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Abstract

Why is it that inflation is persistently high in some periods and persistently low

in other periods? We argue that lack of commitment in monetary policy may bear a

large part of the blame. We show that, in a standard equilibrium model, absence of

commitment leads to multiple equilibria, or expectation traps, even in the absence of

trigger strategies. In these traps, expectations of high or low inflation lead the public

to take defensive actions which then make it optimal for the monetary authority to

validate those expectations.
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Many countries have gone through prolonged periods of costly, high inflation, as well

as prolonged periods of low inflation. The United States and other industrialized countries

went through a high inflation episode during the Great Inflation of the 1970s, and are now in

a low inflation episode. Why do high inflation episodes occur? What can be done to prevent

them from occurring again? These are two central questions in monetary economics.

One tradition for understanding poor inflation outcomes stems from the time inconsis-

tency literature pioneered by Kydland and Prescott (1978) (KP) and Barro and Gordon

(1983) (BG). This literature points to lack of commitment in monetary policy as the main

culprit behind high inflation. Static versions of the models in this literature have a unique

equilibrium. Inflation rates can fluctuate only if the underlying fundamentals do. In may

cases, it is difficult to see what changes in the underlying fundamentals could have generated

the episodes of high and low inflation. In infinite horizon versions of the KP and BG models,

trigger strategies can be used to produce the observed inflation outcomes. However, such

models have embarrassingly many equilibria. It is hard to know what observations would be

ruled out by such trigger strategy equilibria.

This paper is squarely within the tradition of the time inconsistency literature in pointing

to lack of commitment as the main culprit behind the observed volatility and persistence of

inflation. We make three contributions. First, we show how the economic forces in the KP

and BG models can be embedded into a standard general equilibrium model. Second, we

find that once these forces have been so embedded, inflation rates can be high for prolonged

periods and low for prolonged periods, even though we explicitly rule out trigger strategies.

Third, we view our models as a promising first step towards developing empirically plausible

models of inflation in the United States and other countries.

In the KP and BG models, the key trade-off is between the benefits of higher output from

unexpected inflation and the costs of realized inflation. In our general equilibrium model,

unexpected inflation raises output because some prices are sticky. This rise in output has

benefits because producers have monopoly power and the unexpected inflation reduces the
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monopoly distortion. In our general equilibrium model, realized inflation is costly because

households must use previously accumulated cash to purchase some goods, called cash goods.

Higher realized inflation forces households to substitute toward other goods, called credit

goods. This substitution tends to lower welfare. Thus, by design, the general equilibrium

model captures the trade-offs between the benefits of unexpected inflation and the costs of

realized inflation in the KP and BG framework.

This way of capturing the trade-offs leads to multiple equilibria in our general equilib-

rium model. Private agents’ expectations of high or low inflation can lead these agents

to take defensive actions, which then make it optimal for monetary authorities to validate

these expectations. The main defensive action we focus on is that sticky price firms set

high prices if they expect high inflation and low prices if they expect low inflation. Given

these expectations and the associated defensive actions, the monetary authority then chooses

policy optimally by equating the marginal benefits of unexpected inflation to the marginal

costs of realized inflation. We show analytically that there are at least two sets of policies

and allocations at which marginal benefits equal marginal costs. Our analytical procedure

only focuses on necessary conditions for monetary authority optimality. In a large class

of parameterizations we used numerical methods to identify situations where the necessary

conditions are sufficient, and where they are not.

To better understand the multiplicity of equilibria in our model, it is useful to understand

how the marginal benefits of unexpected inflation and the marginal costs of realized inflation

depend on expected inflation. To a first approximation, the marginal benefit of unexpected

inflation is independent of the expected inflation rate. In contrast, the marginal cost of

realized inflation as a function of expected inflation has an inverted ‘U’ shape. That is, it is

low at low levels of inflation, high at moderate levels, and low again at high levels of inflation.

The shapes of the marginal benefits and costs implies that there are two values of inflation

at which marginal benefits and costs are equated.

One way of understanding the inverted ‘U’ shape of the marginal cost of realized inflation
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is to draw an analogy with the inflation tax literature. In our model the marginal cost of

realized inflation is equal to a measure of the tax revenue from inflation, namely the product

of the net interest rate and the stock of real cash balances. In a way, this feature should not

be too surprising because in monetary models, inflation acts as a tax on cash balances. The

marginal cost of realized inflation has an inverted ‘U’ shape because, as in the Laffer curve

literature, the tax revenue from inflation has an inverted ‘U’ shape. This tax revenue is ‘U’

shaped because in our model, money demand is inelastic at low interest rates and elastic at

high interest rates.

One feature of the model thus far is that the equilibrium interest rate is independent

of shocks to technology and government consumption. Many authors have argued that the

response of interest rates and other financial variables to shocks is very different in low

and high inflation episodes. We describe a variant of our model with a variable payment

technology in which this behavior occurs. This variant provides a related, but different,

channel which also leads to multiplicity of equilibria. In this variable payment technology

model, households can also take defensive actions to protect themselves against expected

high inflation. Specifically, they can choose the fraction of goods purchased with cash and

the fraction purchased with credit. The households’ choice of payment technology is made

before the monetary authority selects the money growth rate. Cash purchases are costly

because households forgo interest, while credit purchases require payment of a cost in labor

time, which differs depending on the type of good. In our model, as noted above, cash goods

must be purchased with previously accumulated cash, so that a monetary expansion, by

raising prices, reduces the consumption of cash goods and reduces welfare. These aspects

of our model imply that if households expect high inflation and have defensively chosen to

purchase few goods with cash, the marginal cost of realized inflation is small. Given the

gains of inflation, the monetary authority has an incentive to choose a high level of inflation.

If households expect low inflation, however, they do not take defensive actions and choose

instead to purchase many goods with cash and the marginal costs of realized inflation are
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high. Given the gains of inflation, the monetary authority has an incentive to choose a

low level of inflation. These considerations reinforce the sources of multiplicity in the fixed

payment technology model, so that the variable payment technology model also has multiple

equilibria. We also show that with a variable payment technology, interest rates do respond

to shocks.

We explore the properties of financial and real variables in a stochastic version of the

variable payment technology model. This version also has two equilibria. It turns out

that the interest rate response to a technology shock switches sign between the high and

low inflation equilibria while the output is increasing in this shock in both equilibria. We

show that this sign switch implies that the correlation between output and interest rates is

more negative in the high inflation equilibrium than in the low inflation equilibrium. Our

model also implies higher volatility of nominal variables in high inflation episodes than in

low inflation episodes. In Albanesi, Chari and Christiano (2002a), we examine cross-country

data and find support for these implications. While a variety of other models might imply

higher volatility, it is hard to see which models would generate the change in the magnitude

and sign of the correlation between output and interest rates.

We now briefly compare and contrast the analytic roles played by the two channels we

have identified in producing multiplicity of Markov equilibria. In each case, inflation expec-

tations lead agents to take defensive actions, which then make it optimal for the monetary

authority to validate the expectations. The two channels focus on the defensive actions of

different agents: the sticky price channel focuses on firms’ incentives to raise prices when

they expect high inflation and the payment technology channel focuses on households’ in-

centive to alter the mix of cash and credit goods when they expect high inflation. The

role of the sticky price channel in producing multiple equilibria is clear, because it is the

only channel that is operative in our fixed payment technology model. That the payment

technology channel also has a potentially important role to play can be seen by considering

the analysis in ACC (2002b). There, we describe an environment very similar to the present
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one, but with a different household utility function. It turns out that in the fixed payment

technology version of that model, the equilibrium is unique, so that the sticky price channel

does not produce multiple equilibria. We show that in the variable payment technology ver-

sion of that model, there are multiple equilibria. By displaying an environment in which the

payment technology channel is the only channel producing multiple equilibria, that analysis

demonstrates the distinct role of that channel. Finally, in our discussion of the sticky price

channel we have emphasized the role of a high interest elasticity of money demand at high

inflation rates for producing multiplicity. This intuition carries over to the payment technol-

ogy channel: households’ opportunity to alter the mix of cash an credit goods has the effect

of increasing their interest elasticity of money demand.

Following Chari, Christiano and Eichenbaum (1998) (CCE), we call the kind of multi-

plicity identified here an expectation trap because the defensive actions induced by changes

in expectations in effect ‘trap’ policy makers into accommodating the expectations. CCE

rely on trigger strategies to generate expectation traps. One criticism of trigger strategies

is that virtually any inflation outcome can be rationalized as an equilibrium. In this paper,

we restrict attention to Markov equilibria that rule out trigger strategies. Furthermore, the

Markov equilibrium in CCE is at a corner. One contribution of this paper is that we obtain

an interior equilibrium (see also Neiss, 1999).

The notion of an expectation trap may shed light on the continuing debate concerning

the interpretation of the successful and, thus far, sustained reduction in inflation since the

early 1980s, in the United States and a number of other countries (see Sargent, 1999). Our

paper raises the possibility that the inflation of the 1970s was a high inflation expectation

trap, and that the inflation may have declined simply because we switched to a low inflation

expectation trap. Since the structure of policymaking institutions has not fundamentally

changed, the paper raises the possibility that we could once again be caught in a 1970s style

high inflation expectation trap.1

Our analysis has policy implications. If time inconsistency problems are behind the poor
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inflation outcomes of many countries, then setting up institutions which promote the ability

of central banks to commit to future actions can lead to large gains. Under commitment, the

optimal policy in our model has the monetary authority following the Friedman Rule and

setting nominal interest rates equal to zero. Without commitment, the economy experiences

spells of high inflation and spells of low inflation. Institutional devices which can raise

welfare in practice include ways of protecting central bank independence and the design of

appropriate incentive contracts for central bankers (as in, for example, Persson and Tabellini,

1993).

