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Abstract

We consider model identification for infinite variance autoregressive time series processes. It is shown
that a consistent estimate of autoregressive model order can be obtained by minimizing Akaike’s
information criterion, and we use all-pass models to identify noncausal autoregressive processes and
estimate the order of noncausality (the number of roots of the autoregressive polynomial inside the
unit circle in the complex plane). We examine the performance of the order selection procedures
for finite samples via simulation, and use the techniques to fit a noncausal autoregressive model to

stock market trading volume data.
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1 Introduction

The autoregressive (AR) model is often used to describe observed, heavy-tailed time series processes which
appear to have infinite variance. Note that, in the infinite variance case, causal (all roots of the AR polyno-
mial are outside the unit circle in the complex plane) and noncausal AR processes are distinguishable, and
can be used to describe different types of time series behavior. Specific applications for causal, heavy-tailed
AR models include network interarrival times (Resnick, 1997), sea surface temperatures (Gallagher, 2001),
and stock market log-returns (Ling, 2005), while noncausal models have appeared, for example, for mod-
eling trading volume data (Andrews et al., 2009) and in deconvolution problems (Blass and Halsey, 1981;
Donoho, 1981; Scargle, 1981). Since every Gaussian AR process has a causal representation, causal and
noncausal models cannot be distinguished using autocorrelations (as seen in Davis and Resnick, 1985a, the
autocorrelation function is consistently estimated in the infinite variance case). As a result, while traditional
second-order moment techniques, such as least squares and Yule-Walker estimation, can be used for infinite
variance AR estimation when the model is known to be causal (Davis and Resnick, 1985a), second-order
methods are not sufficient for AR model identification in the general infinite variance setting where causality
does not necessarily hold. An alternative to using second-order moment techniques is to consider modeling
the AR processes as a-stable, since the non-Gaussian stable distributions are a large class of infinite variance
distributions which can be asymmetric and have varying degrees of tail heaviness, and use stable maximum
likelihood (ML) for AR model selection and parameter estimation. Properties of stable ML estimators and
bootstrap confidence intervals for the AR parameter values are developed in Andrews et al. (2009). However,
given no prior model information, one may need to maximize the stable likelihood function for different AR
model orders and various configurations of roots inside and outside the unit circle, which can be compu-
tationally prohibitive for large order models. Therefore, in this paper, we develop a “toolbox” for model
identification in the case of an infinite variance AR process. In particular, we show that a consistent estimate
of AR model order can be obtained by minimizing Akaike’s information criterion (AIC), and we use all-pass
models to identify noncausal AR processes and estimate the order of noncausality (i.e., the number of roots
inside the unit circle). Once an appropriate AR model has been identified, ML can be used to estimate the

parameter values.
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For infinite variance, causal AR processes with noise distributions in the domain of attraction of a non-
Gaussian stable law, the AIC statistic, computed using Gaussian likelihood, is a consistent AR, order selection
criterion (Knight, 1989). In this paper, we show that, even though the Yule-Walker method cannot be used
to estimate the true AR parameters when the model is not necessarily causal, it can be used to consistently
estimate a causal AR model with the same number of parameters and all-pass innovations. We can, therefore,
extend results in Knight (1989) and show that minimizing the Gaussian-based AIC statistic is a consistent
order selection procedure for noncausal, infinite variance AR processes. In contrast, for Gaussian and other
finite variance AR processes, AIC is not a consistent order selection criterion (Shibata, 1976; Hannan, 1980).

All-pass models are autoregressive-moving average (ARMA) models in which the roots of the AR poly-
nomial are reciprocals of roots of the MA polynomial and vice versa. These models generate series that are
dependent in the non-Gaussian case. When a noncausal AR process is modeled as causal, the innovations
follow an all-pass model of order s, where s is the number of roots of the true AR polynomial inside the
unit circle. Consequently, by identifying the all-pass order of the innovations, one can determine the order of
noncausality for the AR process. In addition, a preliminary AR model estimate can be obtained from fitted
causal AR and all-pass models. While all-pass parameter estimation has already been considered in the
literature for finite variance processes (Giannakis and Swami, 1990, Chi and Kung, 1995, Chien et al., 1997,
cumulant-based estimation using cumulants of order greater than two; Breidt et al., 2001, least absolute
deviations estimation; Andrews et al., 2006, MLE; Andrews et al., 2007, rank-based estimation), the infinite
variance case has yet to be addressed. In this paper, we focus on ML estimation for AR processes with
non-Gaussian, stable noise, and give the limiting distribution for estimators of the causal AR parameters,
the all-pass parameters, and parameters of the noise distribution. The ML estimators of the causal AR
parameters have a faster rate of convergence than the Yule-Walker estimators, and we show that the causal
AR and all-pass ML estimators converge in distribution to the maximizer of a random function. The form
of this limiting distribution is intractable, but the bootstrap procedure can be used to examine the shape
of the distribution and obtain confidence intervals for the parameter values. Confidence intervals for the
all-pass parameters can be used to identify an appropriate all-pass model order, which equals the order of

noncausality for the AR process. We show the bootstrap is asymptotically valid under general conditions.
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ML estimators of parameters of the noise distribution are asymptotically independent of the AR and all-pass
estimators, and have a multivariate normal limiting distribution.

Heavy-tailed AR processes with infinite variance are discussed in Section 2, and we give steps that can be
taken in practice for AR model identification. In Section 3.1, we look at limiting behavior of the Yule-Walker
estimators and show that a consistent estimate of AR model order can be obtained by minimizing AIC. In
Section 3.2, we give limits for sample correlations of the Yule-Walker residuals, and absolute values and
squares of the residuals. The sample correlations of the residuals converge in probability to zero but, in the
case of a noncausal AR process, sample correlations for absolute values and squares have nonzero limits.
Hence, these sample correlations can be used to detect all-pass dependence in the Yule-Walker residuals
and, consequently, to identify noncausal AR processes. In Section 3.3, we consider simultaneous stable ML
estimation for the causal AR parameters, all-pass model parameters, and parameters of the noise distribution,
and we develop bootstrap confidence intervals which can be used for all-pass order selection. Proofs of the
lemmas used to establish results of Sections 3.1-3.3 can be found in the Appendix. In Section 4.1, we examine
the performance of the order selection procedures for finite samples via simulation and, in Section 4.2, the
model identification techniques are used to fit a noncausal AR model to the natural logarithms of volumes
of Wal-Mart stock traded daily on the New York Stock Exchange, a series also modeled as noncausal AR in

Andrews et al. (2009).

2 Preliminaries

Let {X,} be the AR process which satisfies the difference equations

6o(B)X, = Z, (1)

where the AR polynomial ¢o(z) == 1 — ¢o12 — -+ — ¢op,27° # 0 for |z| = 1, B is the backshift operator
(B¥Xy = X4k, k= 0,£1,42,...), and {Z;} is a sequence of independent and identically distributed (iid)
random variables. We will assume for now that the distribution for Z; is in the domain of attraction of
a non-Gaussian stable law with exponent ag € (0,2), which is less stringent than the assumption that Z;

is ap-stable. Hence, P(|Z;| > z) = z~* L(z) for some function L(-) which is slowly varying at oo (i.e.,
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lim, oo L(sz)/L(z) = 1 Vs > 0), and lim,_, P(Z; > x)/P(|Z:] > x) = p for some p € [0,1] (Feller, 1971,
page 312). Tt follows that E|Z;]® < oo for all § € [0,a0) and E|Z;|® = oo for all § > ag, and so the noise
process {Z;} has infinite variance. We further suppose that ¢op, # 0, so po represents the AR model order.

Since {Z;} is non-Gaussian, there are no alternative AR representations for {X,;} with iid noise (Breidt
and Davis, 1992). In addition, because ¢o(z) # 0 for |z| = 1, the Laurent series expansion for 1/¢g(z),
1/¢o(z) = Z;’;_DO ;27 exists on some annulus {z : a™! < [2] < a}, @ > 1, and the unique strictly
stationary solution to (1) is given by X; = Ejoi_ oo WjZi—j, where the 1;’s are geometrically decaying as
j — oo (Brockwell and Davis, 1991, Chapter 3). If ¢o(z) # 0 for |z| < 1, then ¢; = 0 for j < 0, and so
{X;} is said to be causal since X; = Z;io ¥ Zy_j, a function of only the past and present {Z;}. On the
other hand, if ¢g(z) # 0 for |z| > 1, then X; = E;io Y_;jZy+j and {X,;} is a purely noncausal process. In the
purely noncausal case, the coefficients {1;} satisfy (1 — @12 — - — Pop,2P°) (o +¥—127' +---) = 1, which
implies that ¥ =9¥_1=---=Y1_p, =0and ¢Y_,, = —¢ap10. From Cline (1983, page 12), lim, oo P(| X¢| >
x)/P(|Z:] > x) = Z;ifoo [;]%°, and so it is also the case that E|X;|® < oo for § € [0,p) and E|X;|° = co
for § > ag.

