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Abstract

We consider model identification for infinite variance autoregressive time series processes. It is shown

that a consistent estimate of autoregressive model order can be obtained by minimizing Akaike’s

information criterion, and we use all-pass models to identify noncausal autoregressive processes and

estimate the order of noncausality (the number of roots of the autoregressive polynomial inside the

unit circle in the complex plane). We examine the performance of the order selection procedures

for finite samples via simulation, and use the techniques to fit a noncausal autoregressive model to

stock market trading volume data.
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1 Introduction

The autoregressive (AR) model is often used to describe observed, heavy-tailed time series processes which

appear to have infinite variance. Note that, in the infinite variance case, causal (all roots of the AR polyno-

mial are outside the unit circle in the complex plane) and noncausal AR processes are distinguishable, and

can be used to describe different types of time series behavior. Specific applications for causal, heavy-tailed

AR models include network interarrival times (Resnick, 1997), sea surface temperatures (Gallagher, 2001),

and stock market log-returns (Ling, 2005), while noncausal models have appeared, for example, for mod-

eling trading volume data (Andrews et al., 2009) and in deconvolution problems (Blass and Halsey, 1981;

Donoho, 1981; Scargle, 1981). Since every Gaussian AR process has a causal representation, causal and

noncausal models cannot be distinguished using autocorrelations (as seen in Davis and Resnick, 1985a, the

autocorrelation function is consistently estimated in the infinite variance case). As a result, while traditional

second-order moment techniques, such as least squares and Yule-Walker estimation, can be used for infinite

variance AR estimation when the model is known to be causal (Davis and Resnick, 1985a), second-order

methods are not sufficient for AR model identification in the general infinite variance setting where causality

does not necessarily hold. An alternative to using second-order moment techniques is to consider modeling

the AR processes as α-stable, since the non-Gaussian stable distributions are a large class of infinite variance

distributions which can be asymmetric and have varying degrees of tail heaviness, and use stable maximum

likelihood (ML) for AR model selection and parameter estimation. Properties of stable ML estimators and

bootstrap confidence intervals for the AR parameter values are developed in Andrews et al. (2009). However,

given no prior model information, one may need to maximize the stable likelihood function for different AR

model orders and various configurations of roots inside and outside the unit circle, which can be compu-

tationally prohibitive for large order models. Therefore, in this paper, we develop a “toolbox” for model

identification in the case of an infinite variance AR process. In particular, we show that a consistent estimate

of AR model order can be obtained by minimizing Akaike’s information criterion (AIC), and we use all-pass

models to identify noncausal AR processes and estimate the order of noncausality (i.e., the number of roots

inside the unit circle). Once an appropriate AR model has been identified, ML can be used to estimate the

parameter values.



Model Identification for Infinite Variance AR Processes 2

For infinite variance, causal AR processes with noise distributions in the domain of attraction of a non-

Gaussian stable law, the AIC statistic, computed using Gaussian likelihood, is a consistent AR order selection

criterion (Knight, 1989). In this paper, we show that, even though the Yule-Walker method cannot be used

to estimate the true AR parameters when the model is not necessarily causal, it can be used to consistently

estimate a causal AR model with the same number of parameters and all-pass innovations. We can, therefore,

extend results in Knight (1989) and show that minimizing the Gaussian-based AIC statistic is a consistent

order selection procedure for noncausal, infinite variance AR processes. In contrast, for Gaussian and other

finite variance AR processes, AIC is not a consistent order selection criterion (Shibata, 1976; Hannan, 1980).

All-pass models are autoregressive-moving average (ARMA) models in which the roots of the AR poly-

nomial are reciprocals of roots of the MA polynomial and vice versa. These models generate series that are

dependent in the non-Gaussian case. When a noncausal AR process is modeled as causal, the innovations

follow an all-pass model of order s, where s is the number of roots of the true AR polynomial inside the

unit circle. Consequently, by identifying the all-pass order of the innovations, one can determine the order of

noncausality for the AR process. In addition, a preliminary AR model estimate can be obtained from fitted

causal AR and all-pass models. While all-pass parameter estimation has already been considered in the

literature for finite variance processes (Giannakis and Swami, 1990, Chi and Kung, 1995, Chien et al., 1997,

cumulant-based estimation using cumulants of order greater than two; Breidt et al., 2001, least absolute

deviations estimation; Andrews et al., 2006, MLE; Andrews et al., 2007, rank-based estimation), the infinite

variance case has yet to be addressed. In this paper, we focus on ML estimation for AR processes with

non-Gaussian, stable noise, and give the limiting distribution for estimators of the causal AR parameters,

the all-pass parameters, and parameters of the noise distribution. The ML estimators of the causal AR

parameters have a faster rate of convergence than the Yule-Walker estimators, and we show that the causal

AR and all-pass ML estimators converge in distribution to the maximizer of a random function. The form

of this limiting distribution is intractable, but the bootstrap procedure can be used to examine the shape

of the distribution and obtain confidence intervals for the parameter values. Confidence intervals for the

all-pass parameters can be used to identify an appropriate all-pass model order, which equals the order of

noncausality for the AR process. We show the bootstrap is asymptotically valid under general conditions.
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ML estimators of parameters of the noise distribution are asymptotically independent of the AR and all-pass

estimators, and have a multivariate normal limiting distribution.

Heavy-tailed AR processes with infinite variance are discussed in Section 2, and we give steps that can be

taken in practice for AR model identification. In Section 3.1, we look at limiting behavior of the Yule-Walker

estimators and show that a consistent estimate of AR model order can be obtained by minimizing AIC. In

Section 3.2, we give limits for sample correlations of the Yule-Walker residuals, and absolute values and

squares of the residuals. The sample correlations of the residuals converge in probability to zero but, in the

case of a noncausal AR process, sample correlations for absolute values and squares have nonzero limits.

Hence, these sample correlations can be used to detect all-pass dependence in the Yule-Walker residuals

and, consequently, to identify noncausal AR processes. In Section 3.3, we consider simultaneous stable ML

estimation for the causal AR parameters, all-pass model parameters, and parameters of the noise distribution,

and we develop bootstrap confidence intervals which can be used for all-pass order selection. Proofs of the

lemmas used to establish results of Sections 3.1–3.3 can be found in the Appendix. In Section 4.1, we examine

the performance of the order selection procedures for finite samples via simulation and, in Section 4.2, the

model identification techniques are used to fit a noncausal AR model to the natural logarithms of volumes

of Wal-Mart stock traded daily on the New York Stock Exchange, a series also modeled as noncausal AR in

Andrews et al. (2009).

2 Preliminaries

Let {Xt} be the AR process which satisfies the difference equations

φ0(B)Xt = Zt, (1)

where the AR polynomial φ0(z) := 1 − φ01z − · · · − φ0p0
zp0 6= 0 for |z| = 1, B is the backshift operator

(BkXt = Xt−k, k = 0,±1,±2, . . .), and {Zt} is a sequence of independent and identically distributed (iid)

random variables. We will assume for now that the distribution for Zt is in the domain of attraction of

a non-Gaussian stable law with exponent α0 ∈ (0, 2), which is less stringent than the assumption that Zt

is α0-stable. Hence, P(|Zt| > x) = x−α0L(x) for some function L(·) which is slowly varying at ∞ (i.e.,
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limx→∞ L(sx)/L(x) = 1 ∀s > 0), and limx→∞ P(Zt > x)/P(|Zt| > x) = p for some p ∈ [0, 1] (Feller, 1971,

page 312). It follows that E|Z1|δ < ∞ for all δ ∈ [0, α0) and E|Z1|δ = ∞ for all δ > α0, and so the noise

process {Zt} has infinite variance. We further suppose that φ0p0
6= 0, so p0 represents the AR model order.

Since {Zt} is non-Gaussian, there are no alternative AR representations for {Xt} with iid noise (Breidt

and Davis, 1992). In addition, because φ0(z) 6= 0 for |z| = 1, the Laurent series expansion for 1/φ0(z),

1/φ0(z) =
∑∞

j=−∞ ψjz
j, exists on some annulus {z : a−1 < |z| < a}, a > 1, and the unique strictly

stationary solution to (1) is given by Xt =
∑∞

j=−∞ ψjZt−j , where the ψj ’s are geometrically decaying as

j → ±∞ (Brockwell and Davis, 1991, Chapter 3). If φ0(z) 6= 0 for |z| ≤ 1, then ψj = 0 for j < 0, and so

{Xt} is said to be causal since Xt =
∑∞

j=0 ψjZt−j , a function of only the past and present {Zt}. On the

other hand, if φ0(z) 6= 0 for |z| ≥ 1, then Xt =
∑∞

j=0 ψ−jZt+j and {Xt} is a purely noncausal process. In the

purely noncausal case, the coefficients {ψj} satisfy (1−φ01z− · · · − φ0p0
zp0)(ψ0 +ψ−1z

−1 + · · · ) = 1, which

implies that ψ0 = ψ−1 = · · · = ψ1−p0
= 0 and ψ−p0

= −φ−1
0p0

. From Cline (1983, page 12), limx→∞ P(|Xt| >

x)/P(|Zt| > x) =
∑∞

j=−∞ |ψj |α0 , and so it is also the case that E|Xt|δ < ∞ for δ ∈ [0, α0) and E|Xt|δ = ∞

for δ > α0.

Let r0 ≥ 0 represent the number of roots of the AR polynomial φ0(z) = 1 − φ01z − · · · − φ0p0
zp0 that

lie outside the unit circle in the complex plane, and let s0 ≥ 0 represent the number of roots of φ0(z)

inside the unit circle. Since φ0(z) 6= 0 for |z| = 1, it must be the case that r0 + s0 = p0, and there exist

a causal AR polynomial θ†0(z) of order r0 and a purely noncausal polynomial θ∗0(z) of order s0 for which

φ0(z) = θ†0(z)θ
∗
0(z). Now suppose θc0(z) := 1−θ01z−· · ·−θ0s0zs0 denotes the causal s0th-order AR polynomial

whose roots are the reciprocals of the roots of the noncausal polynomial θ∗0(z), so θ
∗
0(z) = −θ−1

0s0
zs0θc0(z

−1)

(if s0 = 0, θ00 := −1). In addition, we let η0(z) := 1− η01z − · · · − η0p0
zp0 denote the causal p0th-order AR

polynomial θ†0(z)θ
c
0(z). Since φ0(z) = θ†0(z)θ

c
0(z){θ∗0(z)/θc0(z)} = η0(z){(−θ−1

0s0
)zs0θc0(z

−1)/θc0(z)}, the AR

model equation (1) can be expressed as

η0(B)
−θ−1

0s0
Bs0θc0(B

−1)

θc0(B)
Xt = Zt (2)

or

η0(B)Xt = Ut, with Ut =
θc0(B)

−θ−1
0s0
Bs0θc0(B

−1)
Zt. (3)

Since the series {Ut} is an ARMA process for which all s0 roots of the AR polynomial are reciprocals of
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roots of the MA polynomial and vice versa, it is an all-pass process. It, therefore, follows that {Xt} has a

p0th-order causal AR representation with innovations satisfying an all-pass model of order s0 ≥ 0.

