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Abstract

We illustrate the use of various frequency domain tools for estimating and testing
dynamic, stochastic general equilibrium models. We show how to exploit the well
known fact that the log, Gaussian density function has a linear decomposition in the
frequency domain. We also propose a new resolution to the problem that the phase
angle between two variables is not uniquely determined. These methods are applied
to the analysis of business cycles. Our substantive findings confirm existing results
in the literature, which suggest that time-to-plan in the investment technology has
a potentially useful role to play in business cycle analysis.
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1 Introduction

In recent years there has been increased interest in applying formal econo-
metric methods to the analysis of dynamic, stochastic, general equilibrium
models. 1 Researchers understand that models are abstractions and so are

∗ The first author is grateful for financial support from a National Science Foun-
dation grant to the National Bureau of Economic Research. We are grateful for
comments from an anonymous referee and from Robert King.∗∗Corresponding author.

Email addresses: l-christiano@northwestern.edu (Lawrence J Christiano), r-
vigfusson@northwestern.edu (Robert J Vigfusson).
1 Papers that use maximum likelihood methods to study general equilibrium busi-
ness cycle models include Altug (1989), Bencivenga (1992), Christiano (1988), Chris-
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necessarily incorrect. As a result, there is a need for tools which are helpful
for diagnosing the reasons for econometric rejections and for identifying the
most fruitful avenues for further model development. This paper illustrates a
set of tools which we think are useful in this sense. They are frequency domain
methods which we use to diagnose Gaussian maximum likelihood estimation
and testing results. 2 We apply the tools to analyze a series of real business
cycle models.

We exploit the well known fact that the log, Gaussian density function has
a linear decomposition in the frequency domain. This decomposition has two
implications. First, the likelihood ratio statistic for testing a model can be
represented as the sum of likelihood ratios in the frequency domain. 3 So,
if a model is rejected because of a large likelihood ratio statistic, then it is
possible to determine which frequencies of the data are responsible. Second,
if parameter estimates look ‘strange’, then it is possible to determine which
frequencies are responsible for the result.

We also illustrate the use of the spectrum, phase angle and coherence func-
tions for diagnosing model estimation and testing results. Regarding the phase
angle, it is well known that this object is not uniquely determined. We propose
a resolution to this problem which we hope is of independent interest.

We begin with a univariate analysis which studies output growth in a version
of the real business cycle model in which the only shock is a disturbance
to technology. We then extend the analysis by including a second variable,
business fixed investment. To avoid a statistical singularity, we must introduce
a second shock into the model. For this, we include disturbances to government
consumption. This aspect of our analysis illustrates how our approach can be
extended to a vector of time series.

The key substantive finding of the paper is that the data support a ‘time-
to-plan’ specification of the investment technology. With this specification, it
takes several periods to build new capital, with a lengthy initial period be-
ing devoted to activities such as planning, which do not require an intensive

tiano, Eichenbaum, and Marshall (1991), Hall (1996), Hansen and Sargent (1980,
1991), Ireland (1997,1999,2001), Kim (2000), Leeper and Sims (1994), McGrattan
(1994), McGrattan, Rogerson, and Wright (1997).
2 For an early paper exploiting the advantages of the frequency domain, see Engle
(1974). Other papers which explore the advantages of the frequency domain - though
not in the maximum likelihood context explored here - include Baxter and King
(1999), Christiano and Fitzgerald (1999) and Cogley (2001a,b).
3 A referee suggested an analogous decomposition in the time domain. This could
be constructed using the prediction error decomposition of the Gaussian density
function. Although it is beyond the scope of this paper, it would be of interest to
explore this statistic.
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application of resources. Maximum likelihood favors the time-to-plan specifi-
cation because it helps the model to account for persistence in output growth
and for the fact that business fixed investment lags output in the business
cycle frequencies. 4 Our results complement Christiano and Todd (1996) and
Bernanke, Gertler and Gilchrist (1999), which also present evidence in favor
of time-to-plan.

We now consider the relationship of our paper to the existing literature. The
fact that the Gaussian density function can be decomposed in the frequency
domain has been exploited in several other papers. For example, Altug (1989)
demonstrates its value for estimating models with measurement error. Other
papers emphasize its value in the estimation of time-aggregated models. 5

Christiano and Eichenbaum (1987) and Hansen and Sargent (1993) exploit the
decomposition to evaluate the consequences for maximum likelihood estimates
of certain types of model specification error. 6 Finally, the value of comparing
model and data spectra has also been emphasized in the recent contributions
of Watson (1993), Diebold, Ohanian and Berkowitz (1998), and Berkowitz
(2001).

The following section presents our econometric framework. Sections 3 and 4
present the results. Section 5 concludes.

2 Econometric Framework

This section describes the econometric framework of our analysis. First, we
display the frequency domain decomposition of the Gaussian density function.
Second, we derive the likelihood function associated with the various real busi-
ness cycle models that we consider. Third, we derive the likelihood function
of various unrestricted reduced form representations of the data. In the last
subsection, we use the model and reduced form log-likelihood functions to
form a likelihood ratio statistic for testing the model. We display the linear,
frequency domain decomposition of the likelihood ratio statistic.

4 That standard business cycle models have difficulty accounting for persistence in
output growth is well known. See, for example, Christiano (1988, p. 274), Cogley
and Nason (1995), and Watson (1993).
5 See, for example, Hansen and Sargent (1980a), Christiano (1985), Christiano and
Eichenbaum (1987) and Christiano, Eichenbaum and Marshall (1991).
6 These approaches to specification error analysis are similar in spirit to the early
approach taken in Sims (1972). See Berkowitz (2001) for a related discussion.
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2.1 Spectral Decomposition of the Gaussian Likelihood

Suppose we have a time series of data, y = [y1, ..., yT ], where yt is a finite-
dimensional column vector with zero mean. It is well known (Harvey, 1989, p.
193) that for T large, the Gaussian likelihood for these data is well approxi-
mated by:

L(y) = −1

2

T−1∑

j=0

{
2 ln 2π + ln [det (F (ωj; Φ))] + tr

(
F (ωj; Φ)−1I(ωj)

)}
(1)

where tr(·) and det (·) denote the trace and determinant operators, respec-
tively. Also, I(ω) is the periodogram of the data:

I(ω) =
1

2πT
y(ω)y(−ω)′, y(ω) =

T∑

t=1

yt exp(−iωt), (2)

and

ωj =
2πj

T
, j = 0, 1, ..., T − 1.

Finally, F (ω; Φ) is the spectral density of y at frequency ω, and Φ is a vector
of unknown parameters. 7

For diagnostic purposes, it is sometimes useful to express the likelihood func-
tion in the following weighted form:

L(y) = −1

2

T−1∑

j=0

vj

{
2 ln 2π + ln [det (F (ωj))] + tr

(
F (ωj)

−1I(ωj)
)}

, (3)

where vj ∈ {0, 1} for all j. 8 By setting various vj’s to zero and reestimating,
one can identify the impact of various frequencies on parameter estimates.