Let ro > 0 represent the number of roots of the AR polynomial ¢g(z) = 1 — 12 — - -+ — ¢op,2P° that
lie outside the unit circle in the complex plane, and let sg > 0 represent the number of roots of ¢g(z)
inside the unit circle. Since ¢g(z) # 0 for |z| = 1, it must be the case that ro + so = po, and there exist

a causal AR polynomial 02; (z) of order ry and a purely noncausal polynomial 6§(z) of order s for which

do(z) = 93(2’)05 (z). Now suppose 05(z) := 1—0p12— - -—bps,2°° denotes the causal spth-order AR polynomial
whose roots are the reciprocals of the roots of the noncausal polynomial 65(z), so 6§(z) = —HgstzSOHS(z’l)
(if so =0, Ogo := —1). In addition, we let n9(z) :==1 —np12 — - - - — Nop, 2P° denote the causal poth-order AR

polynomial 03(2)05(=). Since ¢o(z) = 03(2)05(=){05(2)/05()} = mo(2){(—05s)2™05(=7")/05()}, the AR
model equation (1) can be expressed as

BB
B %o X =27 2

or
05(B)

B)X; =U,, with U=
o(B)Xe=Ue with U= =g, e 57

Z. (3)

Since the series {U;} is an ARMA process for which all sg roots of the AR polynomial are reciprocals of
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roots of the MA polynomial and vice versa, it is an all-pass process. It, therefore, follows that {X;} has a
poth-order causal AR representation with innovations satisfying an all-pass model of order sg > 0.
Non-Gaussian all-pass processes of order greater than zero are known to be dependent, but, when
the second-order moments are finite, all-pass series are uncorrelated (Breidt et al., 2001; Andrews et
al., 2006; Andrews et al., 2007). Correlations for {U;} do not exist in this infinite variance case. How-
ever, if Uy = Z;io m;j Zy4j is the infinite-order moving average representation for {U;}, then from Davis and

Resnick (1985a), the sample correlations

Z?:thl (Ut — [ty Ut]) (Ut—h -t Ut])
iy (U = [ 300, Uh)?

asn — o0

pu(h) =

oo . .
ijo T Tj+h

£
Z;io WJQ'

for any non-negative integer h. Following (3), the coefficients {7;} can be obtained from the Laurent series
expansion for 08(2)/[—9&%28008@_1)]. Since 05(z) = —9&%2’3098(2’1) # 0 for |z| > 1, the moving average
representation for {U;} is purely noncausal and, from Brockwell and Davis (1991, Chapter 3), the values
of {m;} are geometrically decaying as j — co. Note also that E;io mimj+n = 0 for all h > 0, since, if the
iid noise {Z;} were N(0,0?) (instead of in the domain of attraction of a non-Gaussian stable law), then
the all-pass process {U;} would be uncorrelated with Cov{Us, Usy1} = E{UUss1} = 02 Z;io mTi4n = 0.
It follows that gy (h) L 0 for h > 0, and so the infinite variance all-pass series {Ut} in (3) might also be
described as “uncorrelated.”

Given a realization of length n from (1), {X;},, we recommend the following steps for AR model

selection:

1. Estimate AR model order py by minimizing the AIC statistic, computed using Gaussian likelihood,

and using Yule-Walker, estimate the parameters of the poth-order causal AR model no(B)X; = Uy.

2. Look at sample correlations of the Yule-Walker residuals, and absolute values and squares of the
residuals. If the residuals and their absolute values and squares appear uncorrelated, this suggests
{U:} is iid noise, and so {X;} is a causal AR process. On the other hand, if the residuals appear
uncorrelated yet dependent (i.e., absolute values and squares appear correlated), this indicates {U;} is

an all-pass process of order sg > 0.
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3. If sg appears positive, simultaneously estimate the causal AR parameters, the all-pass parameters, and
parameters of the iid noise via stable ML, and obtain bootstrap confidence intervals for the all-pass
parameter values. The confidence intervals can be used to estimate the all-pass order sg, which equals

the order of noncausality for the AR process {X,}.

Once an appropriate AR model order and an appropriate order of noncausality have been identified for {X}},

estimates of the parameter values can be obtained via ML.

3 Asymptotic Results

The three steps for AR model identification in Section 2 are discussed in further detail in Sections 3.1-3.3,
along with corresponding asymptotic theory. We consider Yule-Walker estimation and AR order selection in
Section 3.1 and, in Section 3.2, we show that, for noncausal AR processes, sample correlations for absolute
values and squares of the Yule-Walker residuals have nonzero limits, so these sample correlations can be
used to identify noncausal series. Results in Sections 3.1 and 3.2 are obtained under the assumption that the
distribution for the iid noise {Z;} is in the domain of attraction of a non-Gaussian stable law with exponent
ap € (0,2). In Section 3.3, we consider stable MLE and make the more stringent assumption that the {Z,}

are non-Gaussian ag-stable.

3.1 Yule-Walker Estimation and Autoregressive Order Selection

In this section, we give a limiting result for Yule-Walker estimators of the parameters ng1,...,nop, in the
causal AR equation 7o (B)X; = Uy in (3), and show that a consistent estimate of the AR model order py can be
obtained by minimizing Gaussian-based AIC. From Section 8.1 in Brockwell and Davis (1991), given observed
values of {X;}7_,, for k > max{po, 1}, the Yule-Walker estimate of 1y (k) := (01, - - - , Topo, 0, - - -, 0) € IR¥ is
yw(k) = Cl:lf'ka with Ck = [ - j|)]i,j6{1,...,k}7 ry = W(j)]je{l,...,k}y yG) =
Tty (X — X)(X—j — X), and X := n=13°7 | X;. The following theorem shows that these esti-

1/2_consistent and can converge uniformly over k. When the AR process {X:} is causal (i.e.,

mators are n
when so = 0), this result holds by Corollary 6 in Knight (1989), but here it is not necessarily the case that

so = 0. Note that || - || represents the Euclidean norm.
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Theorem 1. If K(n) = O(n®), with 0 < § < min{1/2,1 — ap/2}, then

f P
\/ﬁpog?g?(n) 7y w (k) = no ()|l = 0 )

as n — oQ.

Proof. The proof of this result is similar to that of Corollary 6 in Knight (1989). For k > max{py, 1}, let

7)]j€{1,...,k}7 denote the least-squares estimate of 1 (k). From (3), X; = o1 X¢—1 + - - + NopeXt—p, + Uy for

all t, so

G (1s(8) — mo(k)) = [ S (vt X (1 - Zn>> (X0 - 7)]

t=k+1 i=1

and, by Lemmas 1-3 in the Appendix, for some sufficiently large & < 2/,
max,,<k<K(n) n2=5|Cr (1.5 (k) — no (k)| Eo. Using an argument similar to the one used for the proof
of Theorem 5a(ii) in Knight (1989), it can be shown that min, << g (n) minjy|=1 n~"v' Cpv Lt oo, and
therefore \/nmax,,<p<x(n) 115s(k) — 19(k)]| £ 0. Since, by the Corollary in Davis and Resnick (19854,
page 193), nl=* ZtK:(ln) (X; — X)? 50 for large k < 2/ay, it follows from the proof of Theorem 5(b) in

Knight (1989) that \/n max, <p<x () [|Myw (k) — Nps(k)|l L0, and so the result of this theorem holds. [

When a9 < 1, and when a9 > 1 and EX; = 0, it can be shown that (4) holds for Yule-Walker es-
timators computed using the unadjusted sample covariances ¥(j) = n~! Z?:jﬂ X X;—j, instead of the
mean-corrected sample covariances 4(j). The proof is similar to that of Theorem 1. It is also possible
to obtain the rate of convergence of 7y (k) for fixed k, since, following Davis and Resnick (1986, Sec-

tion 5.4), Ny (k) —ng(k) = Dy (P, — pi) +0p (P, — Pi) , where Dy, is a nonzero, k x k matrix of constants,

k= O/ A0 jeqr,rys pr = (002 oo Yetbe—3) /(002 _ oo ¥i)ljeqn,... iy, and the coefficients {1} are
from the expansion X; = E;’;ioo ¥jZ;—j. By Davis and Resnick (1985a), p, it Pi, 50 fiyw (k) has the
same rate of convergence as the vector of sample correlations p,,. For fixed k, Davis and Resnick (1985b)
give the limiting distribution for p, when E|Z;|* < oo, and the case when E|Z;|* = oo is considered in
Davis and Resnick (1986). For instance, when Z; has an ap-stable distribution (in which case E|Z|%° = 00),
it follows that n(fyyu (k) — ny(k)) = Op(1) when ag < 1, (n/Inn)(fyy (k) — ny(k)) = Op(1) when o =1

and the distribution for Z; is symmetric, and (n/Inn)t/20(fyy, (k) — no(k)) = Op(1) when ag > 1.
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Following Knight (1989), for integer-valued k > 0, we compute Gaussian-based AIC via AIC(k) =
nlné: + 2k, where 63 = 4(0) — £, Ay (k) I{k > 0} is the Yule-Walker estimate of innovations variance and
I{-} represents the indicator function. By Theorem 2, the minimum AIC estimate of AR model order is
consistent for po. Note that this estimate, p, is obtained by minimizing AIC over the integers 0, ..., K(n),

where it is possible for K(n) — oo as n — oo.