Non-Gaussian all-pass processes of order greater than zero are known to be dependent, but, when

the second-order moments are finite, all-pass series are uncorrelated (Breidt et al., 2001; Andrews et

al., 2006; Andrews et al., 2007). Correlations for {Ut} do not exist in this infinite variance case. How-

ever, if Ut =
∑∞

j=0 πjZt+j is the infinite-order moving average representation for {Ut}, then from Davis and

Resnick (1985a), the sample correlations

ρ̃U (h) :=

∑n
t=h+1

(

Ut − [n−1
∑n

t=1 Ut]
) (

Ut−h − [n−1
∑n

t=1 Ut]
)

∑n
t=1(Ut − [n−1

∑n
t=1 Ut])2

P→
∑∞

j=0 πjπj+h
∑∞

j=0 π
2
j

as n→ ∞

for any non-negative integer h. Following (3), the coefficients {πj} can be obtained from the Laurent series

expansion for θc0(z)/[−θ−1
0s0
zs0θc0(z

−1)]. Since θ∗0(z) = −θ−1
0s0
zs0θc0(z

−1) 6= 0 for |z| ≥ 1, the moving average

representation for {Ut} is purely noncausal and, from Brockwell and Davis (1991, Chapter 3), the values

of {πj} are geometrically decaying as j → ∞. Note also that
∑∞

j=0 πjπj+h = 0 for all h > 0, since, if the

iid noise {Zt} were N(0, σ2) (instead of in the domain of attraction of a non-Gaussian stable law), then

the all-pass process {Ut} would be uncorrelated with Cov{Ut, Ut+h} = E{UtUt+h} = σ2
∑∞

j=0 πjπj+h = 0.

It follows that ρ̃U (h)
P→ 0 for h > 0, and so the infinite variance all-pass series {Ut} in (3) might also be

described as “uncorrelated.”

Given a realization of length n from (1), {Xt}nt=1, we recommend the following steps for AR model

selection:

1. Estimate AR model order p0 by minimizing the AIC statistic, computed using Gaussian likelihood,

and using Yule-Walker, estimate the parameters of the p0th-order causal AR model η0(B)Xt = Ut.

2. Look at sample correlations of the Yule-Walker residuals, and absolute values and squares of the

residuals. If the residuals and their absolute values and squares appear uncorrelated, this suggests

{Ut} is iid noise, and so {Xt} is a causal AR process. On the other hand, if the residuals appear

uncorrelated yet dependent (i.e., absolute values and squares appear correlated), this indicates {Ut} is

an all-pass process of order s0 > 0.
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3. If s0 appears positive, simultaneously estimate the causal AR parameters, the all-pass parameters, and

parameters of the iid noise via stable ML, and obtain bootstrap confidence intervals for the all-pass

parameter values. The confidence intervals can be used to estimate the all-pass order s0, which equals

the order of noncausality for the AR process {Xt}.

Once an appropriate AR model order and an appropriate order of noncausality have been identified for {Xt},

estimates of the parameter values can be obtained via ML.

3 Asymptotic Results

The three steps for AR model identification in Section 2 are discussed in further detail in Sections 3.1–3.3,

along with corresponding asymptotic theory. We consider Yule-Walker estimation and AR order selection in

Section 3.1 and, in Section 3.2, we show that, for noncausal AR processes, sample correlations for absolute

values and squares of the Yule-Walker residuals have nonzero limits, so these sample correlations can be

used to identify noncausal series. Results in Sections 3.1 and 3.2 are obtained under the assumption that the

distribution for the iid noise {Zt} is in the domain of attraction of a non-Gaussian stable law with exponent

α0 ∈ (0, 2). In Section 3.3, we consider stable MLE and make the more stringent assumption that the {Zt}

are non-Gaussian α0-stable.

3.1 Yule-Walker Estimation and Autoregressive Order Selection

In this section, we give a limiting result for Yule-Walker estimators of the parameters η01, . . . , η0p0
in the

causal AR equation η0(B)Xt = Ut in (3), and show that a consistent estimate of the AR model order p0 can be

obtained by minimizing Gaussian-based AIC. From Section 8.1 in Brockwell and Davis (1991), given observed

values of {Xt}nt=1, for k ≥ max{p0, 1}, the Yule-Walker estimate of η0(k) := (η01, . . . , η0p0
, 0, . . . , 0)′ ∈ IRk is

η̂YW (k) = Ĉ
−1

k r̂k, with Ĉk := [γ̂(|i − j|)]i,j∈{1,...,k}, r̂k := [γ̂(j)]j∈{1,...,k}, γ̂(j) :=

n−1
∑n

t=j+1(Xt − X)(Xt−j − X), and X := n−1
∑n

t=1Xt. The following theorem shows that these esti-

mators are n1/2-consistent and can converge uniformly over k. When the AR process {Xt} is causal (i.e.,

when s0 = 0), this result holds by Corollary 6 in Knight (1989), but here it is not necessarily the case that

s0 = 0. Note that ‖ · ‖ represents the Euclidean norm.
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Theorem 1. If K(n) = O(nδ), with 0 ≤ δ < min{1/2, 1− α0/2}, then

√
n max

p0≤k≤K(n)
‖η̂YW (k)− η0(k)‖

P→ 0 (4)

as n→ ∞.

Proof. The proof of this result is similar to that of Corollary 6 in Knight (1989). For k ≥ max{p0, 1}, let

η̂LS(k) = C̃−1
k r̃k, with C̃k := [

∑n
t=k+1(Xt−i−X)(Xt−j−X)]i,j∈{1,...,k} and r̃k := [

∑n
t=k+1(Xt−X)(Xt−j−

X)]j∈{1,...,k}, denote the least-squares estimate of η0(k). From (3), Xt = η01Xt−1 + · · ·+ η0p0
Xt−p0

+Ut for

all t, so

C̃k (η̂LS(k)− η0(k)) =

[

n
∑

t=k+1

(

Ut −X

(

1−
p0
∑

i=1

η0i

))

(

Xt−j −X
)

]

j∈{1,...,k}

and, by Lemmas 1–3 in the Appendix, for some sufficiently large κ < 2/α0,

maxp0≤k≤K(n) n
1/2−κ‖C̃k(η̂LS(k) − η0(k))‖

P→ 0. Using an argument similar to the one used for the proof

of Theorem 5a(ii) in Knight (1989), it can be shown that minp0≤k≤K(n) min‖v‖=1 n
−κv′C̃kv

P→ ∞, and

therefore
√
nmaxp0≤k≤K(n) ‖η̂LS(k) − η0(k)‖

P→ 0. Since, by the Corollary in Davis and Resnick (1985a,

page 193), n1−κ
∑K(n)

t=1 (Xt − X)2
P→ 0 for large κ < 2/α0, it follows from the proof of Theorem 5(b) in

Knight (1989) that
√
nmaxp0≤k≤K(n) ‖η̂YW (k)− η̂LS(k)‖

P→ 0, and so the result of this theorem holds. �

When α0 ≤ 1, and when α0 > 1 and EXt = 0, it can be shown that (4) holds for Yule-Walker es-

timators computed using the unadjusted sample covariances γ̃(j) = n−1
∑n

t=j+1XtXt−j, instead of the

mean-corrected sample covariances γ̂(j). The proof is similar to that of Theorem 1. It is also possible

to obtain the rate of convergence of η̂YW (k) for fixed k, since, following Davis and Resnick (1986, Sec-

tion 5.4), η̂Y W (k)−η0(k) = Dk (ρ̂k − ρk)+ op (ρ̂k − ρk) , where Dk is a nonzero, k× k matrix of constants,

ρ̂k := [γ̂(j)/γ̂(0)]j∈{1,...,k}, ρk := [(
∑∞

`=−∞ ψ`ψ`−j)/(
∑∞

`=−∞ ψ2
` )]j∈{1,...,k}, and the coefficients {ψ`} are

from the expansion Xt =
∑∞

j=−∞ ψjZt−j . By Davis and Resnick (1985a), ρ̂k
P→ ρk, so η̂YW (k) has the

same rate of convergence as the vector of sample correlations ρ̂k. For fixed k, Davis and Resnick (1985b)

give the limiting distribution for ρ̂k when E|Zt|α0 < ∞, and the case when E|Zt|α0 = ∞ is considered in

Davis and Resnick (1986). For instance, when Zt has an α0-stable distribution (in which case E|Zt|α0 = ∞),

it follows that n(η̂YW (k) − η0(k)) = Op(1) when α0 < 1, (n/ lnn)(η̂Y W (k) − η0(k)) = Op(1) when α0 = 1

and the distribution for Zt is symmetric, and (n/ lnn)1/α0(η̂YW (k)− η0(k)) = Op(1) when α0 > 1.
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Following Knight (1989), for integer-valued k ≥ 0, we compute Gaussian-based AIC via AIC(k) =

n ln σ̂2
k + 2k, where σ̂2

k = γ̂(0)− r̂′kη̂YW (k)I{k > 0} is the Yule-Walker estimate of innovations variance and

I{·} represents the indicator function. By Theorem 2, the minimum AIC estimate of AR model order is

consistent for p0. Note that this estimate, p̂, is obtained by minimizing AIC over the integers 0, . . . ,K(n),

where it is possible for K(n) → ∞ as n→ ∞.

Theorem 2. If K(n) = O(nδ), with 0 ≤ δ < min{1/2, 1− α0/2}, and p̂ = arg min0≤k≤K(n)AIC(k), then

p̂
P→ p0 as n→ ∞.

Proof. This result follows directly from Theorem 1 and the proof of Theorem 7 in Knight (1989). See

Knight (1989, pages 835–836) for details. �

Theorem 1 and results in Knight (1989) can be used to show, more generally, that p̃ :=

arg min0≤k≤K(n)(n ln σ̂
2
k + hnk) is consistent for p0 if hn/n → 0 as n → ∞ and hn ≥ constant > 0 for

all large n. When hn = 2, p̃ equals p̂ and, when hn = lnn, p̃ minimizes the Bayesian information criterion

(BIC). We, however, recommend that in practice one use p̂ instead of p̃ with hn → ∞, to reduce the risk of un-

derestimating p0 for finite samples. In addition, note that one can also use the sample partial autocorrelation

function to identify an appropriate AR model order, since, in the AR case, the underlying theoretical partial

autocorrelations are zero at lags greater than p0 (see, for example, Brockwell and Davis, 1991, page 100).

However, in the infinite variance case, quantiles of the limiting distribution for sample partial autocorrela-

tions cannot be computed theoretically, but only via simulation or numerical integration (Adler et al., 1998).

Hence, minimizing AIC can be a simpler way to estimate p0.

3.2 Identifying a Noncausal Autoregressive Process

If the AR process {Xt} is causal (i.e., s0 = 0), then the causal polynomial η0(z) in (3) equals the AR

polynomial φ0(z) in (1), and the uncorrelated all-pass series {Ut} is equivalent to the iid noise process {Zt}.

