Formulating and Estimating Monetary Models of the Business Cycle
Overview

• Yesterday, Prof. Eichenbaum Discussed VARs
 – Impulse Response Functions (IRF) and Identification
 – Displayed IRF’s of 10 Variables to 3 Shocks.

• Today and Tomorrow: Use IRF’s to Learn About Dynamic Economic Models.
 – Model Solution Methods.
 – Building a Model Which is Consistent with the Identifying Assumptions Used in VARs.
 * Will Discuss Basic Features of Modern Monetary Models
 * Sticky Prices, Sticky Wages
 * Habit Persistence, Variable Capital Utilization
 * Adjustment Costs in Investment
 * Firm-Specificity of Capital
 – Estimate the Model Using IRF’s.

• Third Lecture: Optimal Policy
Model Solution Methods

1. Example #1: A Simple RBC Model.
 – Define a Model ‘Solution’
 – Motivate the Need to Somehow Approximate Model Solutions
 – Describe Basic Idea Behind Log-Linear Approximations
 – Some Strange Examples to be Prepared For

2. Example #2: Putting the Stochastic RBC Model into General Canonical Form

3. Example #3: Stochastic RBC Model with Hours Worked (Matrix Generalization of Previous Results)

4. Example #4: Example #3 with ‘Exotic’ Information Sets.

8. In this Presentation, Will Review Basic Ideas Only

9. Knowledge of *All* the Technical Details Less Necessary, Since there Is Software Available for Taking Care of Details

 – Software in our Tutorials
 – Perturbation AIM algorithm, Eric Swanson, Gary Anderson, and Andrew Levin,
 http://www.ericswanson.pro/
Example #1: Nonstochastic RBC Model

Maximize \(\left\{ c_t, K_{t+1} \right\} \sum_{t=0}^{\infty} \beta^t \frac{C_t^{1-\sigma}}{1-\sigma} \),

subject to:

\[C_t + K_{t+1} - (1 - \delta)K_t = K_t^\alpha, \quad K_0 \text{ given} \]

First order condition:

\[C_t^{1-\sigma} - \beta C_{t+1}^{1-\sigma} \left[\alpha K_{t+1}^{\alpha-1} + (1 - \delta) \right], \]

or, after substituting out resource constraint:

\[v(K_t, K_{t+1}, K_{t+2}) = 0, \quad t = 0, 1, \ldots, \text{ with } K_0 \text{ given.} \]
Example #1: Nonstochastic RBC Model ...

- ‘Solution’: a function, $K_{t+1} = g(K_t)$, such that

$$v(K_t, g(K_t), g[g(K_t)]) = 0, \text{ for all } K_t.$$

- Problem:

This is an Infinite Number of Equations
(one for each possible K_t)
in an Infinite Number of Unknowns
(a value for g for each possible K_t)

- With Only a Few Rare Exceptions this is Very Hard to Solve Exactly
 - Easy cases:
 * If $\sigma = 1, \delta = 1 \Rightarrow g(K_t) = \alpha \beta K_t^\alpha$.
 * If v is linear in K_t, K_{t+1}, K_{t+1}.
Approximation Method Based on Linearization

• Three Steps
 – Compute the Steady State
 – Do a Linear Expansion About Steady State
 – Solve the Resulting Linearized System

• Step 1: Compute Steady State -
 – Steady State Value of K, K^* -

\[
C^{-\sigma} - \beta C^{-\sigma} \left[\alpha K^{\alpha-1} + (1 - \delta) \right] = 0,
\]
\[
\Rightarrow \alpha K^{\alpha-1} + (1 - \delta) = \frac{1}{\beta}
\]
\[
\Rightarrow K^* = \left[\frac{\alpha}{\frac{1}{\beta} - (1 - \delta)} \right]^\frac{1}{1-\alpha}.
\]

– K^* satisfies:

\[
v(K^*, K^*, K^*) = 0.
\]
Approximation Method Based on Linearization ...