Theorem 2. If K(n) = O(n?), with 0 < 6§ < min{1/2,1 — ag/2}, and p = arg Ming << i (n) AIC(K), then

. P
D — po as n — oco.

Proof. This result follows directly from Theorem 1 and the proof of Theorem 7 in Knight (1989). See

Knight (1989, pages 835-836) for details. O

Theorem 1 and results in Knight (1989) can be used to show, more generally, that p :=
arg ming< < g (n)(nIn 62 + hpk) is consistent for py if hp,/n — 0 as n — oo and h,, > constant > 0 for
all large n. When h,, = 2, p equals p and, when h,, = Inn, p minimizes the Bayesian information criterion
(BIC). We, however, recommend that in practice one use p instead of p with h,, — 0o, to reduce the risk of un-
derestimating po for finite samples. In addition, note that one can also use the sample partial autocorrelation
function to identify an appropriate AR model order, since, in the AR case, the underlying theoretical partial
autocorrelations are zero at lags greater than py (see, for example, Brockwell and Davis, 1991, page 100).
However, in the infinite variance case, quantiles of the limiting distribution for sample partial autocorrela-
tions cannot be computed theoretically, but only via simulation or numerical integration (Adler et al., 1998).

Hence, minimizing AIC can be a simpler way to estimate py.

3.2 Identifying a Noncausal Autoregressive Process

If the AR process {X;} is causal (i.e., so = 0), then the causal polynomial ny(z) in (3) equals the AR
polynomial ¢o(z) in (1), and the uncorrelated all-pass series {U;} is equivalent to the iid noise process {Z;}.
Hence, in the causal case, estimates of the AR model parameters ¢ := (o1, - - -, Pop,)’ can be obtained using
Yule-Walker estimation, and the corresponding residuals U = Xy — myw®) X1 — - — s yw (D) Xe—p,

t=p+1,...,n, appear iid. On the other hand, if {X;} is noncausal, {U;} is an all-pass process of order
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so > 0 and, therefore, the Yule-Walker residuals {Ut}f:ﬁ 41 appear uncorrelated but dependent. In this
section, we give limits in probability for sample correlations of the Yule-Walker residuals and absolute values
and squares of the residuals. We show that, while the residuals are in general uncorrelated, dependence in
the noncausal case can be detected in practice by looking at correlations of the absolute values and squares.

Let py(-) denote the sample autocorrelation function for the Yule-Walker residuals {f]t}?:ﬁ 41+ So, for

any non-negative integer h,

Zt h+p+1(U Un )(Uf h_U )
Y1 (U = Tn)?

with U, := (n —p)~! E?:ﬁﬂ U;. And let py+(-) and py-(-) represent the sample autocorrelation functions

pu(h) =

?

for {UQL}I’J:ﬁJrl = {|U; — Un|}f:ﬁ+1 and {Uf }Hp, g = {(U, - Un)Q}f:ﬁH, the absolute values and squares
of the mean-corrected residuals. Limits for these sample correlations are given in the following theorem.
Recall, from Section 2, that {7;}72, are the coefficients in the infinite-order moving average representation

Up = 32520 T Zeyj for {Us}, and that 377°  mjmj4n = 0 for all h > 0.
Theorem 3. For any positive integer h, as n — oo,

(i) pu(h) =0,

(ii) put(h) = 32 lmjmiinl / S50 w3, and
(iti) pu-(h) 5 3o mims ) S52gm)-

Proof. (i) For any € > 0, P(|pu(h)] > €) < P{|pu(h)| > e} N {p = po}) + P(p # po). Since, by Theorem 2,

P(p # po) — 0, we can, therefore, establish result (i) by showing that

E?:h+po+1[Ut(77YW(PO)) - Un('f]YW(po))][Utfh(ﬁYW(pO)) - Un(ﬁYW(PO))] 5} 0 (5)
Z?%po+1[Ut(77YW(PO)) — Un(ftyw (po))]? ’

where, for n = (n1,...,mp,)" € RP°,
Ui(n) ==Xy —mXi1 = = npe Xi—po (6)

and U, (n) := (n —po)~* > oi—pos1Ut(n). Note that U; = Ui(no(po)), and let a, = inf{z : P(|Z;] > z) <
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n~'}. For any non-negative integer ¢, we consider

a,” Hi“ Uy w (20)) = Tn (v (90))] [Ue—e ity (90)) = Un(ityw (p0))] — Url—e} (7)
= qa° t_gn:ﬂ [U(f1yw (o)) Us—e (it w (o)) — Ut (19(po)) Ue—e (116 (p0))] 8
—a, Un iy w (o)) t_gn:ﬂ [Ut(Aryw (po)) + Ut—e(fryw (po))] (9)
+a,*(n— € —po) [Un(ﬁiw(po))}z- (10)

Using the mean value theorem, (8) equals

('f]YW(pO)) o 770(100))/ (1,;2 Z 8[Uf(n;(po)g[j’f—e(n:L(pO))]7

t=0+po+1

where 1} (po) lies between vy (po) and m4(po) and, following (6),

OlU(n)Us—
W = _Xt*j(Xt*f - ant*ffl - npoXt*Z*PO) - thzfj(Xt - antfl - npoXt*po)
j
for j € {1,...,po}. By Theorem 1, 9}y (po) K 1o(po) and, by Theorem 4.2 in Davis and Resnick (1985a),
a,? > tipor1 Xt—jXi—k = Op(1) for any integers j, k. It, therefore, follows that equation (8) is o,(1). From

the proof of the Corollary in Davis and Resnick (1985a, page 193), a; ' n= /23" | | X £0, so

D Uliyw(®o)) = Y [Xe = iiyw (po) Xem1 = -+ = g, yw (p0) Xi—po) = 0p(ann'/?),
t=po+1 t=po+1

and hence (9) and (10) are o,(1). Therefore, equation (7) is 0,(1) for any non-negative integer £. By Theo-
rem 4.2 in Davis and Resnick (1985a), we also have a;Q(ZLPOH UZ, Z:¥h+po+1 UiUs_1) 5

V(Z;’;O W?,Z;io TjTi+h), with the random variable V' € (0,00) almost surely, and so the left-hand side

of (5) converges in probability to E;‘io TiT+h/ Z;‘io 7732' =0.

(ii) Using a proof similar to that of (i), it can be shown that

n

it Y Uy w (o)) = Tl Gryw o))| [UL (tyaw (00)) = Ty (0))] = [0l } 5 0
t=C+po+1

for any non-negative integer ¢, where for n € IR, Uf(n) = |U(n) — Un(n)| and
Ui(n) = (n—=po) " Y1 U/ (n). In addition, using an argument similar to the proof of Theorem 4.2

in Davis and Resnick (1985a), a,*(321_, 11 U7, 2401 [UiUs—l) 5 VIS 202, Y02 [mimjsnl), with
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VT e (0,00) almost surely. Hence,

S ispyr UL 00) = T ity (o)) | [V ity 0) = D @) 552w

™

E?:PoJrl UtT(f?YW(po))—Ui(ﬁyw(po))r 2;10 32 7

and so the result holds.
(iii) Following the proof of Theorem 4.2 in Davis and Resnick (1985a), it can be shown that, for any
integers j, kI, and m, ap, 2 >0 | Xe—j Xe—kl, ap® > op ) [ X j Xk Xoy], and an * 300 1 Xe— i Xe— e X1 X —

are all O,(1). It follows that

n

at 0 {0 Gryw () = Tn Gty (00)] [V ey (o)) = Ty (o)) | = URUZ, | 5 0
t=L+po+1

for any non-negative integer ¢, where U7 (1) := [Uy(n) — Un(n)]? and U, (1) := (n — po) ! E:’ZPOH Ut (n).
Using the proof of Theorem 4.2 in Davis and Resnick (1985a), it can also be shown that
a1 Ut e hipor1 UL UE 1) LN V(3520 s > jeg T35y ,), Where the random variable V* €

(0, 00) almost surely, so the result (iii) holds. O

If the AR process {X,} is causal, and so the all-pass process {U;} is equivalent to {Z;}, it must be the
case that mp = 1 and m; = 0 for j > 0. Therefore, when {X,} is causal, the limits in Theorem 3 are all zero
for h > 0. However, if {X;} is noncausal, {U;} is dependent, which implies that multiple values of {7;} are
nonzero, and so the limits in (ii) and (iii) must be positive for some h > 0. Since the {7;} are geometrically
decaying as j — 0o, these limits are roughly geometrically decaying as h — co. So, in practice, to identify a
noncausal AR series, one can look at sample correlations for {U: Hepy1 and {Uf H—pi1, and compare them
to confidence bounds for the sample correlations computed under the assumption that {U;} is independent.
These confidence bounds could be obtained by generating multiple series containing n — p independent values
from the empirical distribution of {Ut}f:ﬁ +1, and then computing sample correlations for the absolute values
and squares of the mean-corrected series. Or, if a stable distribution appears appropriate for the {ﬁt}, one
could model the Yule-Walker residuals as iid stable (ML estimation for the parameters of iid stable random
variables is discussed in DuMouchel, 1973), and then simulate sample correlations for absolute values and
squares of n — p mean-corrected iid stable random variables with the estimated stable parameter values.