7 Let C(k; Φ) = Eyty
′
t−k, for integer values of k. Then,

F (ω; Φ) =
1
2π

∞∑

k=−∞
C(k; Φ)e−iωk,

for ω ∈ (0, 2π).
8 Diebold, Ohanian and Berkowitz (1998) also work with (3), as a way of abstracting
altogether from certain frequencies of the data.
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2.2 Likelihood Function for Structural Models

The preceding discussion indicates that to estimate a model by frequency do-
main maximum likelihood, one needs the mapping from the model’s parame-
ters, Φ, to the spectral density matrix of the data, F (ωj; Φ). This subsection
defines this mapping for several models. We consider the standard real busi-
ness cycle model and the time-to-build model of Kydland and Prescott (1982).
In each case, we consider a one-shock and a two-shock version of the model.

In the one shock model there is only a disturbance to technology. In the two
shock model there is, in addition, a disturbance to government consumption.
In the analysis of the one-shock model, we focus on its implications for output
growth, so that

yt = ln(Yt/Yt−1), (4)

where Yt denotes gross output in period t. In the analysis of the two-shock
model,

yt =




ln(Yt/Yt−1)

ln(It/Yt)


 , (5)

where It denotes gross investment. We always consider yt expressed as a de-
viation from the model’s population mean.

2.2.1 Model Used in the Analysis

Household preferences, the resource constraint and the production function are
taken from Christiano and Eichenbaum (1992). Preferences and the resource
constraint are:

E0

∞∑

t=0

βt [ln(Ct + ξGt) + ψ ln (1− nt)] , Ct + Gt + It ≤ Yt,

where Ct and Gt denote household and government consumption, respectively,
and nt denotes the fraction of available time worked. The endowment of avail-
able time is normalized to unity and β = 1.03−0.25, ψ = 3.92. We consider
two values of ξ, ξ = 0, 1. When ξ = 1, then Gt has no effect on the dynamics
of output and investment. 9 We refer to this as the one-shock model. When

9 When ξ = 1, Ct and Gt appear symmetrically everywhere. Exploiting this, we
solve the model for C̃t, where C̃t = Ct + Gt. There are two interpretations of this

5



ξ = 0, then Gt does matter and so we refer to this as the two-shock model.

The production function is:

Yt = Kθ
t (ztnt)

(1−θ) , 0 < θ < 1,

where Kt denotes the beginning-of-period t stock of capital and zt denotes the
state of technology. The latter is assumed to evolve as follows:

ln(zt) = ln(zt−1) + εzt,

where εzt a Normal random variable that is independently and identically
distributed (i.i.d.) over time, with mean µ and variance σ2

z . We specify the
time series process for Gt as follows:

ln(gt) = (1− ρ) ln(g) + ρ ln(gt−1) + εgt, gt =
Gt

zt

,

where g is a constant, −1 < ρ < 1, and εgt is i.i.d. Normal with mean 0 and
variance σ2

g .

It remains to specify how investment contributes to the evolution of the cap-
ital stock. In the Real Business Cycle model (RBC), the construction of new
capital requires one period:

Kt+1 − (1− δ)Kt = It, 0 < δ < 1.

We denote the parameters of the one-shock version of the RBC model by
Φr = (σz, δ, θ), where the superscript, r, stands for ‘restricted’. In the two-
shock version of the model, Φr = (σz, δ, θ, ρ, σg). The superscript, r, indicates
that these are model parameters. This notation allows us to differentiate model
parameters from those of the unrestricted reduced form, Φu, which are dis-
cussed below. To prevent a profusion of notation, we do not also index Φ
according to the number of shocks or the type of structural model.

The time-to-build model adopts Kydland and Prescott’s (1982) formulation,
which specifies that it takes four periods to construct new capital. Period t

solution. One is that it is the solution to the model stated in the text, where private
consumption is Ct = C̃t−Gt. This is a valid interpretation as long as Ct ≥ 0. In the
stochastic process for Gt that we use below, this is true with very high probability
and so we ignore the possibility, Ct < 0. An alternative interpretation is that ours
is the solution to a model without government, where C̃t is the consumption of
the household. Either way, it is clear that government shocks have no impact on
investment and output.
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investment is:

It = φ1xt + φ2xt−1 + φ3xt−2 + φ4xt−3,

where φi ≥ 0 for i = 1, 2, 3, 4, and

φ1 + φ2 + φ3 + φ4 ≡ 1.

The investment technology specifies that if net investment in period t + 3 is
xt, i.e.,

Kt+4 − (1− δ)Kt+3 = xt,

then, resources in the amount φ1xt must be applied in period t, φ2xt must be
applied in period t + 1, φ3xt must be applied in period t + 2, and finally, φ4xt

must be applied in period t + 3. Once initiated, the scale of an investment
project cannot be expanded or contracted. In the one-shock version of the
model, Φr = (σz, φ1, φ2, φ3). In the two-shock version of the model, Φr =
(σz, φ1, φ2, φ3, ρ, σg).

In each case, the solution to the model is a set of stochastic processes for yt and
the other variables, which maximize utility subject to the various constraints.

2.2.2 Reduced Form Representation and Likelihood Function

We used the undetermined coefficient method described in Christiano (2001)
to develop a linear approximation to the yt process which solves the model:

yt = α(L; Φr)εt = α0(Φ
r)εt + α1(Φ

r)εt−1 + α2(Φ
r)εt−2 + ..... (6)

In the one-shock model, yt is defined in (4), and

εt = εzt, V (Φr) ≡ Eεtε
′
t = σ2

z .

The scalar polynomial, α(L; Φr), in the lag operator L, is the infinite moving
average representation corresponding to an autoregressive, moving average
process with 4 autoregressive and 8 moving average lags, i.e., an ARMA(4, 8).

In the two-shock model, yt is defined in (5), α(L; Φr) is 2×2 matrix polynomial
in L and

εt =




εzt

εgt


 , V (Φr) =




σ2
z 0

0 σ2
g


 .
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In this case, α(L; Φr) is the infinite moving average representation correspond-
ing to a vector ARMA model with 5 autoregressive and 8 moving average lags,
i.e., a VARMA(5,8). 10

In all cases, we restrict Φr so that

∞∑

i=0

αi(Φ
r)V (Φr)αi(Φ

r)′ < ∞,

guaranteeing that the spectral density of yt exists. We also restrict Φr so
that det [α(z; Φr)] = 0 implies |z| ≥ 1, where | · | denotes the absolute value
operator.

The spectral density of yt at frequency ω is

F r(ω; Φr) =
1

2π
α(e−iω; Φr)V α(eiω; Φr)′,

where the superscript, r, on F indicates that the form of α(L; Φr) is restricted
by the model. The frequency domain approximation to the restricted likelihood
function is (1) with F (ω) replaced by F r(ω; Φr).

2.3 Unrestricted Reduced Form Likelihood

In order to test our model, we need to estimate an unrestricted version of (6):

yt = α(L)εt, (7)

where

α(L) = I + α1L + α2L
2 + ....

Here I = 1 for the one-shock model and I is the 2× 2 identity matrix for the
two-shock model. Also,

∞∑

i=0

αiV α′i < ∞,

where V is the variance, covariance matrix of νt. Finally, we require that
det [α(z)] = 0 implies |z| ≥ 1.

