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Abstract

An autoregressive-moving average model in which all roots of the autoregressive polyno-

mial are reciprocals of roots of the moving average polynomial and vice versa is called

an all-pass time series model. All-pass models are useful for identifying and model-

ing noncausal and noninvertible autoregressive-moving average processes. We establish

asymptotic normality and consistency for rank-based estimators of all-pass model pa-

rameters. The estimators are obtained by minimizing the rank-based residual dispersion

function in L.A. Jaeckel [Estimating regression coefficients by minimizing the dispersion

of the residuals, Ann. Math. Statist. 43 (1972) 1449–1458]. These estimators can have

the same asymptotic efficiency as maximum likelihood estimators and are robust. The

behavior of the estimators for finite samples is studied via simulation, and rank estimation

is used in the deconvolution of a simulated water gun seismogram.

1Supported in part by NSF Grants DMS9972015 and DMS0308109.
2Supported in part by EPA STAR grant CR-829095.

AMS 2000 subject classifications. Primary 62M10; secondary 62E20, 62F10.

Key words and phrases. All-pass, deconvolution, non-Gaussian, noninvertible moving average, rank estimation,

white noise.



Rank Estimation for All-Pass Models 1

1 Introduction

Autoregressive-moving average (ARMA) models, the standard linear time series models for stationary data,

are often fit to observed series using Gaussian likelihood, least-squares, or related second-order moment

estimation techniques. These are effective methods for finding fitted ARMA models with second-order

moment properties that resemble those of an observed series, whether or not the data are Gaussian. However,

because every Gaussian ARMA process has a causal, invertible ARMA representation (all roots of the

autoregressive and moving average polynomials are outside the unit circle), in the non-Gaussian case, the

second-order methods are unable to identify a noncausal (at least one root of the autoregressive polynomial

is inside the unit circle) or noninvertible (at least one root of the moving average polynomial is inside the

unit circle) ARMA series. Fitted ARMA models obtained using second-order techniques may not, therefore,

most effectively capture the higher-order moment structure of the data. Consequently, an effort to identify

noncausal and noninvertible series should be part of any ARMA fitting procedure. In this paper, we discuss

all-pass models which are useful tools for identifying and modeling noncausal and noninvertible ARMA

processes.

All-pass models are ARMA models in which the roots of the autoregressive polynomial are reciprocals

of roots of the moving average polynomial and vice versa. These models generate uncorrelated (white

noise) time series that are not independent in the non-Gaussian case. As discussed in Andrews, Davis, and

Breidt [2], an all-pass series can be obtained by fitting a causal, invertible ARMA model to a series generated

by a causal, noninvertible ARMA model. The residuals follow an all-pass model of order r, where r is the

number of roots of the true moving average polynomial inside the unit circle. Consequently, by identifying

the all-pass order of the residuals, the order of noninvertibility of the ARMA can be determined without

considering all possible configurations of roots inside and outside the unit circle, which is computationally

prohibitive for large order models. Noninvertible ARMA models have appeared, for example, in vocal tract

filters (Chi and Kung [8], Chien, Yang, and Chi [9]), in the analysis of unemployment rates (Huang and

Pawitan [13]), and in seismogram deconvolution (Andrews, Davis, and Breidt [2], Lii and Rosenblatt [19]).
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All-pass models can be used similarly to fit noncausal ARMA models (Breidt, Davis, and Trindade [6]). See

Breidt, Davis, and Trindade [6] for a list of applications for noncausal models.

Estimation methods based on second-order moment techniques cannot identify all-pass models because

Gaussian all-pass series are independent. Thus, cumulant-based estimators, using cumulants of order greater

than two, are often used to estimate these models (Chi and Kung [8], Chien, Yang, and Chi [9], Giannakis

and Swami [11]). Breidt, Davis, and Trindade [6] consider a least absolute deviations (LAD) estimation

approach which is motivated by the likelihood of an all-pass model with Laplace (two-sided exponential)

noise, and Andrews, Davis, and Breidt [2] consider a maximum likelihood (ML) estimation approach. The

LAD and ML estimators are consistent and asymptotically normal. However, the LAD estimation procedure

is limited by the assumption that the mean and median for the noise are equivalent, and the ML procedure

is limited by the assumption that the probability density function for the noise is symmetric and known to

within some parameter values.