Using a proof similar to that of Theorem 3, it can be shown that sample correlations for {|U;|} and {U?}

have the same limits as those given in Theorem 3(ii)—(iii) for sample correlations of {U;} = {|U; —U,|} and
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{U;} = {(Ut —Upn)?}. We are focusing on absolute values and squares of the mean-corrected residuals since,
in practice, for fixed sample size n, dependence in the residuals can often more easily be detected using {U,;r}
and {U;}. For instance, if the observed values of {X;}}~; are all positive or all negative, as is the case with
the Wal-Mart log-volume series discussed in Section 4.2, then the corresponding Yule-Walker residuals {Ut}
can also be all positive or all negative, which means that the sample correlations for {|U;|} and {U;} are

identical.

3.3 Maximum Likelihood Estimation

In this section, we consider ML parameter estimation. To obtain the limiting distribution for the estimators,
we impose further restrictions on the noise, and assume Z; is non-Gaussian stable with exponent ag € (0, 2),
parameter of symmetry Sy € (—1,1), scale parameter oy € (0,00), and location parameter py € IR. When
the {Z;} are iid ap-stable, the AR random variables X; = Zjoi_ oo ¥jZ;—j also have a stable distribution with
exponent oy (Samorodnitsky and Taqqu, 1994, Properties 1.2.1 and 1.2.3). We use ML to simultaneously
estimate the causal AR parameters 7g1, . .., 7op,, the all-pass model parameters 61, .. ., 0ps,, and parameters
of the stable noise distribution.

The stable characteristic function for Z; is given by

exp {—0§°[s|* [1 4 iBo(sign s) tan (Z32) (|ogs|' 7 —1)] +ipes}, o # 1,
wo(s) := E{exp(isZ;)} =

exp {—oos| [1 +ifo2 (sign s)In(oo|s|)] +ipos}, ap =1,
(11)

and so, if ¥g := (o, Bo,00,p0)’, the density function for the noise can be expressed as f(z;9) =
(2m) =1 [7°_exp (—izs)o(s) ds. No general, closed-form expression is known for f, however; although com-
putational formulas exist that can be used to evaluate f (Nolan, 1997; McCulloch, 1998). It can be shown that
f(z:90) = 05 fog ' (2 = po); (a0, o, 1,0)), f(2; (a0, B0, 1,0)') = f(=2; (a0, B0, 1,0)"), f(:; (a0, Bo, 1,0))
is unimodal on IR (Yamazato, 1978), and f(z; («, 3,1,0)") is infinitely differentiable with respect to (z, o, )
on IR x (0,2) x (—1,1). There are alternative parameterizations for the stable characteristic function ¢q
(Zolotarev, 1986), but we use (11) so that the noise density function is continuous and differentiable with

respect to not only z on IR but also («a, 8, o, )’ on (0,2) x (—1,1) x (0, 00) X (—00, o). For additional proper-
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ties of stable distributions/densities see Gnedenko and Kolmogorov (1968), Feller (1971), Zolotarev (1986),
and Samorodnitsky and Taqqu (1994).

To obtain the log-likelihood function, we consider model equation (2), which can be expressed as

10(B) [—05s B05(B~1)] Xi = 05(B) Zy, (12)
where 79(2) =1 — 1912 — -+ — Nop, 2P° and 05(z) = 1 — p12 — -+ — Ops,2°°. Letting 2 = —00sy Zt—po+so»
which is stable with parameter vector 7o := (g, —(sign 6os, ) B0, [G0s, |00, —Boso 140)’, and rearranging (12),
we have the recursion

2zt = 01241+ + Gopozt_po + UQ(B)BPOHS(B_l)Xt, (13)
where 6y; := 0 for j > so. For arbitrary causal AR polynomials n(z) = 1 —mz —--- — np2? and 0(z) =
1—6012z—---—0,2P, an analogous recursion can be defined as

0, t < 2p,
z(n,0,p) = (14)

012-1(n,0,p) + -+ Opzt_p(n,0,p) + n(B)BPO(B~1)X;, t=2p+1,...,n,
with 1 := (m1,...,mp) and 0 := (01,...,0,). I 1y := (No1,-..,Nop,)" and B¢ := (6o1, .. .,00p,) , nOte that
{2t(n9,00,p0) }¥=2p,+1 closely approximates {z:}y s, ,1; the error is due to the initialization with zeros.
Now, if V; = 65(B)X: (in which case, V; = Zt/GS(B) also, see Section 2), then from Breidt et al. (1991), the

joint density function for (Vi,...,Vy,, X1,...,X,) equals

hi(Va, oo, Vi) |G T F(Xe = dorXe1 =+ = Gopo Xe—po3 Do) | ha(03(B) X —so1, - -, 05 (B) X0)
t=ro+1
= (Vi Vo) |Co T £(Ze:90) | ha(08(B) X1, - -, 05 (B)Xon),
t=ro+1

where hy and hsy are the joint densities for (V4,...,V,,) and (HS(B)Xl, e HS(B)XSO) respectively and do

not depend on n, and InC),, ~ —nln|fys,| (~ indicates the ratio of the two sides converges to one as n —

00). Letting ¢ = (m1,...,Mp, 01, ..,0p,T1,...,7a), Wwith 7 = (7,...,7) = (o, —(sign 6,)0, |0s|o, —0sp)’,

s =max{0 < j <p:6; #0}, and 0y = —1 (since fpo = —1), it follows that for large n, the log-likelihood of
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¢ can be approximated by

n

L) = > Inf(-2(n,6,p)/0s(a,B,0,p)) — In 6]

t=2p+1

. t 707 98 /
= 3 s (BB o oy )|

t=2p+1

> Inf(z(n,6,p);7), (15)

t=2p+1

where the values of {z:(n, ,p)}_o,,1 are computed recursively via (14).
Given observed values {X;}? ; and the minimum AIC estimate of AR model order p, we can estimate
Co = (n}), 0y, 7)) by maximizing £ with respect to ¢ at p = p, using the Yule-Walker estimate 7}y-y (D)

of n, as a starting value for 7 when doing the optimization. The order of noncausality for {X:}, so, can

then be estimated by computing confidence intervals for the all-pass parameters 8y = (o1, ..., 00p,) =
(Bo1, - -, 00s050,...,0). In addition, since ¢o(2) =1 — ¢p12 — ... — Pop, 2P° = 770(2')(—9&%)3’3098(2’1)/98(3’),
given estimates p, §, and & of po, so, and ¢, a preliminary estimate of ¢q = (¢o1, ..., ¢op,) can be found

by canceling roots which are in both the numerator and denominator of

(1—inz = = p2?) (=0 )z (1= iz — - = 0527%)

(16)

For further model accuracy, ML can then be used to directly estimate ¢, (see Andrews et al., 2009, for
details), with the preliminary estimate used as an initial value for the optimizer. The limiting distribution
for ML estimators of ¢, = (0}, 0, T4)’ is given in Theorem 4, and afterwards we address confidence interval
calculation. But first, we need to introduce some notation and define a random function W. MLEs of
(mp, 0;)’ converge in distribution to the maximizer of W.

For u = (u1,...,up,) € R” and v = (v1,...,vp,)" € IRP?, define the sequence {c¢;(u, v)}, =0 so that

Yo ci(uv)zeg = 0 [(1/n0(B))ze-klkeqr,...p0) + V' I(1/65(B)ze—k — (1/65(B™"))zesnlret, oy (17)
70
Therefore, if the Laurent series expansions for 1/19(z) and 1/65(z) are given by 1/n0(z) = E;io vj2% and

1/05(z) = E;io x;jz’, then

oo o0 oo oo
Y oW v)zeg = —ur Y Yoo == Uy D ViFepe—g UL | D XgFo1- = Y XiFi4
J#0 j=0 =0 =0 =0

oo oo
+ e Upg § :ijt*PO*j - E :XthJrPoJrj )
=0 j=0
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and so ¢1(u,v) = —u1yo0 + v1X0, c—1(u,v) = —v1x0, c2(u,v) = —u1y1 — u2yo + v1ix1 + vaXxo, c—2(u,v) =
—U1X1 — V2Xo, etc. From Brockwell and Davis (1991, Chapter 3), {7;}52, and {x;}32, decay at geometric

rates, so for any u,v € IR”, {c¢;(u,v)};x0 is also geometrically decaying as j — £oo. We now introduce

Wav)=> > {lnf (Zkvi + [e(a0)]" 5000, |c; (u, V)5k1“1§1/a0?7'0) —Inf (Zk,j;To)}7

k=1 j#0

where
o {zp i}, is iid with 2 ; £ 2,
o Hag) = ([t~ sin(t) dt)
o {dx} is iid with P(dr = 1) = [1 — (sign s, )P0]/2 and P(0, = —1) =1 —P(d; = 1),
o I'y =FEy + -+ Ei, where {E} is an iid series of exponential random variables with mean one, and
o {2}, {0k}, and {E}} are mutually independent.