The plan of the paper is as follows. Section I describes our model with a fixed payment

technology. In Section II, we analyze the equilibria of this model and show that multiplicity

is possible. We analyze an economy with a variable payment technology in section III. In

Section IV, we discuss the main forces behind the expectation traps we find and in section

VI we describe the relationship of our paper to others. The final section concludes.

I A Monetary General Equilibrium Economy

Our economy extends and modifies the Lucas and Stokey (1983) cash-credit goods model in

two ways. The first modification is that, in our model, a subset of prices are set in advance

by monopolistic firms. The second modification is that, as in Svensson (1985), we require

households to use currency accumulated in the previous period to purchase cash goods in

the current period. We assume that the monetary authority chooses monetary policy to

maximize the welfare of the representative household. Our modifications imply that the

trade-off the monetary authority confronts resembles that in the KP and BG models. The

sticky price modification implies that an unanticipated monetary expansion tends to raise

output and welfare. The cash-in-advance modification implies that the inflation associated

with a monetary expansion reduces welfare by reducing the consumption of cash goods

relative to credit goods.
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Our infinite-horizon economy is composed of a continuum of firms, a representative house-

hold and a monetary authority. The sequence of events within a period is as follows. First,

the shock to the production technology, θ, and the shock to government consumption, g, are

realized. We refer to s = (θ, g) as the exogenous state and assume that s follows a Markov

process.2 Then a fraction, µ, of firms (the sticky price firms) set their prices. The average

price set by sticky price firms is denoted P e(s). This price, as well as all other nominal vari-

ables, is scaled by the beginning-of-period aggregate stock of money. The remaining fraction,

1− µ, of firms are called flexible price firms.

Next, the monetary authority chooses the interest rate, R.3 We denote the policy rule

that the monetary authority is expected to follow by R(s). The state of the economy after

the monetary authority makes its decision, the private sector’s state, is (s,R). Let X(s,R)

denote the money growth rate associated with s,R. Households’ and firms’ production,

consumption and employment decisions and the pricing decisions of the flexible price firms

depend on the private sector’s state.

In what follows, we first describe the problems of households and firms in our economy

given s, R and future monetary policy, R(s). We then set up the monetary authority’s

problem and define a Markov equilibrium. The key part of a Markov equilibrium is that the

monetary authority chooses policy optimally. To define the monetary authority’s problem,

we must specify the private equilibrium allocations as functions of the monetary authority’s

policy variable, R. We refer to these functions as a private sector equilibrium. A Markov

equilibrium is a private sector equilibrium in which policy is set optimally.

A Households

We begin with the household problem. In each period the household consumes a contin-

uum of differentiated goods as in Blanchard and Kiyotaki (1987) and supplies labor. The
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representative household’s preferences are
P∞

t=0 β
tu(ct, nt), where 0 < β < 1,

ct =

·Z 1

0

ct(ω)
ρdω

¸ 1
ρ

, u(c, n) =

£
c(1− n)ψ

¤1−σ
1− σ

,

ct(ω) denotes consumption of type ω good, lt denotes labor time, and 0 < ρ < 1.

Each good in this continuum is one of four types. A fraction µ are produced by sticky

price firms and a fraction 1 − µ are produced by flexible price firms. A fraction, z, of all

goods consists of cash goods, and the fraction, 1−z, consists of credit goods. The sticky and
flexible price firms are randomly distributed over cash and credit goods. Thus, a fraction

µz of goods are sticky price goods purchased with cash, a fraction (1−µ)z are flexible price

goods purchased with cash, a fraction µ(1− z) are sticky price goods purchased with credit,

and a fraction (1 − µ)(1 − z) are flexible price goods purchased with credit. It turns out

that prices for goods within each type are the same. Utility maximization implies that the

amounts purchased within each type of good are also the same. Let c11 and c12 denote

quantities of cash goods purchased from sticky and flexible price firms, respectively, and let

c21 and c22 denote the quantities of credit goods purchased from sticky and flexible price

goods, respectively. Then we have that

(1) c = [zµcρ11 + z(1− µ)cρ12 + (1− z)µcρ21 + (1− z)(1− µ)cρ22]
1
ρ .

Let A denote the nominal assets of the household, carried over from the previous period.

In the asset market, the household trades money, M, and one-period bonds, B, with other

households. The asset market constraint is

(2) M +B ≤ A.

Recall that nominal assets, money and bonds are all scaled by the aggregate stock of money.

We impose a no-Ponzi constraint of the form B ≤ B̄, where B̄ is a large, finite upper bound.

The household’s cash-in-advance constraint is

(3) P e(s) [µzc11 + q(s,R)(1− µ)zc12] ≤M,
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where P e(s) denotes the price set by sticky price firms and q(s,R)P e(s) denotes the price

set by flexible price firms. Note that q(s,R) is the relative price of flexible price goods to

sticky price goods. Nominal assets evolve over time as follows:

zP e(s) [µc11 + q(s,R)(1− µ)c12] + (1− z)P e(s) [µc21 + q(s,R)(1− µ)c22](4)

+X(s,R)A0 ≤W (s,R)n+D(s,R) + (X(s,R)− 1) +M +RB.

In (4), W (s,R) denotes the nominal wage rate and D(s,R) denotes profits after lump sum

taxes. Notice that A0 is multiplied by X(s,R). This multiplication reflects that we have

scaled all nominal variables by the beginning of period aggregate stock of money and A0 is

the household’s nominal assets scaled by next period’s aggregate money stock. Next period’s

aggregate money stock is simply the current stock multiplied by the growth rate X(s,R).

In is interesting to compare our description of the asset market with that in Svensson

(1985). Svensson assumes that each household sees itself as facing a cash in advance con-

straint in which only previously accumulated cash can be used for cash goods purchases. In

our setup, individual households face any such constraint. It is society as a whole that faces

the constraint that only previously accumulated cash can be used for cash goods purchases.

This constraint manifests itself as an equilibrium condition that M = 1. The interest rate

adjusts to ensure that the equilibrium condition is satisfied, so that households optimally use

only previously accumulated cash for cash goods purchases. The analysis with Svensson’s

formulation leads to identical results.

Consider the household’s asset, goods and labor market decisions. Given that the house-

hold expects the monetary authority to choose policy according to R(s) in the future, the

household solves the following problem:

(5) v(A, s,R) = max
n,M,A0,cij ; i,j=1,2

u(c, l) + βEs0 [max
z0

v(A0, s0, R(s0))|s]

subject to (1), (33), (3), (4), and nonnegativity on allocations. Here, we have substituted
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out for B using (2). The solution to (5) yields decision rules, d(A, s,R), where

(6) d(A, s,R) = [n(A, s,R),M(A, s,R), A0(A, s,R), cij(A, s,R)],

i, j = 1, 2.

B Firms and Resource Constraint

Each of the differentiated goods is produced by a monopolist using the following production

technology

y(ω) = θn(ω),

where y(ω) denotes output and n(ω) denotes employment for the type ω good. Also, θ is

a technology shock that is the same for all goods. The household’s problem yields demand

curves for each good. The fraction, 1−µ, of firms that are flexible price firms set their price

to maximize profits subject to these demand curves. Because the household demand curves

have constant elasticity, firms set prices as a fixed markup, 1/ρ, above marginal cost, W/θ,

so that the relative price of flexible to sticky price goods is given by:

(7) q(s,R) =
W (s,R)

P e(s)θρ
.

Sticky price firms set prices at the beginning of the period, after the exogenous shocks

are realized. As in Blanchard and Kiyotaki (1987), sticky price firms in our economy must

set their price in advance and must produce the amount of goods demanded at that price.

These firms, like the flexible price firms, also wish to set their price as a markup, 1/ρ, over

marginal cost, W/θ. In order to do so, they need to forecast the wage rate,W. They do so by

taking the wage rate as given by the private sector equilibrium. Thus, the wage they expect

to prevail is W (s,R(s)). Thus, in equilibrium the price set by sticky price firms satisfies:

(8) P e(s) =
W (s,R(s))

θρ

Turning to the government, we assume that there is no government debt, government

consumption is financed with lump-sum taxes, and government consumption is the same for
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all goods. As a result, the resource constraint for this economy is

θn = g + z [µc11 + (1− µ)c12] + (1− z) [µc21 + (1− µ)c22] ,

where g denotes the exogenous level of government consumption. Since there is no gov-

ernment debt, bond market clearing requires B = 0, A = 1. Also, money market clearing

requires M = 1.

C Private Sector Equilibrium

We now define an equilibrium for each possible private sector state (s,R) and future monetary

policy rule, R(s).

Definition For each s, R, given R(s), a private sector equilibrium is a number, P e(s),

and a collection of functions, q(s,R), W (s,R), X(s,R), v(A, s,R), d(A, s,R) such that the

following hold:

1. The functions v and d solve (5)

2. Firms maximize profits; that is, q(s,R) satisfies (7) and P e(s) satisfies (8)

3. The resource constraint is satisfied at d(1, s, R)

4. The asset markets clear; i.e., A0(1, s, R) =M(1, s, R) = 1.

Notice that a private sector equilibrium is defined for all values of R, not just R = R(s).