10 See Appendices B and C in Christiano and Vigfusson (2001) for details about the
reduced form implications of the two structural models.
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In the one-shock case, the polynomial in L, α(L), corresponds to the ratio
of an 8th order polynomial and a 4th order polynomial, with constant terms
normalized to unity. This specification nests the real business cycle model and
the time to build model. It has 13 free parameters: the 12 parameters of α(L),
and V. We denote these by the 13 dimensional vector, Φu.

In the two-shock model, we approximate α(L) with a 10 lag vector autoregres-
sion, i.e., VAR(10). Christiano and Vigfusson (2001, pg. 31) argue that this
is a good approximation to the VARMA(5,8) reduced form of the two-shock
structural model. As in the one-shock case, we denote the parameters of the
unrestricted reduced form by Φu. This is a 45-element vector.

Let F u(ω; Φu) denote the spectral density of yt:

F u(ω; Φu) =
1

2π
α(e−iω)V α(eiω)′.

The frequency domain approximation to the unrestricted likelihood function
is (1) with F (ω; Φ) replaced by F u(ω; Φu).

2.4 Cumulative Likelihood Ratio

The likelihood ratio statistic is

λ = 2(Lu − Lr), (8)

where Lr and Lu are the maximized values of the restricted and unrestricted
log likelihoods, respectively. Under the null hypothesis that the restricted
model is true, this statistic has a chi-square distribution with degrees of free-
dom equal to the difference between the number of parameters in the restricted
and unrestricted models (Harvey, 1989, p. 235). Define

λ(ω) = ln
det

[
F r(ω; Φ̂r)

]

det
[
F u(ω; Φ̂u)

] + tr
[(

F r(ω; Φ̂r)−1 − F u(ω; Φ̂u)−1
)
I(ω)

]
, (9)

where a hat over a variable indicates its estimated value. Then, it is easily
confirmed that,

λ =
T−1∑

j=0

λ(ωj).
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This expression can be simplified because of the symmetry properties of λ(ω) : 11

λ(ωT
2
−l) = λ(ωT

2
+l), l = 1, 2, ...,

T

2
− 1.

These imply that λ can be written:

λ = λ(0) + 2

T
2
−1∑

j=1

λ(ωj) + λ(π). (10)

This is our linear, frequency domain decomposition of the likelihood ratio
statistic.

If λ is large, then we should be able to determine which ωj’s are responsible.
It is useful to define the cumulative likelihood ratio:

Λ(ω) = λ(0) + 2
∑

ωj≤ω

λ(ωj), 0 < ω < π

Λ(0) = λ(0), (11)

Λ(π) = λ.

A sharp increase in Λ(ω) in some region of ω’s signals a frequency band where
the model fits poorly. Note that although Λ(π) ≥ 0, it is possible for Λ(ω) to
decrease over intervals, since there is nothing preventing some λ(ωj)’s from
being negative.

3 Results for One-Shock Models

This section presents our results for estimating and testing the one-shock ver-
sions of the RBC and time-to-build models. The periodogram of the data,
(2), and the spectral density of the unrestricted reduced form are important
ingredients in the analysis, and so we begin by presenting these. The subse-
quent two subsections present our analysis of the RBC and the time-to-build
models, respectively.

We find that when the RBC model is parameterized using standard values
taken from the literature, it is strongly rejected. By contrast, when we estimate
and test the time-to-build model, it fails to be rejected by the data.

11 Implicitly, we assume T is even. The adjustment when T is odd is straightforward.
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3.1 Periodogram and Spectrum of Unrestricted Reduced Form

Figure 1 presents a smoothed version of I(ω) for ω ∈ (0, π), based on (2). 12

Figure 1 also displays the spectrum of our unrestricted ARMA(4, 8) represen-
tation of US GDP growth. An estimate of the associated 95 percent confidence
interval is also reported. 13 The two estimates of the spectral density are fairly
similar. We interpret this as evidence that our unrestricted time series model
is a good representation of the second moment properties of the data. This
is necessary, if the model is to be well-suited as a basis for computing the
unrestricted likelihood value in the likelihood ratio statistic, (8).

Vertical bars draw attention to three frequency bands, the low frequencies
(those corresponding to period 8 years to infinity), the business cycle frequen-
cies (period 1 year to 8 years) and the high frequencies (period 2 quarters to 1
year). Note that the spectrum of output growth falls throughout the business
cycle frequencies. Because the spectrum is relatively high in these frequencies,
this corresponds to the observation that output growth is positively autocor-
related. In addition, the spectrum has pronounced dips in the 7− 7.5 months
(near ω = 2.5) range and in the higher frequency component of the business
cycle (near ω = 1.5). 14

12 The data are seasonally adjusted, cover the period 1955Q3 to 1997Q1, are taken
from the DRI Basic database and have mnemonic GDPQ. The sample mean of yt is
subtracted from the data, so that I(0) is zero. We present the smoothed version of
the periodogram because, as is well known, the unsmoothed periodogram is quite
volatile. The smoothed periodogram at frequency ωj is a centered, equally weighted
average,

∑3
i=−3 I(ωj+i)/7.

13 Confidence intervals are obtained by adding and subtracting 1.96 times the rel-
evant standard error estimate. Standard errors were obtained using the standard
‘delta function’ method based on the point estimates and estimated sampling vari-
ance covariance matrix associated with our estimator of the parameters, Φ, of the
ARMA(4, 8) representation.
14 The ω = 1.5 frequency corresponds roughly to a one-year seasonal, and so the dip
in the spectrum here may be an effect of the seasonal adjustment procedure applied
to the data. (See Nerlove, Grether and Carvalho (1979) for a review of the relevant
literature.) We follow conventional practice in ignoring the fact that our data have
been seasonally adjusted at the source. Still, the proper way to integrate seasonality
into an analysis like ours remains an important outstanding subject for research.
For recent work in this direction, see Hansen and Sargent (1993) and Christiano
and Todd (2001). We expect that the kind of spectral techniques used in this paper
will be useful in any analysis that carefully integrates seasonality.
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3.2 Estimation and Testing of RBC Model

In our analysis of the RBC model, we estimated the variance of the technology
shock, σ2

z . The other parameter values of the model are fixed at the estimated
values reported in Christiano and Eichenbaum (1992), θ = 0.344, δ = 0.021.
Parameter values for this and other models in this paper are reported in Table
1.

The spectrum of output growth implied by the estimated RBC model is dis-
played in Figure 1. Consistent with the findings in Watson (1993), that spec-
trum is essentially flat. Figure 2 presents a formal evaluation of the fit of the
RBC model using the cumulative likelihood ratio, (11). The likelihood ratio
statistic, λ, is just under 25 (see the cumulative likelihood ratio for ω = π).
Under the null hypothesis that the restricted RBC model is true, λ is the
realization of a chi-square statistic with 12 degrees of freedom. The statistic
has a p-value of 1.5 percent and hence the model is rejected at the five percent
significance level.

