
Chapter 11

Economic Growth

This chapter examines the determinants of economic growth. A startling fact about eco-
nomic growth is the large variation in the growth experience of different countries in re-
cent history. Some parts of the world, like the United States or Western Europe, experi-
enced sustained economic growth over a period of more than 100 years, so by historical
standards these countries are now enormously wealthy. This is not only true in absolute
terms (i.e., GDP), but also if wemeasure wealth as income per capita (i.e., GDP per person).
In contrast, there are countries where even today large parts of the population live close
to the subsistence level, much the same as Europeans and Americans did some hundreds
of years ago. Also, a group of countries that used to be relatively poor around the time of
WorldWar II managed to achieve even higher growth rates than the western industrialized
countries, so their per capita incomes now approach those of western countries. Most of
the members of this group are located in East Asia, like Japan, Singapore, Hong Kong, and
so on.

It proves to be difficult to explain these different growth experiences within a single model.
There are models that provide an explanation for the growth experience of the now indus-
trialized countries, but most of these models fail to explain why much of the world is still
poor. Models that seek to explain the difference between rich and poor countries are less
successful at reproducing the growth facts for industrialized countries. We will therefore
approach the topic of economic growth from a number of different angles. In Section 11.1
we present a number of facts about economic growth, facts that we will seek to explain
with our growth models. Section 11.2 introduces the Solow growth model, a classic in the
theory of economic growth. This model is quite successful at matching a number of facts
about growth in industrialized countries. Section 11.3 introduces growth accounting, an
empirical application of the Solow framework. This kind of accounting can be used to de-
termine the sources of growth for a given country. In Section 11.4 we turn to the question
why some countries are still poor today. A complete answer to this question is beyond the
scope of this book; in fact, it is fair to say that a satisfactory answer has not been found yet.
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Therefore we concentrate on only one important aspect of the growth experience of poor
countries: the relationship between fertility, human capital, and growth.

11.1 Growth Facts

If we look at the group of industrialized countries only, we can identify a number of empir-
ical regularities in the growth process. The British economist Nicholas Kaldor summarized
these regularities in a number of stylized facts. Although he did that more than 50 years
ago, the Kaldor facts still provide an accurate picture of growth in industrialized countries.
Kaldor’s first observation was that both output per worker and capital per worker grow
over time. They also grow at similar rates, so the ratio of the aggregate capital stock to
output or GDP does not change much over time. The return to capital, i.e., the interest that
firms have to pay if they rent capital, is almost constant over time. Finally, the labor share
and capital share are almost constant. The labor share is the fraction of output that goes to
workers in the form of wages; it is computed as aggregate labor income divided by GDP.
Similarly, the capital share is given by aggregate payments to capital divided by GDP. No-
tice that the Kaldor facts hold even if we consider long periods of time. For example, the
capital-output ratio and the return to capital are not much different now from what they
were 100 years ago, even though output is much higher now and the goods produced and
the general technology have changed completely.

In addition to the Kaldor facts, another important fact about growth in the industrialized
world is the convergence of per capita GDP of different countries and regions over time.
For example, the relative difference in per capita GDP between the southern and northern
states in the United States has diminished greatly since the Civil War. Similarly, countries
like Germany and Japan that suffered greatly fromWorld War II have grown fast since the
war, so today per capita income in the United States, Japan, and Germany are similar again.

There are no empirical regularities comparable to the Kaldor facts that apply to both indus-
trialized and developing countries. However, we can identify some factors that distinguish
countries that went through industrialization and have a high income today from countries
that remained relatively poor. An explanation of the role of such factors might be an im-
portant step toward understanding the large international differences in wealth. We are
going to focus on the relationship between growth and fertility. Every now industrialized
country has experienced a large drop in fertility rates, a process known as the demographic
transition. All industrialized countries have low rates of population growth. Without im-
migration countries like Germany and Japan would actually shrink. Two centuries ago,
fertility rates were much higher, as they are in most developing countries today. Today,
almost all of the growth in world population takes place in developing countries. We will
come back to these observations in the section on fertility and human capital, but first we
present a model that accounts for the stylized facts about growth in developed countries.
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11.2 The Solow Growth Model

A natural starting point for a theory of growth is the aggregate production function, which
relates the total output of a country to the country’s aggregate inputs of the factors of
production. Consider the neoclassical production function:

Yt = (AtLt)�K1��
t�1 :(11.1)

