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In their article, Fan, Qi, and Xiu develop non-Gaussian quasi-maximum likelihood estimators for the

parameters θ = (σ,γ′)′ = (σ, a1, . . . , ap, b1, . . . , bq)′ of a GARCH process {xt} where

xt = σvtεt,

v2t = 1 +

p∑
i=1

aix
2
t−i +

q∑
j=1

bjv
2
t−j ,

and the noise {εt} are assumed to be independent and identically distributed with mean zero and variance

one. The QMLEs of γ are shown to be
√
T -consistent (T represents sample size) and asymptotically Normal

under general conditions. When E{ε4t} < ∞, the QMLEs of the scale parameter σ are also
√
T -consistent

and asymptotically Normal, but, as is the case for Gaussian QMLEs of GARCH model parameters, the

estimator of σ has a slower rate of convergence otherwise (Hall and Yao, 2003). As mentioned in Fan et al.,

a rank-based technique for estimating θ is presented in Andrews (2012). These rank (R)-estimators are also

consistent under general conditions, with the same rates of convergence as the non-Gaussian QMLEs. Hence,

the R-estimators have robustness properties similar to the QMLEs. In this note, I make some methodological

and efficiency comparisons between the two techniques, and suggest R-estimation be used prior to QMLE for

preliminary GARCH estimation. Once a R-estimate has been found, corresponding model residuals can be

used to identify one or more suitable noise distributions and QMLE/MLE can then be used. As suggested

by Fan et al. in Section 6, one can optimize over a pool of appropriate likelihoods in an effort to improve

efficiency. Additionally, MLEs of all elements of θ are consistent with rate
√
T under general conditions

(Berkes and Horváth, 2004).

Methodological Comparisons The R-estimator γ̂R of γ is found by minimizing

DT (γ) =

T∑
t=p+1

λ

(
Rt(γ)

T − p+ 1

)[
ξt(γ)− ξ(γ)

]
, (1)

where {ξt(γ)}Tt=p+1 = {log(x2t )− log(v2t (γ))}Tt=p+1 are log-transformed residuals, {Rt(γ)}Tt=p+1 contains the

ranks of {ξt(γ)}Tt=p+1, ξ(γ) = (T − p)−1
∑T

t=p+1 ξt(γ), and λ is a nonconstant and nondecreasing weight
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function from (0, 1) to IR. In practice when the noise distribution for the GARCH process is unknown, I

recommend using the weight function λt7(x) = [7{F−1t7 ((x+ 1)/2)}2− 5]/[{F−1t7 ((x+ 1)/2)}2 + 5], where Ft7

represents the distribution function for standardized t7 noise, or a similar weight function (Andrews, 2012,

Remark 7). When compared to other techniques, R-estimation with weight function λt7 performs well for

light, medium, and heavier-tailed noise distributions. Note that, if λ = (T−p)−1
∑T

t=p+1 λ((t−p)/(T−p+1))

and {ξ(t)(γ)}Tt=p+1 is the series {ξt(γ)}Tt=p+1 ordered from smallest to largest, then equation (1) can also

be written as DT (γ) =
∑T

t=p+1[λ((t − p)/(T − p + 1)) − λ][ξ(t)(γ) − ξ(γ)]. In addition, DT is a non-

negative, continuous function (Andrews, 2012). Because it tends to be near zero when the elements of

{ξt(γ)} are similar and gets larger as the values of {|ξ(t)(γ) − ξ(γ)|} increase, DT can be thought of as a

measure of the dispersion of the residuals {ξt(γ)}. This rank-based estimation technique is similar to the one

introduced in Jaeckel (1972) for estimating linear regression parameters. In Remark 9 of Andrews (2012),

the corresponding R-estimator of σ2 (which, following the notation of Bollerslev [1986], I denote as α0) is

given by σ̂2
R = n−1

∑T
t=p+1 x

2
t/v

2
t (γ̂R). Hence,

σ̂R =

√√√√n−1
T∑

t=p+1

x2t
v2t (γ̂R)

. (2)

It follows that the R-estimate of θ, θ̂R = (σ̂R, γ̂
′
R)′, can be obtained via a two-step procedure: (a)

minimize DT (γ) in equation (1) to find γ̂R, and (b) obtain σ̂R via equation (2). In contrast, the non-

Gaussian QMLEs θ̂T proposed by Fan et al. are obtained via a three-step procedure, where optimization

(i.e., maximization) is required in all three steps. From this perspective, R-estimation is a simpler method

than non-Gaussian QMLE.

Relative Efficiency Let f̃ and F̃ represent the density and distribution functions for ln(ε2t ). In An-

drews (2012), I show that, when the distribution for the noise {εt} is symmetric about zero and a weight

function λ(x) ∝ −f̃ ′(F̃−1(x))/f̃(F̃−1(x)) is used, R-estimators of γ have the same asymptotic efficiency

as MLEs. When εt has a standardized t7 distribution, λt7(x) ∝ −f̃ ′(F̃−1(x))/f̃(F̃−1(x)). Furthermore,

when the weight function λ used for R-estimation and the density f used for QMLE correspond to the same

noise distribution, R-estimation tends to be asymptotically as efficient or more efficient than QMLE. This

is discussed in Andrews (2012, Remarks 6 and 7) and is also observed in Fan et al. (Section 7.2/Table 3)
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when λ and f correspond to the standardized t7 distribution. Note that the asymptotic relative efficiency

for R-estimators of γ with respect to non-Gaussian QMLEs is given by

ARE = 4J̃−1K̃2 E (h1(εt, ηf ))
2

η2f (Eh2(εt, ηf ))
2 , (3)

where J̃ and K̃ are defined in Andrews (2012) and depend on the choice of weight function λ, and h1, h2,

and ηf are defined in Fan et al. and depend on f , the density being used for QMLE.