• Step 2:
 – Replace v by First Order Taylor Series Expansion About Steady State:

\[
v(K_t, K_{t+1}, K_{t+2}) \approx \tilde{v}(K_t, K_{t+1}, K_{t+2})
\]

\[
\tilde{v}(K_t, K_{t+1}, K_{t+2}) \equiv v(K^*, K^*, K^*) + v_1(K_t - K^*)
\]

\[
+ v_2(K_{t+1} - K^*) + v_3(K_{t+2} - K^*)
\]

– Here,

\[
v_1 = \frac{dv_u(K_t, K_{t+1}, K_{t+2})}{dK_t}, \text{ at } K_t = K_{t+1} = K_{t+2} = K^*.
\]

– Conventionally, Work With Log-Linear Approximation....
Approximation Method Based on Linearization ...

– Conventionally, work with

\[
\bar{v} \left(\hat{K}_t, \hat{K}_{t+1}, \hat{K}_{t+2} \right) \equiv (v_1 K^*) \left(\frac{K_t - K^*}{K^*} \right) \\
+ (v_2 K^*) \left(\frac{K_{t+1} - K^*}{K^*} \right) + (v_3 K^*) \left(\frac{K_{t+2} - K^*}{K^*} \right)
\]

\[
= \alpha_2 \hat{K}_t + \alpha_1 \hat{K}_{t+1} + \alpha_0 \hat{K}_{t+2}
\]

\[
\hat{K}_t \equiv \frac{K_t - K^*}{K^*}
\]

\[
\alpha_2 = v_1 K, \ \alpha_1 = v_2 K, \ \alpha_0 = v_3 K
\]

Note:

\[
\frac{K_t}{K^*} = \hat{K}_t + 1 \Rightarrow \log \left(\frac{K_t}{K^*} \right) \approx \hat{K}_t
\]
Approximation Method Based on Linearization ...

- Step 3: Find Policy Rule

 - Instead of Looking for $g(K_t)$ that Solves

 $$v(K_t, g(K_t), g[g(K_t)]) = 0, \text{ for all } K_t$$

 - We Solve (Easier Problem): Find $\tilde{g}(\hat{K}_t)$ That Solves:

 $$\tilde{v}(\hat{K}_t, \tilde{g}(\hat{K}_t), \tilde{g}[\tilde{g}(\hat{K}_t)]) = 0, \text{ for all } \hat{K}_t$$

 - The Following Functional Form Works:

 $$\hat{K}_{t+1} = \tilde{g}(\hat{K}_t) = A\hat{K}_t,$$

 Where A is to be Determined.
Approximation Method Based on Linearization ...

– Posit the Following Policy Rule:

\[\hat{K}_{t+1} = A\hat{K}_t, \]

Where \(A \) is to be Determined.

– Compute \(A \):

\[\alpha_2\hat{K}_t + \alpha_1A\hat{K}_t + \alpha_0A^2\hat{K}_t = 0, \]

or

\[\alpha_2 + \alpha_1A + \alpha_0A^2 = 0. \]

– \(A \) is the Eigenvalue of Polynomial

• In General: Two Eigenvalues.
 – Can Show: In RBC Example, One Eigenvalue is Explosive. The Other Not.
 – There Exist Theorems (see Stokey-Lucas, chap. 6) That Say You Should Ignore the Explosive \(A \).
Some Strange Examples to be Prepared For

- Other Examples Are Possible:
 - Both Eigenvalues Explosive
 - Both Eigenvalues Non-Explosive
 - What Do These Things Mean?
Some Strange Examples to be Prepared For ...

• Example With Two Explosive Eigenvalues

• Preferences:

$$\sum_{t=0}^{\infty} \beta^t \frac{C_t^\gamma}{\gamma}, \gamma < 1.$$

• Technology:

 – Production of Consumption Goods

 $$C_t = k_t^{\alpha} n_t^{1-\alpha}$$

 – Production of Capital Goods

 $$k_{t+1} = 1 - n_t.$$
Some Strange Examples to be Prepared For ...