We used a production function of this form already in the chapter on business cycles. Out-
put depends on the aggregate labor input Lt, the aggregate capital input Kt�1, and a pro-
ductivity parameterAt. Of course, it is a simplification to consider only three determinants
of output. We could include other factors like land or environmental quality, and our fac-
tors could be further subdivided, for example by distinguishing labor of different quality.
It turns out, however, that a production function of the simple form in equation (11.1) is
all we need to match the stylized facts of economic growth. The production function equa-
tion (11.1) exhibits constant returns to scale, which means that if we double both inputs,
output also doubles. Our choice of a constant-returns-to-scale production function is not
by accident: most results in this section hinge on this assumption.

Equation (11.1) indicates the potential sources of growth in output Yt. Either the inputs
Lt and Kt�1 must grow, or productivity At must grow. If we want to explain economic
growth, we need a theory that explains how the population (i.e., labor), the capital stock,
and productivity change over time. The best approach would be to write down a model
where the decisions of firms and households determine the changes in all these variables.
The consumers would make decisions about savings and the number of children they want
to have, which would explain growth in capital and population. Firms would engage in
research and development, which would yield a theory of productivity growth. However,
doing all those things at the same time results in a rather complicated model.

The model that we are going to present takes a simpler approach. Growth in productivity
and population is assumed to be exogenous and constant. This allows us to concentrate
on the accumulation of capital over time. Moreover, instead of modeling the savings de-
cision explicitly, we assume that consumers invest a fixed fraction of output every period.
Although these are quite radical simplifications, it turns out that the model is rather suc-
cessful in explaining the stylized facts of economic growth in industrialized countries. It
would be possible to write down amodel with optimizing consumers that reaches the same
conclusions. In fact, we wrote down that model already: the real business cycle model that
we discussed in Chapter 9 used a neoclassical production function, and the optimal de-
cision of the consumers was to invest a fixed fraction of their output in new capital. To
keep the presentation simple, we will not go through individual optimization problems;
instead, we will assume that it is optimal to save a fixed fraction of output. There are a
number of names for the model. It is either referred to as the Solow model after its inventor
Robert Solow, or as the neoclassical growth model after the neoclassical production function
it uses, or as the exogenous growth model after the fact that there is no direct explanation for
productivity growth.
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The law of motion for a variable describes how the variable evolves over time. In the Solow
model, the law of motion for capital is:

Kt = (1� Æ)Kt�1 + It;(11.2)

where It is investment and Æ is the depreciation rate, which is between zero and one. We
assume that investment is a fixed fraction 0 < s < 1 of output:

It = sYt = s(AtLt)�K1��
t�1 :

Productivity and labor grow at fixed rates � and :

At+1 = (1 + �)At; and:
Lt+1 = (1 + )Lt:

We now have to find out how the economy develops, starting from any initial level of
capitalK0, and then check whether the model is in line with the stylized facts of economic
growth in industrialized countries.

We assume that there is a competitive firm operating the production technology. We can
check one of the stylized facts, constant labor and capital share, just by solving the firm’s
problem. The profit maximization problem of the firm is:

max
Lt;Kt�1

n
(AtLt)�K1��

t�1 � wtLt � rtKt�1

o
:

The first-order conditions with respect to labor and capital yield formulas for wage and
interest:

wt = �A�
t L

��1
t K1��

t�1 ; and:(11.3)

rt = (1� �)(AtLt)�K��
t�1:(11.4)

We can use these to compute the labor and capital shares in the economy:

wtLt

Yt
=
�A�

t L
��1
t K1��

t�1 Lt

(AtLt)�K1��
t�1

= �; and:

rtKt�1

Yt
=
(1� �)(AtLt)�K��

t�1Kt�1

(AtLt)�K1��
t�1

= 1� �;

so the labor share is �, and the capital share is 1��. Thus both the labor and capital shares
are indeed constant. This result is closely connected to the fact that the production function
exhibits constant returns to scale. Actually, the fact that the labor and capital shares are
about constant is one of the main arguments in favor of using production functions that
exhibit constant returns to scale.

To continue, we have to take a closer look at the dynamics of capital accumulation in the
model. It turns out that this is easiest to do if all variables are expressed in terms of units



11.2 The Solow Growth Model 99

of effective labor AtLt. The product AtLt is referred to as effective labor because increases
in At make labor more productive. For example, At = 2 and Lt = 1 amounts to the same
quantity of effective labor as At = 1 and Lt = 2. When put in terms of units of effective
labor, all variables will be constant in the long run, which will simplify our analysis.