Hence, in the causal case, estimates of the AR model parameters φ0 := (φ01, . . . , φ0p0
)′ can be obtained using

Yule-Walker estimation, and the corresponding residuals Ût := Xt − η̂1,Y W (p̂)Xt−1 − · · · − η̂p̂,Y W (p̂)Xt−p̂,

t = p̂ + 1, . . . , n, appear iid. On the other hand, if {Xt} is noncausal, {Ut} is an all-pass process of order
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s0 > 0 and, therefore, the Yule-Walker residuals {Ût}nt=p̂+1 appear uncorrelated but dependent. In this

section, we give limits in probability for sample correlations of the Yule-Walker residuals and absolute values

and squares of the residuals. We show that, while the residuals are in general uncorrelated, dependence in

the noncausal case can be detected in practice by looking at correlations of the absolute values and squares.

Let ρ̂U (·) denote the sample autocorrelation function for the Yule-Walker residuals {Ût}nt=p̂+1. So, for

any non-negative integer h,

ρ̂U (h) =

∑n
t=h+p̂+1(Ût − Un)(Ût−h − Un)

∑n
t=p̂+1(Ût − Un)2

,

with Un := (n− p̂)−1
∑n

t=p̂+1 Ût. And let ρ̂U†(·) and ρ̂U∗(·) represent the sample autocorrelation functions

for {U †
t }nt=p̂+1 := {|Ût − Un|}nt=p̂+1 and {U∗

t }nt=p̂+1 := {(Ût − Un)
2}nt=p̂+1, the absolute values and squares

of the mean-corrected residuals. Limits for these sample correlations are given in the following theorem.

Recall, from Section 2, that {πj}∞j=0 are the coefficients in the infinite-order moving average representation

Ut =
∑∞

j=0 πjZt+j for {Ut}, and that
∑∞

j=0 πjπj+h = 0 for all h > 0.

Theorem 3. For any positive integer h, as n→ ∞,

(i) ρ̂U (h)
P→ 0,

(ii) ρ̂U†(h)
P→∑∞

j=0 |πjπj+h|/
∑∞

j=0 π
2
j , and

(iii) ρ̂U∗(h)
P→∑∞

j=0 π
2
jπ

2
j+h/

∑∞
j=0 π

4
j .

Proof. (i) For any ε > 0, P(|ρ̂U (h)| > ε) ≤ P({|ρ̂U (h)| > ε} ∩ {p̂ = p0}) + P(p̂ 6= p0). Since, by Theorem 2,

P(p̂ 6= p0) → 0, we can, therefore, establish result (i) by showing that

∑n
t=h+p0+1[Ut(η̂YW (p0))− Un(η̂YW (p0))][Ut−h(η̂YW (p0))− Un(η̂YW (p0))]

∑n
t=p0+1[Ut(η̂YW (p0))− Un(η̂YW (p0))]2

P→ 0, (5)

where, for η = (η1, . . . , ηp0
)′ ∈ IRp0 ,

Ut(η) := Xt − η1Xt−1 − · · · − ηp0
Xt−p0

(6)

and Un(η) := (n − p0)
−1
∑n

t=p0+1 Ut(η). Note that Ut = Ut(η0(p0)), and let an = inf{x : P(|Zt| > x) ≤
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n−1}. For any non-negative integer `, we consider

a−2
n

n
∑

t=`+p0+1

{[

Ut(η̂YW (p0))− Un(η̂YW (p0))
] [

Ut−`(η̂YW (p0))− Un(η̂YW (p0))
]

− UtUt−`

}

(7)

= a−2
n

n
∑

t=`+p0+1

[Ut(η̂YW (p0))Ut−`(η̂YW (p0))− Ut(η0(p0))Ut−`(η0(p0))] (8)

− a−2
n Un(η̂YW (p0))

n
∑

t=`+p0+1

[Ut(η̂YW (p0)) + Ut−`(η̂YW (p0))] (9)

+ a−2
n (n− `− p0)

[

Un(η̂YW (p0))
]2
. (10)

Using the mean value theorem, (8) equals

(η̂YW (p0))− η0(p0))
′ a−2

n

n
∑

t=`+p0+1

∂[Ut(η
∗
n(p0))Ut−`(η

∗
n(p0))]

∂η
,

where η∗
n(p0) lies between η̂Y W (p0) and η0(p0) and, following (6),

∂[Ut(η)Ut−`(η)]

∂ηj
= −Xt−j(Xt−` − η1Xt−`−1 − · · · − ηp0

Xt−`−p0
)−Xt−`−j(Xt − η1Xt−1 − · · · − ηp0

Xt−p0
)

for j ∈ {1, . . . , p0}. By Theorem 1, η̂YW (p0)
P→ η0(p0) and, by Theorem 4.2 in Davis and Resnick (1985a),

a−2
n

∑n
`+p0+1Xt−jXt−k = Op(1) for any integers j, k. It, therefore, follows that equation (8) is op(1). From

the proof of the Corollary in Davis and Resnick (1985a, page 193), a−1
n n−1/2

∑n
t=1 |Xt| P→ 0, so

n
∑

t=p0+1

Ut(η̂YW (p0)) =

n
∑

t=p0+1

[Xt − η̂1,Y W (p0)Xt−1 − · · · − η̂p0,Y W (p0)Xt−p0
] = op(ann

1/2),

and hence (9) and (10) are op(1). Therefore, equation (7) is op(1) for any non-negative integer `. By Theo-

rem 4.2 in Davis and Resnick (1985a), we also have a−2
n (
∑n

t=p0+1 U
2
t ,
∑n

t=h+p0+1 UtUt−h)
L→

V (
∑∞

j=0 π
2
j ,
∑∞

j=0 πjπj+h), with the random variable V ∈ (0,∞) almost surely, and so the left-hand side

of (5) converges in probability to
∑∞

j=0 πjπj+h/
∑∞

j=0 π
2
j = 0.

(ii) Using a proof similar to that of (i), it can be shown that

a−2
n

n
∑

t=`+p0+1

{[

U †
t (η̂Y W (p0))− U

†

n(η̂YW (p0))
] [

U †
t−`(η̂Y W (p0))− U

†

n(η̂YW (p0))
]

− |UtUt−`|
}

P→ 0

for any non-negative integer `, where for η ∈ IRp0 , U †
t (η) := |Ut(η) − Un(η)| and

U
†

n(η) := (n − p0)
−1
∑n

t=p0+1 U
†
t (η). In addition, using an argument similar to the proof of Theorem 4.2

in Davis and Resnick (1985a), a−2
n (
∑n

t=p0+1 U
2
t ,
∑n

t=h+p0+1 |UtUt−h|) L→ V †(
∑∞

j=0 π
2
j ,
∑∞

j=0 |πjπj+h|), with
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V † ∈ (0,∞) almost surely. Hence,

∑n
t=h+p0+1

[

U †
t (η̂YW (p0))− U

†

n(η̂Y W (p0))
] [

U †
t−h(η̂Y W (p0))− U

†

n(η̂YW (p0))
]

∑n
t=p0+1

[

U †
t (η̂Y W (p0))− U

†

n(η̂Y W (p0))
]2

P→
∑∞

j=0 |πjπj+h|
∑∞

j=0 π
2
j

,

and so the result holds.

(iii) Following the proof of Theorem 4.2 in Davis and Resnick (1985a), it can be shown that, for any

integers j, k l, andm, a−2
n

∑n
t=1 |Xt−jXt−k|, a−3

n

∑n
t=1 |Xt−jXt−kXt−l|, and a−4

n

∑n
t=1 |Xt−jXt−kXt−lXt−m|

are all Op(1). It follows that

a−4
n

n
∑

t=`+p0+1

{[

U∗
t (η̂YW (p0))− U

∗

n(η̂YW (p0))
] [

U∗
t−`(η̂YW (p0))− U

∗

n(η̂YW (p0))
]

− U2
t U

2
t−`

}

P→ 0

for any non-negative integer `, where U∗
t (η) := [Ut(η) − Un(η)]

2 and U
∗

n(η) := (n − p0)
−1
∑n

t=p0+1 U
∗
t (η).

Using the proof of Theorem 4.2 in Davis and Resnick (1985a), it can also be shown that

a−4
n (
∑n

t=p0+1 U
4
t ,
∑n

t=h+p0+1 U
2
t U

2
t−h)

d→ V ∗(
∑∞

j=0 π
4
j ,
∑∞

j=0 π
2
jπ

2
j+h), where the random variable V ∗ ∈

(0,∞) almost surely, so the result (iii) holds. �

If the AR process {Xt} is causal, and so the all-pass process {Ut} is equivalent to {Zt}, it must be the

case that π0 = 1 and πj = 0 for j > 0. Therefore, when {Xt} is causal, the limits in Theorem 3 are all zero

for h > 0. However, if {Xt} is noncausal, {Ut} is dependent, which implies that multiple values of {πj} are

nonzero, and so the limits in (ii) and (iii) must be positive for some h > 0. Since the {πj} are geometrically

decaying as j → ∞, these limits are roughly geometrically decaying as h→ ∞. So, in practice, to identify a

noncausal AR series, one can look at sample correlations for {U †
t }nt=p̂+1 and {U∗

t }nt=p̂+1, and compare them

to confidence bounds for the sample correlations computed under the assumption that {Ut} is independent.

These confidence bounds could be obtained by generating multiple series containing n− p̂ independent values

from the empirical distribution of {Ût}nt=p̂+1, and then computing sample correlations for the absolute values

and squares of the mean-corrected series. Or, if a stable distribution appears appropriate for the {Ût}, one

could model the Yule-Walker residuals as iid stable (ML estimation for the parameters of iid stable random

variables is discussed in DuMouchel, 1973), and then simulate sample correlations for absolute values and

squares of n− p̂ mean-corrected iid stable random variables with the estimated stable parameter values.

Using a proof similar to that of Theorem 3, it can be shown that sample correlations for {|Ût|} and {Û2
t }

have the same limits as those given in Theorem 3(ii)–(iii) for sample correlations of {U †
t } = {|Ût −Un|} and
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{U∗
t } = {(Ût−Un)

2}. We are focusing on absolute values and squares of the mean-corrected residuals since,

in practice, for fixed sample size n, dependence in the residuals can often more easily be detected using {U †
t }

and {U∗
t }. For instance, if the observed values of {Xt}nt=1 are all positive or all negative, as is the case with

the Wal-Mart log-volume series discussed in Section 4.2, then the corresponding Yule-Walker residuals {Ût}

can also be all positive or all negative, which means that the sample correlations for {|Ût|} and {Ût} are

identical.

3.3 Maximum Likelihood Estimation

In this section, we consider ML parameter estimation. To obtain the limiting distribution for the estimators,

we impose further restrictions on the noise, and assume Zt is non-Gaussian stable with exponent α0 ∈ (0, 2),

parameter of symmetry β0 ∈ (−1, 1), scale parameter σ0 ∈ (0,∞), and location parameter µ0 ∈ IR. When

the {Zt} are iid α0-stable, the AR random variablesXt =
∑∞

j=−∞ ψjZt−j also have a stable distribution with

exponent α0 (Samorodnitsky and Taqqu, 1994, Properties 1.2.1 and 1.2.3). We use ML to simultaneously

estimate the causal AR parameters η01, . . . , η0p0
, the all-pass model parameters θ01, . . . , θ0s0 , and parameters

of the stable noise distribution.