• Planning Problem:

$$\max \sum_{t=0}^{\infty} \beta^t \left[k_t^\alpha (1 - k_{t+1})^{1-\alpha} \right]^{\gamma}$$

• Euler Equation:

$$v(k_t, k_{t+1}, k_{t+2}) = -(1 - \alpha) k_t^{\alpha \gamma} (1 - k_{t+1})^{(1-\alpha)\gamma - 1} + \beta \alpha k_{t+1}^{(\alpha \gamma - 1)} (1 - k_{t+2})^{(1-\alpha)\gamma}$$

$$= 0,$$

$$t = 0, 1, ...$$

• Steady State:

$$k^* = \frac{\alpha \beta}{1 - \alpha + \alpha \beta}.$$
Some Strange Examples to be Prepared For ...

- Log-linearize Euler Equation:

\[\alpha_0 \hat{k}_{t+2} + \alpha_1 \hat{k}_{t+1} + \alpha_2 \hat{k}_t = 0 \]

- With \(\beta = 0.58, \gamma = 0.99, \alpha = 0.6 \), Both Roots of Euler Equation are both explosive:

\[-1.6734, -1.0303 \]

- Other Properties:

 - Steady State:

\[0.4652 \]

 - Two-Period Cycle:

\[0.8882, 0.0870 \]
Some Strange Examples to be Prepared For ...

• Meaning of Stokey-Lucas Example
 – Illustrates the Possibility of All Explosive Roots
 – Economics:
 * If Somehow You Start At Single Steady State, Stay There
 * If You are Away from Single Steady State, Go Somewhere Else
 – If Linearized Euler Equation Around Particular Steady State Has Only Explosive Roots
 * All Possible Equilibria Involve Leaving that Steady State
 * Linear Approximation Not Useful, Since it Ceases to be Valid Outside a Neighborhood of Steady State
 – Could Linearize About Two-Period Cycle (That’s Another Story...)
 – The Example Suggests That Maybe All Explosive Root Case is Unlikely
Some Strange Examples to be Prepared For ...

• Another Possibility:
 – Both Roots Stable
 – Many Paths Converge Into Steady State: Multiple Equilibria
 – Can Happen For Many Reasons
 ✴ Strategic Complementarities Among Different Agents In Private Economy
 ✴ Certain Types of Government Policy
 – This is a More Likely Possibility
 – Avoid Being Surprised by It By Always Thinking Through Economics of Model.
Example #2: RBC Model With Uncertainty

- Model

Maximize $E_0 \sum_{t=0}^{\infty} \beta^t \frac{C_t^{1-\sigma}}{1-\sigma}$,

subject to

$C_t + K_{t+1} - (1 - \delta)K_t = K_t^\alpha \varepsilon_t$,

where ε_t is a stochastic process with $E\varepsilon_t = \varepsilon$, say. Let

$\hat{\varepsilon}_t = \frac{\varepsilon_t - \varepsilon}{\varepsilon}$,

and suppose

$\hat{\varepsilon}_t = \rho \hat{\varepsilon}_{t-1} + e_t, e_t \sim N(0, \sigma_e^2)$.

- First Order Condition:

$E_t \{ C_t^{-\sigma} - \beta C_{t+1}^{-\sigma} \left[\alpha K_{t+1}^{\alpha-1} \varepsilon_{t+1} + 1 - \delta \right] \} = 0$.
Example #2: RBC Model With Uncertainty ...

- First Order Condition:
 \[E_t v(K_{t+2}, K_{t+1}, K_t, \varepsilon_{t+1}, \varepsilon_t) = 0, \]
 where
 \[v(K_{t+2}, K_{t+1}, K_t, \varepsilon_{t+1}, \varepsilon_t) \]
 \[= (K_t^\alpha \varepsilon_t + (1 - \delta)K_t - K_{t+1})^{-\sigma} \]
 \[- \beta (K_{t+1}^\alpha \varepsilon_{t+1} + (1 - \delta)K_{t+1} - K_{t+2})^{-\sigma} \]
 \[\times [\alpha K_{t+1}^{\alpha-1} \varepsilon_{t+1} + 1 - \delta]. \]

- Solution: a \(g(K_t, \varepsilon_t) \), Such That
 \[E_t v (g(g(K_t, \varepsilon_t), \varepsilon_{t+1}), g(K_t, \varepsilon_t), K_t, \varepsilon_{t+1}, \varepsilon_t) = 0, \]
 For All \(K_t, \varepsilon_t \).