We define a private sector equilibrium outcome as the allocations and prices that occur when

A = 1 and actual policy, R, coincides with expectations of policy, R(s) :

Definition For each s, a private sector equilibrium outcome is a collection of numbers, P e(s),

q(s,R(s)), W (s,R(s)), X(s,R(s)), v(1, s, R(s)), d(1, s, R(s)).

Combining (7) and (8), we have that in a private sector equilibrium outcome:

(9) q(s,R(s)) = 1.
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D Monetary Authority Problem and Markov Equilibrium

The monetary authority chooses R to maximize the representative household’s discounted

utility:

(10) max
R

v(1, s, R),

where v is the value function in a private sector equilibrium. Recall that a private sector

equilibrium takes as given the evolution of future monetary policy. Thus, in solving (10) the

monetary authority implicitly takes as given the evolution of future monetary policy.

We now have the ingredients needed to define a Markov equilibrium.

Definition AMarkov equilibrium is a private sector equilibrium and a monetary policy rule,

R(s), such that R(s) solves (10).

Notice that in a Markov equilibrium, the current money growth rate does not affect

discounted utility of the household starting from the next period since it does not affect the

next period’s state. Therefore, the monetary authority faces the static problem of maximizing

current period utility, and we only have to describe how current R affects current allocations.

In a parallel fashion to a private sector equilibrium outcome, we define a Markov equilibrium

outcome as a Markov equilibrium in which actual policy, R, coincides with expectations of

policy, R(s) :

Definition For each s, a Markov equilibrium outcome is a collection of numbers, P e(s),

q(s,R(s)), W (s,R(s)), X(s,R(s)), v(1, s, R(s)), d(1, s, R(s)), where R(s) is the monetary

policy rule associated with a Markov equilibrium.

II Analysis of Equilibrium

In our analysis, we decompose the first-order condition associated with the monetary au-

thority problem, (10), into benefits and costs of inflation. To obtain these benefits and costs,
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we begin by characterizing a private sector equilibrium. We then solve the monetary au-

thority’s problem. We show that, generically, there are at least two allocations that satisfy

the necessary conditions for a Markov equilibrium. We present numerical examples in which

these allocations also satisfy the sufficient conditions for a Markov equilibrium.

A Characterizing Private Sector Equilibrium

We first characterize a private sector equilibrium outcome. We use this characterization to

construct a private sector equilibrium. Omitting arguments of functions for convenience, the

first order necessary conditions for household and firm optimization are:

u11
u12

=
µ

1− µ

1

q
,(11)

u21
u22

=
µ

1− µ

1

q
,(12)

u11
u21

=
z

1− z
R,(13)

u12
u22

=
z

1− z
R,(14)

−un =
θρu22

(1− µ)(1− z)
,(15)

Xu21
P eµ(1− z)

= βEs0 [v1(1, s
0, R(s0))|s],(16)

where uij denotes the partial derivative of u with respect to cij, and v1 denotes the partial

derivative of v with respect to its first argument. Equations (11) and (12) equate the marginal

rate of substitution between sticky and flexible price goods to the relative price of these goods

q, and equations (13) and (14) equate the marginal rate of substitution between cash and

credit goods to their relative price, the interest rate. Equation (15) is obtained by noting

that the marginal rate of substitution between labor and consumption of flexible price credit

goods is equated to the ratio of the nominal wage to the price of flexible price goods. This

ratio is simply the markup in (7). Finally, (16) is the intertemporal Euler equation for asset

accumulation.
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The cash-in-advance constraint can be written as

(17) µzc11 + q(1− µ)zc12 ≤ 1

P e
.

A necessary condition for the household problem to be well defined is

(18) R ≥ 1.

It is easy to show that the cash in advance constraint holds with equality if R > 1 and

that if the cash-in-advance constraint is slack, R = 1. These observations imply that the

appropriate complementary slackness condition is

(19)
½
1

P e
− [µzc11 + q(1− µ)zc12]

¾
[R− 1] = 0.

The resource constraint is

(20) g + z [µc11 + (1− µ)c12] + (1− z) [µc21 + (1− µ)c22] = θn.

We can use the preceding equations to compute a private sector equilibrium outcome.

Recall that a private sector equilibrium is conditioned on some given policy rule, R(s). Set

R = R(s), q = 1 and, for each s, use (9), (11)-(15), (19) and (20) to compute the six

numbers P e(s), n(1, s, R(s)), cij(1, s, R(s)), i, j = 1, 2. Notice that one of the equations in

(11)-(14) is redundant and can be deleted. Thus, we can use these six independent equations

to compute the six numbers of interest. The rest of the private sector equilibrium outcome

is straightforward to compute. For future use, note that c(1, s, R(s)) is obtained from (1)

using cij(1, s, R(s)).

Given P e(s) from a private sector equilibrium outcome, we can compute a private sector

equilibrium as follows. For each s and each R, we use (11)-(15), (19) and (20) to compute

the functions n(1, s, R), cij(1, s, R), i, j = 1, 2 and q(s,R). As above, note that c(1, s, R) is

obtained from (1) using cij(1, s, R).
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B The Monetary Authority’s Problem

The monetary authority’s problem is static because we focus on Markov equilibria and there

are no state variables in our economy. Recall that, in a Markov equilibrium policy makers

face dynamic problems only if their decisions affect future state variables. Since there are no

state variables in our economy, the monetary authority’s problem is simply one of choosing

current policy to maximize current period utility. We let

U(s,R) = u [c(1, s, R), n(1, s, R)]

denote the utility associated with an interest rate R, where c(1, s, R), n(1, s, R) are the

private sector equilibria constructed in the previous subsection. Recall that these functions

are defined for some given policy rule, R(s). We suppress this dependence to keep from

cluttering the notation. The monetary authority’s problem is now

(21) max
R

U(s,R),

subject to R ≥ 1.4 Then, R(s) is the policy rule associated with a Markov equilibrium if it

solves (21).

C Characterizing Markov Equilibrium

We can think of constructing a Markov equilibrium in two ways. First, we can treat (21) as

defining an operator which maps the space of policy rules into the space of policy rules. The

Markov equilibrium policy rule can be constructed by finding a fixed point of this operator.

Second, we can think of (9), (11)-(20) and the first order necessary condition associated

with (21) as a system of equations which are used simultaneously to solve for a Markov

equilibrium. The fist order condition is obtained by differentiating (11)-(20) with respect

to R, holding P e fixed and the derivative is evaluated at a point which solves (11)-(20)

with q = 1. If the first order condition for the monetary authority is also sufficient, the two

approaches are equivalent. We pursue the second approach.
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We show that, generically, at least two allocations satisfy the necessary condition associ-

ated with (21). In a large class of parameterizations for our economy, we verified numerically

that this necessary condition is also sufficient. We also derive a relationship between the

payment parameter z and the allocations and prices in a Markov equilibrium. We use this

relationship when we discuss a Markov equilibrium with a variable payment technology.

The first-order condition associated with a solution to (21) is

(22) UR(s,R) = uccR + unnR ≤ 0,

with equality if R > 1. In (22) UR is the derivative of U with respect to R and uc, un are

derivatives of the utility function with respect to consumption and employment, respectively.

Also, cR, nR are the derivatives of the private sector equilibrium functions, c(1, s, R) and

n(1, s, R), with respect to R. If R(s) is a Markov equilibrium policy rule, then it satisfies

(22).

In what follows, we show that (22) can be decomposed into a part that captures the

incentives to increase inflation because of the presence of monopoly power and a part that

captures the disincentives arising from the resulting reduction in cash goods consumption.

Specifically, we prove the following proposition:

Proposition 1 Suppose R(s) is a Markov equilibrium policy rule. Then, there exists a

strictly positive function, f(c1, c2), and a pair of functions, ΨMD(R, z) and ΨID(R), given by

(23) ψMD (R, z) = −(1− ρ)R
1

ρ−1 +
R

1
ρ−1 + ψR

ρ
ρ−1 + µ

1−µ
ψ
ρ

³
R

ρ
ρ−1 + 1−z

z

´
1+ψ
1−ρ +

ψ
ρ

³
z
1−zR

ρ
ρ−1 + 1

´ ,

and

(24) ψID (R) = (R− 1)R
1

ρ−1 ,

such that

UR(s,R(s)) = f(c1, c2) [−ψID (R(s)) + ψMD (R(s), z)] ,
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where c1 = c11(1, s, R(s)) = c12(1, s, R(s)) and c2 = c21(1, s, R(s)) = c22(1, s, R(s)). The

function, f(c1, c2) is provided in the appendix.

Our notation emphasizes the dependence of ψMD on z because this dependence plays an

important role in our discussion of the next section.

Before proving the proposition, we highlight three features. First, in any interior equi-

librium, ψID (R(s)) = ψMD (R(s), z) , so that determining an equilibrium reduces to finding

values of R where the right side of (23) equals the right side of (24). Second, as we show

below, the term, ψMD (R, z) can be interpreted as arising from the distortions induced by

monopoly power and the term, ψID (R) , can be interpreted as the distortion arising from

the inflation tax. This interpretation helps us to understand the costs and benefits that the

monetary authority weighs in making its policy decision. Third, notice that the shocks, θ

and g, do not enter into the functions, ψID or ψMD. Thus, R(s) does not depend on s.

We prove the proposition by proving a lemma. Consider first the term, ψMD. To obtain

this term, note that the efficient allocations in our economy satisfy

(25) un +
θu22

(1− µ)(1− z)
= 0.