The stable characteristic function for Zt is given by

ϕ0(s) := E{exp(isZt)} =



















exp
{

−σα0

0 |s|α0

[

1 + iβ0(sign s) tan
(

πα0

2

) (

|σ0s|1−α0 − 1
)]

+ iµ0s
}

, α0 6= 1,

exp
{

−σ0|s|
[

1 + iβ0
2
π (sign s) ln(σ0|s|)

]

+ iµ0s
}

, α0 = 1,

(11)

and so, if ϑ0 := (α0, β0, σ0, µ0)
′, the density function for the noise can be expressed as f(z;ϑ0) =

(2π)−1
∫∞

−∞
exp (−izs)ϕ0(s) ds. No general, closed-form expression is known for f , however; although com-

putational formulas exist that can be used to evaluate f (Nolan, 1997; McCulloch, 1998). It can be shown that

f(z;ϑ0) = σ−1
0 f(σ−1

0 (z − µ0); (α0, β0, 1, 0)
′), f(z; (α0, β0, 1, 0)

′) = f(−z; (α0,−β0, 1, 0)′), f(·; (α0, β0, 1, 0)
′)

is unimodal on IR (Yamazato, 1978), and f(z; (α, β, 1, 0)′) is infinitely differentiable with respect to (z, α, β)

on IR × (0, 2) × (−1, 1). There are alternative parameterizations for the stable characteristic function ϕ0

(Zolotarev, 1986), but we use (11) so that the noise density function is continuous and differentiable with

respect to not only z on IR but also (α, β, σ, µ)′ on (0, 2)×(−1, 1)×(0,∞)×(−∞,∞). For additional proper-
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ties of stable distributions/densities see Gnedenko and Kolmogorov (1968), Feller (1971), Zolotarev (1986),

and Samorodnitsky and Taqqu (1994).

To obtain the log-likelihood function, we consider model equation (2), which can be expressed as

η0(B)
[

−θ−1
0s0
Bs0θc0(B

−1)
]

Xt = θc0(B)Zt, (12)

where η0(z) = 1 − η01z − · · · − η0p0
zp0 and θc0(z) = 1 − θ01z − · · · − θ0s0z

s0 . Letting zt = −θ0s0Zt−p0+s0 ,

which is stable with parameter vector τ 0 := (α0,−(sign θ0s0)β0, |θ0s0 |σ0,−θ0s0µ0)
′, and rearranging (12),

we have the recursion

zt = θ01zt−1 + · · ·+ θ0p0
zt−p0

+ η0(B)Bp0θc0(B
−1)Xt, (13)

where θ0j := 0 for j > s0. For arbitrary causal AR polynomials η(z) = 1 − η1z − · · · − ηpz
p and θ(z) =

1− θ1z − · · · − θpz
p, an analogous recursion can be defined as

zt(η, θ, p) =



















0, t ≤ 2p,

θ1zt−1(η, θ, p) + · · ·+ θpzt−p(η, θ, p) + η(B)Bpθ(B−1)Xt, t = 2p+ 1, . . . , n,

(14)

with η := (η1, . . . , ηp)
′ and θ := (θ1, . . . , θp)

′. If η0 := (η01, . . . , η0p0
)′ and θ0 := (θ01, . . . , θ0p0

)′, note that

{zt(η0, θ0, p0)}nt=2p0+1 closely approximates {zt}nt=2p0+1; the error is due to the initialization with zeros.

Now, if Vt = θ∗0(B)Xt (in which case, Vt = Zt/θ
†
0(B) also, see Section 2), then from Breidt et al. (1991), the

joint density function for (V1, . . . , Vs0 , X1, . . . , Xn) equals

h1(V1, . . . , Vr0)

[

Cn

n
∏

t=r0+1

f(Xt − φ01Xt−1 − · · · − φ0p0
Xt−p0

;ϑ0)

]

h2(θ
†
0(B)Xn−s0+1, . . . , θ

†
0(B)Xn)

= h1(V1, . . . , Vr0)

[

Cn

n
∏

t=r0+1

f(Zt;ϑ0)

]

h2(θ
†
0(B)Xn−s0+1, . . . , θ

†
0(B)Xn),

where h1 and h2 are the joint densities for (V1, . . . , Vr0) and (θ†0(B)X1, . . . , θ
†
0(B)Xs0) respectively and do

not depend on n, and lnCn ∼ −n ln |θ0s0 | (∼ indicates the ratio of the two sides converges to one as n →

∞). Letting ζ = (η1, . . . , ηp, θ1, . . . , θp, τ1, . . . , τ4)
′, with τ = (τ1, . . . , τ4)

′ = (α,−(sign θs)β, |θs|σ,−θsµ)′,

s = max{0 ≤ j ≤ p : θj 6= 0}, and θ0 = −1 (since θ00 = −1), it follows that for large n, the log-likelihood of
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ζ can be approximated by

L(ζ, p) =

n
∑

t=2p+1

[ln f (−zt(η, θ, p)/θs; (α, β, σ, µ)′)− ln |θs|]

=

n
∑

t=2p+1

ln

[

1

|θs|σ
f

(

zt(η, θ, p) + θsµ

−θsσ
; (α, β, 1, 0)′

)]

=
n
∑

t=2p+1

ln f(zt(η, θ, p); τ ), (15)

where the values of {zt(η, θ, p)}nt=2p+1 are computed recursively via (14).

Given observed values {Xt}nt=1 and the minimum AIC estimate of AR model order p̂, we can estimate

ζ0 = (η′
0, θ

′
0, τ

′
0)

′ by maximizing L with respect to ζ at p = p̂, using the Yule-Walker estimate η̂YW (p̂)

of η0 as a starting value for η when doing the optimization. The order of noncausality for {Xt}, s0, can

then be estimated by computing confidence intervals for the all-pass parameters θ0 = (θ01, . . . , θ0p0
)′ =

(θ01, . . . , θ0s0 , 0, . . . , 0)
′. In addition, since φ0(z) = 1− φ01z − . . .− φ0p0

zp0 = η0(z)(−θ−1
0s0

)zs0θc0(z
−1)/θc0(z),

given estimates p̂, ŝ, and ζ̂ of p0, s0, and ζ0, a preliminary estimate of φ0 = (φ01, . . . , φ0p0
)′ can be found

by canceling roots which are in both the numerator and denominator of

(1− η̂1z − · · · − η̂p̂z
p̂)(−θ̂−1

ŝ )zŝ(1− θ̂1z
−1 − · · · − θ̂ŝz

−ŝ)

(1 − θ̂1z − · · · − θ̂ŝzŝ)
. (16)

For further model accuracy, ML can then be used to directly estimate φ0 (see Andrews et al., 2009, for

details), with the preliminary estimate used as an initial value for the optimizer. The limiting distribution

for ML estimators of ζ0 = (η′
0, θ

′
0, τ

′
0)

′ is given in Theorem 4, and afterwards we address confidence interval

calculation. But first, we need to introduce some notation and define a random function W . MLEs of

(η′
0, θ

′
0)

′ converge in distribution to the maximizer of W .

For u = (u1, . . . , up0
)′ ∈ IRp0 and v = (v1, . . . , vp0

)′ ∈ IRp0 , define the sequence {cj(u,v)}j 6=0 so that

∑

j 6=0

cj(u,v)zt−j = −u′[(1/η0(B))zt−k]k∈{1,...,p0} + v′[(1/θc0(B))zt−k − (1/θc0(B
−1))zt+k]k∈{1,...,p0}. (17)

Therefore, if the Laurent series expansions for 1/η0(z) and 1/θc0(z) are given by 1/η0(z) =
∑∞

j=0 γjz
j and

1/θc0(z) =
∑∞

j=0 χjz
j, then

∑

j 6=0

cj(u,v)zt−j = −u1
∞
∑

j=0

γjzt−1−j − · · · − up0

∞
∑

j=0

γjzt−p0−j + v1





∞
∑

j=0

χjzt−1−j −
∞
∑

j=0

χjzt+1+j





+ · · ·+ vp0





∞
∑

j=0

χjzt−p0−j −
∞
∑

j=0

χjzt+p0+j



 ,
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and so c1(u,v) = −u1γ0 + v1χ0, c−1(u,v) = −v1χ0, c2(u,v) = −u1γ1 − u2γ0 + v1χ1 + v2χ0, c−2(u,v) =

−v1χ1 − v2χ0, etc. From Brockwell and Davis (1991, Chapter 3), {γj}∞j=0 and {χj}∞j=0 decay at geometric

rates, so for any u,v ∈ IRp0 , {cj(u,v)}j 6=0 is also geometrically decaying as j → ±∞. We now introduce

W (u,v) =

∞
∑

k=1

∑

j 6=0

{

ln f
(

zk,j + [c̃(α0)]
1/α0σ0|θ0s0 |cj(u,v)δkΓ

−1/α0

k ; τ 0

)

− ln f (zk,j ; τ 0)
}

,

where

• {zk,j}k,j is iid with zk,j
L
= zt,

• c̃(α0) :=
(∫∞

0
t−α0 sin(t) dt

)−1
,

• {δk} is iid with P(δk = 1) = [1− (sign θ0s0)β0]/2 and P(δk = −1) = 1− P(δk = 1),

• Γk = E1 + · · ·+ Ek, where {Ek} is an iid series of exponential random variables with mean one, and

• {zk,j}, {δk}, and {Ek} are mutually independent.

Note that c̃(α0) = limx→∞ xα0P(|zt| > x)/(|θ0s0 |σ0)α0 and [1−(sign θ0s0)β0]/2 = limx→∞[P(zt > x)/P(|zt| >

x)] (Samorodnitsky and Taqqu, 1994, Property 1.2.15). Also, from the proof of Theorem 3.1 in Andrews et

al. (2009), where a function similar to W is considered, W (u,v) is finite for all u,v ∈ IRp0 and has a unique

maximum almost surely.

In the following theorem, we give the nondegenerate limiting distribution for ML estimators of ζ0 =

(η′
0, θ

′
0, τ

′
0)

′.

Theorem 4. There exists a sequence of maximizers ζ̂ML = (η̂′
ML, θ̂

′

ML, τ̂
′
ML)

′ of L(·, p0) in (15) such that,

as n→ ∞,

n1/α0(η̂ML − η0)
L→ ξ1, n1/α0(θ̂ML − θ0)

L→ ξ2, and n1/2(τ̂ML − τ 0)
L→ Y ∼ N(0, I−1(τ 0)), (18)

where ξ = (ξ1, ξ2) is the unique maximizer of W (·, ·), ξ and Y are independent, and

I(τ ) := −
[

E{∂2 ln f(zt; τ )/(∂τi∂τj)}
]

i,j∈{1,...,4}
.