There are two reasons that the likelihood ratio statistic is so high. First, the
model fails to reproduce the negative slope of the spectrum in the business
cycle frequencies. This failure is manifested in a sharp rise in the cumulative
likelihood ratio in the low end of the business cycle frequencies. Second, the
model fails to reproduce the dip in the spectrum in frequencies correspond-
ing to periods 7-7.5 months. This failure is manifest in a sharp rise in the
cumulative likelihood ratio after frequency ω = 2.5. 15

15 There are simple perturbations on the RBC model that can improve its fit. But,
these require parameterizations that are inconsistent with evidence from other data.
For example, when we estimated the RBC model allowing θ and δ to also be free, we
obtained θ̂ = 0.37, δ̂ = 0.73, σ̂z = 0.0144. The main difference between this model
and the version of the estimated RBC model in the text is the high depreciation
rate. The large value of δ improves the fit of the model by causing the spectrum of
output growth to be negatively sloped. To see why, note that in the extreme case
where δ = 1, the model reduces to the model of Long and Plosser (1993), which has
the property that output growth is a first order autoregression with autocorrelation
coefficient θ. For θ > 0, such a process has a negatively sloped spectrum. Note from
Figure 1 that the negative slope in the spectrum of output growth is particularly
pronounced in the business cycle frequencies. Consistent with the intuition in this
footnote, when we reestimate the model with the vj ’s in (3) corresponding to non-
business cycle frequencies set to zero, we obtain δ̂ ≈ 1.
Although the estimated value of capital’s share in the perturbed RBC model is
reasonable, the estimated value of δ is substantially larger than what is plausible in
light of data on investment and the stock of capital (Christiano and Eichenbaum,
1992).
An alternative way to accommodate the negatively sloped spectrum in the data is to
add persistence to the growth rate of technology in the RBC model. This would have
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3.3 Estimation and Testing of Time-To-Build Model

Next, we estimated the time-to-build model. The estimated time-to-build
weights are: φ̂1 = 0.01, φ̂2 = 0.28, φ̂3 = 0.48, and φ̂4 = 0.23. Two features
of these estimates are worth noting. First, the estimated value of φ1 is nearly
zero. This implies that in the first period of an investment project, essentially
no resources are used. An interpretation is that investment projects must start
with a planning period, in which plans are drawn up, permits are secured, etc.
Christiano and Todd (1996) refer to a model of this type as a ‘time-to-plan’
model, and argue that it is consistent with microeconomic evidence on in-
vestment projects. Second, the resource usage in later periods of investment
follows a ‘hump’ shape.

The spectrum of output growth implied by the estimated time-to-build model
is displayed in Figure 1. The model spectrum conforms well with the spectrum
of the data. It even matches the dip in the 7-7.5 month range. This is reflected
in the good performance of the model’s cumulative likelihood ratio (see Figure
2). The cumulative likelihood ratio rises slowly with frequency and achieves a
maximum value of a little under 10. Under the null hypothesis that the model
is true, this is the realization of a chi-square distribution with 9 degrees of
freedom. Under these conditions, the p-value is 35 percent. As a result the
model is not rejected at conventional levels.

It is useful to compare the estimated time-to-build model with two others:
the time-to-build model in Kydland and Prescott (1982), where φi = 0.25,
i = 1, 2, 3, 4; and the time-to-build model in Christiano and Todd (1996),
where φ1 ≈ 0, φi = 1/3, i = 2, 3, 4. We refer to these as the Kydland-Prescott
and Christiano-Todd models, respectively. 16 We do not display the spectrum
or cumulative likelihood ratio implied by the Kydland-Prescott model, because
they coincide with the ones implied by the RBC model (King, 1995). 17

Comparing the cumulative likelihood ratio statistics for these models allows
us to understand what is responsible for the time-to-plan and hump-shape in
the time to build weights of the estimated model. The time-to-plan feature

increased the persistence of output growth in the model and improved its fit with
the output data. However, as emphasized in Christiano (1988), this improvement
in fit would come at the cost of counterfactual implications for the growth rate of
the Solow residual.
16 What we call the Kydland-Prescott model is our time-to-build model, with the
φi’s restricted as indicated in the text. We estimate the shock variance by maximiz-
ing the likelihood function with respect to that parameter. We treat the Christiano-
Todd model in the same way.
17 For a detailed discussion of the similarity of these models, see Christiano and
Todd (1996) and Rouwenhorst (1991).
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helps the model account for the negative slope in the spectrum in the lower
business cycle frequencies. To see this, note that models with time-to-plan,
i.e., the Christiano-Todd and estimated models, perform well in the lower
business cycle frequencies. Models without time-to-plan, i.e., the RBC model
(and, hence, the Kydland-Prescott model too), do relatively poorly. The hump
shape feature of the time-to-build weights help the model capture the dip in the
spectrum in the 7-7.5 month range. To see this, note that the model without
a hump in time-to-build weights, i.e., the Kydland-Prescott and Christiano-
Todd models, perform badly for ω > 2.5. The model with a hump shape in
the time-to-build weights, i.e., the estimated model, does relatively well.

4 Results for Two-Shock Model

We now analyze the version of the time-to-build model with both government
consumption and technology shocks, using data on output and business in-
vestment. The first subsection below reports the spectral properties of the
data. The second subsection reports the estimation and testing results for the
model. We begin by briefly summarizing the key findings.

Four features of data play a key role in our model analysis. First, as discussed
in the previous section, the spectrum of output growth is high and falling in
the business cycle frequencies, suggesting persistence in those data. Second,
the spectrum of the investment to output ratio exhibits a very steep, nega-
tive slope. Third, the coherence between output and investment varies over
frequencies, exhibiting high coherence in the low range of business cycle fre-
quencies and low coherence elsewhere. Finally, phase angle analysis suggests
that investment lags output in the business cycle frequencies.

There are two notable features of the parameter estimates. First, as in the
previous section, maximum likelihood selects the time-to-plan specification of
the investment technology. 18 In part, this is to help account for the negative
slope in the spectrum of output growth. In addition, time-to-plan helps the
model to account for the phase angle between investment and output data.
Second, the parameter estimates assign a relatively large role to the govern-
ment consumption shock. This helps the model capture the coherence pattern
between the output and investment data.

18 The estimated values of φ2, φ3, φ4 also display a hump-shape pattern. This is
qualitatively similar to what we found in the univariate case, although the quan-
titative magnitude of the hump is smaller. The statistical rationale for the hump
in the multivariate case is the same as in the univariate case and has already been
discussed.
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Our estimated model has weaknesses. First, the estimated variance of govern-
ment consumption seems implausibly large in that it exceeds direct estimates
based on government consumption data reported in Christiano and Eichen-
baum (1992). Second, despite the high variance of government consumption,
the likelihood ratio statistic based on output and investment data rejects the
model statistically. After studying the frequency domain decomposition of
our likelihood ratio statistic, we argue that the rejection reflects difficulties
the model has in matching the components of the data with period 2.5 years
and longer. This appears to reflect three difficulties: (i) although the model
can capture the low coherence overall between investment and output, it can-
not at the same time capture the relatively high coherence in the low business
cycle frequencies; (ii) it has difficulty quantitatively matching the shape of the
spectrum of the investment to output ratio in the low frequencies; and (iii)
although it gets the sign of the phase angle between investment and output
right, it misses quantitatively.