In this paper, we consider a rank-based estimation technique first proposed by Jaeckel [14] for estimating

linear regression parameters. Jaeckel’s estimator minimizes the sum of model residuals weighted by a function

of residual rank. We study the asymptotic properties of Jaeckel’s rank (R) estimator in the case of all-pass

parameter estimation. This R-estimator is more robust than the LAD and ML estimators; it is consistent

and asymptotically normal under less stringent conditions. In addition, when R-estimation is used in lieu

of LAD or ML, efficiency need not be sacrificed. There exists a weight function for which R-estimation is

asymptotically equivalent to LAD estimation and, when the noise distribution is known, the weight function

can be chosen so that R-estimation is asymptotically equivalent to ML estimation. We also find that when

the Wilcoxon weight function (a linear weight function) is used, R-estimation is relatively very efficient for a

large class of noise distributions. Another advantage of R-estimation is that one has the flexibility to choose

a weight function that tends to produce relatively smooth R-objective functions which can be minimized

fairly easily.

Because the objective function for Jaeckel’s R-estimation method involves not only the residual ranks

but also the residual values, this is not pure R-estimation. Koul and Ossiander [16], Koul and Saleh [17],
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Mukherjee and Bai [20], and Terpstra, McKean, and Naranjo [23] consider related rank-based estimation

approaches for autoregressive model parameters. Also, Allal, Kaaouachi, and Paindaveine [1] examine a

pure R-estimator for ARMA model parameters based on correlations of weighted residual ranks. The results

for this pure R-estimator are not applicable to all-pass model parameters because the parameters in the

autoregressive polynomial of an all-pass model are functions of parameters in the moving average polynomial

and vice versa.

In Section 2, we consider Jaeckel’s R-function in the context of all-pass parameter estimation. Asymptotic

normality for R-estimators is established under mild conditions and order selection is discussed in Section 3.

Proofs of the lemmas used to establish the results of Section 3 can be found in the Appendix. We study

the behavior of the estimators for finite samples via simulation in Section 4.1, and use R-estimation in the

deconvolution of a simulated water gun seismogram in Section 4.2.

2 Preliminaries

2.1 All-Pass Models

Let B denote the backshift operator (BkXt = Xt−k, k = 0,±1,±2, . . .) and let φ(z) = 1 − φ1z − · · · − φpz
p

be a pth order autoregressive polynomial, where φ(z) 6= 0 for |z| = 1. The filter φ(B) is said to be causal

if all the roots of φ(z) are outside the unit circle in the complex plane. In this case, for a sequence {Wt},

φ−1(B)Wt = (
∑∞

j=0 ψjB
j)Wt =

∑∞
j=0 ψjWt−j , a function of only the past and present {Wt}. If φ(B)

is causal, the filter Bpφ(B−1) is purely noncausal and hence B−pφ−1(B−1)Wt = (
∑∞

j=0 ψjB
−p−j)Wt =

∑∞
j=0 ψjWt+p+j , a function of only the present and future {Wt}. See, for example, Chapter 3 of Brockwell

and Davis [7].

Let φ0(z) = 1 − φ01z − · · · − φ0pz
p, where φ0(z) 6= 0 for |z| ≤ 1. Define φ00 = 1 and r = max{0 ≤

j ≤ p : φ0j 6= 0}. Then, a causal all-pass time series is the ARMA series {Xt} which satisfies the difference

equations

φ0(B)Xt =
Brφ0(B

−1)

−φ0r
Z∗

t (2.1)
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or

Xt − φ01Xt−1 − · · · − φ0rXt−r = Z∗
t +

φ0,r−1

φ0r
Z∗

t−1 + · · · + φ01

φ0r
Z∗

t−r+1 −
1

φ0r
Z∗

t−r,

where the series {Z∗
t } is an independent and identically distributed (iid) sequence of random variables with

mean 0, variance σ2 ∈ (0,∞), and distribution function F . The true order of the all-pass model is r

(0 ≤ r ≤ p). Observe that the roots of the autoregressive polynomial φ0(z) are reciprocals of the roots of

the moving average polynomial −φ−1
0r z

rφ0(z
−1) and vice versa.