Note that ¢(ap) = limy— 0o 2*°P(|2¢] > )/ (|00, |00)* and [1—(sign os,)B0]/2 = limy 00 [P(2e > ) /P(|2¢]| >
x)] (Samorodnitsky and Taqqu, 1994, Property 1.2.15). Also, from the proof of Theorem 3.1 in Andrews et
al. (2009), where a function similar to W is considered, W (u, v) is finite for all u, v € IRP° and has a unique
maximum almost surely.

In the following theorem, we give the nondegenerate limiting distribution for ML estimators of ¢, =
(b, 0,0’

Theorem 4. There exists a sequence of mazimizers C ;. = (Wyyp» 93\4L,+']\/[L)’ of L(-,po) in (15) such that,

as n — 0o,
1/ ([ L 1/a0 (P L 1/2/ 4 L -1
n (A — M) = &y, n(Omr —00) = &y, and n/T(Turp —To) = Y ~ N(0,I77(19)), (18)

where & = (&,&) is the wunique mazimizer of W(.,-), & and Y are independent, and

I(1) := — [B{0*In f(2¢;T)/(07:07;)}] i,j€{1,...,4}"

Proof. For u,v € IR”® and w € IR*, let

W (u, v, w) = L(Co + (n7 /0w, n= o0y .= 2w!) pg) — £(Cospo), (19)
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n

Wi(u,v,w) = Z Inf | 2 +n~t/ Z ci(u,v)zi_j;To + - In f(z;710) ], (20)
t=2po+1 Jj#0 \/ﬁ

and

n

Wr(a,v,w) = Z Inf | 2z +n=Y/ Z ci(u,v)ze_j;mo | —Inf (2;70) +
t=2po+1 Jj#0

w’ Oln f(z4;70)
vn or

By Lemma 4 in the Appendix, W, (-,,-) — W}

T(,+,-) = 0p(1) on C(IR2P0+4), the space of continuous func-

tions on IR?P°** where convergence is equivalent to uniform convergence on every compact subset, and, by
Lemma A.5 in Andrews et al. (2009), Wi (u,v,w) — W, (u,v,w) + w'I(T¢)w/2 = 0,(1) on C(IR*****). In
addition, following the proof of Theorem 3.3 in Andrews et al. (2009), where a similar result is established,
it can be shown that W*(u,v,w) A W(u,v) + w'N on C(IR*°™) with N ~ N(0,I(7¢)) independent
of W(-,-). Therefore, W, (u,v,w) A W(u,v) + wN — wI(1o)w/2 on C(IR**°*™). Since & = (£,,&,)
uniquely maximizes W (-,-) almost surely, and Y = I"!(7¢)N ~ N(0,I"!(7()), which is independent of
W, uniquely maximizes w'N — w'I(19)w/2, by Remark 1 in Davis et al. (1992), there exists a sequence
of maximizers of W, (-,-,-) which converges in distribution to (&;,&,,Y). Because £({,po) — L({g,P0) =

W, (n'/%0 (g —ng),n'/ (0 — 04),n'/?(T — T()), the result of this theorem holds. O

Although the MLEs (,,; maximize £(-, pg), note that P({,,; maximizes £(-,p)) — 1 as n — oo, since,
by Theorem 2, P(p = pp) — 1. Note, also, that the estimators 7,7, of 79 have the same limiting normal
distribution as ML estimators in the case of observed iid stable noise {z;}7-; (DuMouchel, 1973). Values of
the limiting covariance matrix I=1(-) can be found in Nolan (2001) for different stable parameter vectors.

Since the forms of the limiting distributions for 7,,; and 6,7, in (18) are intractable, we recommend
using the bootstrap to examine the distributions for these estimators. Andrews et al. (2009) give a bootstrap
procedure for examining the distribution for MLEs of the AR parameters ¢y = (¢o1,- - -, Pop,)’; We consider
a similar procedure here. Given observations {X;}7_, from (1), 7, and 87, from (18), and corresponding
residuals {z (9,7, O, P0) }—ap,+1 Obtained via (14), the procedure is implemented by first generating an

my,

iid sequence {z;};"% from the empirical distribution for {z; (7,1, éML,po)}?ZQPOH. A bootstrap replicate

X5, .. X;

., is then obtained from the estimate of model equation (13)

iz (B)BP 65, (B~ X[ = 05,,(B)=,
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with Jarn(2) == 1 — f1,mp2 — -+ — Tipe,ML2P° and éﬁ/[L(z) =1- élyMLz — = HAPO,MLZPO (let zf =0 for
t¢{1,...,my}). Finally, with

0, t < 2p,
z;(n,0,p) =

0127 1(n,6,p)+ -+ 0p2;_,(n,0,p) +n(B)BPO(B~ )X}, t=2p+1,...,my,
forp = (m,...,mp) €RP and 0 = (6y,...,60,) € IRP, bootstrap replicates 7,, and é:nn of 7,7, and @1
can be found by maximizing Ly, (1,0, po) := Z:iwép0+1 In f(z(n,0,po); Tar) with respect to (n,0). The
limiting behavior of ﬁ,*nn and é:nn is addressed in Theorem 5. To give a precise statement of the results, we
let M, (IRP°) represent the space of probability measures on IR”® and we use the metric d,,, from Davis and
Wu (1997, page 1139) to metrize the topology of weak convergence on M, (IR"?). For random elements Q,, @
of M,(IRP), Q,, £ Qifand only if dp, (Qn, Q) £ 0 on R, which is equivalent to Jirro hy dQn R Jirro hj d@Q
on IR for all j € {1,2,...}, where {h;}72, is a dense sequence of bounded, uniformly continuous functions

on IRP?.

Ak

Theorem 5. If, asn — 0o, m, — 00 with my,/n — 0, then there exists a sequence of mazimizers (9, ,0,, )
of Ly, (po) such that P(my/*“*(dy, = ) € X1, X)) 5 P € ) and

Ak

Pmy/ "M (0, —Orp) € -|X1,..., X,) D P&, € 1) on M, (IR™).

Proof. The proof of this result is nearly the same as the proof of Theorem 3.4 in Andrews et al. (2009), so

we omit the details. O

Thus, my/ “M* (M, — Marg) and ma/ dME (é:nn —011), conditioned on {X;}7_,, have the same limiting

distributions as n'/(7),,; — 1) and n'/* (01 — 6,) respectively. If n is large, these limiting distribu-

tions can, therefore, be approximated by simulating bootstrap values of 'fﬁnn and @, and looking at the

My’

distributions for my/ “* (T, — Marr) and mb/ ML (é:nn — 01r1). In principle, one could also examine the

limiting distributions for n*/®°(71,,, — n,) and n*/* (851, — 6) by simulating realizations of W (-, -), with
the true parameter values n, 6o, and T replaced by estimates, and by finding the corresponding values of
the maximizer & = (&, &,), but this procedure is more laborious than the bootstrap. Confidence intervals

for the elements of i, and Oy can be obtained using the limiting results for 7,,; and Oy in (18), bootstrap
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estimates of quantiles for the limiting distributions, and the estimate &z of . For the elements of 7,

confidence intervals can be directly obtained from the limiting normal result for 7,7, in (18).

4 Numerical Results

4.1 Simulation Study

In this section, we describe a simulation experiment to study the accuracy of the order selection procedures
for finite samples. We did these simulations in R (http://www.r-project.org), using the fBasics: Rmetrics—
Markets and Basic Statistics package (http://www.rmetrics.org) to generate stable noise and evaluate stable
densities.

For each of 100 replicates, we simulated an AR series of length n = 500 with stable noise and found
p = arg ming. ;<5 AIC(k), the minimum AIC estimate of AR model order over the integers 0,1,...,5. We
then found the MLE 7 = (71, é;uL, 1) of ¢y by maximizing the log-likelihood £(¢,p) in (15) with
respect to ¢ at p = p. For the likelihood maximization, the Yule-Walker estimate 7}y (p) was used as the
starting value for 7, and we used 100 randomly chosen starting values for (8", 7). The log-likelihood was
evaluated at each of the candidate values, and then we reduced the collection of initial values to the eight
with the highest likelihoods. Optimized values were found using the Nelder-Mead algorithm (Nelder and
Mead, 1965) and the eight initial values as starting points. The optimized value for which the likelihood
was highest was chosen to be é mr- Lastly, the bootstrap procedure described in Section 3.3 was repeated
1000 times, with m,, = 150, in order to estimate the 2.5% and 97.5% quantiles for the distributions of the
elements of £, in (18). We used the estimated quantiles to compute 95% confidence intervals for the elements
of 8g = (fo1, - .-, 60s0,0,...,0), and sg, which corresponds to the order of noncausality for the AR process,
was estimated via § = min{0 < j < p: the C.I.s for 0o, k > j, all contain zero}.

