal for monetary authorities

to validate these expectations. We focus on two kinds of defensive actions. The first is that

sticky price firms set high prices if they expect high inflation and low prices if they expect

low inflation. The second is that households change the nature of payment technologies

depending on their expectations of inflation. To explain these defensive actions we briefly

describe key features of our model.

In our model, goods are produced in monopolistically competitive markets. The monopoly

power of firms causes output to be inefficiently low. A subset of monopolists set their prices

before the monetary authority selects the money growth rate, while the rest of the monop-

olists set prices afterward. Because of the preset, or sticky, prices, a greater than expected

monetary expansion can raise output. Such a monetary expansion tends to raise welfare

because output is inefficiently low. If sticky price firms expect inflation to be high, they take

appropriate defensive actions and set their prices correspondingly high. If the monetary au-

thority fails to validate the expectations of firms, output will be low. A benevolent monetary

authority may find it optimal to validate firms’ expectations. Indeed, in our general equi-

librium model, we show that this kind of logic holds and plays a role in leading to multiple

equilibria.

In our model, households can also take defensive actions to protect themselves against

expected high inflation. Specifically, they can choose the fraction of goods purchased with
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cash and the fraction purchased with credit. This choice is made before the monetary

authority selects the money growth rate. Cash purchases are costly because households

forgo interest, while credit purchases require payment of a cost in labor time, which differs

depending on the type of good. In our model, as noted above, cash goods must be purchased

with previously accumulated cash, so that a monetary expansion, by raising prices, reduces

the consumption of cash goods and reduces welfare. These aspects of our model imply

that if households expect high inflation and have chosen to purchase few goods with cash,

the marginal cost of unanticipated inflation is small. The monetary authority has a strong

incentive to inflate. If households expect low inflation, however, they choose to purchase

most goods with cash and the marginal costs of unexpected inflation are high. The monetary

authority then does not have a strong incentive to inflate. These arguments suggest that

multiple equilibria are possible in our model.

This multiplicity is the reason we can account for persistent and variable inflation. We

think this multiplicity is likely to be robust across a wide range of economic models be-

cause the underlying economics is so compelling. As noted above, existing models in the

Kydland-Prescott and Barro-Gordon literature have unique equilibria. This uniqueness re-

flects assumptions that best response functions are linear. We have found that the best

response functions in general equilibrium models are inherently non-linear and that multi-

plicity occurs naturally.

Following Chari, Christiano and Eichenbaum (1998), we call this kind of multiplicity an

expectation trap because changes in private decisions induced by changes in expectations trap

policy makers into having to accommodate the expectations. Chari, Christiano and Eichen-

baum (1998) show that expectation traps can occur in conventional general equilibrium

monetary models. They rely, however, on trigger strategies on the part of the monetary

authority to support such outcomes. One criticism of trigger strategies is that for folk-

theorem-like reasons, virtually any inflation outcome can be rationalized as an equilibrium.

In this paper, we restrict attention to Markov equilibria that rule out trigger strategies. A
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key finding is that expectation traps occur even in the absence of trigger strategies. We show

that, generically, the economy has at least two equilibria or none at all. In our numerical

example, we find there are two equilibria. We label these the high-inflation and low inflation

equilibrium.

The expectation traps have novel implications for the properties of financial and real

variables across the high and low inflation equilibria in a stochastic version of the model

with shocks to technology and to the payment system. The interest rate response to a shock

switches sign between the high and low inflation equilibria. For example, the interest rate

is increasing in the technology shock in the low inflation equilibrium and decreasing in this

shock in the high inflation equilibrium. Output is increasing in this shock in both equilibria.

When other shocks are present, we show that this sign switch implies that the correlation

between output and interest rates is more negative in the high inflation equilibrium than

in the low inflation equilibrium. We examine cross-country data and find that within high

inflation countries, the correlation between output and interest rates is quite negative when

these countries experience high inflation episodes and is essentially zero when these countries

experience low inflation episodes. We also find that this correlation is typically positive in

low inflation economies and typically negative in high inflation countries. Our model also

implies higher volatility of nominal variables in high inflation episodes than in low inflation

episodes. This last finding is also present in the data. While a variety of other models might

imply higher volatility, it is hard to see which models would generate the change in the

magnitude and sign of the correlation between output and interest rates.

If time inconsistency problems are behind the poor inflation outcomes of many countries,

the policy implications are that setting up institutions which promote the ability of central

banks to commit to future actions can lead to large gains. Under commitment, the optimal

policy in our model has the monetary authority following the Friedman Rule and setting

nominal interest rates equal to zero. Without commitment, the economy experiences spells

of high inflation and spells of low inflation. Institutional devices which can raise welfare in
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practice include ways of protecting central bank independence and the design of appropriate

incentive contracts for central bankers (as in, for example, Persson and Tabellini, 1993).

The plan of the paper is as follows. Section I describes our model. Section II analyzes a

restricted version of the model, in which the payment technology is exogenously fixed. The

endogenously determined payment technology case is analyzed in section III. In Section IV

we discuss cross-country evidence for key implications of the model. In Section V, we discuss

the main forces behind the expectation traps we find. The final section concludes.

I A Monetary General Equilibrium Economy

Our economy extends and modifies the Lucas and Stokey (1983) cash-credit goods model.

Two of our modifications are intended to capture the benefits and costs emphasized in the

literature following Kydland-Prescott and Barro-Gordon. This literature points to gains of

unanticipated monetary expansion from higher output and direct costs of realized inflation.

In our model, a subset of prices are set in advance by monopolistic firms. This feature

implies that an unanticipated monetary expansion tends to raise output and welfare. We

adopt the timing assumption in Svensson (1985) by requiring that households use currency

accumulated in the previous period to purchase cash goods. This timing assumption implies

that a realization of high inflation reduces the consumption of cash goods relative to credit

goods and thereby tends to reduce welfare. Our third modification is intended to capture the

idea that when people expect high inflation, they take defensive actions to protect themselves.

Specifically, in our model each good can be paid for either with cash or with credit. To

purchase any good with credit requires a payment of an intermediation cost, which varies

across goods. For each good, households trade off the forgone interest from using cash against

the intermediation cost.1

Our infinite-horizon economy is composed of a continuum of firms, a representative house-

hold and a monetary authority. The sequence of events within a period is as follows. First,
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the shocks to the production technology, θ, and to the payment technology, η are realized.

We refer to s = (θ, η) as the exogenous state, and we assume that s follows a Markov process.

Then households choose the fraction z of goods to purchase with cash, and a fraction µ of

firms (the sticky price firms) set their prices. These decisions depend on the exogenous state.

Let Z(s) denote the economy wide average value of z and P e(s) denote the average price

set by sticky price firms. Here, and in what follows, we scale all nominal variables by the

beginning-of-period aggregate stock of money.

Next, the monetary authority makes its policy decision. We denote the actual money

growth rate by x and the policy rule that the monetary authority is expected to follow by

X(s). The state of the economy after the monetary authority makes its decision, the private

sector’s state, is (s, x). Households’ and firms’ production, consumption and employment

decisions depend on the private sector’s state.

Notice that we do not include the beginning-of-period aggregate stock of money in our

states. In our economy, all equilibria are neutral in the usual sense that if the initial money

stock is doubled, an equilibrium exists in which real allocations and the interest rate are

unaffected and all nominal variables are doubled. This consideration leads us to focus on

equilibria which are invariant with respect to the initial money stock. We are certainly

mindful of the possibility of equilibria which depend on the money stock. For example, if

multiple equilibria in our sense exist, ‘trigger strategy-type’ equilibria which are functions of

the initial money stock can be constructed. In our analysis we exclude such equilibria and

we normalize the aggregate stock of money at the beginning of each period to unity.

As is customary in defining a Markov equilibrium, we begin with the decisions at the

end of the period and work our way back to the beginning of the period. Accordingly, we

first describe the end-of-period problem of households and flexible price firms given (s, x)

and future monetary policy X(s). We then describe the problem of sticky price firms and

the household’s choice of z. These problems and market clearing allow us to define a private

sector equilibrium for arbitrary x. We then describe the monetary authority’s problem and
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define a Markov equilibrium.

A Private Sector at the End of the Period

Here we discuss the decision problems of households and firms at the end of the period.

We begin with the household problem. In each period the household consumes a contin-

uum of differentiated goods as in Blanchard and Kiyotaki (1987) and supplies labor. The

representative household’s preferences are
P∞

t=0 β
tu(ct, nt), where 0 < β < 1,

ct =

·Z 1

0

ct(ω)
ρdω

¸ 1
ρ

, u(c, l) =

£
c(1− l)ψ¤1−σ
1− σ

,

ct(ω) denotes consumption of type ω good, lt denotes labor time, and 0 < ρ < 1.

Each good in this continuum is one of four types. A fraction µ are produced by sticky price

firms and a fraction 1− µ are produced by flexible price firms. The sticky and flexible price
firms are randomly distributed over the goods. In addition, each good can be purchased with

cash or with credit. Let z denote the fraction of goods the household chooses to purchase with

cash. This cash-credit decision is made before households know which goods are produced

by sticky or flexible price firms, so that the cash-credit good choice is independent of the

type of firm. Thus, a fraction µz of goods are sticky price goods purchased with cash, a

fraction (1− µ)z are flexible price goods purchased with cash, a fraction µ(1− z) are sticky
price goods purchased with credit, and a fraction (1 − µ)(1 − z) are flexible price goods
purchased with credit. It turns out that prices for goods within each type are the same.