We will use lowercase letters for variables that are in terms of effective labor. That is,
yt = Yt=(AtLt), kt�1 = Kt�1=(AtLt), and it = It=(AtLt). Substituting Yt = ytAtLt and so on
into the production function, equation (11.1), yields:

ytAtLt = (AtLt)�(kt�1AtLt)1��; or:

yt = k1��t�1 :(11.5)

From the law of motion for capital, equation (11.2), we get the law of motion in terms of
effective labor:

kt(1 + �)At(1 + )Lt = (1� Æ)kt�1AtLt + itAtLt; or:
kt(1 + �)(1 + ) = (1� Æ)kt�1 + it:(11.6)

Finally, investment is determined by:

it = syt = sk1��t�1 :(11.7)

Plugging equation (11.7) into the law of motion in equation (11.6) yields:

kt(1 + �)(1 + ) = (1� Æ)kt�1 + sk1��t�1 ; or:

kt =
(1� Æ)kt�1 + sk1��t�1

(1 + �)(1 + )
:(11.8)

This last equation determines the development of the capital stock over time. Dividing by
kt�1 yields an expression for the growth rate of capital per unit of effective labor:

kt

kt�1
=
1� Æ + sk��

t�1

(1 + �)(1 + )
:(11.9)

The expression kt=kt�1 is called the gross growth rate of capital per unit of effective labor.
The gross growth rate equals one plus the net growth rate. The growth rates in Chapter 1
were net growth rates.

Since the exponent on kt�1 in equation (11.9) is negative, the growth rate is inversely related
to the capital stock. When a country has a lower level of capital per unit of effective labor,
its capital and hence its output grow faster. Thus the model explains the convergence of
GDP of countries and regions over time.

Since the growth rate of capital decreases in kt�1, there is some level of kt�1 where capital
per unit of effective labor stops growing. We say that the economy reaches a steady state.
Once the economy arrives at this steady state, it stays there forever. Figure 11.1 is a graphi-
cal representation of the growth process in this economy. For simplicity, we assume for the
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moment that labor and productivity are constant, � =  = 0. In that case, equation (11.8)
simplifies to:

kt = (1� Æ)kt�1 + sk1��t�1 ; or:

kt � kt�1 = sk1��t�1 � Ækt�1:

The change in capital per unit of effective labor is equal to the difference between invest-
ment and depreciation. Figure 11.1 shows the production function per unit of effective
labor yt = k1��t�1 , investment it = sk1��t�1 , and depreciation Ækt�1. Because the return to capi-
tal is diminishing, investment is a concave function of capital. For low values of capital, the
difference between investment and depreciation is large, so the capital stock grows quickly.
For larger values of capital, growth is smaller, and at the intersection of depreciation and
investment the capital stock does not grow at all. The level of capital per unit of effective
labor at which investment equals depreciation is the steady-state level of capital. In the
long run, the economy approaches the steady-state level of capital per unit of effective la-
bor, regardless of what the initial capital stock was. This is even true if the initial capital
stock exceeds the steady-state level: capital per unit of effective labor will shrink, until the
steady state is reached.
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Figure 11.1: Output, Saving, and Depreciation in the Solow
Model

At the steady state we have kt = kt�1. Using equation (11.8), we see that the steady-state
level of capital per unit of effective labor k̄ has to satisfy:

k̄(1 + �)(1 + ) = (1� Æ)k̄ + sk̄1��;
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which yields:

k̄ =
�

s

Æ + � +  + �

�1=�

:(11.10)

We can use this equation to compute output, investment, and growth in the steady state.
From equation (11.5), the steady-state level of output per effective labor unit is:

ȳ = k̄1�� =
�

s

Æ + � +  + �

� 1��
�

:

The level of output depends positively on the saving rate. From equation (11.7), the steady-
state investment per unit of effective labor is:

ī = s

�
s

Æ + � +  + �

� 1��
�

:

The steady-state growth rate of capital is � +  + �:

Kt

Kt�1
=
k̄(1 + �)At(1 + )Lt

k̄AtLt

= 1 + � +  + �;

and the growth rate of output equals � +  + � as well. This implies that the long-run
growth rate of an economy is independent of the saving rate. With a higher saving rate,
the economy approaches a higher steady state, but the long-run growth rate is determined
by growth in labor and productivity only.