Proof. For u,v ∈ IRp0 and w ∈ IR4, let

Wn(u,v,w) = L(ζ0 + (n−1/α0u′, n−1/α0v′, n−1/2w′)′, p0)− L(ζ0, p0), (19)
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W †
n(u,v,w) =

n
∑

t=2p0+1



ln f



zt + n−1/α0

∑

j 6=0

cj(u,v)zt−j ; τ 0 +
w√
n



− ln f (zt; τ 0)



 , (20)

and

W ∗
n(u,v,w) =

n
∑

t=2p0+1



ln f



zt + n−1/α0

∑

j 6=0

cj(u,v)zt−j ; τ 0



− ln f (zt; τ 0) +
w′

√
n

∂ ln f(zt; τ 0)

∂τ



 .

By Lemma 4 in the Appendix, Wn(·, ·, ·) −W †
n(·, ·, ·) = op(1) on C(IR2p0+4), the space of continuous func-

tions on IR2p0+4 where convergence is equivalent to uniform convergence on every compact subset, and, by

Lemma A.5 in Andrews et al. (2009), W †
n(u,v,w) −W ∗

n(u,v,w) +w′I(τ 0)w/2 = op(1) on C(IR
2p0+4). In

addition, following the proof of Theorem 3.3 in Andrews et al. (2009), where a similar result is established,

it can be shown that W ∗
n(u,v,w)

L→ W (u,v) + w′N on C(IR2p0+4), with N ∼ N(0, I(τ 0)) independent

of W (·, ·). Therefore, Wn(u,v,w)
L→ W (u,v) + w′N − w′I(τ 0)w/2 on C(IR2p0+4). Since ξ = (ξ1, ξ2)

uniquely maximizes W (·, ·) almost surely, and Y = I−1(τ 0)N ∼ N(0, I−1(τ 0)), which is independent of

W , uniquely maximizes w′N − w′I(τ 0)w/2, by Remark 1 in Davis et al. (1992), there exists a sequence

of maximizers of Wn(·, ·, ·) which converges in distribution to (ξ1, ξ2,Y). Because L(ζ, p0) − L(ζ0, p0) =

Wn(n
1/α0(η − η0), n

1/α0(θ − θ0), n
1/2(τ − τ 0)), the result of this theorem holds. �

Although the MLEs ζ̂ML maximize L(·, p0), note that P(ζ̂ML maximizes L(·, p̂)) → 1 as n → ∞, since,

by Theorem 2, P(p̂ = p0) → 1. Note, also, that the estimators τ̂ML of τ 0 have the same limiting normal

distribution as ML estimators in the case of observed iid stable noise {zt}nt=1 (DuMouchel, 1973). Values of

the limiting covariance matrix I−1(·) can be found in Nolan (2001) for different stable parameter vectors.

Since the forms of the limiting distributions for η̂ML and θ̂ML in (18) are intractable, we recommend

using the bootstrap to examine the distributions for these estimators. Andrews et al. (2009) give a bootstrap

procedure for examining the distribution for MLEs of the AR parameters φ0 = (φ01, . . . , φ0p0
)′; we consider

a similar procedure here. Given observations {Xt}nt=1 from (1), η̂ML and θ̂ML from (18), and corresponding

residuals {zt(η̂ML, θ̂ML, p0)}nt=2p0+1 obtained via (14), the procedure is implemented by first generating an

iid sequence {z∗t }mn

t=1 from the empirical distribution for {zt(η̂ML, θ̂ML, p0)}nt=2p0+1. A bootstrap replicate

X∗
1 , . . . , X

∗
mn

is then obtained from the estimate of model equation (13)

η̂ML(B)Bp0 θ̂cML(B
−1)X∗

t = θ̂cML(B)z∗t ,
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with η̂ML(z) := 1 − η̂1,MLz − · · · − η̂p0,MLz
p0 and θ̂cML(z) := 1 − θ̂1,MLz − · · · − θ̂p0,MLz

p0 (let z∗t = 0 for

t /∈ {1, . . . ,mn}). Finally, with

z∗t (η, θ, p) :=



















0, t ≤ 2p,

θ1z
∗
t−1(η, θ, p) + · · ·+ θpz

∗
t−p(η, θ, p) + η(B)Bpθ(B−1)X∗

t , t = 2p+ 1, . . . ,mn,

for η = (η1, . . . , ηp)
′ ∈ IRp and θ = (θ1, . . . , θp)

′ ∈ IRp, bootstrap replicates η̂∗
mn

and θ̂
∗

mn
of η̂ML and θ̂ML

can be found by maximizing L∗
mn

(η, θ, p0) :=
∑mn

t=2p0+1 ln f(z
∗
t (η, θ, p0); τ̂ML) with respect to (η, θ). The

limiting behavior of η̂∗
mn

and θ̂
∗

mn
is addressed in Theorem 5. To give a precise statement of the results, we

let Mp(IR
p0) represent the space of probability measures on IRp0 and we use the metric dp0

from Davis and

Wu (1997, page 1139) to metrize the topology of weak convergence onMp(IR
p0). For random elements Qn, Q

of Mp(IR
p0), Qn

P→ Q if and only if dp0
(Qn, Q)

P→ 0 on IR, which is equivalent to
∫

IRp0 hj dQn
P→
∫

IRp0 hj dQ

on IR for all j ∈ {1, 2, . . .}, where {hj}∞j=1 is a dense sequence of bounded, uniformly continuous functions

on IRp0 .

Theorem 5. If, as n→ ∞, mn → ∞ with mn/n→ 0, then there exists a sequence of maximizers (η̂∗
mn
, θ̂

∗

mn
)

of L∗
mn

(·, ·, p0) such that P(m
1/α̂ML
n (η̂∗

mn
− η̂ML) ∈ ·|X1, . . . , Xn)

P→ P(ξ1 ∈ ·) and

P(m
1/α̂ML
n (θ̂

∗

mn
− θ̂ML) ∈ ·|X1, . . . , Xn)

P→ P(ξ2 ∈ ·) on Mp(IR
p0).

Proof. The proof of this result is nearly the same as the proof of Theorem 3.4 in Andrews et al. (2009), so

we omit the details. �

Thus, m
1/α̂ML
n (η̂∗

mn
− η̂ML) and m

1/α̂ML
n (θ̂

∗

mn
− θ̂ML), conditioned on {Xt}nt=1, have the same limiting

distributions as n1/α0(η̂ML − η0) and n1/α0(θ̂ML − θ0) respectively. If n is large, these limiting distribu-

tions can, therefore, be approximated by simulating bootstrap values of η̂∗
mn

and θ̂
∗

mn
, and looking at the

distributions for m
1/α̂ML
n (η̂∗

mn
− η̂ML) and m

1/α̂ML
n (θ̂

∗

mn
− θ̂ML). In principle, one could also examine the

limiting distributions for n1/α0(η̂ML − η0) and n
1/α0(θ̂ML − θ0) by simulating realizations of W (·, ·), with

the true parameter values η0, θ0, and τ 0 replaced by estimates, and by finding the corresponding values of

the maximizer ξ = (ξ1, ξ2), but this procedure is more laborious than the bootstrap. Confidence intervals

for the elements of η0 and θ0 can be obtained using the limiting results for η̂ML and θ̂ML in (18), bootstrap
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estimates of quantiles for the limiting distributions, and the estimate α̂ML of α0. For the elements of τ 0,

confidence intervals can be directly obtained from the limiting normal result for τ̂ML in (18).

4 Numerical Results

4.1 Simulation Study

In this section, we describe a simulation experiment to study the accuracy of the order selection procedures

for finite samples. We did these simulations in R (http://www.r-project.org), using the fBasics: Rmetrics–

Markets and Basic Statistics package (http://www.rmetrics.org) to generate stable noise and evaluate stable

densities.

For each of 100 replicates, we simulated an AR series of length n = 500 with stable noise and found

p̂ = arg min0≤k≤5AIC(k), the minimum AIC estimate of AR model order over the integers 0, 1, . . . , 5. We

then found the MLE ζ̂ML = (η̂′
ML, θ̂

′

ML, τ̂
′
ML)

′ of ζ0 by maximizing the log-likelihood L(ζ, p) in (15) with

respect to ζ at p = p̂. For the likelihood maximization, the Yule-Walker estimate η̂YW (p̂) was used as the

starting value for η, and we used 100 randomly chosen starting values for (θ′, τ ′)′. The log-likelihood was

evaluated at each of the candidate values, and then we reduced the collection of initial values to the eight

with the highest likelihoods. Optimized values were found using the Nelder-Mead algorithm (Nelder and

Mead, 1965) and the eight initial values as starting points. The optimized value for which the likelihood

was highest was chosen to be ζ̂ML. Lastly, the bootstrap procedure described in Section 3.3 was repeated

1000 times, with mn = 150, in order to estimate the 2.5% and 97.5% quantiles for the distributions of the

elements of ξ2 in (18). We used the estimated quantiles to compute 95% confidence intervals for the elements

of θ0 = (θ01, . . . , θ0s0 , 0, . . . , 0)
′, and s0, which corresponds to the order of noncausality for the AR process,

was estimated via ŝ = min{0 ≤ j ≤ p̂ : the C.I.s for θ0k, k > j, all contain zero}.

We obtained simulation results for the causal AR(1) model with parameter φ0 = 0.5, the purely noncausal

AR(1) model with parameter φ0 = 2.0, and the AR(2) model with parameter φ0 = (−1.2, 1.6)′. The AR(2)

polynomial φ0(z) = 1 + 1.2z − 1.6z2 equals (1 − 0.8z)(1 + 2.0z), so it has one root inside and the other

outside the unit circle. For the stable parameter values ϑ0 = (α0, β0, σ0, µ0)
′, we considered α0 ∈ {0.8, 1.5},
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Model Parameters p̂ ŝ
α0 β0 σ0 µ0 0 1 2 3 4 5 0 1 2 3 4 5

φ0 = 0.5 0.8 0.0 1 0 0 93 2 1 0 4 91 4 1 0 1 3
(p0 = 1, s0 = 0) 0.8 0.5 1 0 0 94 1 1 1 3 95 0 0 1 1 3

1.5 0.0 1 0 0 88 2 6 1 3 90 4 1 3 1 1
1.5 0.5 1 0 0 78 7 7 3 5 93 5 1 0 1 0

φ0 = 2.0 0.8 0.0 1 0 0 93 3 1 1 2 0 94 2 1 1 2
(p0 = 1, s0 = 1) 0.8 0.5 1 0 0 96 2 2 0 0 0 97 1 2 0 0

1.5 0.0 1 0 0 76 10 3 7 4 0 94 3 1 1 1
1.5 0.5 1 0 0 84 9 5 1 1 0 98 2 0 0 0

φ0 = (−1.2, 1.6)′ 0.8 0.0 1 0 0 1 82 7 4 6 0 61 25 5 4 5
(p0 = 2, s0 = 1) 0.8 0.5 1 0 0 0 95 3 0 2 0 64 32 2 0 2

1.5 0.0 1 0 0 0 84 4 5 7 0 93 3 0 2 2
1.5 0.5 1 0 0 1 84 10 2 3 0 95 2 1 1 1

Table 1: The frequencies for estimates of the AR model order p0 and the order of noncausality s0.