Utility maximization implies that the amounts purchased of each type of good are the same.

Let c11 and c12 denote quantities of cash goods purchased from sticky and flexible price firms,

respectively, and let c21 and c22 denote the quantities of credit goods purchased from sticky

and flexible price goods, respectively. Then we have that

c = [zµcρ11 + z(1− µ)cρ12 + (1− z)µcρ21 + (1− z)(1− µ)cρ22]
1
ρ .(1)

The household divides its labor time, l, into time supplied to goods-producing firms, n,
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and time allocated to the payment technology according to

l = n+
η(z̄ − z)1+ν
1 + ν

.(2)

We discuss the determination of z below.

Let A denote the nominal assets of the household, carried over from the previous period.

In the asset market, the household trades money, M, and one-period bonds, B, with other

households. The asset market constraint is

M +B ≤ A.(3)

Recall that nominal assets, money and bonds are all scaled by the aggregate stock of money.

We impose a no-Ponzi constraint of the form B ≤ B̄, where B̄ is a large, finite upper bound.
The household’s cash-in-advance constraint is

M −
h
P e(s)µzc11 + P̂ (s, x)(1− µ)zc12

i
≥ 0,(4)

where P e(s) denotes the price set by sticky price firms and P̂ (s, x) denotes the price set by

flexible price firms. Nominal assets evolve over time as follows:

0 ≤ W (s, x)n+ (1−R(s, x))M − z
h
P e(s)µc11 + P̂ (s, x)(1− µ)c12

i
(5)

−(1− z)
h
P e(s)µc21 + P̂ (s, x)(1− µ)c22

i
+R(s, x)A+ (x− 1) +D(s, x)− xA0.

In (5), W (s, x) denotes the nominal wage rate, R(s, x) denotes the gross nominal rate of

return on bonds, and D(s, x) denotes profits after lump sum taxes. Finally, B has been

substituted out in the asset equation using (3). Notice that A0 is multiplied by x. This

multiplication reflects that we have scaled all nominal variables by the beginning of period

aggregate stock of money and A0 is the household’s nominal assets scaled by next period’s

aggregate money stock. Next period’s aggregate money stock is simply the current stock

multiplied by the growth rate x.

Consider the household’s asset, goods and labor market decisions for a given value of

z. Given that the household expects the monetary authority to choose policy according to
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X(s) in the future, the household solves the following problem:

v(A, z, s, x) = max
n,M,A0,cij ; i,j=1,2

u(c, l) + βEs0 [max
z0
v(A0, z0, s0, X(s0))|s](6)

subject to (1), (2), (3), (4), (5), and nonnegativity on allocations. The solution to (6) yields

decision rules, d(A, z, s, x), where

d(A, z, s, x) = [n(A, z, s, x),M(A, z, s, x), A0(A, z, s, x), cij(A, z, s, x)],(7)

i, j = 1, 2.

We turn now to the decision problems of firms at the end of the period. Each of the

differentiated goods is produced by a monopolist using the following production technology

y(ω) = θn(ω),

where y(ω) denotes output and n(ω) denotes employment for the type ω good. Also, θ is

a technology shock that is the same for all goods. The household’s problem yields demand

curves for each good. The fraction, 1−µ, of firms that are flexible price firms set their price,
P̂ (s, x), to maximize profits subject to these demand curves. Because the household demand

curves have constant elasticity, firms set prices as a fixed markup, 1/ρ, above marginal cost,

W/θ, so that

P̂ (s, x) =
W (s, x)

θρ
.(8)

Turning to the government, we assume that there is no government debt, government

consumption is financed with lump-sum taxes, and government consumption is the same for

all goods. As a result, the resource constraint for this economy is

θn = g + z [µc11 + (1− µ)c12] + (1− z) [µc21 + (1− µ)c22] ,

where g denotes an exogenous fixed level of government consumption. Since there is no

government debt, bond market clearing requires B = 0, A = 1. Also, money market clearing

requires M = 1.
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B Private Sector at the Beginning of the Period

At the beginning of the period, after the exogenous shocks are realized, sticky price firms

set prices and households make their payment technology decision, z.

As in Blanchard and Kiyotaki (1987), sticky price firms in our economy must set their

price in advance and must produce the amount of goods demanded at that price. These firms,

like the flexible price firms, also wish to set their price as a markup, 1/ρ, over marginal cost,

W/θ. In order to do so, they need to forecast the wage rate, W. They do so by taking the

wage rate as given by the private sector equilibrium. Thus, the wage they expect to prevail

is W (s,X(s)). Thus, in equilibrium the price set by sticky price firms is given by

P e(s) =
W (s,X(s))

θρ
(9)

We now discuss the household’s payment technology decision. As noted above, each

consumption good can be purchased either with cash or with credit. For goods with ω > z̄

(where z̄ is a parameter between zero and one) the cost of purchasing with credit is zero.

Purchasing goods with ω ≤ z̄ on credit requires labor time. The household chooses a

fraction z ≤ z̄ such that goods with ω < z are purchased with cash and goods with ω > z

are purchased with credit. The labor time required to purchase fraction z of goods with

cash is given by η(z̄ − z)1+ν/ (1 + ν), where ν > 0 is a parameter and η > 0 is the shock to

the payment technology. The household’s labor time, including time spent working in the

market, n, is given in (2). The household chooses z to solve the following problem:

z(A, s) = argmax v(A, z, s,X(s)).(10)

We now define an equilibrium for each possible private sector state (s, x) and future

monetary policy rule, X(s).

Definition For each s and each x, given X(s) a private sector equilibrium is a collection of

functions P e(s), Z(s), P̂ (s, x), W (s, x), R(s, x), v(A, z, s, x), d(A, z, s, x), z(A, s) such that

the following are true:
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1. The functions v and d solve (6)

2. The function z(A, s) solves (10) and z(1, s) = Z(s)

3. Firms maximize profits; that is, P̂ (s, x) satisfies (8) and P e(s) satisfies (9)

4. The resource constraint is satisfied at d(1, Z(s), s, x)

5. The asset markets clear; i.e., A0(1, s, x) =M(1, s, x) = 1.

We find it convenient to define another private sector equilibrium concept. A private

sector equilibrium with a fixed payment technology is a private sector equilibrium with the

restriction that z is fixed and is not a choice variable.

C Monetary Authority

The monetary authority chooses x to maximize the representative household’s discounted

utility:

max
x
v(1, Z(s), s, x),(11)

where v is the value function in a private sector equilibrium. Recall that a private sector

equilibrium takes as given the evolution of future monetary policy. Thus, in solving (11) the

monetary authority implicitly takes as given the evolution of future monetary policy.

D Markov Equilibrium

We now have the ingredients needed to define a Markov equilibrium.

Definition AMarkov equilibrium is a private sector equilibrium and a monetary policy rule,

X(s), such that X(s) solves (11).

Two properties of a Markov equilibrium deserve emphasis. First, the current money

growth rate does not affect discounted utility of the household starting from the next period
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since it does not affect the next period’s state. Therefore, the monetary authority faces

the static problem of maximizing current period utility, and we only have to describe how

current money growth affects current allocations. Second, inspection of (8) and (9) shows

that P̂ (s,X(s)) = P e(s) in a Markov equilibrium. We use these properties below.

In our analysis of a Markov equilibrium, we find it convenient to define another Markov

equilibrium concept. The Markov equilibrium with a fixed payment technology is a Markov

equilibrium in which z is exogenously fixed and beyond the control of the households.

II Analysis with Fixed Payment Technology

In this section we discuss a version of our model in which the payment technology is fixed,

in the sense that households cannot alter the value of z. We do this for two reasons. First,

this version of the model is a building block for the analysis of the model with a variable

payment technology. Second, the model with a fixed payment technology is of interest in its

own right because it is the simplest adaptation of a standard monetary model designed to

capture the frictions emphasized in Kydland-Prescott and Barro-Gordon.

In our analysis, we decompose the first-order condition associated with the monetary

authority problem, (11), into benefits and costs of inflation. Unexpected inflation has benefits

because some prices are sticky and there is a monopoly distortion. With sticky prices, higher

inflation tends to raise output, while the monopoly distortion makes higher output desirable.

These are the reasons the monetary authority in our model has a temptation to stimulate

the economy. Inflation is costly because it leads to a reduction in the relative consumption

of cash goods.

To analyze a Markov equilibrium, we first characterize a private sector equilibrium. We

then solve the monetary authority’s problem. We then show that, generically, there are at

least two Markov equilibria for the economy with a fixed payment technology.
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A Characterizing Private Sector Equilibrium

We now develop a set of necessary and sufficient conditions for a private sector equilibrium.