There are still a number of stylized facts left to be checked. First, we will verify that the
return to capital is constant. From equation (11.4), the return to capital is:

rt = (1� �)(AtLt)�K��
t�1 = (1� �)

�
Kt�1

AtLt

�
��

:

In the steady state, capital per unit of effective labor is a constant k̄. Therefore the return to
capital in steady state is:

r̄t = (1� �)k̄��;

which is constant since k̄ is constant. On the other hand, the wage is growing in the steady
state, since the productivity of labor increases. The steady-state wage can be computed as:

wt = �A�
t L

��1
t K1��

t�1 = �At

�
Kt�1

AtLt

�1��

= �Atk̄
1��; so:

wt+1

wt

=
At+1

At

= 1 + �;

which implies that the wage grows at the rate of technological progress.
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The capital-output ratio in steady state is:

Kt�1

Yt
=
k̄AtLt

ȳAtLt

=
k̄

ȳ
;

which is a constant. This verifies the last stylized fact of economic growth on our list.

The Solow model succeeds in explaining all stylized facts of economic growth in indus-
trialized countries. The key element of the model is the neoclassical constant-returns pro-
duction function. Since returns to capital alone are decreasing, economies grow faster at
lower levels of capital, until they approach the steady state, where units of effective labor
and capital grow at the same rate. The model also explains why different saving rates in
different industrialized countries do not translate into long-term differences in the growth
rate. The saving rate affects the level of the steady state, but it does not affect the steady-
state growth rate. The capital stock cannot grow faster than effective labor for a long time
because of decreasing returns to capital.

Since the Solow model does well at matching the facts of economic growth, it forms the
basis of many more-advanced models in macroeconomics. For example, our real business
cycle model of Chapter 9 is a Solow model enriched by optimizing consumers and pro-
ductivity shocks. On the other hand, the model works well only for countries that satisfy
the assumptions of constant rates of population growth and technological progress. These
assumptions are justified for industrialized countries, but they are not helpful for under-
standing the early stages of development of a country, which are usually accompanied by
the demographic transition, so exogenous and constant population growth is not a useful
assumption. We will look for possible explanations of fertility decisions below, but be-
fore that, we will introduce growth accounting, a method that allows us to decompose the
growth rate of a country into growth in population, capital, and productivity.

11.3 Growth Accounting

In this section we will use the general framework of the Solow model to compute a de-
composition of the rate of economic growth for a given country. Consider the neoclassical
production function:

Yt = (AtLt)�K1��
t�1 :(11.11)

We will interpret Yt as GDP, Lt as the number of workers, Kt�1 as the aggregate capital
stock, and At as a measure of overall productivity. We will be concerned with measuring
the relative contributions of At, Lt, and Kt�1 to growth in GDP. We assume that data for
GDP, the labor force, and the aggregate capital stock are available. The first step is to
compute the productivity parameter At. Solving the production function for At yields:

At =
Y

1
�

t

LtK
1��
�

t�1

:
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If � were known, we could compute the At right away. Luckily, we found out earlier that
� is equal to the labor share. Therefore we can use the average labor share as an estimate
of � and compute the At.

Now thatAt is available, the growth rates inAt, Lt andKt�1 can be computed.1 We can see
how the growth rates in inputs and productivity affect the growth rate of GDP by taking
the natural log of the production function:

lnYt = � lnAt + � lnLt + (1� �) lnKt�1:(11.12)

We are interested in growth between the years t and t+ k, where k is some positive integer.
Subtracting equation (11.12) at time t from the same equation at time t + k yields:

ln Yt+k � lnYt = �(lnAt+k � lnAt) + �(lnLt+k � lnLt) + (1� �)(lnKt+k�1 � lnKt�1):

Thus the growth rate in output (the left-hand side) is � times the sum of growth in produc-
tivity and labor, plus 1�� times growth in capital. Using this, we can compute the relative
contribution of the different factors. The fraction of output growth attributable to growth
of the labor force is:

�[lnLt+k � lnLt]
lnYt+k � lnYt

:

The fraction due to growth in capital equals:

(1� �)[lnKt+k�1 � lnKt�1]
lnYt+k � lnYt

:

Finally, the remaining fraction is due to growth in productivity and can be computed as:

�[lnAt+k � lnAt]
lnYt+k � lnYt

:

It is hard to determine the exact cause of productivity growth. The way we compute it, it is
merely a residual, the fraction of economic growth that cannot be explained by growth in
labor and capital. Nevertheless, measuring productivity growth this way gives us a rough
idea about the magnitude of technological progress in a country.