Following Remark 9 in Andrews (2012), when E{ε4t} <∞,

√
T (σ̂R − σ)

d→ N

(
0, J̃K̃−2

σ2

4
E

{
∂v2t (γ)/∂γ

v2t (γ)

}′ [
Var

{
∂v2t (γ)/∂γ

v2t (γ)

}]−1
E

{
∂v2t (γ)/∂γ

v2t (γ)

}
+
σ2

4
Var{ε2t}

)

as T → ∞. By Theorem 2 in Fan et al., also when E{ε4t} < ∞, the non-Gaussian QMLE of σ has limiting

distribution

√
T (σ̂T − σ)

d→ N

(
0,

E (h1(εt, ηf ))
2

η2f (Eh2(εt, ηf ))
2

{
M−1[1, 1]− σ2

}
+
σ2

4
Var{ε2t}

)
,

where M−1[1, 1] represents the element in row one, column one of matrix M−1; M is defined in the statement

of Theorem 2. Via matrix algebra, it can be shown that

σ2E

{
∂v2t (γ)/∂γ

v2t (γ)

}′ [
Var

{
∂v2t (γ)/∂γ

v2t (γ)

}]−1
E

{
∂v2t (γ)/∂γ

v2t (γ)

}
= M−1[1, 1]− σ2,

so the R-estimator of σ is asymptotically more efficient than the QMLE of σ when the ARE in equation (3)

for estimators of γ is larger than one. As demonstrated in Table 3 of Fan et al., this is often the case (see

also Andrews, 2012, Remark 7).

In Section 7.2, Fan et al. give simulation results for the GARCH(1,1) model with parameters (σ, a1, b1) =

(0.5, 0.6, 0.3) when sample size T = 250, 500, and 1000. In these simulations, R-estimation with weight

function λt7 is essentially as efficient as QMLE. For comparison, I considered GARCH(1,1) models with

parameters (σ, a1, b1) = (0.1, 50.0, 0.4) and (σ, a1, b1) = (0.1, 10.0, 0.8), and the same three values of T .

(The model (σ, a1, b1) = (0.1, 50.0, 0.4) is considered in Andrews [2012], and (σ, a1, b1) = (0.1, 10.0, 0.8) was

selected because, for many observed series, a value of b1 near one appears appropriate.) In each case, I

simulated 1000 GARCH processes with N(0,1) and standardized t3 noise, and found the corresponding R-

estimates and QMLEs, also using the weight function λt7 for R-estimation and the standardized t7 density

for QMLE. Root mean squared errors for the estimates are listed in Table 1. For these estimation methods,
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RMSEs
R-estimates QMLEs

T Model Parameters (N(0,1), t3) (N(0,1), t3)
σ = 0.1 0.020, 0.026 0.029, 0.031

250 a1 = 50.0 22.004, 27.196 20.135, 27.213
b1 = 0.4 0.119, 0.184 0.129, 0.192
σ = 0.1 0.014, 0.020 0.021, 0.026

500 a1 = 50.0 14.700, 18.399 14.312, 18.544
b1 = 0.4 0.080, 0.125 0.083, 0.129
σ = 0.1 0.009, 0.016 0.016, 0.023

1000 a1 = 50.0 9.465, 12.982 9.496, 13.085
b1 = 0.4 0.052, 0.084 0.054, 0.086
σ = 0.1 0.090, 0.067 0.113, 0.085

250 a1 = 10.0 6.877, 7.716 6.812, 6.932
b1 = 0.8 0.350, 0.330 0.442, 0.408
σ = 0.1 0.059, 0.046 0.079, 0.056

500 a1 = 10.0 5.111, 5.182 5.365, 5.143
b1 = 0.8 0.222, 0.215 0.299, 0.265
σ = 0.1 0.033, 0.028 0.047, 0.038

1000 a1 = 10.0 3.680, 3.564 3.943, 3.745
b1 = 0.8 0.111, 0.109 0.164, 0.166

Table 1: Root mean squared errors for R-estimates and QMLEs of GARCH model parameters when the noise

distribution is N(0,1) and standardized t3.

the value of ARE in equation (3) is 1.041 when the noise {εt} are N(0,1), and ARE is 1.052 when the {εt}

are standardized t3 (Andrews, 2012). Since the RMSEs in Table 1 for R-estimation are mostly smaller than

the corresponding values for QMLE, it appears the asymptotic relative efficiencies for R-estimation with

respect to non-Gaussian QMLE can be indicative of finite sample behavior for sample size 250 ≤ T ≤ 1000.

Concluding Remarks In Andrews (2012), the limiting distribution for R-estimators is given not only

when the true parameter vector is in the interior of its parameter space and the estimators are asymptotically

Normal, but also when some GARCH parameters are zero and the limiting distribution is non-Normal. The

results are used to develop hypothesis tests for GARCH order selection (Andrews, 2012, Section 3.2). Since

R-estimates are straightforward to compute and tend to be relatively efficient, I recommend R-estimation be

used not only for preliminary GARCH estimation, but also for order selection when the noise distribution is

unknown. If further model accuracy is desired, residuals from R-estimation can be used to identify one or

more suitable noise distributions, and then the GARCH model can be estimated via QMLE/MLE.
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