We find it convenient to adopt a change of variables. Let the relative prices of flexible and

sticky price goods q = P̂ /P e. Omitting arguments of functions for convenience, the first

order necessary conditions for household and firm optimization are:

u11
u12

=
µ

1− µ
1

q
,(12)

u21
u22

=
µ

1− µ
1

q
,(13)

u11
u21

=
z

1− zR,(14)

u12
u22

=
z

1− zR,(15)

−un =
θρu22

(1− µ)(1− z) ,(16)

xu21
P eµ(1− z) = βEs0 [v1(1, z, s

0, X(s0))|s],(17)

where z is fixed. Here, uij denotes the partial derivative of u with respect to cij, and v1

denotes the partial derivative of v with respect to its first argument. Equations (12) and

(13) equate the marginal rate of substitution between sticky and flexible price goods to the

relative price of these goods q, and equations (14) and (15) equate the marginal rate of

substitution between cash and credit goods to the interest rate R which is their relative

price R. Equation (16) is obtained by noting that the marginal rate of substitution between

labor and consumption of flexible price credit goods is equated to the ratio of the nominal

wage to the price of flexible price goods. This ratio is simply the markup in (8).

The cash-in-advance constraint can be written as

µzc11 + q(1− µ)zc12 ≤ 1

P e
.(18)

A necessary condition for the household problem to be well defined is

R ≥ 1.(19)
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It is easy to show that the cash in advance constraint holds with equality if R > 1 and

that if the cash-in-advance constraint is slack, R = 1. These observations imply that the

appropriate complementary slackness condition is½
1

P e
− [µzc11 + q(1− µ)zc12]

¾
[R− 1] = 0.(20)

The resource constraint is

g + z [µc11 + (1− µ)c12] + (1− z) [µc21 + (1− µ)c22] = θn.(21)

Combining (8) and (9), we have that

q(s,X(s)) ≡ P̂ (s,X(s))
P e(s)

= 1.(22)

In equation (22) we reintroduce the dependence of variables on s and x to emphasize that P e

coincides with P̂ only when x = X(s). The conditions (12)-(22) are necessary and sufficient

for a private sector equilibrium. That is, these conditions can be used to construct the

allocation and pricing functions stated in the definition of the private sector equilibrium

above, namely, P e(s), P̂ (s, x), R(s, x), d(1, z, s, x) with W (s, x) = θρP̂ (s, x). The value

function is also straightforward to construct.

B The Monetary Authority’s Problem

The monetary authority’s problem is static in our economy for two reasons. First, we focus

on Markov equilibria. In such equilibria, policy makers face dynamic problems only if their

decisions affect future state variables. Second, there are no state variables in our economy.

Thus, the monetary authority’s problem is simply one of choosing current money growth to

maximize current period utility.

We find it convenient to set up the monetary authority’s problem as one of choosing the

interest rate R rather than the money growth rate x. This change in instruments makes the

analysis of the variable payment technology economy much easier. As long as the cash-in-

advance constraint holds with equality, the two instruments are equivalent. The equivalence
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argument is as follows. With x as the instrument, (12)-(21) define allocation and pric-

ing functions (cij(s, x, P e), n(s, x, P e), R(s, x, P e), q(s, x, P e)). These functions evaluated at

P e(s) are the allocation and pricing functions stated in the definition of a private sector

equilibrium. Under our functional form assumptions, it is tedious but straightforward to

verify that a unique set of allocations and prices solves (12)- (21) for each x and each P e and

that a unique x is associated with each allocation. With the interest rate as the monetary

authority’s instrument, we use (12)-(16) and (18)- (21) to define allocations and prices as

functions of the interest rate,

cij(s, P
e, R), i, j = 1, 2, q(s, P e, R), n(s, P e, R)(23)

and let x be simply defined by (17). If the cash-in-advance constraint holds with equality,

under our functional form assumptions, a unique set of allocations and prices solves these

equations for each R and a unique R exists for each allocation and relative price q. Thus

the two formulations are equivalent if the cash-in-advance constraint holds with equality. If

the cash-in-advance constraint holds with inequality it is easy to see that there are many

allocations which solve (12)-(16) and (18)-(21) for given R = 1. Each of these allocations is

associated with a different value of x. In the Appendix, we prove the following lemma, which

allows us to set up the monetary authority’s problem as one of choosing the interest rate R

rather than the money growth rate x.

Lemma 1: In a Markov equilibrium, the cash-in-advance constraint (18) holds with

equality.

We now set up the monetary authority’s (static) problem. Substituting from (23) into the

utility function, we let U(s, P e, R) = u [c(s, P e, R), n(s, P e, R)] denote the utility associated

with an interest rate R, where c is defined in (1). The monetary authority’s problem is now

max
R
U(s, P e, R),(24)

subject to R ≥ 1.2 Let R(s, P e) denote the solution to this problem.
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C Markov Equilibria

Here we derive a relationship between the payment parameter z and the allocations and

prices in a Markov equilibrium with a fixed payment technology. We also show that, for

given z generically at least two allocations satisfy the necessary conditions for a Markov

equilibrium. In a large class of parameterizations for our economy, we verified numerically

that the necessary conditions are sufficient for a Markov equilibrium.

The first-order condition associated with a solution to (24) is

UR(s, P
e, R) = uccR + unnR ≤ 0,(25)

with equality if R > 1. In (25) UR is the derivative of U with respect to R and uc, un

are derivatives of the utility function with respect to c and n, respectively, and cR, nR are

the derivatives of c and n with respect to R evaluated at the allocations which satisfy the

conditions of a private sector equilibrium. In addition to conditions (12)-(21), a private sector

equilibrium must satisfy the analog of (22), namely, q(s, P e(s), R(s, P e(s))) = 1. Therefore,

in (25) the derivatives are evaluated at a value of P e such that q(s, P e(s), R(s, P e(s))) = 1.

From here on we suppress the arguments of functions, and evaluate all functions at their

equilibrium values.

In what follows, we show that (25) can be decomposed into a part that captures the

incentives to increase inflation because of the presence of monopoly power and a part that

captures the disincentives arising from the resulting reduction in cash goods consumption.

Consider the role of monopoly power. The efficient allocations with respect to the labor-

leisure choice in our economy satisfy

un +
θu22

(1− µ)(1− z) = 0.(26)

The first term in (26) is the marginal disutility of labor associated with increasing labor input

to credit goods production, say, and the second term is the marginal benefit from increased

credit goods consumption. In our economy the analog of (26) is (16). Note that because
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of the presence of monopoly power, the second term in (16) is the same as the second term

in (26) multiplied by ρ < 1. As a result, the net marginal benefit of increasing labor from

its equilibrium value in our economy is positive. This distortion is due to monopoly power

and suggests that the left side of (26) is a natural measure of the monopoly distortion in our

economy. Add and subtract θu22nR/ [(1− µ)(1− z)] to and from (25) to obtain

UR = uccR − θu22nR
(1− µ)(1− z) +

·
un +

θu22
(1− µ)(1− z)

¸
nR ≤ 0.(27)

The term in square brackets is our measure of the monopoly distortion. Substituting from

(16) into (27), we obtain

UR = uccR − θu22nR
(1− µ)(1− z) +

(1− ρ)θu22nR
(1− µ)(1− z) ≤ 0.(28)

In the Appendix, we prove the following lemma regarding the last term in (28).

Lemma 2: In a Markov equilibrium with a fixed payment technology,

(1− ρ)θu22nR
(1− µ)(1− z) = f(c1,c2)ψMD (R, z) ,(29)

where

f(c1, c2) > 0 for c1, c2 > 0,(30)

and

ψMD (R, z) = −(1− ρ)R
1

ρ−1 +
R

1
ρ−1 + ψR

ρ
ρ−1 + µ

1−µ
ψ
ρ

³
R

ρ
ρ−1 + 1−z

z

´
1+ψ
1−ρ +

ψ
ρ

³
z
1−zR

ρ
ρ−1 + 1

´ .(31)

>From (31) it is clear that ψMD (R, z) satisfies the following properties:

ψMD (R, z) is decreasing in z and lim
R→∞

ψMD (R, z) =

µ
1−µ

ψ
ρ

¡
1−z
z

¢
1+ψ
1−ρ +

ψ
ρ

> 0.(32)

Notice that ψMD (R, z) does not depend on the shocks θ and η.

Now consider the disincentives to increase inflation. In the Appendix, we prove the

following lemma.
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Lemma 3: The first two terms to the right of the equality in (28) can be written as

uccR − θu22nR
(1− µ)(1− z) = −f(c1, c2) (R− 1)R

1
ρ−1 .(33)

Let

ψID (R) = (R− 1)R
1

ρ−1 .(34)

Using c2/c1 = R1/1−ρ, we have that ψID (R) = (R − 1)c1/c2. The net interest rate R − 1
measures the extent to which cash goods consumption is distorted relative to the efficient

level. This distortion is akin to a tax (as Lucas and Stokey (1983) have argued). The base

on which this tax is levied is consumption of cash goods. Thus, one way to think of ψID is

as the product of a tax rate, R− 1, and the base of taxation, c1, scaled by a measure of the
size of the economy, c2. In this sense, ψID measures the inflation distortion. In the efficient

allocations, R = 1, and the term on the right side of (33) is zero. Inspecting (34), we have

that ψID ≥ 0 and

lim
R→∞

ψID(R) = ψID(1) = 0.(35)

That is, there is no inflation distortion when the interest rate is high or low.

Substituting (29), (33) and (34) into (28), we obtain

UR = f(c1, c2) [−ψID (R) + ψMD (R, z)] ≤ 0(36)

with equality if R > 1. Let ψ(R, z) = −ψID (R) + ψMD (R, z) . Then a solution to

ψ(R, z) ≤ 0(37)

with equality if R > 1 satisfies the necessary condition for monetary authority optimality. If

(36) is also sufficient, then the interest rate, R, which solves (37) corresponds to a Markov

equilibrium with fixed payment technology. Given an equilibrium value of the interest rate,

we can solve for the allocations and other prices from (12)-(16), (18) with equality, (21) and
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(22), for each value of θ, η and z. We can then obtain the monetary authority’s policy rule

from (17).