The spectral density for {Xt} in (2.1) is

|e−irω|2|φ0(e
iω)|2

φ2
0r|φ0(e−iω)|2

σ2

2π
=

σ2

φ2
0r2π

,

which is constant for ω ∈ [−π, π], and thus {Xt} is an uncorrelated sequence. In the case of Gaussian {Z∗
t },

this implies that {Xt} is iid N(0, σ2φ−2
0r ), but independence does not hold in the non-Gaussian case if r ≥ 1

(see Breidt and Davis [5]). The model (2.1) is called all-pass because the power transfer function of the

all-pass filter passes all the power for every frequency in the spectrum. In other words, an all-pass filter does

not change the distribution of power over the spectrum.

We can express (2.1) as

φ0(B)Xt =
Bpφ0(B

−1)

−φ0r
Zt, (2.2)

where {Zt} = {Z∗
t+p−r} is an iid sequence of random variables with mean 0, variance σ2, and distribution

function F . Rearranging (2.2) and setting zt = φ−1
0r Zt, we have the backward recursion zt−p = φ01zt−p+1 +

· · ·+φ0pzt − (Xt −φ01Xt−1 − · · · −φ0pXt−p). An analogous recursion for an arbitrary, causal autoregressive

polynomial φ(z) = 1 − φ1z − · · · − φpz
p can be defined as follows:

zt−p(φ) =

{ 0, t = n+ p, . . . , n+ 1,

φ1zt−p+1(φ) + · · · + φpzt(φ) − φ(B)Xt, t = n, . . . , p+ 1,
(2.3)

where φ := (φ1, . . . , φp)
′. Let φ0 = (φ01, . . . , φ0p)

′ = (φ01, . . . , φ0r , 0, . . . , 0)′ denote the true parameter

vector and note that {zt(φ0)}n−p
t=1 closely approximates {zt}n−p

t=1 ; the error is due to the initialization with

zeros. Although {zt} is iid, {zt(φ0)}n−p
t=1 is not iid if r ≥ 1.
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2.2 Jaeckel’s Rank Function

Suppose we have a realization of length n, {Xt}n
t=1, from (2.1). Let λ be a function from (0, 1) to IR such

that

A1 λ is strictly increasing and λ(s) = −λ(1 − s) for all s ∈ (0, 1).

If φ forms a causal pth order autoregressive polynomial and {Rt(φ)}n−p
t=1 contains the ranks of {zt(φ)}n−p

t=1

from (2.3), then the R-function evaluated at φ with weight function λ is

D(φ) :=

n−p
∑

t=1

λ

(

Rt(φ)

n− p+ 1

)

zt(φ). (2.4)

Because it tends to be near zero when the elements of {zt(φ)} are similar, (2.4) is a measure of the dispersion

of the residuals {zt(φ)}. When {z(t)(φ)}n−p
t=1 is the series {zt(φ)}n−p

t=1 ordered from smallest to largest, (2.4)

can also be written as D(φ) =
∑n−p

t=1 λ(t/(n − p + 1))z(t)(φ). A popular choice for the weight function is

λ(s) = s− 1/2. In this case, the weights {λ (t/(n− p+ 1))}n−p
t=1 are known as the Wilcoxon scores.

We give some properties for D in the following theorem. Jaeckel [14] shows that these same properties

hold for the R-function in the linear regression case.

Theorem 2.1 Assume A1 holds. For any φ ∈ IRp, if

{P1(φ), . . . , P(n−p)!(φ)} = {{z1,1(φ), . . . , z1,n−p(φ)}, . . . , {z(n−p)!,1(φ), . . . , z(n−p)!,n−p(φ)}}

contains the (n− p)! permutations of the sequence {zt(φ)}n−p
t=1 , then

D(φ) = sup
j∈{1,...,(n−p)!}

n−p
∑

t=1

λ

(

t

n− p+ 1

)

zj,t(φ).

In addition, D is a non-negative, continuous function on IRp, and D(φ) = 0 if and only if the elements of

{zt(φ)}n−p
t=1 are all equal.

Proof: See the proof of Theorem 1 in Jaeckel [14]. 2
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3 Asymptotic Results

3.1 Parameter Estimation

In order to establish asymptotic normality for R-estimators of φ0, we make the following additional assump-

tions:

A2 F , the distribution function for the noise, is strictly increasing and differentiable on IR with density f .

A3 f is uniformly continuous on IR with sups∈IR |s|f(s) <∞.