4.1 Spectral Properties of the Data

Figure 3 displays the estimated spectral density for the business investment to
output ratio implied by the unrestricted VAR(10) discussed in section 2.3. 19

The associated 95 percent confidence intervals computed using the delta func-
tion method are also displayed. In addition, Figure 3 reports the smoothed
periodogram estimate of the spectrum. The two spectral estimates are reason-
ably similar. For most frequencies, the periodogram-based estimate lies inside
the confidence interval implied by the VAR(10). We do not report the spectral
density for output growth implied by the VAR(10), because it is similar to the
spectrum in Figure 1.

The spectral densities of ln (Yt/Yt−1) and ln(It/Yt) differ notably. The spec-
trum of ln(It/Yt) is much steeper than that of ln (Yt/Yt−1) .

In considering the cross-spectrum between the variables in our model, we
find it convenient to work with ln(Yt) and ln(It) instead of ln (Yt/Yt−1) and
ln(It/Yt). Focusing on levels promotes comparability with the business cycle
literature. According to our model and to our unrestricted VAR(10), the levels
data are not covariance stationary processes. Still, their matrix spectral density

19 We measure investment as seasonally adjusted business investment in structures
and equipment, which cover the period 1955Q3 to 1997Q1, and are taken from the
DRI Basic database. Business investment in structures has mnemonic GSVNT and
business investment in equipment has mnemonic GIPNR. The investment to output
ratio was measured as the ratio of the sum of these two series to nominal GDP. The
latter has DRI Basic mnemonic GDP.
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is well defined, except at frequency zero. The density is obtained by a simple
matrix manipulation of the spectral density of ln (Yt/Yt−1) and ln(It/Yt).

20

Denote the matrix spectral density of [ln(Yt) ln(It)] by S(ω), for 0 < ω ≤ π.
For fixed ω, the coherence between ln(Yt) and ln(It), R2(ω), measures the
strength of the linear relationship between these variables at frequency ω:

R2(ω) =
S12(ω)S12(−ω)

S11(ω)S22(ω)
. (12)

Figure 4 displays the coherence function computed based on the periodogram
and on the VAR(10). In addition, that figure exhibits a 95 percent confidence
interval for the coherence, based on applying the delta function method to the
estimated VAR(10). Note again that the two estimates of the spectrum are
quite similar. The similarity between the periodogram-based and VAR(10)-
based estimates of the spectral density is consistent with the notion that the
latter provides a good summary of the spectral properties of the data.

A distinctive feature of the coherence function is that it is particularly high
in the business cycle frequencies. The peak is near 0.9 for cycles with period
in the neighborhood of 3 years.

Figure 5 reports the phase angle between ln(Yt) and ln(It). The phase angle
measured in radians, θ∗21(ω), satisfies

S21 (ω) = r (ω) eiθ∗21(ω), ω ∈ (0, 2π), (13)

and one additional condition that is stated below. In (13), r(ω) is the gain
function:

r (ω) =
√

S21 (ω) S21 (−ω).

The phase relationship measured in units of time is given by k∗21(ω) = −θ∗21(ω)/ω.

20 Let F (ω) denote the two-dimensional spectral density of [ln(Yt/Yt−1) ln(It/Yt)] .
Then, the two-dimensional spectral density of [ln(Yt) ln(It)], S(ω), is given by

S(ω) = H(ω)F (ω)H(−ω)T ,

where

H(ω) =




1
1−e−iω 0

− 1
1−e−iω 1


 .

The matrix, H(ω) - and, hence, S(ω) - is well defined for 0 < ω ≤ π.
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As is well known, there are many θ∗21 (ω)’s (and, hence k∗21(ω)’s) that satisfy
(13) for each ω. We select one of these by requiring that k∗21(ω) be the value of k
which maximizes the covariance between the components of ln It and ln Yt−k in
a neighborhood of frequency ω, for k = 0,±1,±2, ... . Thus, k∗21(ω) > 0 means
that investment lags output by k∗21(ω) periods when only the components of
the variables in a neighborhood of frequency ω are considered. Further details
about the interpretation and computation of the phase angle are discussed in
the appendix.

Figure 5 displays k∗21(ω), 0.2 ≤ ω ≤ π. The grey area in the figure indicates
the 95 percent confidence interval computed using the delta function method
using the estimated VAR(10). 21 The figure shows that in the lower range of
the business cycle frequencies, investment lags output by roughly one quarter.
In a range of higher frequencies, this relationship is reversed, with investment
leading output. 22

4.2 Estimation and Testing Results

Parameter estimates for the model are reported in Table 1. There are two
notable features in these results. First, as in the univariate analysis, the data
prefer the time-to-plan specification of investment, i.e., φ1 ≈ 0. The other φi’s
are also similar across univariate and bivariate analyses. Second, the estimated
model assigns a relatively high variance to the government consumption shock.
The standard deviation of the innovation to this shock, σg, is nearly 3 times
larger than the estimate obtained by Christiano and Eichenbaum (1992) using

21 As noted in the text, k∗21(ω) is the global maximum of a particular cross-covariance
function with respect to lag length. In practice, this maximum could be a discontin-
uous function of the parameters of our underlying V AR(10) time series model. In
our application of the delta function method, we ignore this possibility by comput-
ing the derivative of the local maximum with respect to the VAR(10) parameters,
about the point estimate, k∗21(ω).
22 It is of interest to relate our findings for the phase angle to the finding in the
literature, that investment lags output at business cycle frequencies. The result in
the literature is based on the cross-covariance function between Hodrick-Prescott
(Hodrick and Prescott (1997)) (HP) filtered output and investment data (see, e.g.,
Christiano and Todd (1996)). As is well known, the HP filter is roughly a high
pass filter, allowing the business cycle frequencies and higher to pass through, while
zeroing out the lower frequencies (see King and Rebelo (1993)). The result in the
literature reflects that not all frequencies receive equal weight in a cross-covariance
function based on HP -filtered data. The weight assigned to frequency ω is propor-
tional to the gain, r(ω), at that frequency (see the Appendix). In our data, r(ω)
takes on its largest value in the lower range of the business cycle frequencies. This
is why investment lags the cycle according to correlations based on HP -filtered
investment and output data.
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the government consumption data. At the same time, the estimated standard
deviation of the innovation to the technology shock is one-third smaller than
we obtained in the one-shock analysis.

In what follows, we diagnose the estimated model in two ways. First, we
compare its implications for the spectrum of the data with the corresponding
sample estimates. Second, we apply our cumulative likelihood ratio statistic.