We use the properties of the monopoly distortion function, ψMD, in (32), and the inflation

distortion function, ψID, in (35), to show that, generically, there are at least two Markov

equilibria, if there are any.

Proposition 1 (Generic Multiplicity): Consider the version of our economy with a fixed

payment technology. Suppose that the monetary authority’s first order condition is sufficient

for optimality. Then, except for a set of z of Lebesgue measure zero, there are at least two

Markov equilibria, or none. Furthermore, the equilibrium interest rate does not depend on

θ or η.

Proof: A key property of the function ψ(R, z) is that it is positive for R sufficiently large.

This property follows from (32) and (35) which imply

lim
R→∞

ψ(R, z) = lim
R→∞

[−ψID (R) + ψMD (R, z)] > 0.

Suppose first that ψ(1, z) > 0. Then, since ψ(R, z) is positive at R = 1 and positive for

large R, by continuity it follows that if ψ(R, z) is ever zero, it must generically be zero at

least twice. A non generic case occurs when the graph of ψ(R, z) against R is tangent to

the horizontal axis at a single value of R. Another nongeneric case is when ψ(1, z) = 0 and

ψ(R, z) > 0 for R > 1. Both cases are nongeneric because for an arbitrarily larger value

of z, one can see that there are multiple equilibria since ψ(R, z) is strictly decreasing in z.

Suppose next that ψ(1, z) < 0. Then, R = 1 satisfies (37) and corresponds to a Markov

equilibrium. In addition, because ψ(R, z) > 0 for R sufficiently large, continuity implies that

ψ(R, z) must be equal to zero for at least one value of R > 1.

>From (34) we have that ψID does not depend on θ or η. Since ψMD does not depend

on these variables either, it follows that the equilibrium interest rate, R, does not depend on

θ or η. Q.E.D.

An example helps illustrate the results in Proposition 1. Figure 1 displays the monopoly
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distortion, ψMD, and the inflation distortion, ψID, for R ∈ [1, 4.5] and for z = 0.13 and 0.15.3

The figure shows that the first order necessary condition for monetary authority optimality

is satisfied at R = 1.38 and R = 2.07 for z = 0.13 and R = 1.10 and R = 3.17 for z = 0.15.

Thus, for z = 0.15 the inflation rate is somewhat below 10 percent in the low inflation

equilibrium and just below 217 percent in the high inflation equilibrium. To verify that the

first order condition for monetary authority optimality is also sufficient, in Figure 2a we

graph the monetary authority’s objective for z = .15, (24), as a function of R for the value

of P e corresponding to the low inflation candidate equilibrium, and in Figure 2b we graph

the corresponding objective for the high inflation candidate equilibrium. (The values of P e

are 26.3 and 165.0 for the low and high inflation equilibria, respectively.) These figures show

that the first-order conditions are indeed sufficient. They also show that the utility function

is not necessarily concave. This is why it is necessary to check monetary authority’s utility

level globally, rather than just locally.

In the numerical example, the inflation distortion has a single-peaked Laffer curve shape,

while the monopoly distortion is relatively flat. We found these properties to hold across

a range of parameterizations of the economy. The shape of the inflation distortion is rem-

iniscent of the shape of the monetary Laffer curve in analyses where governments rely on

inflation to finance expenditures. (See, for example, Sargent and Wallace (1981).) Below we

explore the relationship between our analysis and the analysis in the monetary Laffer curve

literature.

The set of interest rates, R, and payment technology, z, which solves (37) plays a key

role in our analysis of the equilibrium with variable payment technology. We call the graph

of R against z which solves (37) the interest rate policy correspondence (henceforth, policy

correspondence for short.) The following proposition establishes properties of this correspon-

dence:

Proposition 2 (Interest Rate Policy Correspondence): Suppose that the monetary

authority’s first-order condition is sufficient for optimality. Suppose also that for some z < z̄
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a Markov equilibrium exists. Then, there is a critical value of z, say ẑ, such that for z < ẑ

there are no Markov equilibria, for z = ẑ there is at least one Markov equilibrium, and for

z > ẑ there at least two Markov equilibria.

Proof : First, we show that there is no interest rate less than R̄ which is an equilibrium,

where R̄ is arbitrarily large. Notice from (31) that ψMD(R, z) → ∞ as z → 0 for all

R ∈ [1, R̄], and from (34) that ψID is bounded. It follows that there is some value of z, say

ẑ1, such that for all z ≤ ẑ1, ψ(R, z) is strictly positive. Thus, there is no equilibrium interest
rate less than R̄ for z sufficiently small. Second, we show that no interest rate greater than

R̄ can be an equilibrium. We see from (34) that ψID is bounded above by, say, k. Let ẑ2 be

defined by limR→∞ ψMD (R, ẑ2) = 2k. Such a value of ẑ2 exists from (32). Note also that for

all z ≤ ẑ2, limR→∞ ψMD (R, z) ≥ 2k. By definition of a limit, some interest rate R̄ exists such
that for all R ≥ R̄, ψMD (R, ẑ2) ≥ 2k− ε, where ε is, say, k/2. It follows that, for all R ≥ R̄,
ψ (R, ẑ1) = −ψID (R)+ψMD (R, ẑ1) ≥ k/2 > 0. That is, there is no value of the interest rate
greater than R̄ which is an equilibrium for z = ẑ2. Since ψMD (R, z) is decreasing in z, there

is no value of the interest rate greater than R̄ which is an equilibrium for z ≤ ẑ2. We have
established that there is no equilibrium if z is sufficiently small.

Next, ψMD(R, z) is a continuous function of R and z. As z is increased from some

arbitrarily low value, there is some first value of z such that ψ(R, z) = 0 for some R.

Such a z, call it ẑ, exists by our assumption that an equilibrium exists for some z. Consider

increasing z above ẑ. Since ψMD is strictly decreasing, the graph of ψ(R, z) against R must

intersect the horizontal axis at at least two points. Thus, for z > ẑ, there are at least two

Markov equilibria. Q.E.D.

Consistent with our theoretical findings, Figure 1 shows that the inflation distortion

does not depend on the payment technology parameter, z, while the monopoly distortion

is decreasing in this parameter. We graph the policy correspondence in Figure 3. When z

is sufficiently small, the monopoly distortion lies above the inflation distortion and there is

no equilibrium. As z increases, the monopoly distortion declines. At a critical value of z
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the economy has a unique equilibrium and for values of z larger than this critical value the

economy has two equilibria. Notice that as z increases, the interest rate in the low inflation

equilibrium falls and that the interest rate in the high inflation equilibrium rises.

III Analysis with Variable Payment Technology

We now characterize a Markov equilibrium in the full-blown version of our economy in

which the payment technology is variable. This equilibrium must satisfy all the conditions

of a Markov equilibrium with a fixed payment technology. It must in addition satisfy the

condition that the payment technology parameter z is chosen optimally. We have already

shown that a Markov equilibrium with fixed payment technology is characterized by the

relationship between R and z defined given by (37). Here, we show that the first order

condition for the optimal choice of z yields a second relation between R and z. The necessary

conditions for an equilibrium are completely characterized by values of R and z which satisfy

both relationships.4 In effect, we collapse the set of equilibrium necessary conditions to just

two. This simplification makes key properties of the equilibrium transparent. A simple

argument establishes that, generically, there are multiple Markov equilibria. In addition, we

are able to use the two equations to analyze the effects of exogenous shocks on equilibrium

allocations and prices.

The first-order condition associated with the household’s choice of z is

(1− 1
ρ
)

1−R ρ
1−ρ

z + (1− z)R ρ
1−ρ

=
ψη(z̄ − z)ν

1− n− (z̄−z)1+ν
η/(1+ν)

.(38)

We can use the equations that define a private sector equilibrium, (12)-(16), (18) with

equality, (21) and (22) to substitute for labor, n, in (38). Doing so, we obtain (see Lemma

4 in the Appendix for a derivation):

(1
ρ
− 1)(1−R ρ

ρ−1 )

z
h
(R

1
ρ−1 − 1) + ψ

ρ
(R

ρ
ρ−1 − 1)

i
+ (1 + ψ

ρ
)
=

ρη(z̄ − z)ν
1− (z̄−z)1+νη

1+ν
− g

θ

.(39)
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For each z, there is at most one R that solves (39). To see this, note that the left-hand side

is increasing in R, while the right side does not depend on R. Let Rp(z, g, θ, η) denote the

value of R that solves (39). We refer to this function as the payment technology function,

or payment function, for short. The set of payment technology parameters z for which this

function is defined is developed as follows. As R → ∞, the left side of (39) converges to
(1− ρ)/((ρ+ ψ)(1 + z)), which at z = 0 becomes (1− ρ)/(ρ+ ψ). The right side of (39) at

z = 0 is ρηz̄ν/(1− z̄1+νη/(1 + ν)− g/θ). If

(1− ρ)/(ρ+ ψ) < ρηz̄ν/(1− z̄1+νη/(1 + ν)− g/θ),

there is some critical value of z, say z∗, at which the function Rp(z, g, θ, η) goes to infinity.