A4 The derivative of the weight function λ exists and is uniformly continuous on (0, 1).

Also, let J̃ =
∫ 1

0
λ2(s) ds, K̃ =

∫ 1

0
F−1(s)λ(s) ds, and L̃ =

∫ 1

0
f(F−1(s))λ′(s) ds, and assume

A5 σ2L̃ > K̃.

Theorem 3.1 If A1–A5 hold, there exists a sequence of minimizers φ̂R of D(·) in (2.4) such that

n1/2(φ̂R − φ0)
d→ Y ∼ N(0,Σ), (3.1)

where Σ := (σ2J̃ − K̃2)/[2(σ2L̃− K̃)2]σ2Γ−1
p , Γp := [γ(j − k)]pj,k=1, and γ(·) is the autocovariance function

for the autoregressive process {(1/φ0(B))Zt}.

Proof: D(φ) −D(φ0) = Sn(
√
n(φ − φ0)), where Sn(·) is defined in Lemma 5.5 of the Appendix. Because

Y := −|φ0r|σ2Γ−1
p N/[2(σ2L̃ − K̃)] minimizes the limit S(·) in Lemma 5.5, the result follows by Remark 1

in Davis, Knight, and Liu [10]. 2

Remark 1: R-estimators of linear regression parameters are also consistent and asymptotically normal

(Jaeckel [14]). Note, however, that the conditions placed on λ in assumption A4 are slightly stronger than

those placed on the weight function in Jaeckel [14], where the weight function is square integrable, not

necessarily bounded or continuous. The conditions in A4 can be relaxed to some extent at the expense of

stronger assumptions on f , but we do not pursue those extensions here. Since piecewise continuous and
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unbounded weight functions on (0, 1) can be well approximated by differentiable, bounded weight functions,

from a practical perspective, assumption A4 is not overly restrictive.

Remark 2: Using the Cauchy-Schwarz inequality,

σ2J̃ − K̃2 = σ2E
{

λ2(F (Z1))
}

− (E {Z1λ(F (Z1))})2 ≥ σ2E
{

λ2(F (Z1))
}

− E
{

Z2
1

}

E
{

λ2(F (Z1))
}

= 0,

(3.2)

with equality in (3.2) if and only if λ is proportional to F−1, which is not possible since F−1(0) = −∞,

F−1(1) = ∞, and λ is bounded on (0, 1). Hence, σ2J̃ − K̃2 > 0. K̃ =
∫ 1

0 F
−1(s)λ(s) ds is also greater than

zero because F−1 and λ are strictly increasing functions on (0, 1) and λ is odd about 1/2. Without assump-

tion A5, σ2L̃ − K̃ is not necessarily greater than zero, however. If the density function f is differentiable,

using integration by parts, it can be shown that

L̃ = E {f(Z1)λ
′(F (Z1))} = −

∫ ∞

−∞

f ′(s)λ(F (s)) ds = −
∫ 1

0

f ′(F−1(s))

f(F−1(s))
λ(s) ds.

Therefore, if Z1 ∼ N(0, σ2),

σ2L̃ = −σ2

∫ 1

0

f ′(F−1(s))

f(F−1(s))
λ(s) ds =

∫ 1

0

F−1(s)λ(s) ds = K̃,

and so A5 does not hold if Z1 is Gaussian.

Remark 3: The asymptotic covariance matrix for φ̂R is a scalar multiple of n−1σ2Γ−1
p , the asymptotic

covariance matrix for Gaussian likelihood estimators of the parameters of the corresponding pth order au-

toregressive process. The same property holds for LAD and ML estimators of all-pass model parameters, as

shown in Breidt, Davis, and Trindade [6] and Andrews, Davis, and Breidt [2] respectively. The LAD esti-

mators are quasi-maximum likelihood estimators which can be obtained by maximizing the log-likelihood of

an all-pass model with Laplace noise (f(s) = exp(−
√

2|s|/σ)/(
√

2σ)). The appropriate scalar multiple is

Var|Z1|
2 (2σ2f(0) − E|Z1|)2

(3.3)
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in the LAD case (Breidt, Davis, and Trindade [6] contains an error in the calculation of the asymptotic

variance; see Andrews [3] for the correction) and

1

2

(

σ2

∫ ∞

−∞

(f ′(s))2

f(s)
ds− 1

)−1

(3.4)

in the ML case, while the multiple in (3.1) for R-estimation is

σ2J̃ − K̃2

2(σ2L̃− K̃)2
. (3.5)

Consequently, the asymptotic relative efficiency (ARE) for R to LAD is obtained by dividing (3.3) by (3.5),

and the ARE for R to ML is obtained by dividing (3.4) by (3.5).