The first term in (25) is the marginal disutility of labor associated with increasing labor input

to credit goods production, say, and the second term is the marginal benefit from increased

credit goods consumption. In our economy the analog of (25) is (15). Note that because

of the presence of monopoly power, the second term in (15) is the same as the second term

in (25) multiplied by ρ < 1. As a result, the net marginal benefit of increasing labor from

its equilibrium value in our economy is positive. This distortion is due to monopoly power

and suggests that the left side of (25) is a natural measure of the monopoly distortion in our

economy. Add and subtract θu22nR/ [(1− µ)(1− z)] to and from (22), and rearrange terms,

to obtain

(26) UR =

·
un +

θu22
(1− µ)(1− z)

¸
nR + uccR − θu22nR

(1− µ)(1− z)
.

17



The term in square brackets is our measure of the monopoly distortion. In the Appendix,

we prove the following lemma regarding the terms in (26).

Lemma 1: In a Markov equilibrium,

(27)
·
un +

θu22
(1− µ)(1− z)

¸
nR = f(c1,c2)ψMD (R, z) ,

and

(28) uccR − θu22nR
(1− µ)(1− z)

= −f(c1, c2)ψID (R) ,

where ψMD (R, z) and ψID (R) are defined in (23) and (24).

Proposition 1 then follows from Lemma 1.

To see that ψID is a measure of the inflation distortion, we use a simple consumer surplus

type of analysis. In a monetary economy, let D(r) denote the demand for real balances, m,

with respect to the net interest rate, r ≡ R− 1. Let g(m) be D−1(r). Consumer surplus, S,

is the area under the money demand function. A rise in the interest rate acts like a tax and

reduces consumer surplus. We are interested in the marginal effects of this tax, namely, the

derivative of S with respect to r :

dS

dr
=

dS

dm

dm

dr
= g(m)D0(r) = rD0(r).

In our economy,

D(r) =
c

1 + (1 + r)
1

1−ρ
,

where c = c1 + c2 denotes aggregate consumption. It follows that

D0(r)r = − 1

1− ρ

c2
R
[R

1
ρ−1 (R− 1)] = − 1

1− ρ

c2
R
ψID (R) .

As we see below, the key features of ψID (R) that deliver multiplicity are shared by D
0(r)r.

This result is one motivation for interpreting ψID (R) as the inflation distortion.

For another motivation, consider the following. Use c2/c1 = R1/1−ρ and the definition

of ψID to obtain ψID (R) = (R − 1)c1/c2. The net interest rate R − 1 measures the extent
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to which cash goods consumption is distorted relative to the efficient level. This distortion

is akin to a tax (see Lucas and Stokey (1983)). The base on which this tax is levied is

consumption of cash goods. Thus, one way to think of ψID is as the product of a tax rate,

R − 1, and the base of taxation, c1, scaled by a measure of the size of the economy, c2.
This reasoning provides an alternative motivation for using ψID to measure the inflation

distortion. In the efficient allocations, R = 1, and ψID (R) = 0.

We now discuss some properties of ψMD and ψID. From (23) the following is clear:

(29) ψMD (R, z) is decreasing in z and lim
R→∞

ψMD (R, z) =

µ
1−µ

ψ
ρ

¡
1−z
z

¢
1+ψ
1−ρ +

ψ
ρ

> 0.

Notice that ψMD (R, z) does not depend on the shocks θ and g. Next, inspecting (24), we

have that ψID ≥ 0 and

(30) lim
R→∞

ψID(R) = ψID(1) = 0.

That is, there is no inflation distortion when the interest rate is high or low.

A numerical example helps illustrate the results in Proposition 1. We use µ = 0.1,

ρ = 0.45, ψ = 1, g = 0.05, θ = 1. Figure 1 displays the monopoly distortion, ψMD, and the

inflation distortion, ψID, for R ∈ [1, 4.5] and for z = 0.13 and 0.15. The figure shows that
the first order necessary condition for monetary authority optimality is satisfied at R = 1.38

and R = 2.07 for z = 0.13 and R = 1.10 and R = 3.17 for z = 0.15. For z = 0.15 the

inflation rate is somewhat below 10 percent in the low inflation equilibrium and just below

217 percent in the high inflation equilibrium.

Using Proposition 1, (22) becomes

(31) UR = f(c1, c2)ψ(R, z) ≤ 0

with equality if R > 1. Here, ψ(R, z) = [−ψID (R) + ψMD (R, z)] . Since f(c1, c2) > 0, a

solution to

(32) ψ (R, z) ≤ 0
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with equality if R > 1 satisfies the necessary condition for a Markov equilibrium. If (??)

is also sufficient, then the interest rate, R, which solves (32) corresponds to a Markov equi-

librium policy rule. Given an equilibrium value of the interest rate, we can solve for the

allocations and other prices from (11)-(15), (17) with equality, (20) and (9), for each value

of θ and g.

We use the properties of the monopoly distortion function, ψMD, in (29), and the inflation

distortion function, ψID, in (30), to show that, generically, there are at least two Markov

equilibria, if there are any.

Proposition 2 (Generic Multiplicity): Suppose that the monetary authority’s first or-

der condition is sufficient for optimality. Then, generically, there are at least two Markov

equilibria, or none. Furthermore, the equilibrium interest rate does not depend on θ or g.

Proof: A key property of the function ψ(R, z) is that it is positive for R sufficiently large.

This property follows from (29) and (30) which imply

lim
R→∞

ψ(R, z) = lim
R→∞

[−ψID (R) + ψMD (R, z)] > 0.

Suppose first that ψ(1, z) > 0. Then, since ψ(R, z) is positive at R = 1 and positive for

large R, by continuity it follows that if ψ(R, z) is ever zero, it must generically be zero at

least twice. A non generic case occurs when the graph of ψ(R, z) against R is tangent to

the horizontal axis at a single value of R. Another nongeneric case is when ψ(1, z) = 0 and

ψ(R, z) > 0 for R > 1. Both cases are nongeneric because for an arbitrarily larger value of z,

one can see that there are multiple equilibria since ψ(R) is strictly decreasing in z. Suppose

next that ψ(1, z) < 0. Then, R = 1 satisfies (32) and corresponds to a Markov equilibrium.

In addition, because ψ(R, z) > 0 for R sufficiently large, continuity implies that ψ(R, z)

must be equal to zero for at least one value of R > 1.

>From (24) we have that ψID does not depend on θ or g. Since ψMD does not depend on

these variables either, it follows that the equilibrium interest rate, R, does not depend on θ

or g. Q.E.D.
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We construct two examples to illustrate Proposition 2 and to compare outcomes between

the low and high inflation equilibrium. We also constructed a third example to illustrate that

the first order condition of the monetary authority may not be sufficient for optimality. In

all three examples we use the values of µ, ρ, ψ, g, and θ used in Figure 1. The first example

has z = 0.13, the second has z = 0.15 and the third has z = 0.152. In Table 1, we display

the candidate private sector equilibrium outcomes which satisfy the first order condition of

the monetary authority.

Table 1: Candidate Equilibrium Outcomes in Three Numerical Examples

Inflation z c1 c2 R n P e

low 0.13 0.17 0.31 1.38 0.339 49.1

high 0.13 0.08 0.32 2.07 0.337 99.2

low 0.15 0.25 0.30 1.10 0.342 26.3

high 0.15 0.04 0.33 3.17 0.336 165.0

low 0.152 0.26 0.30 1.08 0.343 25.4

high 0.152 0.04 0.33 3.27 0.336 171.6

Note from Table 1 that c1, P and R are quite different in the high and low inflation

outcomes. The primary cost of high inflation is that it results in an inefficient level of cash

goods consumption. For example when z = 0.13, cash goods consumption is over 50 percent

lower in the high inflation equilibrium than in the low inflation equilibrium. Note that credit

goods consumption changes very little. Employment changes very little because the bulk of

labor is allocated to credit goods production.

We found that the first order condition for monetary authority optimality is sufficient

in the examples with z = 0.13 and z = 0.15. We determined sufficiency by examining

by examining the the monetary authority’s objective function, (21), at each value of P e

corresponding to a private sector equilibrium. When z = 0.13, we found in numerical results

not reported here, that this objective is concave for a range of values of R up to roughly 4, for
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both the low and high inflation values of P e. When z = 0.15 or 0.152 this objective function

is also concave for the low inflation value of P e.We illustrate this concavity by graphing the

objective function when z = 0.15 for the low inflation value of P e in Figure 2a. In Figure 2b

we plot the corresponding objective function for the high inflation value of P e. This figure

shows that the objective function is locally, though not globally, concave. In addition, the

figure shows that the high inflation candidate maximizes the monetary authority’s objective,

and is therefore an equilibrium.

In our third example, it turns out that the low inflation candidate is indeed an equilibrium,

but that the high inflation candidate is not an equilibrium. In Figure 2c we plot the monetary

authority’s objective at the high inflation value of P e. This figure shows that, although

R = 3.27 is a local maximum, the global maximum is R = 1.5 This figure illustrates forcefully

that it is necessary to check the monetary authority’s objective function globally, rather than

just locally. Clearly, merely checking second order conditions is not enough.

III An Economy with Variable Payment Technology

In this section, we develop a version of our model with a variable payment technology. For

convenience, we refer to the economy of the previous section as the economy with a fixed

payment technology. The variable payment version is interesting because it delivers a related

but different channel by which monetary policy can be caught in an expectations trap. It is

also interesting as a model of financial intermediation in its own right. Finally, we use this

model to analyze how equilibrium interest rates fluctuate in response to shocks.