Then the function is defined for (z∗, z̄]. If not, then the function is defined for (0, z̄]. Let

the domain of the function be (z̃, z̄] where z̃ = z∗ if the above inequality holds and z̃ = 0

otherwise.

It is easy to see from (39) that Rp is decreasing in z, since the left side of (39) is increasing

in z, while the right side is decreasing in z. It is also easy to see that Rp is increasing in g/θ

and η since an increase in g/θ or η raises the right side of (39) and so increases R for a given

value of z.

Each R, z which satisfies the policy correspondence, (36), and the payment function,

(39), corresponds to a Markov equilibrium. The other allocations, prices and the monetary

authority’s policy rule can be obtained by solving (12)-(17), (18) with equality, (21) and (22).

Next, we prove a proposition that under certain conditions, there are two Markov equilibria

for our economy. We say that the policy correspondence is horseshoe-shaped if it satisfies

the following conditions: (i) there are two continuous functions, R1c(z) and R
2
c(z) which map

[ẑ, z̄] into the space of interest rates with R1c(z) < R2c(z), for z ∈ (ẑ, z̄], R1c(ẑ) = R2c(ẑ),

and (ii) for all z ∈ [ẑ, z̄] the solution to (37) is either R1c(z) or R2c(z), where ẑ is defined in
Proposition 2.

Proposition 3: Suppose the policy correspondence is horseshoe-shaped. Then, generi-
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cally, the economy with variable payment technology has two Markov equilibria, if any.

Proof : Suppose to begin with that z̃ < ẑ. Recalling thatRp(z̄) = 1 andR1c(z̄), R1c(z̄) ≥ 1,
we can divide the proof into two cases. The first case is when Rp(z̄) < R1c(z̄). The second case

is when Rp(z̄) = R1c(z̄) = 1. Consider the first case, that is, Rp(z̄) < R
1
c(z̄) ≤ R2c(z̄). Now if

Rp(ẑ) > R
1
c(ẑ) = R

2
c(ẑ), then since Rp is below R

1
c and R

2
c at z̄ and above R

1
c and R

2
c at ẑ, by

continuity, Rp must intersect at least once with each R1c and R
2
c . Each of these intersections

corresponds to a Markov equilibrium. If Rp(ẑ) < R1c(ẑ) = R
2
c(ẑ) then since Rp is below R

1
c

at both z̄ and ẑ, Rp and R1c intersect twice, if at all. The case when Rp(ẑ) > R
1
c(ẑ) = R

2
c(ẑ)

is clearly non-generic.

Consider the second case, that is, Rp(z̄) = R1c(z̄) = 1. Then the Ramsey policy and

allocations constitute an equilibrium. Generically, there must also be one other equilibrium.

To see this, note that, generically, if R1c(z̄) = 1, some neighborhood of z̄ exists such that for

all z in this neighborhood, R1c(z) = 1. Since Rp is strictly decreasing, it follows that for z in

this neighborhood, Rp(z) > 1 = R1c(z). Suppose that Rp(ẑ) < R
1
c(ẑ). Then, since Rp is above

R1c in a neighborhood of z̄ and below R
1
c at ẑ, by continuity Rp and R

1
c must intersect at

least once. Now suppose that Rp(ẑ) > R1c(ẑ) = R
2
c(ẑ). Then, since Rp is below R

2
c at z̄ and

above R2c at ẑ, by continuity Rp must intersect at least once with R
2
c . We have established

that in this second case, generically, there must be at least two equilibria.

Suppose next that z̃ > ẑ. Then for z near z̃, Rp is arbitrarily large and must be larger

than R2c . Exactly the same arguments used above can then be used to conclude that there

must be two Markov equilibria. Q.E.D.

The restriction that the policy correspondence be horseshoe-shaped is not severe. In

Proposition 2 we have shown that for each z > ẑ there are at least two interest rates

which belong to the policy correspondence. Using the implicit function theorem, these

interest rates can be represented as continuous functions of z. Thus, the assumption that

the correspondence is horseshoe-shaped only rules out the possibility that there are three or

more interest rates which belong to the correspondence. It is straightforward, but tedious to
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extend the proof of Proposition 3 to this case. Furthermore, in all the numerical examples

we have considered, the correspondence is horseshoe-shaped.

In Figure 4, we plot the interest rate correspondence and the payment function for various

realizations of the exogenous shocks in our numerical example. In Figure 4a we plot the

interest rate correspondence and the payment function for two realizations of the production

technology shock, θ, holding the other shock at its mean value. Figure 4b displays the

analogous graph for the payment technology shock, η. These figures display four properties.

First, as we have shown in Proposition 1, the policy correspondence does not depend on these

shocks. Second, as discussed above, the payment function is decreasing in the interest rate.

Third, as also discussed above, the payment function is increasing in η and decreasing in θ.

Fourth, there are multiple Markov equilibria. Two of these are easy to see. In one, for every

realization of the shocks, the equilibrium is the one associated with the lower intersection

of the interest rate correspondence and payment function. We call this the low inflation

equilibrium. In the other, the equilibrium is the one associated with the higher intersection.

We call this the high inflation equilibrium.

Figure 4 displays an interesting sign switch phenomenon, in the sense that the interest

rate response to a shock switches sign between the high and low inflation equilibrium. For

example, from Figure 4a, we see that the interest rate is increasing in the technology shock

in the low inflation equilibrium and decreasing in this shock in the high inflation equilibrium.

We verified, for our numerical example, that in both equilibria output is increasing in the

technology shock. If technology shocks were the dominant shocks, the correlation between

output and the interest rate would be positive in the low inflation equilibrium and negative in

the high inflation equilibrium. From Figure 4b we see the sign switch for the payment shock:

the interest rate is decreasing in this shock in the low inflation equilibrium and increasing in

this shock in the high inflation equilibrium. In our numerical example, output is increasing

in the payment shock in the low inflation equilibrium and decreasing in this shock in the

high inflation equilibrium. So, if payment shocks were the dominant shocks the correlation
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would be negative in both equilibria. It follows that in an economy with both shocks, the

correlation of output and the interest rate is negative in the high inflation equilibrium and

larger (perhaps even positive) in the low inflation equilibrium. We call this finding the

decreasing correlation implication.

Our numerical examples also show that the volatility of interest rates in the low inflation

equilibrium is substantially smaller. The reason is that the policy correspondence is flatter

at the low inflation equilibrium than at the high inflation equilibrium. We call this finding

the increasing volatility implication.

Thus far we have focused on Markov equilibria which are stationary in the sense that

they cannot depend on time. We should point out that if we add calendar time as a state

variable there are other Markov equilibria as well. For example, one such equilibrium has

the economy moving to the low inflation equilibrium on even dates and to the high inflation

equilibrium on odd dates. More interesting is the possibility of sunspot driven Markov

equilibria in which a sunspot at the beginning of each period coordinates private agents’

expectations and induces agents to pick the high or the low inflation equilibrium depending

on the realization of the sunspot. Such sunspot equilibria clearly exist and lead to volatility

in inflation rates.

IV Interest Rates and Output in Cross-Country Data

The model’s decreasing correlation and increasing volatility implications receive support

from within-country data and cross-country data. We analyzed data from the International

Financial Statistics (2000) on output and interest rates for a number of countries. We

obtained annual data from high and low inflation countries. We defined a high inflation

country as one for which output and interest rate data are available and in which interest

rates exceed 100 percent in at least one year. Our low inflation countries are the developed

countries of Western Europe, the United States, Canada, Japan, Australia and New Zealand.
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The list of high inflation countries is in Table 1, and the list of all countries appears in Table

2. In all cases, the tables show the relevant sample periods. The correlations reported in the

tables are based on logged, Hodrick-Prescott filtered output and Hodrick-Prescott filtered

interest rates.5

We begin with the within-country data analysis. Typically, the high inflation countries in

our sample experience episodes of high inflation and episodes of relatively low inflation. One

interpretation is that the high inflation episodes correspond to our high inflation equilibrium

and the low inflation episodes to our low inflation equilibrium. Under this interpretation,

the model suggests that the correlation between output and interest rates should be negative

in the high inflation episodes and larger in the low inflation episodes. We define episodes

of high inflation to be periods when the nominal interest rate exceeds 50 percent per year,

while we define low inflation episodes to be all other periods. Fortunately, these episodes

turned out - with minor exceptions - to be contiguous. As can be seen from Table 1, there

are seven high inflation countries. Five of these countries have had episodes of both high

and low inflation. With one exception, the correlation between output and interest rates is

higher in the low inflation episodes than in the high inflation episodes. Table 1 also reports

the mean value of the correlation between output and the interest rate for all countries

in low inflation episodes and in high inflation episodes. The correlation is −0.08 in low
inflation episodes and −0.45 in high inflation episodes. Table 1 also provides evidence for
the increasing volatility implication. In the low inflation episodes, the standard deviation of

the interest rate is 3.57, and in the high inflation episodes, this standard deviation is 350190.

For comparison purposes note that the percentage standard deviation of output is 2.34 in

the low inflation episodes and 4.57 in the high inflation episodes.

Table 2 provides cross-country evidence for the decreasing correlation and increasing

volatility implications. Table 2a shows that the mean value of the correlation between

output and interest rates is −.33 for the high inflation counties and Table 2b shows that
this average is .20 for the low inflation countries. This table also provides evidence for the
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increasing volatility implication. The standard deviation of the interest rate is 283324 for

the high inflation countries and 1.84 for the low inflation countries. For comparison purposes

note that the percentage standard deviation of output is 4.43 in the high inflation countries

and 2.26 in the low inflation countries.