- Hard to Find \(g \), Except in Special Cases
 - One Special Case: \(v \) is Linear.
Example #2: RBC Model With Uncertainty ...

- Linearization Strategy:
 - Step 1: Compute Steady State of K_t when θ_t is Replaced by $E\theta_t$
 - Step 2: Replace v By its Taylor Series Expansion About Steady State.
 - Step 3: Solve Resulting Linearized System.

- Logic: If Actual Stochastic System Remains in a Neighborhood of Steady State, Linear Approximation Good
Example #2: RBC Model With Uncertainty ...

- Step 1: Steady State:

\[K^* = \left[\frac{\alpha \varepsilon}{\frac{1}{\beta} - (1 - \delta)} \right]^{\frac{1}{1-\alpha}}. \]

- Step 2: Linearize -

\[v(K_{t+2}, K_{t+1}, K_t, \varepsilon_{t+1}, \varepsilon_t) \]

\[\approx v_1 (K_{t+2} - K^*) + v_2 (K_{t+1} - K^*) + v_3 (K_t - K^*) \]
\[+ v_3 (\varepsilon_{t+1} - \varepsilon) + v_4 (\varepsilon_t - \varepsilon) \]

\[= v_1 K^* \left(\frac{K_{t+2} - K^*}{K^*} \right) + v_2 K^* \left(\frac{K_{t+1} - K^*}{K^*} \right) + v_3 K^* \left(\frac{K_t - K^*}{K^*} \right) \]
\[+ v_3 \varepsilon \left(\frac{\varepsilon_{t+1} - \varepsilon}{\varepsilon} \right) + v_4 \varepsilon \left(\frac{\varepsilon_t - \varepsilon}{\varepsilon} \right) \]
\[= \alpha_0 \hat{K}_{t+2} + \alpha_1 \hat{K}_{t+1} + \alpha_2 \hat{K}_t + \beta_0 \hat{\varepsilon}_{t+1} + \beta_1 \hat{\varepsilon}_t. \]
• Step 3: Solve Linearized System
 – Posit:
 \[\hat{K}_{t+1} = A\hat{K}_t + B\hat{\varepsilon}_t. \]
 – Pin Down \(A \) and \(B \) By Condition that log-linearized Euler Equation Must Be Satisfied.
 * Note:
 \[\hat{K}_{t+2} = A\hat{K}_{t+1} + B\hat{\varepsilon}_{t+1} \]
 \[= A^2\hat{K}_t + AB\hat{\varepsilon}_t + B\rho\hat{\varepsilon}_t + Be_{t+1}. \]

 * Substitute Posited Policy Rule into Linearized Euler Equation:
 \[E_t \left[\alpha_0\hat{K}_{t+2} + \alpha_1\hat{K}_{t+1} + \alpha_2\hat{K}_t + \beta_0\hat{\varepsilon}_{t+1} + \beta_1\hat{\varepsilon}_t \right] = 0, \]
 so must have:
 \[E_t \{ \alpha_0 \left[A^2\hat{K}_t + AB\hat{\varepsilon}_t + B\rho\hat{\varepsilon}_t + Be_{t+1} \right] \]
 \[+ \alpha_1 \left[A\hat{K}_t + B\hat{\varepsilon}_t \right] + \alpha_2\hat{K}_t + \beta_0\rho\hat{\varepsilon}_t + \beta_0e_{t+1} + \beta_1\hat{\varepsilon}_t \} = 0 \]
Example #2: RBC Model With Uncertainty ...