In this version of the model, the fraction of goods purchased with cash, z, is chosen by

households at the beginning of the period, before the monetary authority chooses the interest

rate, R. This timing assumption turns out to imply that we can characterize the equilibrium

with two relationships. The first relationship is between R and z for the fixed payment

technology economy. The second relationship is obtained from the optimality condition
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associated with z.

Consider a version of the fixed payment technology economy in which each consumption

good, c(ω), can be purchased either with cash or with credit, ω ∈ (0, 1). For goods with
ω > z̄ (where z̄ is a parameter) the cost of purchasing with credit is zero. Purchasing goods

with ω ≤ z̄ on credit requires labor time. The household chooses the fraction z ≤ z̄ such

that goods with ω < z are purchased with cash and goods with ω ≥ z are purchased with

credit. This cash-credit decision is made before households know which goods are produced

by sticky or flexible price firms, so that the cash-credit good choice is independent of the

type of firm.

The labor time required to purchase fraction z of goods with cash is given by η(z̄ −
z)1+ν/ (1 + ν), where ν > 0 is a parameter and η > 0 is the shock to the payment technology.

Since this shock is realized at the beginning of the period, the exogenous state is now given

by s = (θ, g, η). The household’s labor time, l, is divided between time spent working in the

market, n, and time spent on the payment technology as follows:

(33) l = n+
η(z̄ − z)1+ν

1 + ν
.

Leisure time in the household’s utility function is now given by 1− lt, rather than 1− nt.
6

The decision problem of the household with respect to consumption, employment and

asset accumulation described in the previous two sections is unchanged, except that now z

is added to the state variables in (5) and (6), and labor is given in (33). The household

chooses z to solve the following problem:

(34) z(A, s) = argmax v(A, z, s,R(s)),

where v is the analog of the value function in (5). Note that the choice of z depends on

the household’s expectations of the monetary authority’s policy rule, R(s), since z is chosen

before R.

A Markov equilibrium, a private sector equilibrium and associated outcomes are defined

in the obvious way (see Albanesi, Chari and Christiano (2002a) for these definitions.) We
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now characterize a Markov equilibrium for the variable payment technology economy. In

addition to all the equilibrium conditions for the economy when z is fixed, this equilibrium

must satisfy optimality of the choice of z.

A Characterization of Equilibrium

We analyze aMarkov equilibrium for this economy by first establishing a relationship between

the Markov equilibrium interest rate and the payment technology parameter, z, in the fixed

payment technology economy. In Albanesi, Chari and Christiano (2002a), we show that

the monetary authority’s optimality condition in the variable payment technology economy

can be written as f̃(c1, c2)ψ(R, z) ≤ 0, where ψ(R, z) is given in (31) and f̃ > 0. Thus, the

equilibrium interest rates in the variable payment technology economy must satisfy the same

conditions as in the fixed payment technology economy.

Consider the equilibrium interest rates in the fixed payment technology economy given

by the solution to (32). This solution depends on z, as can be seen from (23) and (24). We

call this relationship between R and z the interest rate policy correspondence (henceforth,

policy correspondence for short.) The following proposition establishes properties of this

correspondence:

Proposition 3 (Interest Rate Policy Correspondence): Suppose that the monetary

authority’s first-order condition is sufficient for optimality. Suppose also that for some z < z̄

a Markov equilibrium exists. Then, there is a critical value of z, say ẑ, such that for z < ẑ

there are no Markov equilibria, for z = ẑ there is at least one Markov equilibrium, and for

z > ẑ there at least two Markov equilibria.

Proof : First, we show that when z is sufficiently small, there is no interest rate less than R̄

which is an equilibrium, where R̄ is arbitrarily large. Notice from (23) that ψMD(R, z)→∞
as z → 0 for all R ∈ [1, R̄], and from (24) that ψID is bounded. It follows that there is

some value of z, say ẑ1, such that for all z ≤ ẑ1, ψ(R, z) is strictly positive. Thus, there is

no equilibrium interest rate less than R̄ for z sufficiently small. Second, we show that no
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interest rate greater than R̄ can be an equilibrium. We see from (24) that ψID is bounded

above by, say, k. Let ẑ2 be defined by limR→∞ ψMD (R, ẑ2) = 2k. Such a value of ẑ2 exists

from (29). Note also that for all z ≤ ẑ2, limR→∞ ψMD (R, z) ≥ 2k. By definition of a limit,
some interest rate R̄ exists such that for all R ≥ R̄, ψMD (R, ẑ2) ≥ 2k − ε, where ε is, say,

k/2. It follows that, for all R ≥ R̄, ψ (R, ẑ1) = −ψID (R) + ψMD (R, ẑ1) ≥ k/2 > 0. That is,

there is no value of the interest rate greater than R̄ which is an equilibrium for z = ẑ2. Since

ψMD (R, z) is decreasing in z, there is no value of the interest rate greater than R̄ which is

an equilibrium for z ≤ ẑ2.We have established that there is no equilibrium if z is sufficiently

small.

Next, ψMD(R, z) is a continuous function of R and z. As z is increased from some

arbitrarily low value, there is some first value of z such that ψ(R, z) = 0 for some R.

Such a z, call it ẑ, exists by our assumption that an equilibrium exists for some z. Consider

increasing z above ẑ. Since ψMD is strictly decreasing, the graph of ψ(R, z) against R must

intersect the horizontal axis at at least two points. Thus, for z > ẑ, there are at least two

Markov equilibria. Q.E.D.

Consistent with our theoretical findings, Figure 1 shows that the inflation distortion

does not depend on the payment technology parameter, z, while the monopoly distortion is

decreasing in this parameter. We graph the policy correspondence in Figure 3.7 When z

is sufficiently small, the monopoly distortion lies above the inflation distortion and there is

no equilibrium. As z increases, the monopoly distortion declines. At a critical value of z

the economy has a unique equilibrium and for values of z larger than this critical value the

economy has two equilibria. Notice that as z increases, the interest rate in the low inflation

equilibrium falls and that the interest rate in the high inflation equilibrium rises.

We now develop the second relationship between the equilibrium interest rate, R, and the

payment technology parameter z. We obtain this relationship from the first-order condition
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associated with the household’s choice of z:

(35) (1− 1
ρ
)

1−R
ρ

1−ρ

z + (1− z)R
ρ

1−ρ
=

ψη(z̄ − z)ν

1− n− (z̄−z)1+ν
η/(1+ν)

.

We can use the equations that define a private sector equilibrium, (11)-(15), (17) with

equality, (20) and (9) to substitute for labor, n, in (35). Doing so, we obtain (see Lemma 2

in the Appendix for a derivation):

(36)
(1
ρ
− 1)(1−R

ρ
ρ−1 )

z
h
(R

1
ρ−1 − 1) + ψ

ρ
(R

ρ
ρ−1 − 1)

i
+ (1 + ψ

ρ
)
=

ρη(z̄ − z)ν

1− (z̄−z)1+νη
1+ν

− g
θ

.

For each z, there is at most one R that solves (36). To see this result, note that the left-hand

side is increasing in R, while the right side does not depend on R. Let Rp(z, g, θ, η) denote

the value of R that solves (36). We refer to this function as the payment technology function,

or payment function, for short. The set of payment technology parameters z for which this

function is defined is developed as follows. As R → ∞, the left side of (36) converges to

(1− ρ)/((ρ+ ψ)(1 + z)), which at z = 0 becomes (1− ρ)/(ρ+ ψ). The right side of (36) at

z = 0 is ρηz̄ν/(1− z̄1+νη/(1 + ν)− g/θ). If

1− ρ

ρ+ ψ
<

ρηz̄ν

1− z̄1+νη/(1 + ν)− g/θ
,

there is some critical value of z, say z∗, at which the function Rp(z, g, θ, η) goes to infinity.

Then the function is defined for (z∗, z̄]. If not, then the function is defined for (0, z̄]. Let

the domain of the function be (z̃, z̄] where z̃ = z∗ if the above inequality holds and z̃ = 0

otherwise.

It is easy to see from (36) that Rp is decreasing in z, since the left side of (36) is increasing

in z, while the right side is decreasing in z. It is also easy to see that Rp is increasing in g/θ

and η since an increase in g/θ or η raises the right side of (36) and so increases R for a given

value of z.

Each R, z which satisfies the policy correspondence, (31), and the payment function,

(36), corresponds to a Markov equilibrium. The other allocations, prices and the monetary
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authority’s policy rule can be obtained by solving (11)-(16), (17) with equality, (20) and (9).

Next, we prove a proposition that under certain conditions, there are two Markov equilibria

for our economy. We say that the policy correspondence is horseshoe-shaped if it satisfies

the following conditions: (i) there are two continuous functions, R1c(z) and R
2
c(z) which map

[ẑ, z̄] into the space of interest rates with R1c(z) < R2c(z), for z ∈ (ẑ, z̄], R1c(ẑ) = R2c(ẑ),

and (ii) for all z ∈ [ẑ, z̄] the solution to (32) is either R1c(z) or R2c(z), where ẑ is defined in
Proposition 2.

Proposition 4: Suppose the policy correspondence is horseshoe-shaped. Then, generi-

cally, the economy with variable payment technology satisfies the necessary conditions for a

Markov equilibrium twice, if at all.