β0 ∈ {0, 0.5}, σ0 = 1, and µ0 = 0. Simulation results appear in Table 1, where we give the frequencies

for values of p̂ and ŝ. Note that, for all models, p0 and s0 were correctly identified most of the time, and

underestimation was rare.

4.2 Autoregressive Model Fitting

Figure 1 shows the natural logarithms of the volumes of Wal-Mart stock traded daily on the New York Stock

Exchange from December 1, 2003 to December 31, 2004. In Andrews et al. (2009, Section 4.2), the noncausal

AR(2) model

(1− 0.7380B)(1 + 2.8146B)Xt = Zt, (21)

with {Zt} iid stable with parameter vector (α, β, σ, µ)′ = (1.8335, 0.5650, 0.4559, 16.0030)′, was fit to this

log-volume series {Xt}274t=1. Andrews et al. used the Gaussian AIC statistic to determine that two is an

appropriate AR model order, and then maximized the log-likelihood of a stable AR(2) series to obtain

the parameter estimates, considering AR(2) polynomials with all combinations of roots inside and outside

the unit circle. Since the residuals from model (21) appeared approximately iid stable with parameter

(1.8335, 0.5650, 0.4559, 16.0030)′, they concluded that (21) is a satisfactory fitted model for the series. By

Theorem 2, minimizing AIC is a consistent AR order selection procedure in the case of a noncausal, infinite

variance AR process, supporting the use of the AIC statistic for AR order determination in this example.

In this section, we demonstrate that the AR likelihood did not need to be maximized with respect to all
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Figure 1: The natural logarithms of the volumes of Wal-Mart stock traded daily on the New York Stock

Exchange from December 1, 2003 to December 31, 2004.
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combinations of two roots inside and outside the unit circle; all-pass models could have been used to determine

that one is an appropriate order of noncausality for the fitted AR(2) model. All-pass models could also have

been used for preliminary AR estimation.

First of all, the Yule-Walker estimate η̂Y W (2) equals (0.4425, 0.0903)′, so the causal AR residuals are

given by Ût = (1−0.4425B−0.0903B2)Xt, t = 3, . . . , 274. These residuals {Ût} are shown in Figure 2, along

with sample autocorrelation functions for the residuals and absolute values and squares of the mean-corrected

residuals. The bounds in Figure 2(b)–(d) are approximate 95% confidence bounds which we obtained by

simulating 100,000 independent sample correlations for the values, absolute values, and squares of 272 mean-

corrected iid values from the empirical distribution of {Ût}274t=3. Based on the graphs in Figure 2, {Ût} does

not appear iid, but rather uncorrelated yet dependent, with sample correlations for the absolute values and

squares that are roughly geometrically decaying. Following Theorem 3, this suggests that a noncausal AR(2)

model is appropriate for {Xt}.

To identify the appropriate order of noncausality, we maximized the log-likelihood L(ζ, p) in (15) with

respect to ζ at p = 2. The ML estimates are

ζ̂ML = (η̂1, η̂2, θ̂1, θ̂2, τ̂1, τ̂2, τ̂3, τ̂4)
′

= (0.4178, 0.1326,−0.2553,−0.0351, 1.7942, 0.6754, 0.1610, 7.1993)′ (22)

and, from 1000 iterations of the bootstrap procedure described in Section 3.3 with mn = 135, approxi-

mate 95% bootstrap confidence intervals for the all-pass parameters θ01 and θ02 are (−0.3651,−0.2253) and

(−0.0705, 0.0039). Since the second interval overlaps zero while the first does not, the all-pass order is one,

and so the appropriate order of noncausality for {Xt} also appears to be one. Given p̂ = 2, ŝ = 1, and

the parameter estimates in (22), it follows from (16) that a preliminary estimate of the AR(2) polynomial

φ0(z) = 1− φ01z − φ02z
2 is

(1− 0.4178z − 0.1326z2)(0.2553−1)z(1 + 0.2553z−1)

(1 + 0.2553z)
=

(1 + 0.2109z)(1− 0.6287z)(1 + 3.9170z)

(1 + 0.2553z)

≈ (1− 0.6287z)(1 + 3.9170z).

The corresponding parameters could have been used as initial values when finding (21).
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Figure 2: (a) The causal AR residuals {Ût}, and sample autocorrelation functions for (b) {Ût}, (c) the

absolute values of mean-corrected {Ût}, and (d) the squares of mean-corrected {Ût}.
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Appendix

In this section, we give proofs of the lemmas used to establish results in Section 3. We begin with Lemmas 1–

3, which were used in the proof of Theorem 1. As in the proof of Theorem 1, we assume the distribution

for the iid noise {Zt} is in the domain of attraction of a stable law with exponent α0 ∈ (0, 2), and that

K(n) = O(nδ) with 0 ≤ δ < min{1/2, 1 − α0/2}. Additionally, when E|Zt| < ∞, we let µX = EXt and

µU = EUt. Since, by (3), Ut = Xt − η01Xt−1 − · · · − η0p0
Xt−p0

, it follows that µU = (1 −
∑p0

j=1 η0j)µX .

Lemma 1. (i) If α0 ∈ (0, 1], then maxp0≤k≤K(n) n
1/2−κ‖[∑n

t=k+1 UtXt−j ]j∈{1,...,k}‖ P→ 0 for sufficiently

large κ < 2/α0 and, (ii) if α0 ∈ (1, 2), then maxp0≤k≤K(n) n
1/2−κ‖[

∑n
t=k+1(Ut−µU )(Xt−j−µX)]j∈{1,...,k}‖ P→

0 for large κ < 2/α0.

Proof. (i) First, recall that Xt =
∑∞

j=−∞ ψjZt−j and Ut =
∑∞

j=0 πjZt+j , where the coefficients {ψj} and

{πj} are geometrically decaying as j → ±∞. For j ≤ 0, we let π̄j = π−j , so that Ut =
∑0

j=−∞ π̄jZt−j. Now

suppose α0 ≤ 1 and consider

max
p0≤k≤K(n)

n1/2−κ

∥

∥

∥

∥

∥

[

n
∑

t=k+1

UtXt−j

]

j∈{1,...,k}

∥

∥

∥

∥

∥

= max
p0≤k≤K(n)

n1/2−κ

∥

∥

∥

∥

∥

[

n
∑

t=k+1

0
∑

l=−∞

∞
∑

m=−∞

π̄lψmZt−lZt−j−m

]

j∈{1,...,k}

∥

∥

∥

∥

∥

≤ max
p0≤k≤K(n)

n1/2−κ

∥

∥

∥

∥

∥

[

n
∑

t=k+1

0
∑

l=−∞

π̄lψl−jZ
2
t−l

]

j∈{1,...,k}

∥

∥

∥

∥

∥

(23)

+ max
p0≤k≤K(n)

n1/2−κ

∥

∥

∥

∥

∥





n
∑

t=k+1

0
∑

l=−∞

∑

m 6=l−j

π̄lψmZt−lZt−j−m





j∈{1,...,k}

∥

∥

∥

∥

∥

. (24)

We complete the proof of (i) by showing that (23) and (24) are op(1) for sufficiently large κ < 2/α0.

Since the Laurent series expansion for 1/η0(z) is given by
∑∞

j=0 γjz
j, following (3), Xt =

∑∞
j=0 γjUt−j

for all t. Therefore, because the all-pass process {Ut} is uncorrelated, if the iid noise {Zt} were N(0, σ2)

(instead of in the domain of attraction of a non-Gaussian stable law), then for any j > 0, it would be the

case that

0 = E{UtXt−j} = E

{

0
∑

l=−∞

∞
∑

m=−∞

π̄lψmZt−lZt−j−m

}

= σ2
0
∑

l=−∞

π̄lψl−j .

It follows that, for any j > 0,
∑0

l=−∞ π̄lψl−j must equal zero, and so, for {Zt} in a stable domain of
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attraction,

n
∑

t=k+1

0
∑

l=−∞

π̄lψl−jZ
2
t−l =

n
∑

t=k+1

0
∑

l=−t+k+1

π̄lψl−jZ
2
t +

∞
∑

t=n+1

−t+n
∑

l=−t+k+1

π̄lψl−jZ
2
t

= −
n
∑

t=k+1

−t+k
∑

l=−∞

π̄lψl−jZ
2
t +

∞
∑

t=n+1

−t+n
∑

l=−t+k+1

π̄lψl−jZ
2
t . (25)

Since {π̄j} and {ψj} are geometrically decaying, there exist constants C1 > 0 and 0 < D1 < 1 such that

|π̄j |, |ψj | ≤ C1D
|j|
1 for all j, so the absolute value of (25) is bounded above by

n
∑

t=k+1

∞
∑

l=t−k

C2
1D

2l+j
1 Z2

t +

∞
∑

t=n+1

∞
∑

l=t−n

C2
1D

2l+j
1 Z2

t =
C2

1D
j
1

1−D2
1

(

n
∑

t=k+1

D
2(t−k)
1 Z2

t +

∞
∑

t=n+1

D
2(t−n)
1 Z2

t

)

.

Hence, equation (23) is bounded above by

n1/2−κ
(

D1
1 + · · ·+D

K(n)
1

) C2
1

1−D2
1



D2
1

K(n)
∑

t=p0+1

Z2
t +

n
∑

t=K(n)+1

D
2(t−K(n))
1 Z2

t +
∞
∑

t=n+1

D
2(t−n)
1 Z2

t





≤ n1/2−κ C2
1D1

(1−D1)(1−D2
1)



D2
1

K(n)
∑

t=p0+1

Z2
t +

n
∑

t=K(n)+1

D
2(t−K(n))
1 Z2

t +
∞
∑

t=n+1

D
2(t−n)
1 Z2

t



 .

Now, choose κ1 < 2/α0 and λ1 < α0/2 so that λ1(κ1 − 1/2) is sufficiently close to (α0/2)(2/α0 − 1/2) =

1−α0/4 that we have λ1(κ1− 1/2) > 1/2, and let ε > 0. Since λ1 < 1, using the Markov inequality, we have

P









n1/2−κ1



D2
1

K(n)
∑

t=p0+1

Z2
t +

n
∑

t=K(n)+1

D
2(t−K(n))
1 Z2

t +

∞
∑

t=n+1

D
2(t−n)
1 Z2

t









λ1

> ελ1







≤ ε−λ1nλ1(1/2−κ1)



D2λ1

1

K(n)
∑

t=p0+1

E|Z1|2λ1 +

n
∑

t=K(n)+1

D
2λ1(t−K(n))
1 E|Z1|2λ1 +

∞
∑

t=n+1

D
2λ1(t−n)
1 E|Z1|2λ1





≤ ε−λ1nλ1(1/2−κ1)E|Z1|2λ1

(

K(n)D2λ1

1 +
2D2λ1

1

1−D2λ1

1

)

,

which is o(1) because E|Z1|2λ1 < ∞, K(n) = O(nδ), and nλ1(1/2−κ1)+δ ≤ nλ1(1/2−κ1)+1/2 → 0. Therefore,

(23) is op(1) for some sufficiently large κ < 2/α0 when α0 ≤ 1.