Remark 4: Consider the sequence of weight functions {λm} such that λm(s) = 2π−1 arctan(m(s−1/2)). It is

straightforward to show that λm satisfies assumptions A1 and A4 for all m > 0. If I{·} denotes the indicator

function and µ̃ := median{Z1}, A5 is satisfied for largem when 2σ2f(µ̃) > E{−Z1I{Z1 < µ̃}+Z1I{Z1 > µ̃}};

this holds for many distributions, including the Laplace, logistic, and Students’ t (with degrees of free-

dom greater than two) distributions, and various asymmetric distributions (0.4N(-1,1)+0.6N(2/3,32) is

one example). Because λm(s) converges pointwise to −I{s < 1/2} + I{s > 1/2} on (0, 1) as m → ∞,

J̃m =
∫ 1

0
λ2

m(s) ds → 1, and, if Z1 has median zero, K̃m = E{Z1λm(F (Z1))} → E|Z1| and L̃m =

E{f(Z1)λ
′
m(F (Z1))} → 2f(0). Hence, if Z1 has median zero,

σ2J̃m − K̃2
m

2(σ2L̃m − K̃m)2
→ σ2 − E2|Z1|

2 (2σ2f(0) − E|Z1|)2
=

Var|Z1|
2 (2σ2f(0) − E|Z1|)2

,

and so R-estimation has virtually the same asymptotic efficiency as LAD estimation when the weight function

λm is used with m large. If Z1 has a Laplace distribution, LAD estimation corresponds to ML estimation. In

the case of Laplace noise, therefore, R-estimation with weight function λm and m large also has essentially

the same asymptotic efficiency as ML estimation.

Remark 5: Under general conditions, it can be shown that (3.5) equals (3.4) when the weight function

is proportional to −f ′(F−1(s))/f(F−1(s)). Thus, R-estimation has the same asymptotic efficiency as ML

estimation when an optimal weight function λf (s) ∝ −f ′(F−1(s))/f(F−1(s)) is used. λf is also an optimal
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ARE ARE ARE
Noise Distribution (R to LAD) (R to ML) (R to R)

Laplace 0.600 0.600 1.026
logistic 1.976 1.000 1.049
t(3) 1.411 0.962 1.208
t(6) 2.068 0.997 1.083
t(9) 2.354 0.980 1.023
t(12) 2.510 0.964 0.990
t(15) 2.607 0.952 0.971
t(20) 2.707 0.937 0.953
t(30) 2.810 0.921 0.938

Table 3.1: AREs for R (with Wilcoxon weights) to LAD, R (with Wilcoxon weights) to ML, and R (with

Wilcoxon weights) to R (with van der Waerden weights) for the Laplace distribution, the logistic distribution,

and the Students’ t-distribution with several different degrees of freedom.

weight function in the case of R-estimation for linear regression parameters (see, for example, Jurec̆ková

and Sen [15]). Note that, if Z1 has a Laplace distribution, then λf (s) ∝ −I{s < 1/2} + I{s > 1/2} for

s ∈ (0, 1/2) ∪ (1/2, 1) (λf does not exist at s = 1/2).

If Z1 has a logistic distribution, then f(s) = π/(
√

3σ) exp(−sπ/(
√

3σ))/[1 + exp(−sπ/(
√

3σ))]2, and so

an optimal weight function λf is given by the Wilcoxon weight function λ(s) = s − 1/2. For the Wilcoxon

weights, assumption A5 is satisfied when σ2E{f(Z1)} > E{Z1F (Z1)}, which holds for the Laplace, logistic,

Students’ t, and 0.4N(-1,1)+0.6N(2/3,32) distributions, as well as many others. Columns 2 and 3 of Table 3.1

give values of ARE for R (with Wilcoxon weights) to LAD and R (with Wilcoxon weights) to ML for a number

of distributions. For the logistic and Students’ t-distributions, R-estimation is asymptotically much more

efficient than LAD and essentially as efficient as ML. Also, even though ML estimation is asymptotically