11.4 Fertility and Human Capital

In this section we will examine how people decide on the number of children they have.
Growth and industrialization are closely connected to falling fertility rates. This was true
for 19th century England, where industrialization once started, and it applies in the same
way to the Asian countries that only recently began to grow at high rates and catch up with

1See Chapter 1 for a discussion of growth rates and how to compute them.
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Western countries. Understanding these changes in fertility should help explain why some
economies start to grow, while others remain poor.

The first economist to think in a systematic way about growth and fertility was Thomas
Malthus. Back in 1798, he published his “Essay on Population”, in which his basic thesis
was that fertility was checked only by the food supply. As long as there was enough to eat,
people would continue to produce children. Since this would lead to population growth
rates in excess of the growth in the food supply, people would be pushed down to the
subsistence level. According to Malthus’s theory, sustained growth in per capita incomes
was not possible; population growth would always catch up with increases in production
and push per capita incomes down. Of course, today we know that Malthus was wrong,
at least as far as the now industrialized countries are concerned. Still, his theory was an
accurate description of population dynamics before the industrial revolution, and in many
countries it seems to apply even today. Malthus lived in England just before the demo-
graphic transition took place. The very first stages of industrialization were accompanied
by rapid population growth, and only with some lag did the fertility rates start to decline.
We will take Malthus’s theory as a point of departure in our quest for explanations for the
demographic transition.

Stated in modern terms, Malthus thought that children were a normal good. When income
went up, more children would be “consumed” by parents. We assume that parents have
children for their enjoyment only, that is, we abstract from issues like child labor. As a
simple example, consider a utility function over consumption ct and number of children
nt of the form:

u(ct; nt) = ln(ct) + ln(nt):

We assume that the consumer supplies one unit of labor for real wage wt and that the cost
in terms of goods of raising a child is p. Therefore the budget constraint is:

ct + pnt = wt:

By substituting for consumption, we can write the utility maximization problem as:

max
nt

fln(wt � pnt) + ln(nt)g :

The first-order condition with respect to nt is:

�

p

wt � pnt
+
1
nt

= 0; or:(FOC nt)

nt =
wt

2p
:(11.13)

Thus the higher the real wage, the more children are going to be produced.

If we assume that people live for one period, the number of children per adult nt deter-
mines the growth rate of population Lt:

Lt+1

Lt

= nt:
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To close the model, we have to specify how the wage is determined. Malthus’s assumption
was that the food supply could not be increased in proportion with population growth.
In modern terms, he meant that there were decreasing returns to labor. As an example,
assume that the aggregate production function is:

Yt = AtL
�
t ;

with 0 < � < 1. Also assume that the real wage is equal to the marginal product of labor:

wt = �AtL
��1
t :(11.14)

We can combine equation (11.14) with the decision rule for the number of children in equa-
tion (11.13) to derive the law of motion for population:

Lt+1

Lt

=
�AtL

��1
t

2p
; or:

Lt+1 =
�AtL

�
t

2p
:(11.15)

Notice that this last equation looks similar to the law of motion for capital in the Solow
model. The growth rate of population decreases as population increases. At some point,
the population stops growing and reaches a steady state L̄. Using equation (11.15), the
steady-state level of population can be computed as:

L̄ =
�AtL̄

�

2p
; or:

L̄ =
�
�At

2p

� 1
1��

:

In the steady state, we haveLt+1=Lt = nt = 1. We can use this in equation (11.13) to compute
the wage w̄ in the steady state:

1 =
w̄

2p
; or:

w̄ = 2p:

Thus the wage in the steady state is independent of productivity At. An increase in At

causes a rise in the population, but only until the wage is driven back down to its steady-
state level. Even sustained growth in productivity will not raise per capita incomes. The
population size will catch up with technological progress and put downward pressure on
per capita incomes.

This Malthusian model successfully explains the relationship between population and out-
put for almost all of history, and it still applies to large parts of the world today. Most
developing countries have experienced large increases in overall output over the last 100
years. Unlike in Europe, however, this has resulted in large population increases rather
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than in increases in per capita incomes. Outside the European world, per capita incomes
stayed virtually constant from 1700 to about 1950, just as the Malthusian model predicts.