Proof : Suppose to begin with that z̃ < ẑ. Recalling thatRp(z̄) = 1 andR1c(z̄), R
1
c(z̄) ≥ 1,

we can divide the proof into two cases. The first case is when Rp(z̄) < R1c(z̄). The second case

is when Rp(z̄) = R1c(z̄) = 1. Consider the first case, that is, Rp(z̄) < R1c(z̄) ≤ R2c(z̄). Now if

Rp(ẑ) > R1c(ẑ) = R2c(ẑ), then since Rp is below R1c and R
2
c at z̄ and above R

1
c and R

2
c at ẑ, by

continuity, Rp must intersect at least once with each R1c and R
2
c . Each of these intersections

corresponds to a Markov equilibrium. If Rp(ẑ) < R1c(ẑ) = R2c(ẑ) then since Rp is below R1c

at both z̄ and ẑ, Rp and R1c intersect twice, if at all. The case when Rp(ẑ) > R1c(ẑ) = R2c(ẑ)

is clearly non-generic.

Consider the second case, that is, Rp(z̄) = R1c(z̄) = 1. Then the policies and allocations

associated with an interest rate of unity constitute an equilibrium. Generically, there must

also be one other equilibrium. To see this, note that, generically, if R1c(z̄) = 1, some neigh-

borhood of z̄ exists such that for all z in this neighborhood, R1c(z) = 1. Since Rp is strictly

decreasing, it follows that for z in this neighborhood, Rp(z) > 1 = R1c(z). Suppose that

Rp(ẑ) < R1c(ẑ). Then, since Rp is above R1c in a neighborhood of z̄ and below R1c at ẑ, by

continuityRp and R1c must intersect at least once. Now suppose that Rp(ẑ) > R1c(ẑ) = R2c(ẑ).

Then, since Rp is below R2c at z̄ and above R
2
c at ẑ, by continuity Rp must intersect at least

once with R2c . We have established that in this second case, generically, the necessary con-
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ditions for equilibrium must be satisfied twice, if at all.

Suppose next that z̃ > ẑ. Then for z near z̃, Rp is arbitrarily large and must be larger

than R2c . Exactly the same arguments used above can then be used to conclude that the

necessary conditions for a Markov equilibrium must be satisfied twice, if at all. Q.E.D.

The restriction that the policy correspondence be horseshoe-shaped is not severe. In

Proposition 2 we have shown that for each z > ẑ there are at least two interest rates

which belong to the policy correspondence. Using the implicit function theorem, these

interest rates can be represented as continuous functions of z. Thus, the assumption that

the correspondence is horseshoe-shaped only rules out the possibility that there are three or

more interest rates which belong to the correspondence. It is straightforward, but tedious to

extend the proof of Proposition 3 to this case. Furthermore, in all the numerical examples

we have considered, the correspondence is horseshoe-shaped.

B Properties of Equilibrium

In Figure 4, we plot the interest rate correspondence and the payment function for various

realizations of the exogenous shocks in a numerical example. In Figure 4a we plot the

interest rate correspondence and the payment function for two realizations of the production

technology shock, θ, holding the other shock at its mean value. Figure 4b displays the

analogous graph for the payment technology shock, η. These figures display four properties.

First, as we have shown in Proposition 1, the policy correspondence does not depend on these

shocks. Second, as discussed above, the payment function is decreasing in the interest rate.

Third, as also discussed above, the payment function is increasing in η and decreasing in θ.

Fourth, there are multiple Markov equilibria. Two of these are easy to see. In one, for every

realization of the shocks, the equilibrium is the one associated with the lower intersection

of the interest rate correspondence and payment function. We call this the low inflation

equilibrium. In the other, the equilibrium is the one associated with the higher intersection.

We call this the high inflation equilibrium.
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Figure 4 displays an interesting sign switch phenomenon, in the sense that the interest

rate response to a shock switches sign between the high and low inflation equilibrium. For

example, from Figure 4a, we see that the interest rate is increasing in the technology shock

in the low inflation equilibrium and decreasing in this shock in the high inflation equilibrium.

We verified, for our numerical example, that in both equilibria output is increasing in the

technology shock. If technology shocks were the dominant shocks, the correlation between

output and the interest rate would be positive in the low inflation equilibrium and negative in

the high inflation equilibrium. From Figure 4b we see the sign switch for the payment shock:

the interest rate is decreasing in this shock in the low inflation equilibrium and increasing in

this shock in the high inflation equilibrium. In our numerical example, output is increasing

in the payment shock in the low inflation equilibrium and decreasing in this shock in the

high inflation equilibrium. So, if payment shocks were the dominant shocks the correlation

would be negative in both equilibria. It follows that in an economy with both shocks, the

correlation of output and the interest rate is negative in the high inflation equilibrium and

larger (perhaps even positive) in the low inflation equilibrium. We call this finding the

decreasing correlation implication.

Our numerical examples also show that the volatility of interest rates in the low inflation

equilibrium is substantially smaller. The reason is that the policy correspondence is flatter

at the low inflation equilibrium than at the high inflation equilibrium. We call this finding

the increasing volatility implication.

In Albanesi, Chari and Christiano (2002a), we examine data for high and low inflation

episodes in a cross section of countries. We find that some support for the decreasing

correlation and increasing volatility implications of the model.
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IV Key Features for Generating Expectation Traps

In this section, we ask which features are crucial for generating expectation traps. We focus

on six features and find that three of them play essential roles, one plays a convenient role

and two play more subsidiary roles. We also briefly discuss extensions of the analysis.

The first essential feature is the assumption that some prices are preset. To see the

importance of this assumption, suppose all prices were flexible. Then, the monetary authority

cannot reduce the monopoly distortion by making inflation higher than expected because

monopolists simply raise their prices in response to expansionary monetary policy, so that

the monopoly wedge is invariant to monetary policy. In our model, the only possible benefit

of expansionary policy is from reducing the monopoly distortion. At the same time an

expansionary policy is costly because it raises the price level, reduces consumption of cash

goods and thereby reduces welfare. Indeed, these forces imply that the monetary authority

gains by pursuing a contractionary policy, as long as R > 1. Thus, when all prices are flexible

the unique Markov equilibrium has R = 1. Technically, this result can be seen by setting

µ = 0 in (23). After some manipulation, we see that ψMD(R, z) < 0 for all R, so that the

equilibrium has R = 1.

The second essential feature is the assumption that some prices are flexible. To see the

importance of this assumption, suppose all prices are fixed. Then, expansionary monetary

policy is welfare-enhancing because it reduces the monopoly distortion. Such a policy is not

costly because with the price level fixed, cash goods consumption is also fixed. These forces

imply that the monetary authority always gains by pursuing an expansionary monetary

policy. As a result, no equilibrium exists. Technically, this result can be see from (23),

which implies that ψMD →∞ as µ→ 1. Since ψID is bounded, no equilibrium exists.

The third essential feature is that firms have monopoly power. Again, since the only

benefit of expansionary monetary policy is to reduce the monopoly distortion, and since

realized inflation is costly, the equilibrium without monopoly power has R = 1. Technically,

suppose ρ = 1 in (23). Then, we see that ψMD(R, z) = 0 for all R. And, the unique
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equilibrium has R = 1.

The fourth feature is our timing assumption under which monetary injections cannot be

used to purchase cash goods in the same period. This assumption implies that a monetary

expansion, by raising prices, directly reduces consumption of cash goods. This reduction

in the consumption of cash goods lowers welfare. An alternative timing assumption is that

in Lucas and Stokey (1983). Under this alternative timing, households can use the current

monetary injection for current cash goods purchases. Mechanically, Lucas-Stokey timing

amounts to adding current money growth to the right side of the cash-in-advance constraint.

Since a monetary injection can be used to purchase current cash goods, a greater than

expected expansion does not directly change the mix of cash and credit goods consumption.

It is possible that induced movements in the interest rate could change this mix, and this

possibility would be worth exploring.

The two subsidiary features relate to the shape of the monopoly distortion function and

the inflation distortion function. In Albanesi, Chari and Christiano (2002b), we show that

if the period utility function is of the following form

u(c, n) =
c1−σ

1− σ
− an,

where a is a parameter, the monetary authority’s first order condition can be decomposed

into a monopoly distortion and inflation distortion function. In this case, the monopoly

distortion at R = 1 is negative and the monopoly distortion is positive for R sufficiently

large. The inflation distortion function is the same as in this paper. As a result, the

fixed payment technology economy has a unique equilibrium. The policy correspondence in

Figure 3 becomes a downward-sloping graph. Nevertheless, since the payment function is

also downward sloping, there can be multiple intersections and multiple equilibria.

Substituting c2/c1 = R1−ρ into (24), we see that

ψID = (R− 1)
c1
c2
.

We have already argued that this distortion is akin to the product of a tax, R− 1, and the
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tax base, c1. When R = 1, ψID = 0. As R → ∞, the behavior of ψID depends on the rate

at which cash goods consumption falls. In the economy in this paper, c1 goes to zero faster

than R goes to infinity, and thus the product goes to zero. In Albanesi, Chari and Christiano

(2002b), we present a model which shares many of the features of the model in this paper,

except for the specification of money demand. Interestingly, in that paper the monetary

authority’s first order condition can be decomposed into terms which are very similar to ψID

and ψMD. In that paper, however, ψID does not go to zero because c1 goes to zero at the

same rate as R. The fixed payment technology model in that paper has a unique equilibrium.

With a variable payment technology, however, multiple equilibria are possible.