* Then,

\[
E_t \left[\alpha_0 \hat{K}_{t+2} + \alpha_1 \hat{K}_{t+1} + \alpha_2 \hat{K}_t + \beta_0 \hat{\varepsilon}_{t+1} + \beta_1 \hat{\varepsilon}_t \right]
\]

\[
= E_t \{ \alpha_0 \left[A^2 \hat{K}_t + AB \hat{\varepsilon}_t + B \rho \hat{\varepsilon}_t + Be_{t+1} \right] + \alpha_1 \left[A \hat{K}_t + B \hat{\varepsilon}_t \right] + \alpha_2 \hat{K}_t + \beta_0 \rho \hat{\varepsilon}_t + \beta_0 e_{t+1} + \beta_1 \hat{\varepsilon}_t \}
\]

\[
= \alpha(A) \hat{K}_t + F \hat{\varepsilon}_t = 0
\]

where

\[
\alpha(A) = \alpha_0 A^2 + \alpha_1 A + \alpha_2, \\
F = \alpha_0 AB + \alpha_0 B \rho + \alpha_1 B + \beta_0 \rho + \beta_1
\]

* Find \(A \) and \(B \) that Satisfy:

\[
\alpha(A) = 0, \quad F = 0.
\]
Example #3 RBC Model With Hours Worked and Uncertainty

- Maximize

\[
E_t \sum_{t=0}^{\infty} \beta^t U(C_t, N_t)
\]

subject to

\[
C_t + K_{t+1} - (1 - \delta)K_t = f(K_t, N_t, \varepsilon_t)
\]

and

\[
E\varepsilon_t = \varepsilon,
\]

\[
\hat{\varepsilon}_t = \rho\hat{\varepsilon}_{t-1} + e_t, \quad e_t \sim N(0, \sigma_e^2)
\]

\[
\hat{\varepsilon}_t = \frac{\varepsilon_t - \varepsilon}{\varepsilon}.
\]
Example #3 RBC Model With Hours Worked and Uncertainty ...

- First Order Conditions:

\[E_t v_K(K_{t+2}, N_{t+1}, K_{t+1}, N_t, K_t, \varepsilon_{t+1}, \varepsilon_t) = 0 \]

and

\[v_N(K_{t+1}, N_t, K_t, \varepsilon_t) = 0. \]

where

\[v_K(K_{t+2}, N_{t+1}, K_{t+1}, N_t, K_t, \varepsilon_{t+1}, \varepsilon_t) = U_c (f(K_t, N_t, \varepsilon_t) + (1 - \delta)K_t - K_{t+1}, N_t) \]

\[- \beta U_c (f(K_{t+1}, N_{t+1}, \varepsilon_{t+1}) + (1 - \delta)K_{t+1} - K_{t+2}, N_{t+1}) \]

\[\times [f_K(K_{t+1}, N_{t+1}, \varepsilon_{t+1}) + 1 - \delta] \]

and,

\[v_N(K_{t+1}, N_t, K_t, \varepsilon_t) = U_N (f(K_t, N_t, \varepsilon_t) + (1 - \delta)K_t - K_{t+1}, N_t) \]

\[+ U_c (f(K_t, N_t, \varepsilon_t) + (1 - \delta)K_t - K_{t+1}, N_t) \]

\[\times f_N(K_t, N_t, \varepsilon_t). \]

- Steady state \(K^* \) and \(N^* \) such that Equilibrium Conditions Hold with \(\varepsilon_t \equiv \varepsilon. \)
Example #3 RBC Model With Hours Worked and Uncertainty ...

- Representation Log-linearized Equilibrium Conditions
 - Let
 \[z_t = \left(\begin{array}{c} \hat{K}_{t+1} \\ \hat{N}_t \end{array} \right), \ s_t = \hat{\varepsilon}_t, \ \epsilon_t = e_t. \]
 - Then, the linearized Euler equation is:
 \[E_t [\alpha_0 z_{t+1} + \alpha_1 z_t + \alpha_2 z_{t-1} + \beta_0 s_{t+1} + \beta_1 s_t] = 0, \]
 \[s_t = Ps_{t-1} + \epsilon_t, \ \epsilon_t \sim N(0, \sigma_e^2), \ P = \rho. \]