Something must have changed in Europe in the nineteenth century that made it attractive
to people to have less children, causing fertility rates to fall , so per capita incomes could
start to grow. While these changes are by no means fully understood, we can identify a
number of important factors. We will concentrate on two of them: the time-cost of raising
children, and a quality-quantity tradeoff in decisions on children.

Human capital is a key element of the model that we are going to propose. So far, we con-
sidered all labor to be of equal quality. That might be a reasonable assumption for earlier
times in history, but it certainly does not apply in our time, where special qualifications
and skills are important. In the model, human capital consists of two components. First,
there is innate human capital that is possessed by every worker, regardless of education.
We will denote this component of human capital by H0. This basic human capital reflects
the fact that even a person with no special skill of any kind is able to carry out simple tasks
that require manual labor only. In addition to this basic endowment, people can acquire
extra human capital Ht through education by their parents. Ht reflects special skills that
have to be taught to a worker. The total endowment with human capital of a worker is
H0 +Ht.

To come back to fertility decisions, we now assume that parents care both about the number
nt of their children and their “quality”, or human capital H0 + Ht+1. Preferences take the
form:

u(ct; nt; Ht+1) = ln(ct) + ln(nt(H0 +Ht+1)):

The other new feature of this model is that parents must invest time, rather than goods, to
raise children. In the Malthusian model, p units of the consumption good were needed to
raise a child. We now assume that this cost in terms of goods is relatively small, so it can
be omitted for simplicity. Instead, children require attention. For each child, a fraction h of
the total time available has to be used to raise the child. In addition, the parents can decide
to educate their children and spend fraction et of their time doing that. This implies that
only a fraction 1�hnt�et is left for work. If wt is the wage per unit of human capital when
working all the time, the budget constraint is:

ct = wt(H0 +Ht)(1� hnt � et):(11.16)

The right-hand side says that income is the wage multiplied by human capital and the
fraction of time worked. All this income is spent on consumption. We still have to specify
the determination of the human capital of the children. We assume that the extra human
capital of each childHt+1 depends on: the acquired human capitalHt of that child’s parents,
and the time et the parents spend teaching their children:

Ht+1 = etHt:(11.17)

Here  is a positive parameter. The interpretation of equation (11.17) is that parents who
are skilled themselves are better at teaching their children. A person who does not have
any skills is also unable to teach anything to his or her children.



11.4 Fertility and Human Capital 107

We now want to determine how fertility is related to human capital in this model. If we
plug the constraints in equations (11.16) and (11.17) into the utility function, the utility
maximization problem becomes:

max
nt;et

fln(wt(H0 +Ht)(1� hnt � et)) + ln(nt(H0 + etHt))g :

The first-order conditions with respect to nt and et are:

�

h

1� hnt � et
+
1
nt

= 0; and:(FOC nt)

�

1
1� hnt � et

+
Ht

H0 + etHt

= 0:(FOC et)

(FOC nt) can be rewritten as:

hnt = 1� hnt � et; or:
et = 1� 2hnt:(11.18)

Using equation (11.18) in (FOC et) allows us to compute the optimal fertility decision:

Ht(1� hnt � (1� 2hnt)) = H0 + (1� 2hnt)Ht; or:
Hthnt = H0 + Ht � 2Hthnt; or:
3Hthnt = H0 + Ht; or:

nt =
1
3h

�
H0

Ht

+ 1
�
:(11.19)

According to equation (11.19), the key determinant of fertility is human capital Ht. If it
is close to zero, the number of children is very high. If we added a cost of children in
terms of goods to this model, for low values of Ht the outcomes would be identical to the
Malthusian model. However, things change dramatically when Ht is high. Fertility falls,
and if Ht continues to rise, the number of children reaches the steady state: n̄ = 1=(3h).
There are two reasons for this outcome. On the one hand, if human capital increases, the
value of time also increases. It becomes more and more costly to spend a lot of time raising
children, so parents decide to have less of them. The other reason is that people with high
human capital are better at teaching children. That makes it more attractive for them to
invest in the quality instead of the quantity of children.

Themodel sheds some light on the reasonswhy today fertility in industrialized countries is
so much lower than that in developing countries. The theory also has applications within a
given country. For example, in the United States teenagers are much more likely to become
pregnant if they are school dropouts. The model suggests that this is not by accident.
People with low education have a relatively low value of time, so spending time with
children is less expensive for them.