We obtained simulation results for the causal AR(1) model with parameter ¢, = 0.5, the purely noncausal
AR(1) model with parameter ¢, = 2.0, and the AR(2) model with parameter ¢, = (—1.2,1.6)". The AR(2)
polynomial ¢g(z) = 1+ 1.2z — 1.622 equals (1 — 0.82)(1 + 2.0z), so it has one root inside and the other

outside the unit circle. For the stable parameter values 99 = (o, Bo, 00, t10)’, we considered «g € {0.8,1.5},
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Model Parameters P 8

(67 50 (1) Ho 0 1 2 3 4 5 0 1 2 3 4 5

¢y = 0.5 08 00 1 0 [0 93 2 1 0 491 4 1 0 1 3
(po=1,50=0) 08 05 1 010 94 1 1 1 3(]9% 0 0 1 1 3
1.5 00 1 0(0 8 2 6 1 3|9 4 1 3 1 1

1.5 05 1 o(o0 vw® 7 7 3 5|93 5 1 0 1 0O

¢y =2.0 0.8 0.0 1 0 ({0 93 3 1 1 210 949 2 1 1 2
(po=1,s0=1) 08 05 1 0(0 9% 2 2 0 00 97 1 2 0 O
1.5 00 1 0(0 v6 10 3 7 4,0 949 3 1 1 1

1.5 05 1 0(0 & 9 5 1 10 9 2 0 0 O

¢y =(-1.2,1.6) 0.8 0.0 1 o(0 1 8 7 4 6|0 61 25 5 4 5
(po=2,s0=1) 08 05 1 0/0 O 95 3 0 2|0 64 32 2 0 2
1.5 00 1 0|0 0 & 4 5 710 93 3 0 2 2

1.5 05 1 0(0 1 8 10 2 3|0 9 2 1 1 1

Table 1: The frequencies for estimates of the AR model order py and the order of noncausality sg.

Bo € {0,0.5}, o9 = 1, and py = 0. Simulation results appear in Table 1, where we give the frequencies
for values of p and §. Note that, for all models, py and sy were correctly identified most of the time, and

underestimation was rare.

4.2 Autoregressive Model Fitting

Figure 1 shows the natural logarithms of the volumes of Wal-Mart stock traded daily on the New York Stock
Exchange from December 1, 2003 to December 31, 2004. In Andrews et al. (2009, Section 4.2), the noncausal
AR(2) model

(1 —0.7380B)(1 + 2.8146 B) X, = 7, (21)

with {Z;} iid stable with parameter vector (a, 8,0, ) = (1.8335,0.5650, 0.4559, 16.0030)', was fit to this
log-volume series {X;}274. Andrews et al. used the Gaussian AIC statistic to determine that two is an
appropriate AR model order, and then maximized the log-likelihood of a stable AR(2) series to obtain
the parameter estimates, considering AR(2) polynomials with all combinations of roots inside and outside
the unit circle. Since the residuals from model (21) appeared approximately iid stable with parameter
(1.8335,0.5650, 0.4559, 16.0030), they concluded that (21) is a satisfactory fitted model for the series. By
Theorem 2, minimizing AIC is a consistent AR order selection procedure in the case of a noncausal, infinite

variance AR process, supporting the use of the AIC statistic for AR order determination in this example.

In this section, we demonstrate that the AR likelihood did not need to be maximized with respect to all
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Figure 1: The natural logarithms of the volumes of Wal-Mart stock traded daily on the New York Stock

Exchange from December 1, 2003 to December 31, 200.



Model Identification for Infinite Variance AR Processes 21

combinations of two roots inside and outside the unit circle; all-pass models could have been used to determine
that one is an appropriate order of noncausality for the fitted AR(2) model. All-pass models could also have
been used for preliminary AR estimation.

First of all, the Yule-Walker estimate 7jyy;,(2) equals (0.4425,0.0903)’, so the causal AR residuals are
given by U; = (1—0.4425B —0.0903B%)X;, t = 3,...,274. These residuals {U,} are shown in Figure 2, along
with sample autocorrelation functions for the residuals and absolute values and squares of the mean-corrected
residuals. The bounds in Figure 2(b)—(d) are approximate 95% confidence bounds which we obtained by
simulating 100,000 independent sample correlations for the values, absolute values, and squares of 272 mean-
corrected iid values from the empirical distribution of {Ut}fi% Based on the graphs in Figure 2, {Ut} does
not appear iid, but rather uncorrelated yet dependent, with sample correlations for the absolute values and
squares that are roughly geometrically decaying. Following Theorem 3, this suggests that a noncausal AR(2)
model is appropriate for {X;}.

To identify the appropriate order of noncausality, we maximized the log-likelihood £(¢,p) in (15) with

respect to ¢ at p = 2. The ML estimates are

CML = (ﬁ17ﬁ27é15é277ﬁl7722;723;724)/
= (0.4178,0.1326, —0.2553, —0.0351, 1.7942, 0.6 754, 0.1610, 7.1993)’ (22)
and, from 1000 iterations of the bootstrap procedure described in Section 3.3 with m, = 135, approxi-

mate 95% bootstrap confidence intervals for the all-pass parameters 6y, and g2 are (—0.3651, —0.2253) and
(—0.0705,0.0039). Since the second interval overlaps zero while the first does not, the all-pass order is one,
and so the appropriate order of noncausality for {X;} also appears to be one. Given p = 2, § = 1, and
the parameter estimates in (22), it follows from (16) that a preliminary estimate of the AR(2) polynomial
do(z) =1 — o1z — Po22” is

(1 —0.4178z — 0.132622)(0.2553 ) z(1 + 0.255321) (1+0.21092)(1 — 0.6287z)(1 + 3.9170z)
(1+0.2553z) (1+0.25532)

~ (1 —0.62872)(1 + 3.9170z).

The corresponding parameters could have been used as initial values when finding (21).
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Figure 2: (a) The causal AR residuals {U;}, and sample autocorrelation functions for (b) {U.}, (c) the

absolute values of mean-corrected {U;}, and (d) the squares of mean-corrected {Uy}.
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Appendix

In this section, we give proofs of the lemmas used to establish results in Section 3. We begin with Lemmas 1-
3, which were used in the proof of Theorem 1. As in the proof of Theorem 1, we assume the distribution
for the iid noise {Z;} is in the domain of attraction of a stable law with exponent ag € (0,2), and that
K(n) = O(n®) with 0 < § < min{1/2,1 — ag/2}. Additionally, when E|Z;| < oo, we let ux = EX; and

pu = EU;. Since, by (3), Uy = Xy — 901 X¢—1 — -+ - — Nopy Xt—po» it follows that gy = (1 =302 noj)px.

Lemma 1. (i) If ag € (0,1], then max, <i<k(n) n1/2’“||[2?:k+1 UsXi—jljeqt,.. iyl B0 for sufficiently
large k < 2/ and, (i) if g € (1,2), then max, <p<x(n) nl/Q_KH[Ef:k_H(Ut—uU)(Xt,j—ux)]j€{17...7k}H A

0 for large k < 2/ag.

Proof. (i) First, recall that X; = Z?i_oo Y Zi—; and Uy = Z;io 7jZ+j, where the coefficients {t;} and
{m;} are geometrically decaying as j — +oo. For j < 0, we let 7; = m_j, so that U; = Z?:_Oo 7w Zi—;. Now

suppose g < 1 and consider

1/2—k U X, -
Poﬁrl?ﬁal)g(n)n [Z t t‘]]
t=k+1 je{l )
— 1/2 K 7 7
Poﬁrl?é{il}g(n tzk: _E: Z_: T WYm L1241~ J— m‘|
Fli=reom=—oc Je{1, .k}
< 1/2 K ”3
- p0<r1?21}§ sz: _2: T 2 (23)
+1l=—00 je{l, .k}
n 0
+ max nl/2F T1WmZi1Z4—i—m 94

JE{1,...k}

We complete the proof of (i) by showing that (23) and (24) are o, (1) for sufficiently large x < 2/ap.