4.2.1 Spectral Properties of the Estimated Model

Figures 3-5, discussed above, can be used to help understand these findings.
In addition to reporting features of the spectrum of the data, the figures also
report the spectrum of the estimated two-shock model and two perturbations
on that model. The first perturbation, labeled KP model, sets the investment
weights to Kydland and Prescott’s values of φi = 0.25 for i = 1, ..., 4, and
leaves the other parameters unchanged from their estimated values. The sec-
ond perturbation sets the parameters of the exogenous shock processes in the
estimated model to the values used by Christiano and Eichenbaum (1992),
and sets the remaining parameter values at their estimated values. Since the
parameter values of this model are similar to those in the model of Chris-
tiano and Todd (1996), we refer to it as the CT model in the figure. 23 For
convenience, the parameter values associated with our perturbed models are
summarized in Table 1.

Figure 3 suggests that the relatively high variance in the government con-
sumption shock in the estimated model helps that model accommodate the
steep slope in the spectrum of log(It/Yt). Still, the estimated model does not
go far enough. It undershoots the spectrum at the low frequencies and over-
shoots at the high frequencies. The miss is more severe in the low frequencies
and so this weighs more heavily on our estimation and testing criteria. 24

To understand better why our estimation procedure assigns a relatively large
variance to the government consumption shock, we compare the estimated
two-shock model with the CT model. In the CT model, the coherence between
log(It) and log(Yt) is close to unity because σg is small. The coherence in
the estimated model is relatively low because of the high value of σg in that

23 The parameters in the CT model are somewhat different from those in the model
Christiano and Todd (1996) in that the CT model incorporates the hump-shape in
φ2, φ3, φ4 implied by the estimated model. CT is constructed in order to evaluate
the role played by the high government shock variance in the estimated model.
24 Figure 3 may appear to indicate the opposite, that the miss is larger in the
higher frequencies. However, recall that Figure 3 displays the log of the spectrum
of log(It/Yt), not its level. It is the level that enters the estimation criterion.
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model. 25 Although the coherence function appears to have played an impor-
tant role in driving the estimated values of the exogenous shock variances,
Figure 4 shows that the model nevertheless has difficulty matching the steep
slope of that function. In particular, the model has difficulty accommodat-
ing the high coherence in the lower end of the business cycle frequencies (see
Figure 4). These results suggest that (i) a good model must have more than
one shock, so as to be able to match the low coherence function outside the
business cycle and (ii) the coherence in the business cycle should nevertheless
be high. Our model has difficulty satisfying (i) and (ii) simultaneously. 26

To understand why the estimation procedure selects the time-to-plan speci-
fication of investment, we compare the KP and estimated two-shock model’s
ability to reproduce the spectral properties of the data, as captured by the
VAR(10). Time-to-plan appears to play two roles in the estimated model.
First, as in the univariate analysis, it helps accommodate the negative slope
of the spectrum of log(Yt/Yt−1). Second, time-to-plan helps the model to re-
produce the evidence that investment lags output in the business cycle fre-
quencies. This can be seen in the positive phase angle displayed in business
cycle frequencies (see Figure 5). Still, the model does not go far enough: its
implied phase angle is smaller than that of the VAR(10). 27

In view of the estimated model’s difficulties accommodating the phase angle

25 Raising σg is particularly effective in reducing coherence for a second reason. In
the model, government spending shocks generate a negative correlation between
investment and output, while the technology shock generates a positive correlation.
For a further discussion of this property of the model, see Christiano and Todd
(1996).
26 The coherence function suggests a simple measurement error model which we
also explored in results not reported in the paper. We modified the CT model by
treating observations on log output and log investment as the sum of the true data
and orthogonal measurement error. We then estimated the variances of the mea-
surement error process by maximum likelihood. As expected, the resulting model
reproduces the steep slope in the estimated coherence function. However, the mea-
surement error also causes the model to overstate the high frequency component of
the spectrum of log(It/Yt). This model is rejected with a likelihood ratio statistic
in the neighborhood of 1500.
27 There is one dimension in which time-to-plan appears to hurt model fit. Accord-
ing to Figure 3, time-to-plan reduces the ability of the model to accommodate the
steep slope in the spectrum of log(It/Yt). By comparison with KP, the estimated
model overstates that spectrum in the higher frequencies. Evidently, this consider-
ation does not play an important role in estimation. Presumably this is because,
according to (1), the weight assigned in the estimation criterion to the spectrum of
ln(It/Yt) is proportional to the level of the corresponding empirical estimate. (See
the periodogram, I(ωj), in (1) and (9).) The latter is extremely small in the higher
frequencies by comparison to what it is in the lower frequencies (note that Figure
3 reports the log of the spectrum).
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and the steep slopes of both the spectrum of log(It/Yt) and the coherence
function, it is not surprising that the model is rejected. To see this, note from
Figure 6 that the likelihood ratio statistic for the estimated model is around
110 (see ‘Actual Cumulative Likelihood Ratio’). Under the null hypothesis that
the model is true, this is a chi-square statistic with 39 degrees of freedom. This
easily exceeds conventional critical values. 28

4.2.2 Cumulative Likelihood Ratio Statistic

We can use our frequency decomposition of the likelihood ratio statistic to
identify which frequencies are responsible for this rejection. Notice that the
cumulative likelihood ratio rises sharply in the frequency range, (0, 0.6). In
a sense, the poor fit in these frequencies is the reason for the rejection. To
see this, consider the Adjusted Cumulative Likelihood Ratio displayed in Fig-
ure 6. It shows what the cumulative likelihood ratio would have been if the
fit in frequencies (0, 0.6) had been similar to the average fit in the higher
frequencies. 29 These calculations lead to the conclusion that the likelihood
ratio statistic, λ, would have been 55, with a probability value of 4.6. That is,
we would not have rejected the model at any significance level less than 4.6
percent.

To gain further insight into the reason the estimated model does poorly in the
low frequencies, we evaluated the model at the estimated parameter values
using the cumulative likelihood ratio computed using the univariate density
for ln(It/Yt) alone. This also displays a sharp rise in the frequencies, (0, 0.6).
We infer from this that a part of the reason for the poor fit of the model lies in
the difficulty it has in matching the steep slope in the spectrum of log(It/Yt)
near frequency zero. Previously, we discussed the model’s difficulties in ac-

28 This is how we arrived at this calculation of the number of degrees of freedom. In
section 2.3, we argued that the two-shock model is a restricted VARMA (5,8) model,
which we approximate with a VAR (10). The unrestricted VARMA (5,8) model has
10=5×2 autoregressive and 32=8×4 moving average parameters. In addition, there
are 3 parameters governing the variance-covariance of the shocks, for a total of 45
parameters. Subtract from this the 6 estimated parameters, σz, σg, ρ, φ1, φ2, φ3.
This brings the total number of degrees of freedom to 39.

29 The adjusted cumulative likelihood ratio is computed as follows. We fit a regres-
sion line, a + bω, through the cumulative likelihood ratio function over the range of
frequencies, ω ∈ (.6, π). The adjusted cumulative likelihood ratio is:

Λ̃(ω) =





Λ(ω)− a ω ∈ (.6, π)

bω ω ∈ (0, .6)
,

where Λ(ω) is the actual cumulative likelihood ratio, defined in (11).
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counting for features of the cross-spectrum between investment and output at
low frequencies. Presumably, these are also part of the reason for the rejection.