The question that the model does not answer is how the transition from the one state to
the other takes place. How did England manage to leave the Malthusian steady state?
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In the model, only a sudden jump in Ht over some critical level could perform this task,
which is not a very convincing explanation for the demographic transition. Still, the model
is a significant improvement over theories that assume that population growth rates are
exogenous and constant. More research on this and related questions will be needed before
we can hope to find a complete explanation for the demographic transition and the wide
disparity in wealth around the world.

Variable Definition

Yt Aggregate output
yt Output per unit of effective labor
Lt Aggregate labor input or population
Kt Aggregate capital stock
kt Capital per unit of effective labor
At Productivity parameter
It Aggregate investment
it Investment per unit of effective labor
wt Wage
rt Return on capital
Æ Depreciation rate
� Parameter in the production function
u(�) Utility function
ct Consumption
nt Number of children
p Cost of raising a child, in terms of goods
h Cost of raising a child, in terms of time
et Time spent on educating children
H0 Innate human capital
Ht Acquired human capital
 Parameter in the production function for human

capital

Table 11.1: Notation for Chapter 11

Exercises

Exercise 11.1 (Easy)
Suppose the aggregate production technology is Y = 3L:7K :3 and that L = 150. Both the
labor force and productivity are constant. Assume that the depreciation rate is 10%and that



Exercises 109

20% of output is saved and invested each year. What is the steady-state level of output?

Exercise 11.2 (Moderate)
Assume that the Solow model accurately describes the growth experience of Kuwait. As
a result of the Gulf war, much of the capital in Kuwait (oil extracting equipment, vehi-
cles, structures etc.) was destroyed. Answer the following questions, and provide brief
explanations.

� What will be the effect of this event on per capita income in Kuwait in the next five
years?

� What will be the effect of this event on per capita income in Kuwait in the long run?

� What will be the effect of this event on the annual growth rate of per capita income
in Kuwait in the next five years?

� What will be the effect of this event on the growth rate of per capita income in Kuwait
in the long run?

� Will recovery in Kuwait occur faster if investment by foreigners is permitted, or if it
is prohibited?

� Would Kuwaiti workers gain or lose by a prohibition of foreign investment? Would
Kuwaiti capitalists gain or lose?

Exercise 11.3 (Moderate)
In this and the following two exercises, you will apply growth accounting to measure the
determinants of growth in output per worker in a country of your choice. To start, you
need to pick a country and retrieve data on real GDP per worker and capital per worker.
You can get the time series you need from the Penn World Tables. See Exercise 9.1 for
information about how to access this data set. You should use data for all years that are
available.

In Section 11.3, we introduced growth accounting for output growth, while in this exercise
we want to explain growth in output per worker. We therefore have to redo the analysis
of Section 11.3 in terms of output per worker. The first step is to divide the production
function in equation (11.11) by the number of workers Lt, which yields:

Yt

Lt

=
(AtLt)�K1��

t�1

Lt

=
A�
t L

�
t K

1��
t�1

L�
t L

1��
t

= A�
t

�
Kt�1

Lt

�1��

:(11.20)

Equation (11.20) relates output per worker Yt=Lt to capital per worker Kt�1=Lt. If we use
lower case letters to denote per-worker values (yt = Yt=Lt, kt�1 = Kt�1=Lt), we can write
equation (11.20) as:

yt = A�
t k

1��
t�1 :(11.21)
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Use equation (11.21) to derive a formula for At and to derive a decomposition of growth in
output per worker into growth in capital per worker and productivity growth. You can do
that by following the same steps we took in Section 11.3.

Exercise 11.4 (Moderate)
Compute the productivity parameter At for each year in your sample. For your computa-
tions, assume that 1�� = :4. This is approximately equal to the capital share in the United
States, and we assume that all countries use the same production function. In fact, in most
countries measures for 1� � are close to .4.

Exercise 11.5 (Moderate)
By using log-differences, compute the growth rate of GDP, productivity, and capital per
worker for each year in your sample. Also compute the average growth rate for these three
variables.

Exercise 11.6 (Moderate)
What percentage of average growth per worker is explained by growth in capital, and
what percentage by productivity growth? For the period from 1965 to 1992, the average
growth rate of output per worker was 2.7% in the United States, and productivity growth
averaged 2.3%. How do these numbers compare to your country? Does the neoclassi-
cal growth model offer an explanation of the performance of your country relative to the
United States? If not, how do you explain the differences?