Now consider (24), which is bounded above by n1/2−κ
∑K(n)

j=1

∑n
t=1

∑0
l=−∞

∑

m 6=l−j |π̄lψmZt−lZt−j−m|.

Since α0(2/α0 − 1/2) ≥ 3/2 when α0 ≤ 1, we can choose κ2 < 2/α0 and λ2 < α0 so that λ2(κ2 − 1/2) is

sufficiently close to α0(2/α0 − 1/2) that 1 + δ < λ2(κ2 − 1/2) < α0(2/α0 − 1/2). It follows that

nλ2(1/2−κ2)K(n)nE|Z1Z2|λ2

0
∑

l=−∞

∞
∑

m=−∞

|π̄lψm|λ2 → 0,

since nλ2(1/2−κ2)+δ+1 → 0, E|Z1Z2|λ2 < ∞, and
∑0

l=−∞

∑∞
m=−∞ |π̄lψm|λ2 <∞. Consequently, (24) is also

op(1) for sufficiently large κ when α0 ≤ 1.
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(ii) We now consider the case α0 > 1, and let Z̃t = Zt − EZt, so Ut − µU =
∑0

j=−∞ π̄jZ̃t−j and

Xt − µX =
∑∞

j=−∞ ψjZ̃t−j . It follows that maxp0≤k≤K(n) n
1/2−κ‖[∑n

t=k+1(Ut − µU )(Xt−j − µX)]j∈{1,...,k}‖

is bounded above by

max
p0≤k≤K(n)

n1/2−κ

∥

∥

∥

∥

∥

[

n
∑

t=k+1

0
∑

l=−∞

π̄lψl−jZ̃
2
t−l

]

j∈{1,...,k}

∥

∥

∥

∥

∥

(26)

+ max
p0≤k≤K(n)

n1/2−κ

∥

∥

∥

∥

∥





n
∑

t=1

0
∑

l=−∞

∑

m 6=l−j

π̄lψm

(

Z̃t−lZ̃t−j−mI{|Z̃t−lZ̃t−j−m| ≤ n1/α0}

−E
{

Z̃1Z̃2I{|Z̃1Z̃2| ≤ n1/α0}
})

]

j∈{1,...,k}

∥

∥

∥

∥

∥

(27)

+ max
p0≤k≤K(n)

n1/2−κ

∥

∥

∥

∥

∥





n
∑

t=1

0
∑

l=−∞

∑

m 6=l−j

π̄lψm

(

Z̃t−lZ̃t−j−mI{|Z̃t−lZ̃t−j−m| > n1/α0}

−E
{

Z̃1Z̃2I{|Z̃1Z̃2| > n1/α0}
})

]

j∈{1,...,k}

∥

∥

∥

∥

∥

(28)

+ max
p0≤k≤K(n)

n1/2−κ

∥

∥

∥

∥

∥





k
∑

t=1

0
∑

l=−∞

∑

m 6=l−j

π̄lψmZ̃t−lZ̃t−j−m





j∈{1,...,k}

∥

∥

∥

∥

∥

. (29)

Following the same proof used to show that (23) is op(1) for large κ < 2/α0, one can also show that (26) is

op(1) for large κ < 2/α0 when α0 > 1. So, to complete the proof of (ii), we show that, when α0 > 1, (27),

(28), and (29) are op(1) for sufficiently large κ < 2/α0.

The expected value of the square of (27) is bounded above by

n1−2κ

K(n)
∑

j=1

E







n
∑

t=1

0
∑

l=−∞

∑

m 6=l−j

π̄lψm

(

Z̃t−lZ̃t−j−mI{|Z̃t−lZ̃t−j−m| ≤ n1/α0} − E
{

Z̃1Z̃2I{|Z̃1Z̃2| ≤ n1/α0}
})







2

(30)

and, since {π̄j} and {ψj} are absolutely summable, {Z̃t} is iid, and

E
(

Z̃1Z̃2I{|Z̃1Z̃2| ≤ n1/α0} − E
{

Z̃1Z̃2I{|Z̃1Z̃2| ≤ n1/α0}
})

= 0,

(30) is bounded above by

(constant)n1−2κK(n)n
[

E
(

Z̃1Z̃2I{|Z̃1Z̃2| ≤ n1/α0} − E
{

Z̃1Z̃2I{|Z̃1Z̃2| ≤ n1/α0}
})2

+E
∣

∣

∣

(

Z̃1Z̃2I{|Z̃1Z̃2| ≤ n1/α0} − E
{

Z̃1Z̃2I{|Z̃1Z̃2| ≤ n1/α0}
})

×
(

Z̃2Z̃3I{|Z̃2Z̃3| ≤ n1/α0} − E
{

Z̃2Z̃3I{|Z̃2Z̃3| ≤ n1/α0}
}) ∣

∣

∣

]
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≤ 2(constant)n1−2κK(n)nE
(

Z̃1Z̃2I{|Z̃1Z̃2| ≤ n1/α0} − E
{

Z̃1Z̃2I{|Z̃1Z̃2| ≤ n1/α0}
})2

≤ 2(constant)n1−2κK(n)nE
(

Z̃2
1 Z̃

2
2I{|Z̃1Z̃2| ≤ n1/α0}

)

. (31)

By Theorem 3.3(ii) in Cline (1983, page 80), the distribution for |Z̃1Z̃2| is in the domain of attraction of a sta-

ble law with exponent α0, so, for x > 0, P(|Z̃1Z̃2| > x) = x−α0L1(x), where L1 is slowly varying at∞. There-

fore, by Karamata’s Theorem (see, for example, Feller, 1971, page 283),

E(Z̃2
1 Z̃

2
2I{|Z̃1Z̃2| ≤ n1/α0}) ∼ n2/α0−1L2(n), for some slowly varying function L2. Now, choose κ3 < 2/α0

sufficiently large so that 2κ3−1 > δ+2/α0, which is possible because δ+2/α0 < 1−α0/2+2/α0 < 4/α0−1.

Since n1−2κ3+δ+2/α0 → 0 and L2(n)n
−ε → 0 for any ε > 0 (Feller, 1971, page 277, Lemma 2), when κ = κ3,

(31) is o(1). Thus, for large κ < 2/α0, (27) is op(1).

Now let Vt1,t2,n = Z̃t1Z̃t2I{|Z̃t1Z̃t2 | > n1/α0} − E{Z̃1Z̃2I{|Z̃1Z̃2| > n1/α0}}. In order to prove that (28)

is op(1) for large κ, we consider

n1−2κ

K(n)
∑

j=1





n
∑

t=1

0
∑

l=−∞

∑

m 6=l−j

π̄lψmVt−l,t−j−m,n





2

= n1−2κ

K(n)
∑

j=1

n
∑

t1=1

n
∑

t2=1

0
∑

l1=−∞

0
∑

l2=−∞

∑

m1 6=l1−j

∑

m2 6=l2−j

[t1−l1 /∈{t2−l2,t2−j−m2}]∩[t1−j−m1 /∈{t2−l2,t2−j−m2}]

π̄l1 π̄l2ψm1
ψm2

Vt1−l1,t1−j−m1,nVt2−l2,t2−j−m2,n

(32)

+n1−2κ

K(n)
∑

j=1

n
∑

t1=1

n
∑

t2=1

0
∑

l1=−∞

0
∑

l2=−∞

∑

m1 6=l1−j

∑

m2 6=l2−j

[t1−l1∈{t2−l2,t2−j−m2}]∪[t1−j−m1∈{t2−l2,t2−j−m2}]

π̄l1 π̄l2ψm1
ψm2

Vt1−l1,t1−j−m1,nVt2−l2,t2−j−m2,n

(33)

and show there exist values of κ < 2/α0 for which (32) and (33) are op(1). First, observe that the ex-

pected value of the absolute value of (32) is bounded above by (constant)n1−2κK(n)n2(E|Z̃1Z̃2I{|Z̃1Z̃2| >

n1/α0}|)2. By Karamata’s Theorem, E|Z̃1Z̃2I{|Z̃1Z̃2| > n1/α0}| ∼ n1/α0−1L3(n) for some slowly varying

function L3. Therefore, since n
1−2κ3+δ+2/α0 → 0, we have n1−2κ3K(n)n2(E|Z̃1Z̃2I{|Z̃1Z̃2| > n1/α0}|)2 → 0,

and so (32) is op(1) for large κ < 2/α0. Next, choose κ4 < 2/α0 and λ3 < α0/2 < 1 sufficiently large so that

λ3(2κ4−1) > δ+1. This is possible because (α0/2)(4/α0−1) = 2−α0/2 > δ+1. Since nλ3(1−2κ4)+δ+1 → 0,
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E|Z̃1|2λ3 <∞, and E|Z̃1| <∞,

nλ3(1−2κ4)K(n)nE|V1,2,n|2λ3

= nλ3(1−2κ4)K(n)nE
∣

∣

∣Z̃1Z̃2I{|Z̃1Z̃2| > n1/α0} − E
{

Z̃1Z̃2I{|Z̃1Z̃2| > n1/α0}
} ∣

∣

∣

2λ3

≤ 2nλ3(1−2κ4)K(n)n

[

(

E|Z̃1|2λ3

)2

+
(

E|Z̃1|
)4λ3

]

→ 0.

It follows that (33) is op(1) for large κ < 2/α0.

Finally, we consider equation (29), which is bounded above by

n1/2−κ

K(n)
∑

j=1

K(n)
∑

t=1

0
∑

l=−∞

∑

m 6=l−j

|π̄lψmZ̃t−lZ̃t−j−m|, (34)

and we choose κ5 < 2/α0 so that κ5 − 1/2 > 2 − α0 > 2δ. Since n1/2−κ5+2δ → 0 and E|Z̃1Z̃2| < ∞, when

κ = κ5, the expected value of (34) is o(1), and therefore (29) is op(1) for sufficiently large κ. �

Lemma 2. (i) If α0 ≤ 1, then maxp0≤k≤K(n) n
1/2−κ|X|‖[∑n

t=k+1 Ut]j∈{1,...,k}‖ and

maxp0≤k≤K(n) n
1/2−κ|X |‖[∑n

t=k+1Xt−j]j∈{1,...,k}‖ converge in probability to zero for sufficiently large κ <

2/α0 and, (ii) if α0 > 1, then maxp0≤k≤K(n) n
1/2−κ|X − µX |‖[∑n

t=k+1(Ut − µU )]j∈{1,...,k}‖ and

maxp0≤k≤K(n) n
1/2−κ|X − µX |‖[

∑n
t=k+1(Xt−j − µX)]j∈{1,...,k}‖ converge in probability to zero for large

κ < 2/α0.

