Money as a Unit of Account
Matthias Doepke and Martin Schneider
Question

- Explain emergence of a common unit of account for future payments.
 - Why coordinate on a common unit of account?
 - What should be the unit of account?
Examples

Treasury Debt, 2002: U.S. Dollars
Mühlenerbzins, 1794: Meissnische Gulden, bushels of bran
Unit of account often different from medium of exchange.

Accounting currencies:
- Distinct from any existing medium of exchange.
- Livre tournois in France, ECU in Europe.

Common unit of account in areas with intensive trade:
- Many currencies used for payment, contracts mostly in one.
- Vereinsthaler in Northern Germany before unification.
- Use of dollar denominated contracts in world trade.

Government-issued fiat money as unit of account:
- More common recently as governments borrow more . . .
- . . . but not when value too uncertain (dollarization).
Why Coordinate?

- Candidates for unit of account:
 - Goods or assets with quoted prices.

- Three features lead to dominant unit of account:
 - Demand for unit of account that hedges relative-price risk.
 2. Trade along credit chains.
 - Demand for common unit of account in chains.
 - Demand for dominant unit of account in entire economy.
What Should Be the Unit of Account?

- Properties of dominant unit of account:
 - Stable in value relative to revenue of borrowers in many transactions.
 - If government is large, government debt works well . . .
 - . . . but only if value of debt is stable.
 - In areas with a lot of trade, common unit of account is useful: “currency areas.”
Literature

- Hedging through denomination of (bilateral) contracts:

- Credit chains:
 - Kiyotaki-Moore (2001), ...

- Coordination on indexation:

- Medium of exchange and unit of account:

- Matching and currency areas:
 - Matsuyama-Kiyotaki-Matsui (1993), Trejos-Wright (2001), Rey (2003) ...

- Redistribution effects of inflation:
 - Bohn (1990), Doepke-Schneider (2006), Auclert (2006), Doepke et al. (2017) ...
Outline

- General setup.
- Large default cost and divisible projects:
 - Noncontingent contracts, no default, inefficient production.
 - Unit of account maximizes scale of production.
 - Application to government IOUs.
 - Application to optimal currency areas.
- Small default cost and indivisible projects (not today):
 - Contingent contracts, costly default, efficient production.
 - Unit of account minimizes default costs.
Model: Agents, Dates, Goods

- Continuum of agents: Farmers and artisans.
 - Meet and write contracts at date 0.
 - Work at date 1.
 - Exchange goods and consume at date 2.

- Goods:
 - Farm goods: Traded in spot markets at date 2.
 - Artisanal goods: Tailored to matched customer.
 - Labor.
Utility function:

\[u_i(c, x, h) = u(c) + (1 + \lambda)x - h. \]

\(u(c) \): Homogeneous utility derived from vector of farm goods \(c \).
\(x \): Customized artisanal good.
\(h \leq 1 \): labor supply.
Farmer type $i \in \{A, B\}$ with mass 0.5 each.
- Farmer of type i endowed with one unit of farm good i at date 2.
- Farm good i trades in spot market at date 2 at price p_i.
- **Price risk**: Price of farm good i is random.
- Vector of farm-good prices $\mathbf{p} \in \mathbf{P}$ is only source of aggregate risk.
- Prices and units of measurement normalized such that utility is linear in wealth and $E(p_i) = 1$.
Model: Artisan Technology

- Mass one each of artisans at location $i \in [1, 2, \ldots, N]$ along highway.
- One unit of labor at date 1 makes one unit of customized artisanal good at date 2.
- Artisans of type 1 produce for farmers, artisans of type $i + 1$ produce for artisans of type i.
- Artisanal good valuable only for matched customer.
- Artisanal goods do not trade in spot market and do not have a quoted market price.
Model: Matching Process

- Farmers and artisans linked in chains along the highway:

 Farmer ← 1 ← 2 ← 3 ← 4 ← ... ← N.
Model: Matching Process

- Farmers and artisans linked in chains along the highway:
 Farmer $\leftarrow 1 \leftarrow 2 \leftarrow 3 \leftarrow 4 \leftarrow \ldots \leftarrow N$.
- Chains created at date 0 by random matching:
Model: Matching Process

- Farmers and artisans linked in chains along the highway:

 Farmer 1 ←− 2 ←− 3 ←− 4 ←− ... ←− N.

- Chains created at date 0 by random matching:
 - **Morning**: Odd i artisans travel east and contract with supplier.
Model: Matching Process

- Farmers and artisans linked in chains along the highway:

 Farmer $\rightarrow\leftarrow 1 \rightarrow\leftarrow 2 \rightarrow\leftarrow 3 \rightarrow\leftarrow 4 \rightarrow\leftarrow \ldots \rightarrow\leftarrow N$.