We also simulated our model and computed the correlation between output and interest

rates and the standard deviations of both output and the interest rate. The parameter

values are the same as those used in Figure 4. The autocorrelations of both shocks are 0.9,

the shocks are uncorrelated, and the standard deviations of θ and η are 0.04 and 9735.1,

respectively. We took 500 observations from our model and filtered the simulated data from

the model in the same way that the cross-country data were filtered. We found σR = 1.90 and

σR = 0.12 in the low and high inflation equilibria, respectively. and the standard deviation of

output is essentially the same in both equilibria. The model obviously fails to match the level

of volatility in these variables in the data. However, it is interesting that the model predicts

the interest rate is an order of magnitude more volatile in the high inflation equilibrium,

while output volatility is essentially the same. We also computed the correlation between

logged and filtered output and the filtered interest rate. That correlation is 0.013 in the low

inflation equilibrium and −0.019 in the high inflation equilibrium. These statistics from the
model are qualitatively similar to the corresponding statistics in the data.

V Key Features for Generating Expectation Traps

In this section, we ask which features are crucial for generating expectation traps. We

focus on four features and find that two of them play essential roles and two play more

subsidiary roles. We also ask whether introducing learning, staggered price setting, or capital

accumulation is likely to alter the results significantly.

The two essential features are the ex post benefits of higher than expected inflation and

the costs of realized inflation. The benefits of higher than expected inflation come from our
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assumption that some prices are preset and the presence of monopoly power. The importance

of the assumption that some prices are preset can be seen by considering the case when none

are, that is, when µ = 0. Setting µ = 0 in (31), after some manipulation, we see that

ψMD(R, z) < 0 for all R. Thus, if µ = 0, the unique equilibrium with both a fixed and a

variable payment technology has R = 1. To see the importance of monopoly power, note

that if ρ = 1, the markup of prices over marginal cost is 0. Setting ρ = 1 in (31), we see

that ψMD(R, z) = 0 for all R. Thus, if ρ = 1, the unique equilibrium with both a fixed and

a variable payment technology has R = 1.

The cost of realized inflation in our model comes from the timing assumption under

which households must use previously accumulated currency to purchase cash goods. To

see the importance of this timing assumption, suppose instead we had adopted the timing

assumption in Lucas and Stokey (1983). Under Lucas-Stokey timing, open market operations

are conducted in the securities market at the beginning of the period. Households can use the

current monetary injection for current cash goods purchases. Mechanically, this amounts to

adding current money growth to the right side of the cash-in-advance constraint. A greater

than expected monetary expansion, therefore does not in and of itself change the mix of cash

and credit goods expansion. We should emphasize that anticipations of high inflation in the

future do change the relative amounts of cash and credit goods consumption. Basically, under

Lucas-Stokey timing, with flexible prices a one-time, unanticipated change in the quantity

of money is neutral, prices change by the quantity of the money change and all real variables

are unaffected. With sticky prices, there is a one-time increase in output and all future

real variables are unaffected. With Lucas-Stokey timing, there is no Markov equilibrium in

our model. The argument is by contradiction. Suppose there were such an equilibrium. A

monetary expansion raises output and therefore tends to raise welfare. The only cost is the

distortion in the relative prices of sticky and flexible prices. But, in any equilibrium this

relative price is one and thus changes in this relative price have a second order effect on

welfare. The monetary authority always has an incentive to raise the inflation rate. Thus,

29



there is no equilibrium.

The two subsidiary features relate to the shape of the inflation distortion function and

the monopoly distortion function. Substituting c2/c1 = R1−ρ into (34), we see that

ψID = (R− 1)
c1
c2
.

We have already argued that this distortion is akin to the product of a tax, R − 1, and
the tax base, c1. When R = 1, ψID = 0. As R → ∞, the behavior of ψID depends on the
rate at which cash goods consumption falls. In the economy in this paper, c1 goes to zero

faster than R goes to infinity, and thus the product goes to zero. In Albanesi, Chari and

Christiano (2002), we present a model in which ψID does not go to zero because c1 goes to

zero at the same rate as R. The fixed payment technology model in that paper has a unique

equilibrium. With a variable payment technology, however, multiple equilibria are possible.

In our model the monopoly distortion is positive for R sufficiently large. This result

implies that there are two equilibria with a fixed payment technology so that the policy

correspondence is horseshoe-shaped. In Albanesi, Chari and Christiano (2002), we show

that if the period utility function is of the following form

u(c, n) =
c1−σ

1− σ
− an,

where a is a parameter, the fixed payment technology economy has a unique equilibrium.

The policy correspondence in Figure 3 becomes a downward-sloping graph. Nevertheless,

since the payment function is also downward sloping, there can be multiple intersections and

multiple equilibria.

We also ask whether these equilibria are stable under a simple learning scheme. One

reason to do so is that if one of these equilibria is unstable, it might regarded implausible.

We will show that under one widely used learning scheme, the low inflation equilibrium is

always locally stable and the high inflation equilibrium is also stable if the payment function

is sufficiently steep. When households determine the period t payment technology, zt, they

have to form expectations of monetary policy. We assume that they expect the monetary
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authority to set the interest rate equal to its last period value, Rt−1. So the value of zt is

given by the payment function with Rt−1 substituted for the interest rate. We assume that

the monetary authority solves the same problem as before so that, for example, it neglects

the impact of its current policy action on agents’ expectations next period. Thus, the

monetary policymaker’s correspondence is unaffected. Suppose that in the neighborhood of

an equilibrium the payment function and the policy correspondence are given approximately

by

zt = a+ bRt−1

Rt = d+ ezt

where a, b, d, e are parameters. Substituting for zt we obtain

Rt = d+ ea+ ebRt−1.

Thus, the local stability of the dynamical system governing the interest rate depends on

whether the absolute value of be is greater than or less than one. The slope of the payment

function is 1/b, and the slope of the policy correspondence is e. At the low inflation equi-

librium, the payment function is steeper than the policy correspondence, or −1/b > −e. It
follows that the value of be is positive and less than 1, and the system is dynamically stable.

At the high inflation equilibrium, if −1/b > −e, the same argument applies and the system
is locally stable. Inspection of Figures 4a and 4b reveals that the high and low inflation

equilibria in our numerical example are locally stable under learning in the sense discussed

here. Thus, stability under learning does not provide a device for selecting equilibria in this

example.

In this paper prices are preset for one period. In principle, it is straightforward to allow

for Taylor- or Calvo- style staggered price setting so that cohorts of firms set their prices

for many periods at a time. We could also allow for capital accumulation. A particularly
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interesting source of dynamics is to consider models in which it takes time or resources to

change z.We conjecture that in any of these extensions, outcomes similar to those described

in this paper would emerge as steady states.

VI Conclusion

We have shown that discretionary monetary policy can account for prolonged periods of low

and high inflation. The model in this paper is a very standard monetary general equilibrium

model. Our main theoretical finding is that the model always has expectation traps. The data

provide some support for the decreasing correlation and the increasing volatility implications.

The main force driving the multiplicity of equilibria is that defensive actions taken by

the public to protect itself from high inflation reduce the costs of inflation for a benevolent

monetary authority and induce the authority to supply high inflation. This economic force

is likely to be present in a large class of monetary models. The main policy implication is

that the costs of discretionary monetary policy include not just high average inflation, but

volatile and persistent inflation as well. The gains to setting up institutions which increase

commitment to future monetary policies are likely to be high.
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Notes

1See Aiyagari, Braun and Eckstein (1998), Cole and Stockman (1992), Dotsey and Ireland

(1994), Freeman and Kydland (1994), Ireland (1994), Lacker and Schreft (1996), and Schreft

(1992) for payment technology models with similar features.

2Technically, the set of interest rates should also be limited to those where (12)-(16) and

(18)-(21) have a solution. Our analysis of the monetary authority’s problem uses a first order

condition approach which only asks whether small deviations are optimal. One can use the

implicit function theorem to show that in some neighborhood of an equilibrium, (12)-(16)

and (18)-(21) have a solution. Thus, we will not have to deal with whether the allocation

functions are well defined for arbitrary interest rates.

3In the numerical example used throughout this paper, µ = 0.1, ρ = 0.45, ψ = 1, ν = 2,

z̄ = 0.15, η = 28000.

4In all the numerical examples we have studied, the necessary conditions also turned out

to be sufficient.

5The smoothness parameter in the Hodrick-Prescott filter was set to 100. Each country

and sample period was treated as a distinct series for constructing the Hodrick-Prescott

filter.
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Appendix

To prove the lemmas in the text, we use the necessary and sufficient conditions for an

interior private sector equilibrium. Using our functional form assumptions, (12)-(16) reduce

to

c12 = c11q
−1
1−ρ(40)

c21 = c11R
1

1−ρ(41)

c22 = c21q
−1
1−ρ(42)

ψ

ρ
cρc1−ρ22 = θ(1− n− η(z̄ − z)1+ν

1 + ν
).(43)

We have omitted (13) because there are only three linearly independent equations in

(12)-(15). These expressions together with (20)-(22) are necessary and sufficient conditions

for a private sector equilibrium.