- Here,
 \[\alpha_0 = \begin{bmatrix} v_{K,1}K^* & v_{K,2}N^* \\ 0 & 0 \end{bmatrix}, \ \alpha_1 = \begin{bmatrix} v_{K,3}K^* & v_{K,4}N^* \\ v_{N,1}K^* & v_{N,2}N^* \end{bmatrix}, \]
 \[\alpha_2 = \begin{bmatrix} v_{K,5}K^* & 0 \\ v_{N,3}K^* & 0 \end{bmatrix}, \]
 \[\beta_0 = \begin{pmatrix} v_{K,6}\varepsilon \\ 0 \end{pmatrix}, \ \beta_1 = \begin{pmatrix} v_{K,7}\varepsilon \\ v_{N,4}\varepsilon \end{pmatrix}. \]

- Previous is a Canonical Representation That Essentially All Linearized Models Can be Fit Into (See Christiano (2002).)
Example #3 RBC Model With Hours Worked and Uncertainty ...

- Again, Look for Solution

\[z_t = A z_{t-1} + B s_t, \]

where \(A \) and \(B \) are pinned down by log-linearized Equilibrium Conditions.

- Now, \(A \) is Matrix Eigenvalue of Matrix Polynomial:

\[\alpha(A) = \alpha_0 A^2 + \alpha_1 A + \alpha_2 I = 0. \]

- Also, \(B \) Satisfies Same System of Linear Equations as Before:

\[F = (\beta_0 + \alpha_0 B) P + [\beta_1 + (\alpha_0 A + \alpha_1) B] = 0. \]

- Go for the 2 Free Elements of \(B \) Using 2 Equations Given by

\[F = \begin{bmatrix} 0 \\ 0 \end{bmatrix}. \]
Finding Eigenvalue of Polynomial Equation, $\alpha(A) = 0$, is a Solved Problem. See Anderson, Gary S. and George Moore, 1985, ‘A Linear Algebraic Procedure for Solving Linear Perfect Foresight Models,’ *Economic Letters*, 17, 247-52 or Articles in Computational Economics, October, 2002.

Solving for B

– Given A, $F = 0$ Represents Linear System of Equations in the Unknown Elements of B.

– To See this, Use

\[
\text{vec}(A_1A_2A_3) = (A_3' \otimes A_1) \text{vec}(A_2),
\]

to Convert $F = 0$ Into

\[
\text{vec}(F') = d + q\delta = 0,
\]

where $\delta = \text{vec}(B')$.

– Find B By First Solving:

\[
\delta = -q^{-1}d.
\]
Example #4: Example #3 With ‘Exotic’ Information Set

- Suppose the Date t Investment Decision is Made Before the Current Realization of the Technology Shock, While the Hours Decision is Made Afterward.

- Now, Canonical Form Must Be Written Differently:

$$\mathcal{E}_t [\alpha_0 z_{t+1} + \alpha_1 z_t + \alpha_2 z_{t-1} + \beta_0 s_{t+1} + \beta_1 s_t] = 0,$$

where

$$\mathcal{E}_t X_t = \begin{bmatrix} E[X_{1t}|\hat{\epsilon}_{t-1}] \\ E[X_{2t}|\hat{\epsilon}_t] \end{bmatrix}.$$

- Convenient to Change s_t:

$$s_t = \begin{pmatrix} \hat{\epsilon}_t \\ \hat{\epsilon}_{t-1} \end{pmatrix}, \quad P = \begin{bmatrix} \rho & 0 \\ 1 & 0 \end{bmatrix}, \quad \epsilon_t = \begin{pmatrix} e_t \\ 0 \end{pmatrix}.$$

- Adjust β_i's:

$$\beta_0 = \begin{pmatrix} v_{K,6}\epsilon & 0 \\ 0 & 0 \end{pmatrix}, \quad \beta_1 = \begin{pmatrix} v_{K,7}\epsilon & 0 \\ v_{N,4}\epsilon & 0 \end{pmatrix},$$
Example #4: Example #3 With ‘Exotic’ Information Set ...