In terms of extensions, it would be useful to ask whether these equilibria are stable under

various learning schemes. In our numerical examples, including the one associated with

Figure 1, the inflation distortion has a single-peaked Laffer curve shape, while the monopoly

distortion is relatively flat. This shape is reminiscent of the shape of the monetary Laffer

curve in analyses where governments rely on inflation to finance expenditures. (See, for

example, Sargent and Wallace (1981).) In this literature there are two steady state levels of

inflation. The literature finds that only one of these steady states is stable under a large class

of learning schemes. In Albanesi, Chari and Christiano (2002a), we examine the stability

properties of the equilibria in our model under a simple learning scheme. We find that both

equilibria are stable. Exploring stability under a broader class of learning schemes would be

of interest.

It would also be useful to analyze non-stationary equilibria in our model. In this paper, we

have focused on Markov equilibria which are stationary in the sense that they cannot depend

on time. If we add calendar time as a state variable there are other Markov equilibria as well.

For example, one such equilibrium has the economy moving to the low inflation equilibrium

on even dates and to the high inflation equilibrium on odd dates. More interesting is the

possibility of sunspot driven Markov equilibria in which a sunspot at the beginning of each

period coordinates private agents’ expectations and induces agents to pick the high or the low
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inflation equilibrium depending on the realization of the sunspot. Such sunspot equilibria

clearly exist and lead to volatility in inflation rates.

V Related Literature

In terms of related literature, Dedola (2002) and Khan, King and Wolman (2002) (KKW)

also generate multiple equilibria in a models in which the monetary authority chooses policy

without commitment. The mechanism for generating multiplicity in Dedola (2002) is similar

to that in this paper. KKW have a finite horizon model in which in every period one-third of

firms choose the prices for that they will charge for the next three periods. When firms expect

high inflation, they choose high prices. The cost of not validating firms’ expectations is that

relative prices become distorted and output falls. The staggered setting in KKW plays the

same analytic role as the Svensson timing assumption in our paper. Both features have the

effect that realized inflation is costly. In some of the literature, firms are allowed effectively

to choose different prices for each date (though not allowed to make these prices contingent

on shocks). We conjecture that with such a formulation, the equilibrium in KKW would be

unique. KKW also simply impose money demand by adding an equation that consumption

must equal real balances. to the equilibrium of their model. This additional equation is not

the same as a cash-in-advance constraint on households because firms and other households

will not accept money for the goods they set in the last period. It would be interesting to

ask whether in an infinite horizon version of KKW whether the interest elasticity of money

demand would matter for multiplicity.

It is increasingly standard in monetary economics to characterize equilibria without

commitment in stochastic economies by studying linear-quadratic approximations around

a steady state (see, for example, Clarida, Gali and Gertler, 1999). This literature simply

assumes the steady state values of policy variables like inflation. The difficulty is that in

determining steady state policy, the policymaker needs to forecast how private agents will
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respond to alternative policies. That is, an analysis like the one conducted in this paper is

necessary to determine steady states before one knows around what point to conduct the

approximation. If the linear-quadratic method yields deviations from the state which are

independent of the value of the steady state, the method may be a good approximation of

equilibria that remain close to steady state. In economies with multiple steady states, like

ours, however, the method would entirely miss any equilibria in which the economy switches

from one steady state to another.

VI Conclusion

We have shown that discretionary monetary policy can account for prolonged periods of low

and high inflation. The model in this paper is a very standard monetary general equilibrium

model. Our main theoretical finding is that the model has expectation traps. The main

force driving the multiplicity of equilibria is that defensive actions taken by the public to

protect itself from high inflation reduce the costs of inflation for a benevolent monetary

authority and induce the authority to supply high inflation. This economic force is likely to

be present in a large class of monetary models. The main policy implication is that the costs

of discretionary monetary policy include not just high average inflation, but volatile and

persistent inflation as well. The gains to setting up institutions which increase commitment

to future monetary policies are likely to be high.
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Notes

1We thank Michael Woodford for urging us to emphasize these points.

2Notice that we do not include the beginning-of-period aggregate stock of money in our

states. In our economy, all equilibria are neutral in the usual sense that if the initial money

stock is doubled, an equilibrium exists in which real allocations and the interest rate are

unaffected and all nominal variables are doubled. This consideration leads us to focus on

equilibria which are invariant with respect to the initial money stock. We are certainly

mindful of the possibility of equilibria which depend on the money stock. For example, if

multiple equilibria in our sense exist, ‘trigger strategy-type’ equilibria which are functions of

the initial money stock can be constructed. In our analysis we exclude such equilibria.

3In Albanesi, Chari and Christiano (2002a), we show that this specification of the mone-

tary authority’s choice variable is equivalent to one in which the monetary authority chooses

the money growth rate.

4Technically, the set of interest rates should also be limited to those where (11)-(15) and

(17)-(20) have a solution. Our analysis of the monetary authority’s problem uses a first order

condition approach which only asks whether small deviations are optimal. One can use the

implicit function theorem to show that in some neighborhood of an equilibrium, (11)-(15)

and (17)-(20) have a solution. Thus, we will not have to deal with whether the allocation

functions are well defined for arbitrary interest rates.

5Of course, R = 1 is not a Markov equilibrium, because P e = 171.6 and R = 1 is not

part of a private sector equilibrium outcome.

6See Aiyagari, Braun and Eckstein (1998), Cole and Stockman (1992), Dotsey and Ireland

(1994), Freeman and Kydland (1994), Ireland (1994), Lacker and Schreft (1996), and Schreft

(1992) for payment technology models with similar features.
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7In all the numerical examples we have studied, the necessary conditions also turned out

to be sufficient.
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Appendix

To prove Lemma 1 in the text, we use the necessary and sufficient conditions for an

interior private sector equilibrium. Using our functional form assumptions, (11)-(15) reduce

to

c12 = c11q
−1
1−ρ(37)

c21 = c11R
1

1−ρ(38)

c22 = c21q
−1
1−ρ(39)

ψ

ρ
cρc1−ρ22 = θ(1− n).(40)

We have omitted (12) because there are only three linearly independent equations in

(11)-(14). These expressions together with (19)-(9) are necessary and sufficient conditions

for a private sector equilibrium.

Lemma 1 is established using (37)-(40), (19) with equality, and (20) to construct the

functions cij(s, P e, R), q(s, P e, R) and n(s, P e, R), differentiating these functions with respect

to R and evaluating the derivatives at q = 1. Mechanically, we first drop n from the system

by substituting out for n in (40) using (20). Then, we differentiate (37)-(39) and simplify

to obtain one equation in c11,R and qR. We use (17) to obtain another equation in these

variables. We can then evaluate all the other derivatives. We prove the lemma in two parts

Lemma 1a: In a Markov equilibrium ,

(41)
(1− ρ)θu22nR
(1− µ)(1− z)

= f(c1,c2)ψMD (R, z) ,

where f(c1, c2) > 0 for c1, c2 > 0,and ψMD (R, z) is given in (23).

Proof : Substitute for n from (20) and for c from (1) into (40), to obtain

ψ

ρ
[zµcρ11 + z(1− µ)cρ12 + (1− z)µcρ21 + (1− z)(1− µ)cρ22] c

1−ρ
22

= θ − g − z [µc11 + (1− µ)c12] + (1− z) [µc21 + (1− µ)c22]− θ
η(z̄ − z)1+ν

1 + ν
.
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Differentiating with respect to R we get

z [µc11,R + (1− µ)c12,R] + (1− z) [µc21,R + (1− µ)c22,R](42)

+ψ
£
zµcρ−11 c11,R + z(1− µ)cρ−11 c12,R + (1− z)µcρ−12 c21,R + (1− z)(1− µ)cρ−12 c22,R

¤
c1−ρ2

+
ψ

ρ
(1− ρ)cρc−ρ2 c22,R = 0,

where all derivatives are evaluated at a value of P e such that q = 1. Here, c1 = c11 = c12 and

c2 = c21 = c22 when q = 1. Now, differentiate (37)-(39) with respect to R to obtain

c12,R = c11,R − c1
1− ρ

qR(43)

c21,R = c11,RR
1

1−ρ +
c1R

ρ
1−ρ

1− ρ
(44)

c22,R = c21,R − c2
1− ρ

qR.(45)

Differentiating (17) with equality and substituting for c12,R from (43), we obtain

µzc11,R + (1− µ)z

µ
c11,R − c1

1− ρ
qR

¶
+ (1− µ)zc1qR = 0.

Simplifying, we obtain

(46) qR =
1− ρ

ρ(1− µ)c1
c11,R.

>From (43)-(45) and (46), using (c2/c1)1−ρ = R, we obtain

(47) µc11,R + (1− µ)c12,R = c11,R − (1− µ)c1
1− ρ

qR = c11,R(1− 1/ρ),

µc21,R + (1− µ)c22,R = c21,R − (1− µ)c2
1− ρ

qR(48)

= c11,R(1− R
1

1−ρ

ρ(1− µ)
) +

c1R
ρ

1−ρ

1− ρ
(49)

and

(50) c22,R = c11,R(1− 1/ρ)R
1

1−ρ +
c1R

ρ
1−ρ

1− ρ
.
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Substitute from (46)-(50) into (42) to obtain

zc11,R(1− 1/ρ) + (1− z)

"
c11,R(1− 1/ρ)R

1
1−ρ +

c1R
ρ

1−ρ

1− ρ

#

+ψzcρ−11 c1−ρ2 c11,R(1− 1/ρ) + ψ(1− z)

"
c11,R(1− 1/ρ)R

1
1−ρ +

c1R
ρ

1−ρ

1− ρ

#

+
ψ

ρ
(1− ρ)cρc−ρ2 (c11,R(1−

R
1

1−ρ

ρ(1− µ)
) +

c1R
ρ

1−ρ

1− ρ
) = 0.