Lemma 1: In a Markov equilibrium, the cash-in-advance constraint (18) holds with

equality.

Proof : Suppose that the cash-in-advance constraint holds as a strict inequality in a

Markov equilibrium. We will show that there is some small deviation in the money growth

rate x from its supposed equilibrium value which raises the utility of the representative

household. Note from (20) that R = 1 for all x in some neighborhood of x. In that small

neighborhood of the equilibrium value of x, expressions (40)-(43) and (21) with R = 1 implic-

itly define functions cij(s, x, P e), c(s, x, P e), q(s, x, P e), and n(s, x, P e). Since (40)-(43) and

(17)-(22) are necessary and sufficient conditions for a private sector equilibrium, these func-

tions evaluated at the equilibrium value of P e = P e(s) are the allocation rules and prices in

a Markov equilibrium. The monetary authority’s problem is maxx u(c(s, x, P e), n(s, x, P e))

and the first-order condition for this problem is

uccx + unnx = 0(44)
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where cx and nx denote derivatives with respect to x and where all functions are evaluated

at their supposed equilibrium values. Since R = 1 and q = 1 in equilibrium, we have that

cij = c for all i, j. Using our functional form assumptions and (43) in (44), we have

uc(cx − θρnx) = 0.(45)

Differentiating (1) with respect to x and evaluating at cij = c, we obtain

cx = zµc11,x + z(1− µ)c12,x + (1− z)µc21,x + (1− z)(1− µ)c22,x

where cij,x is the derivative of cij with respect to x. Differentiating the resource constraint

with respect to x, we obtain

θnx = zµc11,x + z(1− µ)c12,x + (1− z)µc21,x + (1− z)(1− µ)c22,x.

Substituting for cx and θnx into (45), we have a contradiction. Q.E.D.

Lemmas 2 and 3 are established using (40)-(43), (20) with equality, and (21) to construct

the functions cij(s, P e, R), q(s, P e, R) and n(s, P e, R), differentiating these functions with

respect to R and evaluating the derivatives at q = 1. Mechanically, we first drop n from the

system by substituting out for n in (43) using (21). Then, we differentiate (40)-(42) and

simplify to obtain one equation in c11,R and qR. We use (18) to obtain another equation in

these variables. We can then evaluate all the other derivatives.

Substitute for n from (21) and for c from (1) into (43), to obtain

ψ

ρ
[zµcρ11 + z(1− µ)cρ12 + (1− z)µcρ21 + (1− z)(1− µ)cρ22] c1−ρ22

= θ − g − z [µc11 + (1− µ)c12] + (1− z) [µc21 + (1− µ)c22]− θ
η(z̄ − z)1+ν
1 + ν

.

Differentiating with respect to R we get

z [µc11,R + (1− µ)c12,R] + (1− z) [µc21,R + (1− µ)c22,R](46)

+ψ
£
zµcρ−11 c11,R + z(1− µ)cρ−11 c12,R + (1− z)µcρ−12 c21,R + (1− z)(1− µ)cρ−12 c22,R

¤
c1−ρ2

+
ψ

ρ
(1− ρ)cρc−ρ2 c22,R = 0,
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where all derivatives are evaluated at a value of P e such that q = 1. Here, c1 = c11 = c12 and

c2 = c21 = c22 when q = 1. Now, differentiate (40)-(42) with respect to R to obtain

c12,R = c11,R − c1
1− ρ

qR(47)

c21,R = c11,RR
1

1−ρ +
c1R

ρ
1−ρ

1− ρ
(48)

c22,R = c21,R − c2
1− ρ

qR.(49)

Differentiating (18) with equality and substituting for c12,R from (47), we obtain

µzc11,R + (1− µ)z
µ
c11,R − c1

1− ρ
qR

¶
+ (1− µ)zc1qR = 0.

Simplifying, we obtain

qR =
1− ρ

ρ(1− µ)c1 c11,R.(50)

>From (47)-(49) and (50), using (c2/c1)1−ρ = R, we obtain

µc11,R + (1− µ)c12,R = c11,R − (1− µ)c1
1− ρ

qR = c11,R(1− 1/ρ),(51)

µc21,R + (1− µ)c22,R = c21,R − (1− µ)c2
1− ρ

qR(52)

= c11,R(1− R
1

1−ρ

ρ(1− µ)) +
c1R

ρ
1−ρ

1− ρ
(53)

and

c22,R = c11,R(1− 1/ρ)R
1

1−ρ +
c1R

ρ
1−ρ

1− ρ
.(54)

Substitute from (50)-(54) into (46) to obtain

zc11,R(1− 1/ρ) + (1− z)
"
c11,R(1− 1/ρ)R

1
1−ρ +

c1R
ρ

1−ρ

1− ρ

#

+ψzcρ−11 c1−ρ2 c11,R(1− 1/ρ) + ψ(1− z)
"
c11,R(1− 1/ρ)R

1
1−ρ +

c1R
ρ

1−ρ

1− ρ

#

+
ψ

ρ
(1− ρ)cρc−ρ2 (c11,R(1−

R
1

1−ρ

ρ(1− µ)) +
c1R

ρ
1−ρ

1− ρ
) = 0.
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Grouping terms, we obtain

c11,R
c1

·
z + (1− z)R 1

1−ρ + ψzR+ ψ(1− z)R 1
1−ρ + ψ

µ
c

c2

¶ρ

R
1

1−ρ

µ
1− 1

ρ(1− µ)
¶¸

= − ρ

ρ− 1
·
(1 + ψ)

1− z
1− ρ

+
ψ

ρ

µ
c

c2

¶ρ¸
R

ρ
1−ρ .

Finally, we obtain the following expression:

c11,R
c1

=

ρ
1−ρ

h
(1 + ψ)1−z

1−ρ +
ψ
ρ

³
c
c2

´ρi
R

ρ
1−ρ³

z + (1− z)R 1
1−ρ + ψzR+ ψ(1− z)R 1

1−ρ
´
+ ψ

ρ
(1− ρ)

³
c
c2

´ρ
R

1
1−ρ
³

1
ρ(1−µ) − 1

´
(55)

We use these derivatives to obtain cR and nR. Differentiating (1) with respect to R, we

obtain

cR = c
1−ρ £zµcρ−11 c11,R + z(1− µ)cρ−11 c12,R + (1− z)µcρ−12 c21,R + (1− z)(1− µ)cρ−12 c22,R

¤(56)

Substituting from (51) and (52), we obtain

cR
c1−ρ

= cρ−11 zc11,R(1− 1/ρ) + (1− z)cρ−12 (c11,R(1− 1/ρ)R
1

1−ρ +
c1R

ρ
1−ρ

1− ρ
).

Collecting terms:

cR = c
1−ρcρ−12 c1

·
c11,R
c1

³
zR+ (1− z)R 1

1−ρ
´µ
1− 1

ρ

¶
+
1− z
1− ρ

R
ρ

1−ρ

¸
.

Differentiating the resource constraint we obtain nR :

θnR = z [µc11,R + (1− µ)c12,R] + (1− z) [µc21,R + (1− µ)c22,R] .

or, after substituting from (51) and (52) and collecting terms:

θnR = c11,R(1− 1
ρ
)
³
z + (1− z)R 1

1−ρ
´
+ (1− z) c1

1− ρ
R

ρ
1−ρ .(57)

We now prove Lemma 2.
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Lemma 2: In a Markov equilibrium with a fixed payment technology,

(1− ρ)θu22nR
(1− µ)(1− z) = f(c1,c2)ψMD (R, z) ,(58)

where f(c1, c2) > 0 for c1, c2 > 0,and ψMD (R, z) is given in (31).

Proof : From (57), using (c2/c1)1−ρ = R, we obtain

θnR =
(1− 1

ρ
)

1− ρ
c11,Rz

"
(1− ρ)

µ
1 + (

1− z
z
)R

1
1−ρ

¶
+
(1− z) /z
(1− 1

ρ
)

c1
c11,R

R
ρ

1−ρ

#

=
c2
c1

(1− 1
ρ
)

1− ρ
c11,Rz

"
(1− ρ)

µ
R

1
ρ−1 + (

1− z
z
)

¶
+
(1− z) /z
(1− 1

ρ
)

c1
c11,R

R−1
#
.

Substituting in (29) and using the result that for our functional forms u22/(1−µ)(1−z) =
uc
³
c
c2

´1−ρ
, we obtain

(1− ρ)θu22nR
(1− µ)(1− z) = f(c1, c2)

·
−(1− ρ)R

1
ρ−1 − (1− z

z
){(1− ρ)− ρ

(1− ρ)

c1
c11,R

R−1}
¸

= f(c1, c2)ψMD (R, z) ,

where

f(c1, c2) = ucc2

µ
c

c2

¶1−ρ
(
1

ρ
− 1)c11,R

c1
z

and

ψMD (R, z) = −(1− ρ)R
1

ρ−1 + (
1− z
z
){ ρ

(1− ρ)

c1
c11,R

R−1 − (1− ρ)}.(59)

Consider the term in parenthesis in (59). When we use (55), this term is

z + (1− z)R 1
1−ρ + ψzR+ ψ(1− z)R 1

1−ρ + ψ
³
c
c2

´ρ
R

1
1−ρ
³

1
ρ(1−µ) − 1

´
h
(1 + ψ)1−z

1−ρ +
ψ
ρ

³
c
c2

´ρi
R

ρ
1−ρ

− (1− ρ)

=
z + ψzR+ ψ

³
c
c2

´ρ
R

1
1−ρ
³

1
ρ(1−µ) − 1

´
− (1− ρ)ψ

ρ

³
c
c2

´ρ
R

1
1−ρh

(1 + ψ)1−z
1−ρ +

ψ
ρ

³
c
c2

´ρi
R

1
1−ρ

=
z (1 + ψR) + µ

1−µ
ψ
ρ

³
c
c2

´ρ
R

1
1−ρh

(1 + ψ)1−z
1−ρ +

ψ
ρ

³
c
c2

´ρi
R

1
1−ρ

.
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Substituting for c/c2 in this expression and then substituting in (59), we obtain:

ψMD (R, z) = −(1− ρ)R
1

ρ−1 +

(1− z)
³
R

1
ρ−1 + ψR

ρ
ρ−1
´
+ (1−z

z
) µ
1−µ

ψ
ρ

h
zR

ρ
ρ−1 + 1− z

i
(1 + ψ)1−z

1−ρ +
ψ
ρ

³
zR

ρ
ρ−1 + 1− z

´
 .