Since the Laurent series expansion for 1/ny(z) is given by E;io 7529, following (3), X; = E;io Y Ui—;
for all t. Therefore, because the all-pass process {U,;} is uncorrelated, if the iid noise {Z;} were N(0,c?)
(instead of in the domain of attraction of a non-Gaussian stable law), then for any j > 0, it would be the

case that
0 00 0
0= E{UtXt—j} = E{ Z Z 7'rlwmzt—lZt—j—m} = 02 Z 7Trlwl—j-
l=—00 Mm=—00 l=—0c0

It follows that, for any j > 0, Z?:_Oo m—; must equal zero, and so, for {Z;} in a stable domain of
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attraction,
n 0 n 0 —t4n
D SRS DU D TP/ NE S S Y
t=k+1l=—00 t=k+1l=—t+k+1 t=n+1l=—t+k+1
n —t+k —t+n
=Y Y Az Y S A2 (25)
t=k+1l=—00 t=n+1l=—t4+k+1

Since {7;} and {¢;} are geometrically decaying, there exist constants C; > 0 and 0 < D; < 1 such that

|75, [w;] < ClD‘lj‘ for all j, so the absolute value of (25) is bounded above by

Z Z ClD2z+JZ2+ Z Z ClD2l+jZ2 C1D1 <Z D2(t k)Z2+ Z D2(t n)Z2>

t=k+11l=t—k t=n+1l=t—n t=k+1 t=n+1

Hence, equation (23) is bounded above by

K(n)
K K(n 02 2 K(n 2 n
nl/2? (Di -+ Dj ( )) 1_11)2 D% Z Zt2+ Z D} (t—K( ))ZZ+ Z D} (t— )Z2
1 t=po+1 t=K(n)+1 t=n+1
C2D, ) - 2(t—K(n)) - 2(t—n)
1/2—k 1 2 2 t—K(n 2 t—n) 2
< P aTpynopy (P 2 A X piTRzs 3 pitz
t=po+1 t=K(n)+1 t=n+1

Now, choose k1 < 2/ap and A1 < ap/2 so that Ai(k1 — 1/2) is sufficiently close to (a/2)(2/a9 — 1/2) =

1 — /4 that we have A; (k1 —1/2) > 1/2, and let € > 0. Since A\; < 1, using the Markov inequality, we have

A1
p pl/2—r1 D2 %) Z2+ Z D2(t K(n))Z2+ Z D2(t n)Zz S M
t=po+1 t=K(n)+1 t=n+1
K(n)
< e hiph/2-m) D2A1 Z E|Zl|2A1+ Z D2A1(f K(n))E|Z |2)\1+ Z D2A1(f n)E|Z |2)\1
t=po+1 t=K(n)+1 t=n+1
2D
< G—AlnA1(1/2—Kl)E|Z1|2)‘1 <K(n)D%)\1 + ﬁ) )
1

which is o(1) because E|Z1|** < oo, K(n) = O(n%), and n*(1/2=51)+8 < pAi(1/2=61)+1/2 _y (- Therefore,
(23) is 0p(1) for some sufficiently large x < 2/ when o < 1.

Now consider (24), which is bounded above by n'/2=* ZjK:(n) oy 2?2700 Em#,j | T1Ym Ze—1 21— j— -
Since ap(2/ap — 1/2) > 3/2 when ap < 1, we can choose k2 < 2/ap and Ag2 < ag so that Aa(ke — 1/2) is

sufficiently close to ag(2/ap — 1/2) that 1 + 3 < Ag(ke — 1/2) < ap(2/cvg — 1/2). It follows that

0 o0
n?2(1/2752) [ () nE| 7 Zo |2 Z Z 71| — 0,

l=—00 m=—00

since n2(1/2=r2)4+3+1 (0 E|Z; Z5|** < 00, and 303 |T19m |2 < co. Consequently, (24) is also

m=—0o0

op(1) for sufficiently large x when ap < 1.
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(ii) We now consider the case ap > 1, and let Zy = Zy — EZ;, so Uy — ny = Z?:_DO ﬁth,j and

Xe—px =332 i Zej. Tt follows that maxp, <p<(n) 22" |1 psr (U = o) (Xe—j — 1x)]jeqa, iy |

is bounded above by

1/2 K
pogrl?gj)é(n lz Z Wlwl —Jj t l (26)
t=k+1l=-o00 je{l,...,k}
n 0 L -
+  max pl/rr Z Z Z TYm (thlZt—jfmI{|Zt7th7j*m|Snl/ao}
PoSk<K(n) t=1 I=— o0 mAl—j
~B{ 2 21{|2: 22| < nV/0}}) ] (27)
je{1,....,k}
n 0 N ~ - ~
max nl/Q_K Z Z Z ﬁlwm (Zt_th_j_mIﬂZt_th_j_m| > nl/o‘o}
Po<k<K(n) t=1 1= oo m#Al—j
~E{ %1 21{|2: 23] > n'/*}}) ] (28)
je{1,....,k}
+  max nl/?7" Z Z Z T1mZe—1Z4—j—m (29)
Po<k<K(n) t=1 l=—oco m#l—j

je{l,...k}

Following the same proof used to show that (23) is o,(1) for large £ < 2/ag, one can also show that (26) is
op(1) for large £ < 2/ap when oy > 1. So, to complete the proof of (ii), we show that, when ag > 1, (27),
(28), and (29) are o, (1) for sufficiently large x < 2/ay.

The expected value of the square of (27) is bounded above by

K(n) n 0
W STEISS S S A (L Ze w1 2 Za o] <0V}~ B{ 21 21{| 21 2] <m0} })
j=1 t=1l=—oc0o m#l—j

(30)

and, since {7;} and {1;} are absolutely summable, {Z;} is iid, and
E (2122I{|2122| § nl/o‘o} —E {2122I{|2122| S nl/ao}}) =0
(30) is bounded above by

~ 7 > ~ ~ ~ ~ 2
(constantyn* > K (n)n[E (1 Za1{|Z1 2] < 0V} ~ B{ i ZaI{| 1 2] < ¥/} })
+E‘ (21221{|2122| <n'/*}—E {2122[{|2122| < n”‘“’}})

X (22231{|Z~223| S nl/ao} — E {ZQZ:}I{|ZQZ~3| S nl/ao}}) H
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. . . . 2
2(constant)n1_2“K(n) nE (leZI{|leZ| < nl/ao} _ E{Z1Z21{|Z122| < nl/ao}})

IN

IN

2(constant)n' "2 K (n) nE (ZfZQQIﬂZlZﬂ < nl/ag}) . (31)

By Theorem 3.3(ii) in Cline (1983, page 80), the distribution for | Z; Z5| is in the domain of attraction of a sta-
ble law with exponent g, so, for z > 0, P(|Z1 Zs| > ) = £~* L (z), where L is slowly varying at co. There-
fore, by Karamata’s  Theorem (see, for example, Feller, 1971, page 283),
E(Z3Z31{|Z1Z5| < n'/@0}) ~ n?/®~1[,(n), for some slowly varying function L. Now, choose k3 < 2/aq
sufficiently large so that 2k3—1 > d 4 2/ag, which is possible because 6 +2/ag < 1 —ag/2+2/ap < 4/ap—1.
Since n'=2kst+2/e0 5 () and Lo(n)n=¢ — 0 for any € > 0 (Feller, 1971, page 277, Lemma 2), when x = r3,
(31) is o(1). Thus, for large k < 2/, (27) is 0p(1).

Now let Vi, ty.n = Zt, Zt,I{| Zt, Zsy| > 0/} — B{Z1Z21{|Z1Z5| > n'/*0}}. In order to prove that (28)
is 0p(1) for large s, we consider

K(n) n 2

12HZ ZZ Zﬂﬂﬁm‘/} Lit—j—m,n

j=1 | t=1l=—com#l—j

n) n

1-2k - =
= n E E E E E E E Wl17rlzwm1wm2wl—ll7t1—j—mlm‘/}/z—lz#&—j—mzm’

j=1 t1=1ta=11l1=—00la=—00 m1#l1 —j ma#la—j
[t1—l1¢{ta—l2,ta—j—m2}|N[t1—j—m1&{ta—l2,ta—j—m2}]
(32)

K(W) n n

1-2 .
+n E E E E E E E Ty Ty Prmy P ‘/;51711,151*j*mlyn‘/;fzflz,tzfj*mz,n

j=1 ti=1lte=1l;=—oc0lg=—0co mi#l1—j maF#la—j
[tl—lle{tQ—ZQ,tQ—j—MQ}]U[tl—j—M1€{t2—l2,t2—j—1’)’L2}]

(33)
and show there exist values of kK < 2/ag for which (32) and (33) are op(1). First, observe that the ex-
pected value of the absolute value of (32) is bounded above by (constant)n'=2*K (n) n?(E|Z1 Zo1{|Z1Z,| >
n!/@0})2. By Karamata’s Theorem, E|Z, ZoI{|Z1 25| > n'/®}| ~ nl/@~1Ls(n) for some slowly varying
function Lz. Therefore, since n!=2/8+0+2/a0 _, (0 we have n'=2% K (n) n?(E| 2, ZoI{| Z1 Zs| > n'/*}|)> = 0
and so (32) is 0, (1) for large k < 2/ag. Next, choose k4 < 2/ag and Az < /2 < 1 sufficiently large so that

A3(2k4—1) > §+1. This is possible because (ag/2)(4/ag—1) = 2—ag/2 > §+ 1. Since nrs(t1=2xa)+3+1
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E|Z,|*% < oo, and E|Z,| < oo,

n)\3(172/{4)K(n) nE|‘/1,2,n|2A3
N B o o 2
pre(1=264) () TZE’Z1ZQI{|Z122| > pl/o0) _ g {Z1Z2I{|Z122| = nl/ao}} ’ 3
~ ) _ o\ 4x
< 2n)\3(1—2f~c4)K(n)n |:(E|Z1|2)\3) + (E|Zl|) 3:|

— 0.

It follows that (33) is 0,(1) for large k < 2/ap.