• Posit Following Solution:

 \[z_t = A z_{t-1} + B s_t. \]

• Substitute Into Canonical Form:

 \[\mathcal{E}_t \left[\alpha_0 z_{t+1} + \alpha_1 z_t + \alpha_2 z_{t-1} + \beta_0 s_{t+1} + \beta_1 s_t \right] = \alpha(A) z_{t-1} + \mathcal{E}_t F s_t = \alpha(A) z_{t-1} + \mathcal{E}_t F s_t = 0, \]

• Then,

 \[\mathcal{E}_t F s_t = \mathcal{E}_t \begin{bmatrix} F_{11} & F_{12} \\ F_{21} & F_{22} \end{bmatrix} \begin{bmatrix} s_t \end{bmatrix} = \mathcal{E}_t \begin{bmatrix} F_{11} \hat{e}_t + F_{12} \hat{e}_{t-1} \\ F_{21} \hat{e}_t + F_{22} \hat{e}_{t-1} \end{bmatrix} = \begin{bmatrix} 0 & F_{12} + \rho F_{11} \\ F_{21} & F_{22} \end{bmatrix} \begin{bmatrix} s_t \end{bmatrix} = \tilde{F} s_t. \]

• Equations to be solved:

 \[\alpha(A) = 0, \quad \tilde{F} = 0. \]

• \(\tilde{F} \) Only Has Three Equations How Can We Solve for the Four Elements of \(B \)?

• Answer: Only Three Unknowns in \(B \) Because \(B \) Must Also Obey Information Structure:

 \[B = \begin{bmatrix} 0 & B_{12} \\ B_{21} & B_{22} \end{bmatrix}. \]
Summary

- Solving Models By Linear Approximation Involves Three Steps
 a. Compute Steady State
 b. Log-Linearize Equilibrium Conditions
 c. Solve Linearized Equations.

- Step 3 Requires Finding A and B in:
 \[
 z_t = A z_{t-1} + B s_t,
 \]
 to Satisfy Log-Linearized Equilibrium Conditions:
 \[
 \mathcal{E}_t \left[\alpha_0 z_{t+1} + \alpha_1 z_t + \alpha_2 z_{t-1} + \beta_0 s_{t+1} + \beta_1 s_t \right]
 \]
 \[
 s_t = P s_{t-1} + \epsilon_t, \; \epsilon_t \sim \text{iid}
 \]

- We are Led to Choose A and B so that:
 \[
 \alpha(A) = 0,
 \]
 (standard information set) $F = 0$,
 (exotic information set) $\tilde{F} = 0$
 and Eigenvalues of A are Less Than Unity In Absolute Value.
Computing Impulse Response Functions For Model

• Impulse Response Function (IRF):
 – Suppose System is in Steady State
 – IRF Is Response of System to a One-Time Innovation in Exogenous Variables, Relative to What Trajectory Would have Been, Absent a Shock.
• One-Time Shock: $\epsilon_1 \neq 0$, $\epsilon_t = 0$ for $t > 1$.
• Simulate Exogenous Variables:
 $$s_t = Ps_{t-1} + \epsilon_t, \quad t = 1, 2, ..., T, \quad s_0 = 0.$$
• Simulate Endogenous Variables:
 $$z_t = Az_{t-1} + Bs_t, \quad t = 1, 2, ..., T, \quad z_0 = 0.$$
• Note:
 $$z_t = \left(\frac{K_{t+1} - K^*}{N_t - N^*} \right),$$
 Which are Percentage Deviations From Unshocked, Steady State Path.
Computing Impulse Response Functions For Model ...

- Other Endogenous Variables Not Included in z_t

 – Suppose We Also Would Like Output, Y_t

 $$Y_t = \varepsilon_t K_t^\alpha N_t^{1-\alpha},$$

 so that

 $$\hat{Y}_t = \hat{\varepsilon}_t + \alpha \hat{K}_t + (1 - \alpha) \hat{N}_t,$$

 a Linear Function of z_t and s_t.

 – Can Obtain Other Variables, Say Z_t, In the Same Way:

 $$Z_t = \alpha_z z_t + \alpha_s s_t.$$

 – Use This Expression and Previous Results to Simulate the Impulse Response to Z_t