Grouping terms, we obtain

c11,R
c1

·
z + (1− z)R

1
1−ρ + ψzR+ ψ(1− z)R

1
1−ρ + ψ

µ
c

c2

¶ρ

R
1

1−ρ

µ
1− 1

ρ(1− µ)

¶¸
= − ρ

ρ− 1
·
(1 + ψ)

1− z

1− ρ
+

ψ

ρ

µ
c

c2

¶ρ¸
R

ρ
1−ρ .

Finally, we obtain the following expression:

(51)

c11,R
c1

=

ρ
1−ρ

h
(1 + ψ)1−z

1−ρ +
ψ
ρ

³
c
c2

´ρi
R

ρ
1−ρ³

z + (1− z)R
1

1−ρ + ψzR+ ψ(1− z)R
1

1−ρ
´
+ ψ

ρ
(1− ρ)

³
c
c2

´ρ
R

1
1−ρ
³

1
ρ(1−µ) − 1

´
We use these derivatives to obtain cR and nR. Differentiating (1) with respect to R, we

obtain

(52)

cR = c1−ρ
£
zµcρ−11 c11,R + z(1− µ)cρ−11 c12,R + (1− z)µcρ−12 c21,R + (1− z)(1− µ)cρ−12 c22,R

¤
Substituting from (47) and (48), we obtain

cR
c1−ρ

= cρ−11 zc11,R(1− 1/ρ) + (1− z)cρ−12 (c11,R(1− 1/ρ)R
1

1−ρ +
c1R

ρ
1−ρ

1− ρ
).

Collecting terms:

cR = c1−ρcρ−12 c1

·
c11,R
c1

³
zR+ (1− z)R

1
1−ρ
´µ
1− 1

ρ

¶
+
1− z

1− ρ
R

ρ
1−ρ

¸
.

Differentiating the resource constraint we obtain nR :

θnR = z [µc11,R + (1− µ)c12,R] + (1− z) [µc21,R + (1− µ)c22,R] .
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or, after substituting from (47) and (48) and collecting terms:

(53) θnR = c11,R(1− 1
ρ
)
³
z + (1− z)R

1
1−ρ
´
+ (1− z)

c1
1− ρ

R
ρ

1−ρ .

>From (53), using (c2/c1)1−ρ = R, we obtain

θnR =
(1− 1

ρ
)

1− ρ
c11,Rz

"
(1− ρ)

µ
1 + (

1− z

z
)R

1
1−ρ

¶
+
(1− z) /z

(1− 1
ρ
)

c1
c11,R

R
ρ

1−ρ

#

=
c2
c1

(1− 1
ρ
)

1− ρ
c11,Rz

"
(1− ρ)

µ
R

1
ρ−1 + (

1− z

z
)

¶
+
(1− z) /z

(1− 1
ρ
)

c1
c11,R

R−1
#
.

Substituting in (27) and using the result that for our functional forms u22/(1−µ)(1−z) =
uc
³

c
c2

´1−ρ
, we obtain

(1− ρ)θu22nR
(1− µ)(1− z)

= f(c1, c2)

·
−(1− ρ)R

1
ρ−1 − (1− z

z
){(1− ρ)− ρ

(1− ρ)

c1
c11,R

R−1}
¸

= f(c1, c2)ψMD (R, z) ,

where

f(c1, c2) = ucc2

µ
c

c2

¶1−ρ
(
1

ρ
− 1)c11,R

c1
z

and

(54) ψMD (R, z) = −(1− ρ)R
1

ρ−1 + (
1− z

z
){ ρ

(1− ρ)

c1
c11,R

R−1 − (1− ρ)}.

Consider the term in parenthesis in (54). When we use (51), this term is

z + (1− z)R
1

1−ρ + ψzR+ ψ(1− z)R
1

1−ρ + ψ
³

c
c2

´ρ
R

1
1−ρ
³

1
ρ(1−µ) − 1

´
h
(1 + ψ)1−z

1−ρ +
ψ
ρ

³
c
c2

´ρi
R

ρ
1−ρ

− (1− ρ)

=
z + ψzR+ ψ

³
c
c2

´ρ
R

1
1−ρ
³

1
ρ(1−µ) − 1

´
− (1− ρ)ψ

ρ

³
c
c2

´ρ
R

1
1−ρh

(1 + ψ)1−z
1−ρ +

ψ
ρ

³
c
c2

´ρi
R

1
1−ρ

=
z (1 + ψR) + µ

1−µ
ψ
ρ

³
c
c2

´ρ
R

1
1−ρh

(1 + ψ)1−z
1−ρ +

ψ
ρ

³
c
c2

´ρi
R

1
1−ρ

.

Substituting for c/c2 in this expression and then substituting in (54), we obtain:

ψMD (R, z) = −(1− ρ)R
1

ρ−1 +

(1− z)
³
R

1
ρ−1 + ψR

ρ
ρ−1
´
+ (1−z

z
) µ
1−µ

ψ
ρ

h
zR

ρ
ρ−1 + 1− z

i
(1 + ψ)1−z

1−ρ +
ψ
ρ

³
zR

ρ
ρ−1 + 1− z

´
 .
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Dividing the numerator and denominator of the term in braces by 1− z and rearranging, we

obtain:

ψMD (R, z) = −(1− ρ)R
1

ρ−1 +

³
R

1
ρ−1 + ψR

ρ
ρ−1
´
+ µ

1−µ
ψ
ρ

³
R

ρ
ρ−1 + 1−z

z

´
1+ψ
1−ρ +

ψ
ρ

³
z
1−zR

ρ
ρ−1 + 1

´ .

We have proved the first part of Lemma 1. Q.E.D.

Lemma 1b: In a Markov equilibrium, (28) holds, that is,

(55) uccR − θu22nR
(1− µ)(1− z)

= −f(c1, c2) (R− 1)R
1

ρ−1 .

Proof : Using our functional forms, we obtain

(56) uccR − θu22nR
(1− µ)(1− z)

= uc

"
cR − θ

µ
c

c2

¶1−ρ
nR

#
.

Substituting for θnR from (53) and cR from (52) into (56), we obtain

uc

"
cR − θ

µ
c

c2

¶1−ρ
nR

#
= uc[

c11,R
c1

³
zR+ (1− z)R

1
1−ρ
´µ
1− 1

ρ

¶
+
1− z

1− ρ
R

ρ
1−ρ

−c11,R
c1
(1− 1

ρ
)
³
z + (1− z)R

1
1−ρ
´
− 1− z

1− ρ
R

ρ
1−ρ ]c1

µ
c

c2

¶1−ρ
= uc

c11,R
c1

c2z(1− 1
ρ
)

µ
c

c2

¶1−ρ
(R− 1) c1

c2

= −f(c1, c2)(R− 1)R
1

ρ−1

where

f(c1, c2) = uc
c11,R
c1

c2z(
1

ρ
− 1)

µ
c

c2

¶1−ρ
.

We have proved the lemma. Q.E.D.

Lemma 2: Equation (35) reduces, in a private sector equilibrium, to (36):³
1
ρ
− 1
´³
1−R

ρ
ρ−1
´

z
h³

R
1

ρ−1 − 1
´
+ ψ

ρ

³
R

ρ
ρ−1 − 1

´i
+ (1 + ψ

ρ
)
=

ρη(z̄ − z)ν³
1− (z̄−z)1+νη

1+ν

´
− g

θ
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Proof: The necessary and sufficient conditions for a private sector equilibrium are (37)-

(39) and the following slightly modified version of (40)

(57)
ψ

ρ
cρc1−ρ22 = θ(1− n− η(z̄ − z)1+ν

1 + ν
)

Using (57) in (35), we obtain:

(58)
µ
1− 1

ρ

¶
1−R

ρ
ρ−1

z + (1− z)R
ρ

ρ−1
=

θρη(z̄ − z)ν

(c/c2)
ρ c2

.

We use the resource constraint, (20), and (57) to obtain an expression for c2 in terms of c1/c2

and z. Rearranging (57) we obtain:

θn = θ

Ã
1− (z̄ − z)1+ν η

1 + ν

!
− ψ

ρ

µ
c

c2

¶ρ

c2.

Substituting this equation into the resource constraint, taking into account cρ = zcρ1 + (1−
z)cρ2, and rearranging, we obtain:

c2 =
θ
³
1− (z̄−z)1+νη

1+ν

´
− g

z c1
c2
+ ψz

ρ

³
c1
c2

´ρ
+ (1− z)(1 + ψ

ρ
)
.

Substituting for c2 in (58), we obtain:

(1− 1
ρ
)

1−R
ρ

ρ−1

z + (1− z)R
ρ

ρ−1
=

θρη(z̄ − z)ν

z
³
c1
c2

´ρ
+ 1− z

×
z c1
c2
+ ψz

ρ

³
c1
c2

´ρ
+ (1− z)(1 + ψ

ρ
)

θ
³
1− (z̄−z)1+νη

1+ν

´
− g

.

After rearranging and making use of R = (c1/c2)ρ−1, we obtain (36). Q.E.D.
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