5 Conclusion

We applied frequency domain tools to diagnose parameter estimates and good-
ness of fit tests for maximum likelihood estimation of a class of real business
cycle models. The principal methodological aspects of the analysis were sum-
marized in the introduction. There are two main substantive findings. First,
the results confirm other findings that suggest time-to-plan in the investment
technology has a potentially useful role to play in dynamic models. Second,
alternatives to government spending disturbances need to be explored in the
quest for an empirically plausible business cycle model.

Although we have limited our analysis to one or two variables, we empha-
size that this does not reflect an inherent limitation of the methods used. We
showed how the tools apply in a bivariate setting and hopefully from this
it is obvious how they can be extended to higher dimensions. To analyze a
larger list of variables in the model would of course require adding more shocks.
However, the literature offers plenty of candidates for these. In addition to gov-
ernment consumption and technology shocks, one can consider various kinds
of preference shocks and also monetary shocks. In addition, there are various
types of measurement error that can be incorporated into the analysis. 30 Our
decision to limit the number of variables in the analysis reflected our desire to
make the methodology as transparent as possible.

A Coherence, Gain and Phase in Spectral Analysis

This appendix briefly describes the computation and interpretation of the
coherence function and phase angle analyzed in the text.

We begin with the coherence. Consider the projection of y2t onto y1t−j for
j ∈ (−∞,∞) :

y2t =
∞∑

j=−∞
hjy1t−j + εt, Eεty1t−k = 0 for all k . (A.1)

30 For example, Altug (1989) assumes that the data received by the econometrician
contain measurement error. Christiano (1988) and Sargent (1989) assume that the
data observed by agents contain measurement error.
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We assume that yt = (y1t, y2t)
′ has mean zero and is covariance stationary. It

is well known (see, e.g., Sargent (1987)) that h(ω) ≡ ∑∞
j=−∞ hje

−iωj satisfies

F21(ω) = h(ω)F11(ω), (A.2)

F22(ω)≡ 1

2π

∞∑

k=−∞
C22(k)e−iωk = |h(ω)|2F11(ω) + S(ω),

where h(ω) ≡ 0 when F21(ω) = F11(ω) = 0. Also, Cij(k) = Eyityj,t−k and
S(ω) is the spectral density of εt. A measure of the information in y1t about
y2t is given by the R2 of the projection, (A.1):

R2
21 =

V ar(
∑∞

j=−∞ hjy1t−j)

V ar(y2t)
=

∫ 2π
0 |h(ω)|2F11(ω)dω

∫ 2π
0 F22(ω)dω

, (A.3)

where the subscripts on R2 indicate the left-hand and right-hand variables in
the projection.

We can obtain an analogous concept of R2 in the frequency domain. Sup-
pose xt is a vector stationary stochastic process with spectral density f(ω),
ω ∈ (0, 2π). We define the component of xt at frequency ω∗ as the result of
filtering xt with a band-pass filter which passes power in an arbitrarily small
window around frequency ω∗, and no power at other frequencies. 31 The spec-
tral density of the component of xt at frequency ω∗ is f ∗(ω), ω ∈ (0, 2π),
where f ∗(ω) = 0 for ω outside an interval about ω∗ and f ∗(ω) = f(ω) in that
interval.

Let R2(ω) be the R2 of the regression of the frequency ω component of y2t

on the frequency ω component of y1,t−j, for j ∈ (−∞,∞). Then, substituting
for h(ω) in (A.3) using (A.2), we obtain the coherence, (12). So, we see that
the coherence between y1t and y2t is a measure of the information about y2t in
linear combinations of future and past y1t when we consider only the frequency
ω components of these variables. 32 We omit subscripts on R2(ω) because
which variable is on the left, and which is on the right, does not matter when
the projection underlying the R2 occurs in the frequency domain (see (12)).

We now discuss the phase angle between y1t and y2t. Consider the object,
θ∗21(ω), in (13). To interpret this, it is useful to express C21(k) ≡ Ey2ty1,t−k as
follows:

31 For a discussion of the band-pass filter, see Sargent (1987, page 259).
32 Our interpretation of the coherence function bears a similarity to the analysis in
Engle (1974). He asks whether the linear regression relation between two variables
(money growth and inflation) shifts across different frequency bands. Our analysis
differs from Engle’s (1974) in that we (i) focus on the R2 of the linear relationship
and (ii) examine the relationship between variables at a single frequency.
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C21(k) =

2π∫

0

F21(ω)eiωkdω

=

π∫

0

[
F21(ω)eiωk + F21(−ω)e−iωk

]
dω

=

π∫

0

r(ω)
[
ei(θ∗21(ω)+ωk) + e−i(θ∗21(ω)+ωk)

]
dω

=

π∫

0

r(ω)2 cos [θ∗21(ω) + ωk] dω (A.4)

=

π∫

0

C21(k; ω)dω,

say. Here, C21(k; ω) is the covariance between the component of y2t at fre-
quency ω and the component of y1t−k at frequency ω. Thus, the cross-covariance
function of two time series is the integral of the cross covariances between their
frequency ω components, for ω ∈ (0, π). Note that the gain function, r(ω), de-
termines how important any particular frequency is in the covariance between
two variables.

It is common to characterize the lead-lag relationship between two variables by
the value of k for which C21(k) is the largest. For example, if this happens for
a value of, say, k = −2, then it is said that ‘y2t leads y1t by two periods’. The
analogous statements can be made in frequency domain using C21(k; ω). Note
that C21(k; ω) is maximized for k = −θ∗21(ω)/ω. Thus, if θ∗21(ω) > 0 then we
say ‘the frequency ω component of y2t leads the frequency ω component of y1t

by θ∗21(ω)/ω periods’. Similarly, if θ∗21(ω) < 0, then we say that ‘the frequency
ω component of y1t leads the frequency ω component of y2t by −θ∗21(ω)/ω
periods’.

There is an ambiguity in characterizing the lead-lag relationship between vari-
ables using C21(k; ω) that is not present when we do so using C21(k). This is
because the component of a variable at frequency ω is a pure cosine wave. The
length of the lead or lag between two sinusoidal functions with the same period
is ill-defined. This is manifested in the observation that there are many θ∗21(ω)
that solve (13): if θ∗21(ω) solves (13) then so does θ∗21(ω) + 2πl, for l = 0,±1,
±2, ... .

Here is an intuitive way to see this. With two series of period 11, the statement
that the first leads the second by 2 periods is equivalent to the statement
that the second leads the first by 8 periods. These two statements are also
equivalent to the notion that the first leads the second by 12 periods, and so
on.
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In our analysis, we adopt the following resolution to this ambiguity. Let

k21(ω; ∆) = arg max
k

ω+∆∫

ω−∆

C21(k; ω)dω, π −∆ ≥ ω ≥ ∆ > 0, (A.5)

θ21(ω; ∆) =−ωk21(ω; ∆).