Proof. (i) When α0 ≤ 1,
∑n

t=1 |Ut| and
∑n

t=1 |Xt| are op(n1/α0+ε) for any ε > 0 (Davis and Resnick, 1985a,

Section 4). Therefore, if we choose κ6 < 2/α0 sufficiently large so that κ6 + 1/2 > δ + 2/α0, then

max
p0≤k≤K(n)

n1/2−κ6 |X|
∥

∥

∥

∥

∥

[

n
∑

t=k+1

Ut

]

j∈{1,...,k}

∥

∥

∥

∥

∥

≤ n−κ6−1/2K(n)

(

n
∑

t=1

|Xt|
)(

n
∑

t=1

|Ut|
)

P→ 0.

It can be shown similarly that maxp0≤k≤K(n) n
1/2−κ|X|‖[∑n

t=k+1Xt−j ]j∈{1,...,k}‖ P→ 0 for large κ < 2/α0.

(ii) This result can be established using the fact that, when α0 > 1, X − µX = op(n
1/α0−1+ε) for any

ε > 0 (Davis and Resnick, 1985a, Section 4). We omit the details. �

Lemma 3. When α0 ≤ 1, n1/2−κK(n)nX
2 P→ 0 for sufficiently large κ < 2/α0 and, when α0 > 1,

n1/2−κK(n)n(X − µX)2
P→ 0 for large κ < 2/α0.
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Proof. When α0 ≤ 1, X = op(n
1/α0−1+ε) for any ε > 0 and, when α0 > 1, X − µX = op(n

1/α0−1+ε) for any

ε > 0. The results of this lemma follow. �

Finally, we give Lemma 4, which was used in the proof of Theorem 4. For the proof of this lemma, we

assume the distribution for the iid noise {Zt} is stable with parameter vector ϑ0 = (α0, β0, σ0, µ0)
′, since that

is also assumed in the proof of Theorem 4. It follows that the scale-transformed series {zt} = {−θ0s0Zt−p0+s0}

is iid stable with parameter τ 0 = (α0,−(sign θ0s0)β0, |θ0s0 |σ0,−θ0s0µ0)
′.

Lemma 4. For Wn and W †
n defined in equations (19) and (20) respectively, Wn(·, ·, ·) −W †

n(·, ·, ·)
P→ 0 on

C(IR2p0+4) as n→ ∞.

But before proving this result, we look at partial and mixed partial derivatives for the residuals {zt(η, θ, p)}

in (14), which are used in the proof. First, for i ∈ {1, . . . , p}, note that

∂zt(η, θ, p)

∂ηi
=



















0, t ≤ 2p,

θ1
∂zt−1(η,θ,p)

∂ηi
+ · · ·+ θp

∂zt−p(η,θ,p)
∂ηi

−Bpθ(B−1)Xt−i, t = 2p+ 1, . . . , n,

(35)

and

∂zt(η, θ, p)

∂θi
=



















0, t ≤ 2p,

θ1
∂zt−1(η,θ,p)

∂θi
+ · · ·+ θp

∂zt−p(η,θ,p)
∂θi

+ zt−i(η, θ, p)− η(B)BpXt+i, t = 2p+ 1, . . . , n.

(36)

Since 1/θc0(z) = 1/(1 − θ01z − · · · − θ0p0
zp0) =

∑∞
j=0 χjz

j and, from (13), η0(B)Bp0θc0(B
−1)Xt = θc0(B)zt,

if we evaluate (35) and (36) at the true parameter values and then ignore the recursion initialization, for

t ∈ {2p0 + 1, . . . , n}, we have

∂zt(η0, θ0, p0)

∂ηi
= −

t−2p0−1
∑

j=0

χjB
p0θc0(B

−1)Xt−i−j = −
t−2p0−1
∑

j=0

χj
θc0(B)

η0(B)
zt−i−j ≈ − zt−i

η0(B)

and

∂zt(η0, θ0, p0)

∂θi
=

t−2p0−1
∑

j=0

χj [zt−i−j(η0, θ0, p0)− η0(B)Bp0Xt+i−j ]

=

t−2p0−1
∑

j=0

χjzt−i−j(η0, θ0, p0)−
t−2p0−1
∑

j=0

χj
θc0(B)

θc0(B
−1)

zt+i−j

≈ zt−i

θc0(B)
− zt+i

θc0(B
−1)

.
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Hence, following (17), for u,v ∈ IRp0 , u′[∂zt(η0, θ0, p0)/∂η]+v′[∂zt(η0, θ0, p0)/∂θ] ≈
∑

j 6=0 cj(u,v)zt−j . In

particular, since {χj} is geometrically decaying, it can be shown that, for any T > 0, there exist constants

C2 > 0 and D2 ∈ (0, 1) such that

sup
u,v∈[−T,T ]p0

∣

∣

∣

∣

∣

u′ ∂zt(η0, θ0, p0)

∂η
+ v′ ∂zt(η0, θ0, p0)

∂θ
−
∑

j 6=0

cj(u,v)zt−j

∣

∣

∣

∣

∣

≤ C2D
t
2

∞
∑

j=0

Dj
2 (|X2p0−j |+ |z2p0−j|)

(37)

for all t ≥ 2p0 + 1. Next, for i, j ∈ {1, . . . , p}, note that ∂2zt(η, θ, p)/(∂ηi∂ηj) = 0 ∀t. Additionally, for

t ∈ {2p+ 1, . . . , n}, we have the recursions

∂2zt(η, θ, p)

∂ηi∂θj
= θ1

∂2zt−1(η, θ, p)

∂ηi∂θj
+ · · ·+ θp

∂2zt−p(η, θ, p)

∂ηi∂θj
+
∂zt−j(η, θ, p)

∂ηi
+BpXt−i+j

and

∂2zt(η, θ, p)

∂θi∂θj
= θ1

∂2zt−1(η, θ, p)

∂θi∂θj
+ · · ·+ θp

∂2zt−p(η, θ, p)

∂θi∂θj
+
∂zt−j(η, θ, p)

∂θi
+
∂zt−i(η, θ, p)

∂θj
,

with ∂2zt(η, θ, p)/(∂ηi∂θj) = ∂2zt(η, θ, p)/(∂θi∂θj) = 0 for t ≤ 2p. It can therefore be shown that there

exists an ε > 0 and constants C3 > 0 and D3 ∈ (0, 1) such that

sup
‖η−η

0
‖,‖θ−θ0‖<ε

∣

∣

∣

∣

∣

∂2zt(η, θ, p0)

∂ηi∂θj

∣

∣

∣

∣

∣

+ sup
‖η−η

0
‖,‖θ−θ0‖<ε

∣

∣

∣

∣

∣

∂2zt(η, θ, p0)

∂θi∂θj

∣

∣

∣

∣

∣

≤ C3

∞
∑

j=0

Dj
3|Xt−j | (38)

for all i, j ∈ {1, . . . , p0} and t ≥ 2p0 + 1.

Proof of Lemma 4. For u,v ∈ IRp0 and w ∈ IR4, note that Wn(u,v,w) −W †
n(u,v,w) equals

n
∑

t=2p0+1

[

ln f

(

zt

(

η0 +
u

n1/α0
, θ0 +

v

n1/α0
, p0

)

; τ 0 +
w√
n

)

− ln f



zt(η0, θ0, p0) +
1

n1/α0

∑

j 6=0

cj(u,v)zt−j ; τ 0 +
w√
n





]

(39)

+

n
∑

t=2p0+1

[

ln f



zt(η0, θ0, p0) +
1

n1/α0

∑

j 6=0

cj(u,v)zt−j ; τ 0 +
w√
n



− ln f(zt(η0, θ0, p0); τ 0)

− ln f



zt +
1

n1/α0

∑

j 6=0

cj(u,v)zt−j ; τ 0 +
w√
n



+ ln f(zt; τ 0)

]

. (40)

We first consider equation (39), which can be expressed as

n
∑

t=2p0+1

{

∂ ln f(z∗t,n(u,v,w); τ 0 +w/
√
n)

∂z

×



zt

(

η0 +
u

n1/α0
, θ0 +

v

n1/α0
, p0

)

− zt(η0, θ0, p0)−
1

n1/α0

∑

j 6=0

cj(u,v)zt−j





}

, (41)
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with z∗t,n(u,v,w) between zt(η0 +n−1/α0u, θ0 +n−1/α0v, p0) and zt(η0, θ0, p0) +n−1/α0
∑

j 6=0 cj(u,v)zt−j ,

and we note that zt(η0 + n−1/α0u, θ0 + n−1/α0v, p0) also equals

zt (η0, θ0, p0) +
1

n1/α0
(u′,v′)









∂zt(η0
,θ0,p0)

∂η

∂zt(η0
,θ0,p0)

∂θ









+
1

2n2/α0
(u′,v′)









∂2zt(η∗
t,n

(u,v),θ∗

t,n(u,v),p0)

∂η∂η′

∂2zt(η∗
t,n

(u,v),θ∗

t,n(u,v),p0)

∂η∂θ′

∂2zt(η∗
t,n

(u,v),θ∗

t,n(u,v),p0)

∂θ∂η′

∂2zt(η∗
t,n

(u,v),θ∗

t,n(u,v),p0)

∂θ∂θ′

















u

v









,

where η∗
t,n(u,v) is between η0 and η0 + n−1/α0u, and θ

∗
t,n(u,v) is between θ0 and θ0 + n−1/α0v. Now,

let T > 0. Since supz∈IR,w∈[−T,T ]4 |∂ ln f(z; τ 0 + w/
√
n)/∂z| = O(1) as n → ∞ (Andrews et al., 2009,

Section 2), it follows from (37) and (38) that, for all n sufficiently large, sup(u′,v′,w′)′∈[−T,T ]2p0+4 | · | of (41)

is bounded above by

(constant)





1

n1/α0

n
∑

t=2p0+1

Dt
2

∞
∑

j=0

Dj
2 (|X2p0−j|+ |z2p0−j |) +

1

n2/α0

n
∑

t=2p0+1

∞
∑

j=0

Dj
3|Xt−j |





for some D2, D3 ∈ (0, 1). Therefore, because
∑n

t=2p0+1D
t
2

∑∞
j=0D

j
2(|X2p0−j | + |z2p0−j |) = Op(1) and

n−2/α0
∑n

t=2p0+1

∑∞
j=0D

j
3|Xt−j | P→ 0 (Davis and Resnick, 1985a, Section 4), (41) and hence also (39) must

be op(1) on C([−T, T ]2p0+4). Using the fact that, for some C4 > 0 and D4 ∈ (0, 1), |zt(η0, θ0, p0) − zt| ≤

C4D
t
4

∑∞
j=0D

j
4|X2p0−j | ∀t ≥ 2p0+1, it can also be shown that (40) is op(1) on C([−T, T ]2p0+4). Since T > 0

is arbitrary, it follows that (39) and (40) are op(1) on C(K) for any compact set K ⊂ IR2p0+4, and thus

Wn(·, ·, ·)−W †
n(·, ·, ·)

P→ 0 on C(IR2p0+4). �
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