- Chains created at date 0 by random matching:
 - **Morning**: Odd i artisans travel east and contract with supplier.
 - **Night**: Odd i artisans travel west and contract with customer.
Model: Matching Process

- Farmers and artisans linked in chains along the highway:

 Farmer $\leftrightarrow 1 \leftrightarrow 2 \leftrightarrow 3 \leftrightarrow 4 \leftrightarrow \ldots \leftrightarrow N$.

- Chains created at date 0 by random matching:

 - **Morning**: Odd i artisans travel east and contract with supplier.
 - **Night**: Odd i artisans travel west and contract with customer.
 - **Matching risk**: Identity of farmer in chain unknown in morning.
In every meeting, customer and supplier can enter into contract specifying:

1. Quantity $x = h$ to be produced by supplier in period 1 and delivered in period 2.
2. Payment from customer to supplier in spot market in period 2.

Introduce friction that favors simple (non-contingent) payment promise:

- Contract consists of both non-contingent promise and (possibly lower) contingent actual payment.
- Settling cost if actual payment is lower than promise.
- Today: Settling cost is infinite: non-contingent promise.
Promise of payment $\pi_{i,j}$:
- Fixed, non-contingent vector of farm goods.

Unit of account: Denomination of the promise.

\[
\pi_{i,j} = q_{i,j} \begin{pmatrix} u_{i,j} \\ 1 - u_{i,j} \end{pmatrix}.
\]
Planning Approach

- To define equilibrium would need to pin down:
 - Bargaining process.
 - Expectations over contracts in other matches.
- Instead, adopt planning approach:
 - Find system of contracts that maximizes total welfare.
 - Planner chooses (among other things) unit(s) of account for promises.
 - Social optimum is an equilibrium for a specific distribution of bargaining power.
Planning Problem

- Maximizing equally weighted welfare is equivalent to maximizing production of artisanal goods.
- Maximization subject to payment feasibility of payments:
 - If i is artisan with costumer g and supplier j, for any p:
 $$ p' \pi_{g,i} \geq p' \pi_{i,j}. $$
 - If i is farmer with supplier j, for any p:
 $$ p_i \geq p' \pi_{i,j}. $$
- Maximization also subject to participation constraints.
Examples for Setup with Large Default Cost

- Assumption on farm good prices:
 - Symmetric price distribution.
 - Lower bound of relative price $\underline{p} = \min \{p_i/p_{-i}\} < 1$ independent of i.
 - Upper bound of relative price $\overline{p} = 1/p > 1$ independent of i.
One type of farmer and one type of artisan:

\[A \leftarrow 1. \]

One stage of matching. Price risk only.

Decide on \(x_A = h_1 \) and \(\pi_{A,1} = q_{A,1}(u_A, 1 - u_A)' \).

Constraints:

- Payment feasibility: for all \(p \in \mathbf{P} \),
 \[
p_a \geq p' \pi_{A,1}
 \]

- Participation constraints:
 \[
 1 - q_{A,1} + (1 + \lambda)x_A \geq 1, \\
 q_{A,1} - x_A \geq 0.
 \]
Can achieve first-best production:

- Set artisanal production to $x_A = 1$.
- Make promise in terms of the farmer's good: $u_{A,1} = 1$.
- Scale q_A of payment then has to satisfy:

\[
p_A \geq p_A q_{A,1},
\]
\[
1 - q_{A,1} + 1 + \lambda \geq 1,
\]
\[
q_{A,1} - 1 \geq 0.
\]

- Hence, $q_{A,1} = 1$.

Could not get first-best production with other unit of account.
One Farmer, Two Artisans: Unit of Account Passed On

- One type of farmer and two types of artisans:
 \[A \leftarrow 1 \leftarrow 2. \]

- Two stages of matching. Price risk only.

- Can still achieve first best:
 - Set \(x_A = x_1 = 1. \)
 - Set \(u_{A,1} = u_{1,2} = 1. \)
 - Scales of payments need to satisfy:
 \[q_{A,1} = q_{1,2} = 1. \]
Two Farmers, Two Artisans: Dominant Unit of Account

- Highway with two types of farmer and two types of artisan:

\[
\begin{pmatrix}
A \\
B
\end{pmatrix} \leftarrow 1 \leftarrow 2.
\]

- Two stages of matching. Both price and matching risk.
- Problem: In morning matches of 1 and 2, always possible that night partner of 1 (A or B) will not correspond to the chosen unit of account.
- Scale of production needs to be lowered to avoid default.
Consider optimal choice of unit of account u, where:

$$\pi_{1,2} = q_{1,2} \begin{pmatrix} u \\ 1 - u \end{pmatrix}.$$

The optimal u solves:

$$u = \arg\max_u \left\{ \min_p \left\{ \frac{p_i}{p_A u + p_B (1 - u)} \right\} \right\}.$$

Under symmetric price distribution have:

$$\min_p \left\{ \frac{p_i}{p_A u + p_B (1 - u)} \right\} = \frac{p}{\max\{u, 1 - u\} + p \min\{u, 1 - u\}},$$

Thus, optimal unit is $u = 0.5$: Equally weighted bundle of farm goods.
Highway with two types of farmer and four types of artisan:

\[
\begin{pmatrix}
A \\
B
\end{pmatrix} \leftarrow 1 \leftarrow 2 \leftarrow 3 \leftarrow 4.
\]

Optimal to use equally weighted bundle \((u = 0.5)\) in 3-4 morning matches as well.