Dividing the numerator and denominator of the term in braces by 1− z and rearranging, we
obtain:

ψMD (R, z) = −(1− ρ)R
1

ρ−1 +

³
R

1
ρ−1 + ψR

ρ
ρ−1
´
+ µ

1−µ
ψ
ρ

³
R

ρ
ρ−1 + 1−z

z

´
1+ψ
1−ρ +

ψ
ρ

³
z
1−zR

ρ
ρ−1 + 1

´ .

We have proved the lemma. Q.E.D.

Lemma 3: The first two terms to the right of the equality in (28) can be written as

uccR − θu22nR
(1− µ)(1− z) = −f(c1, c2) (R− 1)R

1
ρ−1 .(60)

Proof : Using our functional forms, we obtain

uccR − θu22nR
(1− µ)(1− z) = uc

"
cR − θ

µ
c

c2

¶1−ρ
nR

#
.(61)

Substituting for θnR from (57) and cR from (56) into (61), we obtain

uc

"
cR − θ

µ
c

c2

¶1−ρ
nR

#
= uc[

c11,R
c1

³
zR+ (1− z)R 1

1−ρ
´µ
1− 1

ρ

¶
+
1− z
1− ρ

R
ρ

1−ρ

−c11,R
c1
(1− 1

ρ
)
³
z + (1− z)R 1

1−ρ
´
− 1− z
1− ρ

R
ρ

1−ρ ]c1

µ
c

c2

¶1−ρ
= uc

c11,R
c1
c2z(1− 1

ρ
)

µ
c

c2

¶1−ρ
(R− 1) c1

c2

= −f(c1, c2)(R− 1)R
1

ρ−1

where

f(c1, c2) = uc
c11,R
c1
c2z(

1

ρ
− 1)

µ
c

c2

¶1−ρ
.

We have proved the lemma. Q.E.D.
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Lemma 4: Equation (38) reduces, in a private sector equilibrium, to (39):³
1
ρ
− 1
´³
1−R ρ

ρ−1
´

z
h³
R

1
ρ−1 − 1

´
+ ψ

ρ

³
R

ρ
ρ−1 − 1

´i
+ (1 + ψ

ρ
)
=

ρη(z̄ − z)ν³
1− (z̄−z)1+νη

1+ν

´
− g

θ

Proof: Using (43) in (38), we obtain:µ
1− 1

ρ

¶
1−R ρ

ρ−1

z + (1− z)R ρ
ρ−1

=
θρη(z̄ − z)ν
(c/c2)

ρ c2
.(62)

We use the resource constraint, (21), and (43) to obtain an expression for c2 in terms of c1/c2

and z. Rearranging (43) we obtain:

θn = θ

Ã
1− (z̄ − z)

1+ν η

1 + ν

!
− ψ

ρ

µ
c

c2

¶ρ

c2.

Substituting this into the resource constraint, taking into account cρ = zcρ1 + (1− z)cρ2, and
rearranging, we obtain:

c2 =
θ
³
1− (z̄−z)1+νη

1+ν

´
− g

z c1
c2
+ ψz

ρ

³
c1
c2

´ρ
+ (1− z)(1 + ψ

ρ
)
.

Substituting for c2 in (62), we obtain:

(1− 1
ρ
)

1−R ρ
ρ−1

z + (1− z)R ρ
ρ−1

=
θρη(z̄ − z)ν

z
³
c1
c2

´ρ
+ 1− z

×
z c1
c2
+ ψz

ρ

³
c1
c2

´ρ
+ (1− z)(1 + ψ

ρ
)

θ
³
1− (z̄−z)1+νη

1+ν

´
− g

.

After rearranging and making use of R = (c1/c2)ρ−1, we obtain (39). Q.E.D.
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Table 1: Evidence from High Inflation Economies

Country Low Inflation High Inflation Low Inflation High Inflation

ρ(y,R) mean R σy σR ρ(y,R) mean R σy σR Period Period

Argentina −0.49 8.15 3.28 2.34 −0.57 9.24∗105 3.95 24.45∗105 1992 - 2000 1980 - 1991

Brazil −0.31 21.39 3.28 4.06 0.03 2362.59 3.08 3713.38 1963 - 1980 1981 - 1995

Brazil −0.80 25.16 1.11 3.46 NA NA NA NA 1996 - 2000 NA

Chile −0.11 25.85 3.03 6.37 −0.65 73.89 7.83 26.04 1984 - 2000 1977 - 1983

Israel 0.28 21.93 1.70 3.47 −0.68 245.70 1.30 241.92 1972 - 2000 1979 - 1987

Peru 0.46 28.78 1.65 1.72 −0.58 846.35 7.77 1483.92 1995 - 2000 1986 - 1994

Turkey NA NA NA NA −0.41 68.15 3.13 18.98 NA 1987 - 2000

Uruguay NA NA NA NA −0.30 88.10 4.92 16.31 NA 1976 - 2000

Column mean −0.08 21.88 2.34 3.57 −0.45 132516 4.57 350190 NA NA

References

[1] Notes: In this table y denotes the logged, Hodrick-Prescott filtered level of output, R denotes

the Hodrick-Prescott filtered interest rate, ρ(y,R) is the correlation between y and R, σy is the

standard deviation of y mutiplied by 100 and σR is the standard deviation of the interest rate.

All data are from the International Financial Statistics.



Table 2a: Full Sample Evidence from High Inflation Economies

Country ρ(y,R) mean R σy σR Period

Argentina −0.59 5.28∗105 4.78 1.98∗106 1980 - 2000

Brazil 0.03 946.05 3.51 2304.49 1963 - 2000

Chile −0.36 39.86 5.53 15.17 1977 - 2000

Israel −0.24 113.47 1.66 154.95 1979 - 2000

Peru −0.46 519.32 7.48 1128.99 1979 - 1993

Turkey −0.41 68.15 3.13 18.98 1987 - 2000

Uruguay −0.30 88.10 4.92 16.31 1976 - 2000

Mean, High Inflation −0.33 (-0.29) 75677 4.43 283324 NA

0



Table 2b: Full Sample Evidence from Low Inflation Economies

Country ρ(y,R) mean R σy σR Period

Australia 0.54 8.89 1.74 1.92 1970 - 2000

Austria 0.48 6.09 1.78 1.55 1967 - 1998

Belgium 0.32 5.22 1.79 1.48 1953 - 1998

Canada 0.40 8.36 2.48 2.45 1975 - 2000

Denmark −0.31 9.81 1.82 2.06 1972 - 2000

Finland 0.18 9.68 4.03 1.94 1978 - 2000

France 0.09 6.96 1.48 1.60 1950 - 1998

Germany 0.54 5.38 2.58 1.91 1960 - 2000

Netherlands −0.04 5.79 4.07 1.75 1960 - 1998

Ireland 0.15 10.65 2.51 2.27 1971 - 1999

Italy 0.09 11.28 1.53 2.08 1969 - 2000

Japan 0.24 6.21 3.06 1.69 1957 - 2000

New Zealand 0.48 11.11 2.61 2.10 1985 - 2000

Norway −0.25 9.44 1.87 1.48 1972 - 2000

Spain 0.33 11.60 2.18 2.40 1974 - 2000

Sweden 0.01 8.75 2.16 2.20 1966 - 2000

Switzerland 0.43 3.40 2.64 1.59 1969 - 2000

United Kingdom 0.03 7.78 2.28 2.20 1969 - 2000

United States 0.20 6.15 2.15 1.78 1955 - 2000

Mean, Low Inflation 0.20 ( 0.20) 8.03 2.26 1.84 NA

Notes: In this table y denotes the logged, Hodrick-Prescott filtered level of output, R denotes the

Hodrick-Prescott filtered interest rate, ρ(y,R) is the correlation between y andR, σy is the standard deviation

1



of y mutiplied by 100 and σR is the standard deviation of the interest rate. All data are from the International

Financial Statistics.
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Figure 1: Marginal Benefits and Marginal Costs for Monetary Authority
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Figure 2a: Utility for Deviations from Low Inflation Equilibrium
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 Figure 2b: Utility for Deviations from High Inflation Equilibrium
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Figure 3: Interest Rate Policy Correspondence
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Figure 4b: Markov Equilibrium With Payment Technology Shocks
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