Define

k∗∗21(ω) = lim
∆→0

k21(ω; ∆),

θ∗∗21(ω) = lim
∆→0

θ21(ω; ∆),

for π ≥ ω ≥ 0. Our numerical experiments suggest that k21(ω; ∆) and θ21(ω; ∆)
are single-valued functions of ω for all ω ∈ (0, π) and ∆ > 0, except possi-
bly at isolated values of ω. When ∆ = 0, then θ21(ω; ∆) is composed of the
countable set of elements discussed above. For all but a finite set of values of
ω, θ∗∗21(ω) selects one element of the set, θ21(ω; 0). Similarly for k∗∗21(ω). In our
analysis, we identify θ∗21(ω) and k∗21(ω) with θ∗∗21(ω) and k∗∗21(ω), respectively.
The object, θ∗21(ω), is our measure of the phase angle between the frequency ω
components of y1t and y2t. The object, k∗21(ω), measures this in units of time.

To gain insight into our measure of the phase angle, consider Figure 7. There,
y1t corresponds to ln(Yt) and y2t corresponds to ln(It), as implied by the esti-
mated V AR(10) for these variables, which was discussed in the text. 33 Figure
7 exhibits a subset of the elements in θ(ω; 0) for ω ∈ (0, π) (see the solid lines).
The circles indicate θ21(ω; ∆) for ∆ = 0.3. Note how these θ’s lie close to one
of the solid lines. Note too, how that phase angle function exhibits discontinu-
ities. We found that at the points of discontinuity, there are two elements in
θ21(ω; 0.3). The stars indicate θ21(ω; ∆) for ∆ = 0.06. Note how in each case,
θ21(ω; ∆) is now closer to one of the solid lines. This is consistent with the
notion that, for each ω, θ21(ω; ∆) converges to one of the solid lines as ∆ → 0.

The dashed lines in Figure 7 indicate +π and −π. We have included these in
order to facilitate comparison to the standard method for selecting an element
of θ21(ω; 0), which picks θ ∈ (−π, π). 34 It is evident from the figure that, for
our estimated V AR(10), this method produces a phase angle function with a
single point of discontinuity just above ω = 2. In effect, the method chooses the
lead-lag relationship between two variables as the smallest (in absolute value)
value of k which attains the maximum for the cross-covariance function. We

33 Although log(Yt) and log(It) are not covariance stationary, they are so after ap-
plication of a band pass filter which excludes frequency zero. As a result, phase
angle and coherence measures are well-defined for ω 6= 0.
34 See, e.g., Granger and Newbold (1977) or Sargent (1987).
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think ours is a more natural measure in our context, given its connection to
time domain lead-lag measures used in business cycle analysis.

To obtain insight into the discontinuities in our estimate of θ∗21(ω) (and, hence,
k∗21(ω)), consider Figure 8. That figure reports

ω+∆∫

ω−∆

C21(k; ω̃)dω̃, ∆ = 0.15,

for ω ∈ (1, π− 0.15) and k ∈ (−15, 10). Note how this function oscillates with
k, for each fixed ω, producing a pattern of ridges and valleys in the three
dimensional surface. The dark lines indicate k21(ω; 0.15). The discontinuities
in k21(ω; ∆) reflect that the ridge which achieves the greatest height varies
with ω, and that ridges are separated by valleys. As ∆ → 0, the surface
depicted in Figure 8 evolves so that for a given ω, each ridge has the same
height. However, for ∆ > 0 we found that (except for isolated ω’s) exactly one
ridge achieved a global maximum for a given ω.
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B Table

Table 1: Parameter Estimates, Time-to-Build Model

Panel A: One Shock Model

φ1 φ2 φ3 ρ σz σg

Estimated 0.0097 0.28 0.48 NA 0.014 NA

Christiano-Todd 0.01 0.33 0.33 NA 0.018 NA

Kydland-Prescott 0.25 0.25 0.25 NA 0.012 NA

RBC NA NA NA NA 0.011 NA

Panel B: Two Shock Model

φ1 φ2 φ3 ρ σz σg

Estimated 0.0079 0.30 0.41 0.94 0.012 0.063

CT model 0.0079 0.30 0.41 0.96 0.018 0.022

KP model 0.25 0.25 0.25 0.94 0.012 0.063
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Figure 1: The Log Spectrum of Output Growth
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Notes: (i) Various Estimates of Spectrum of Output Growth as Indicated.
(ii) Smoothed Periodogram ∼ Centered Moving Average of Periodogram
(iii) Estimated Time-to-Build ∼ one-shock time-to-build model with {σz, φ1, φ2, φ3} estimated.
(iv) RBC ∼ one-shock real business cycle model with σz estimated.



Figure 2: Cumulative Likelihood Ratio, One Shock Models
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Notes: (i) Figure displays Λ function in Equation (11) for each of the three indicated models.
(ii) Christiano-Todd ∼ time-to-build model with φ1 = 0.01 and φ2 = φ3 = φ4 = 0.33
and σz estimated.
(iii) Estimated Time-to-Build ∼ time-to-build model with {σz, φ1, φ2, φ3} estimated.
(iv) RBC ∼ real business cycle model with σz estimated.
(v) CV ∼ critical values for Chi-square distribution with 12 degrees of freedom.



Figure 3: The Log Spectrum of ln (It/Yt)
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(ii) Smoothed Periodogram ∼ Centered Moving Average of Periodogram
(iii) Estimated Time-to-Build ∼ two-shock time-to-build model with{σz, ρ, σg, φ1, φ2, φ3} estimated.
(iv) CT ∼ two-shock model time-to-build model with {φ1, φ2, φ3} set equal to estimated values
and {σz, ρ, σg} set equal to calibrated values.
(v) KP ∼ two-shock model time-to-build model with φ1 = φ2 = φ3 = φ4 = 0.25
and {σz, ρ, σg} set equal to estimated values.



Figure 4: The Coherence Between ln (Yt) and ln (It)
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Notes: (i) Various Estimates of Coherence as Indicated.
(ii) Smoothed Periodogram ∼ Centered Moving Average of Periodogram.
(iii) Estimated Time-to-Build ∼ two-shock time-to-build model with{σz, ρ, σg, φ1, φ2, φ3} estimated.
(iv) CT ∼ two-shock model time-to-build model with {φ1, φ2, φ3} set equal to estimated values
and {σz, ρ, σg} set equal to calibrated values.
(v) KP ∼ two-shock model time-to-build model with φ1 = φ2 = φ3 = φ4 = 0.25
and {σz, ρ, σg} set equal to estimated values.



Figure 5: The Phase Relationship in Units of Time
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and {σz, ρ, σg} set equal to estimated values.



Figure 6: Cumulative Likelihood Ratio, Two-Shock Models
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Figure 7: Measures of the Phase Angle, As a Function of Frequency
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Notes: (i) Solid Lines ∼ θ21(ω; 0).
(ii) Stars ∼ θ21(ω; 0.06).
(iii) Circles ∼ θ21(ω; 0.3).
(iv) For further discussion, see Appendix A.



Figure 8: Covariance Function for the Data

Notes: (i) C21(k; ω) = Ey2,ty1,t−k, where y1t is frequency ω component of ln(Yt)
and y2t is frequency ω component of ln(It).
(ii) Stars ∼ k21(ω; 0.15).
(iii) For further discussion, see Appendix A.