Without coordination on dominant unit of account, additional sources of mismatch, resulting in lower scale of production.
Extensions

- Income risk for farmers: place more weight on good with higher income risk.
- Price distribution not symmetric: farm goods with less volatile prices are better unit of account.
- Small default costs: use unit of account to minimize probability of default.
- Optimal allocation can be decentralized with Nash bargaining at each stage.
- Unit of account is independent of bargaining weights.
- Bargaining weights matter for distribution of surplus across farmers and artisans.
Government Debt and the Optimal Unit of Account

- Model shows that dominant unit of account is optimal.
- In reality, why is money often used, as opposed to a commodity bundle?
- Introduce government that issues IOUs.
- Will private contracts be denominated in government IOUs?
In period 0, government buys fraction g of farmers’ output in exchange for g units of government IOUs. IOU is claim on tax revenue T. Tax revenue is realized at end of date 2, after spot market closes, but before consumption takes place.

At start of period 2, news about T arrives. IOUs trade in spot market at price:

$$p_{IOU} = E_2(T).$$
Assume symmetric distribution for p_A and p_B.

- p_{IOU} symmetric with respect to p_A and p_B.
- At extremes of the relative price distribution, $\frac{p_{IOU}}{\max\{p_A, p_B\}} \in [p_{IOU}, \bar{p}_{IOU}]$, $p_{IOU} < \frac{p + 1}{2}$.

- IOUs can serve as unit of account:

\[
\pi_{i,j} = \begin{pmatrix} \pi_{i,j}^{IOU} \\ \pi_{i,j}^A \\ \pi_{i,j}^B \\ \pi_{i,j} \\ u_{i,j} \\ u_{i,j}^A \\ u_{i,j}^B \end{pmatrix} = q_{i,j} \begin{pmatrix} u_{i,j}^{IOU} \\ u_{i,j}^A \\ u_{i,j}^B \end{pmatrix}
\]
Optimal unit of account:

- If $\overline{p}_{IOU} < \frac{p+1}{2}$, choose IOUs: $u^{IOU} = 1$.
- Else, choose:

$$u^{IOU} = \frac{g}{g + (1 - g)\frac{2p}{p+1}},$$

$$u_{i,j}^A = u_{i,j}^B = \frac{1 - u^{IOU}_{i,j}}{2}.$$

Interpretation: “dollarization” when inflation becomes too volatile.
Optimal Currency Areas

- Consider model in which there are two locations/countries:

 Country A: \(A \leftarrow 1 \leftarrow 2 \leftarrow 3 \leftarrow 4 \)
 Country B: \(B \leftarrow 1 \leftarrow 2 \leftarrow 3 \leftarrow 4 \)

- At each stage of matching, probability \(x < 0.5 \) of meeting someone from the other country.
- If matched in “wrong” country, can pay cost to rematch.
- Should a common unit of account be adopted?
Optimal Currency Areas

- Separate units (A for A, B for B):
 - Maximizes production conditional on matching within one country.
 - But requires paying rematch cost to avoid possibility of default.

- Common unit of account:
 - Some ex-post risk due to meeting partners from either country.
 - But no need to pay rematch cost.

- Common unit optimal when x sufficiently large.
- Common unit more attractive when chains of credit are longer.
Summary

Three features lead to common unit of account:

2. Trade along credit chains.

Properties of optimal unit of account:

- Stable in value relative to revenue of borrowers in many transactions.
- Government debt works well if large and not too volatile.
- Common “currency areas” optimal if lots of trade.
Next Steps

- Explain history of units of accounts and currency areas.
- Examine role of financial intermediaries.
- Examine costs of monetary instability.
Setup with Small Default Cost

- Discrete labor supply $h \in \{0, 1\}$.
- Small default costs: $\kappa < \lambda$.
- Everyone works under optimal allocation.
- Maximize surplus by minimizing probability of default.
- Do this by coordinating on a dominant unit of account.
- Intuition as in large-default-cost case, but rather than extremes of price distribution, probability of default matters.
Optimal Contract

- All agents work: $h_i = 1$ for all i.
- Farmers promise and pay their entire harvest.
- Choose promise π in matches between artisans to maximize:
 \[
 E \left[\Pr \left[p_h (1 + \lambda) \geq p' \pi \right] \right]
 \]
 subject to:
 \[
 E \left[\min \{ p_h (1 + \lambda), p' \pi \} \right] \geq 1.
 \]
- Actual payment by artisan i in chain headed by farmer h:
 \[
 v_{i,j}(\mathcal{N}, \mathbf{p}) = \min \{ p' \pi, p_h (1 + \lambda) \}.
 \]