Finally, we consider equation (29), which is bounded above by

K(n)K(n) 0 - .
R 3D DD I DL TS <34>
j=1 t=1 l=—oco m#l—j

and we choose k5 < 2/ag so that ks —1/2 > 2 — ag > 2J. Since nt/2=rs+20 _y () and E|2122| < 00, when

Kk = K5, the expected value of (34) is o(1), and therefore (29) is o,(1) for sufficiently large . O

Lemma 2. (i) If o« < 1, then max, <k<i(n) nl/z”‘“|7|||[zzl:k+1 Udjeqr,..epll  and
MAaX ) << K (n) n1/2_”’|7|||[2:':k+1 Xt—jljeqn,...kyll converge in probability to zero for sufficiently large x <
2/ag and, (i) if ag > 1, then maxpongK(n)nl/%ﬂY — ux Do (U = po)ljeqr,..wyll and
max,, <k< () N2 "X — px e (Xe—j — nx)]jequ,...kyll converge in probability to zero for large

KR < 2/0&0.

Proof. (i) When ag < 1, S0 |Uy] and 377, | Xy| are 0, (n'/®0*€) for any € > 0 (Davis and Resnick, 1985a,

Section 4). Therefore, if we choose kg < 2/aq sufficiently large so that k¢ +1/2 > § + 2/, then

[ 2": U, <n TR TY2K (p) <§”: |Xt|> <§:|Ut|> .

max n'/?7% | X| ’
t=k+1 je{l,...k}

po<k<K(n)

It can be shown similarly that max;, <u<x(n) nl/z”‘“|7|||[zzl:k+1 Xi—jljert,. iyl 50 for large k < 2/ayp.
(ii) This result can be established using the fact that, when ag > 1, X — ux = o,(n'/*~1%¢) for any

€ > 0 (Davis and Resnick, 1985a, Section 4). We omit the details. O

Lemma 3. When a9 < 1, nl/z”‘“K(n)nY2 o0 for sufficiently large k < 2/ap and, when oy > 1,

n'2 5K (n)n(X — px)? o for large k < 2/ay.
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Proof. When ag < 1, X = 0,(n'/®=1%¢) for any € > 0 and, when ag > 1, X — pux = 0,(n'/*~1+¢) for any

€ > 0. The results of this lemma follow. O

Finally, we give Lemma 4, which was used in the proof of Theorem 4. For the proof of this lemma, we
assume the distribution for the iid noise {Z;} is stable with parameter vector 99 = (ayg, 8o, 00, 120)’, since that
is also assumed in the proof of Theorem 4. It follows that the scale-transformed series {z;} = {—00s, Zt—po+so |

is iid stable with parameter 79 = (ag, —(sign 6os, ) B0, |00se |00, —00s tto)’-

Lemma 4. For W,, and W, defined in equations (19) and (20) respectively, Wy (-,+,-) — W, (-,-,) L0 on

C(IR*°*) as n — co.

But before proving this result, we look at partial and mixed partial derivatives for the residuals {z:(n, 8, p)}

n (14), which are used in the proof. First, for i € {1,...,p}, note that

8215(77’ oap) _ 07 t S 2p7 (35)
om;
0, 22M00) |y g 05 O0) _ prg(p-t)x, , t=2p+1,....n,
and
02(n,0.p) _ )" t=2p,
00: P 0 9 0
0,22t 1OR) oy g, Qs OLID) 4 oy (1,0, p) — (B)BPXeri, t=2p+1,...,n.

(36)
Since 1/05(z) = 1/(1 — 012 — - -+ — Oppy 2P°) = Z;io x;27 and, from (13), no(B)BP05(B~1) X, = 05(B)zt,

it we evaluate (35) and (36) at the true parameter values and then ignore the recursion initialization, for

te{2po+1,...,n}, we have

t—2po—1 t—2po—1

821‘/(7707 HOapO) 1 98(3) 24—
NI IR x;BPOS(B™ )X ;= — X Zpi i A —
I ; S o J:ZO Tno(B)" T T me(B)
and
t—2po—1
0z , 09,
M = Z Xj [2t—i—3 (M0, 60, p0) — 10(B) B Xi4i—;]
00; =~
t—2po—1 t—2po—1
05(B)
= Z ijt—i—j(n07007p0) - Z XjWZHi—j
j=0 7=0
Zt—i Zt4i

%(B) (B
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Hence, following (17), for u, v € IR”, u'[02¢(ng, €0, po) /0n] +V'[02:(n9, 00, p0) /00] = >~ cj(u,v)zi—;. In
particular, since {x;} is geometrically decaying, it can be shown that, for any 7' > 0, there exist constants

Cy > 0 and Dy € (0,1) such that

02(1, 0o, Dz4(ny, B0, S i
sup u’ Zt(no 0 Po) +v Zt(no 0 Po) . E Cj(u’ V)thj < CQD% Z D% (|X2p07j| + |22p07‘j|)
u,ve[-T,T]ro on 90 §£0 j=0

(37)

for all ¢ > 2py + 1. Next, for 4,5 € {1,...,p}, note that 8%z(n,0,p)/(On;0n;) = 0 Vt. Additionally, for

te{2p+1,...,n}, we have the recursions
0*2(n,0,p) _, 9z-1(n,6,p) z-p(n,0,p)  9z—;(n,0,p)
s Uy =0 s . 0 /4 ) J s BPX. i
0100, Y amae, Y T a0, T a0

and

82215(77,07[)) 822’1‘,—1(77;9717)
00,08, ' owes, T

aQZt—P(naeap) + 8zt—j(n707p) + 82},_1‘(7],0,]9)
06,00, 06, 28,

with 8%z+(n, 0,p)/(0n;00;) = 9*2:(n,0,p)/(80;00;) = 0 for t < 2p. It can therefore be shown that there
exists an € > 0 and constants C3 > 0 and D3 € (0, 1) such that

82215 ("77 0a PO)
(9777;891‘

82275(77’ 0, PO)
06,00,

sup
17—, 11,1100 || <e

+ sup

<3y Di|X; (38)
117 -17,11,1180 -0 || <c

J=0

for all i,5 € {1,...,po} and t > 2pg + 1.

Proof of Lemma 4. For u,v € IR”® and w € IR*, note that W, (u,v,w) — W} (u,v,w) equals

n

u v W
Z [1nf<zt (T]O+nl/a0700+n1/a07p0);7-0+%)

t=2po+1

1 w
—Inf Zt(’r](),eo,po) + W ;)cj(u,v)ztj,ro + % ‘| (39)

1 w
+ Y [lnf Zt(n0a007p0)+chj(uyv)ztfj;TO'F% —In f(2¢(n10, 60, p0); 7o)

t=2po+1 Jj#0
1 w
—Inf zt+Wch(u,v)zt,j;To+% +1n f(z;70) |- (40)
#0
We first consider equation (39), which can be expressed as
E”: { Oln f(zf,(u,v,w); To +Ww/\/n)
t=2po+1 0z
u v 1
X | 2t (770 + Wﬂo + Wypo) — 2¢(ng, 00, p0) — T ;CJ(U,V)%J‘ }7 (41)
J
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with 27, (u, v, w) between z;(n + n=/%wu, 0y +n" v, po) and z(ng, O, po) +n 1/ > i0 (W, V)ze—j,

and we note that z;(n, + n~"/*u, 8y +n=*v, py) also equals

024(119.80.p0)
on

1
Zt (T]07 00ap0) + 1lao (u/7 V/)
nt/ao 3Zt(7]Q,00,P0)
00
. 922Ny, (uv),0;  (uv),po)  92z(N;, (uv).0], (1,v).po) u
+ 2/ (u/’ V/) 877877* 87’]80* ’
2ns/ao 82z(M;, (uv).0] , (uv).po)  9%z(N;, (uv).0;  (av)po) v
a6om 0000’

where 1y ,,(u,v) is between 1, and n, + n~/®u, and 0; ,,(u,v) is between 6y and 6y + n~tv. Now,
let T > 0. Since sup_ IR we(—7.7)t |0ln f(z; 70 + w/y/n)/0z| = O(1) as n — oo (Andrews et al., 2009,
Section 2), it follows from (37) and (38) that, for all n sufficiently large, Sup(y v wr) e[—7,mj2r0+4 | - | of (41)
is bounded above by
(constant) | i 3" DS DE(Xapy sl + i)+ g Do D0 DAX]
t=2po+1  j=0 t=2po+1j=0

for some Dz, D3 € (0,1). Therefore, because Y7, . D5> 72, D3(| Xopo—j| + [22p0—i]) = Op(1) and
n=2/@ Z?:2p0+1 Z;io DX, o (Davis and Resnick, 1985a, Section 4), (41) and hence also (39) must
be 0,(1) on C([-T,T]?Po*+4). Using the fact that, for some Cy > 0 and Dy € (0,1), |z:(ng, 80, p0) — 2¢| <
CaDi Y772, Dj|Xap,—j| ¥t > 2po+1, it can also be shown that (40) is 0, (1) on C([—T,T]?°+4). Since T > 0
is arbitrary, it follows that (39) and (40) are o,(1) on C(K) for any compact set K C IR**°™  and thus

Wi(e o) — Wi, ) 5 0 on C(IR?P0H). 0
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