40% more efficient than R-estimation (with Wilcoxon weights) when the noise distribution is Laplace, R-

estimation can still be useful in this case because D(·) tends to be smoother than
∑n−p

t=1 |zt(·)| and hence

easier to minimize. Figure 3.1 shows ML and R objective functions for a realization of length n = 50

from an all-pass model with p = 1, φ01 = 0.5, and Laplace noise with variance one. Observe that the

ML objective function has many local minima and thus could be difficult to minimize using numerical

optimization techniques.
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R

Figure 3.1: ML and R (with Wilcoxon weights) objective functions for a realization of length n = 50 from

an all-pass model with p = 1, φ01 = 0.5, and Laplace noise with variance one.

Remark 6: Another weight function commonly used for R-estimation is the van der Waerden weight func-

tion, λ(s) = Φ−1(s), where Φ is the standard normal distribution function. Using results in Hallin [12], it can

be shown that, if f is absolutely continuous and almost everywhere differentiable with

0 <
∫∞

−∞(f ′(s))2/f(s) ds < ∞, then A5 holds for the van der Waerden weights if and only if Z1 is non-

Gaussian. So, although A4 does not hold because Φ−1 is unbounded on (0, 1), a bounded weight function

approximating Φ−1 which does satisfy the assumptions can be found for a large class of non-Gaussian noise

distributions. However, since Φ−1 is optimal when Z1 ∼ N(0, σ2) and the parameters of a Gaussian all-pass

series are not identifiable, the van der Waerden weights are not particularly useful for all-pass parameter es-

timation. Column 4 of Table 3.1 gives the AREs for R (with Wilcoxon weights) to R (with van der Waerden

weights) for various noise distributions. The van der Waerden weights are asymptotically superior to the

Wilcoxon weights only when the distribution is close to Gaussian.

3.2 Order Selection

In practice, the true order r of an all-pass model is usually unknown and must be estimated. In this section,

we give an order selection procedure that is analogous to using the partial autocorrelation function to identify
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the order of an autoregressive model. First note that

σ2J̃ − K̃2

2(σ2L̃− K̃)2
=

J̃ −
(

|φ0r|
σ K̃z

)2

2
(

σ
|φ0r|

L̃z − |φ0r |
σ K̃z

)2 ,

where K̃z :=
∫ 1

0 F
−1
z (s)λ(s) ds, L̃z :=

∫ 1

0 fz

(

F−1
z (s)

)

λ′(s) ds, and fz and Fz are the density and distribution

functions respectively for z1 = φ−1
0r Z1. Because φ̂R

P→ φ0,

ŝ :=

(

1

n

n−p
∑

t=1

z2
t (φ̂R)

)1/2

P→
(

E{z2
1}
)1/2

=
σ

|φ0r |
(3.6)

and K̂z := n−1D(φ̂R)
P→ K̃z by Lemma 5.6 in the Appendix. Corollary 3.1 provides a consistent estimator

of L̃z.

Corollary 3.1 Consider the kernel density estimator of fz

f̂n(s) :=
1

bnn

n−p
∑

t=1

κ

(

s− zt(φ̂R)

bn

)

, (3.7)

where κ is a uniformly continuous, differentiable kernel density function on IR such that
∫

|s ln |s||1/2|κ′(s)| ds <

∞ and κ′ is uniformly continuous on IR, and the bandwidth sequence {bn} is chosen so that bn
P→ 0 and

b2n
√
n

P→ ∞ as n→ ∞. If A1–A5 hold, then L̂z := n−1
∑n−p

t=1 λ
′(t/(n− p))f̂n(z(t)(φ̂R))

P→ L̃z.

Proof: If F̂n(s) := (n− p)−1
∑n−p

t=1 I{zt(φ̂R) ≤ s}, F̂−1
n (s) := inf{x : F̂n(x) ≥ s}, and

λ′n(s) := λ′
(

t

n− p

)

for s ∈
(

t− 1

n− p
,

t

n− p

]

, t = 1, . . . , n− p,

then nL̂z/(n− p) =
∫ 1

0 f̂n(F̂−1
n (s))λ′n(s) ds. By the uniform continuity of λ′, sups∈(0,1) |λ′n(s) − λ′(s)| → 0.

Consequently, since sups∈(0,1) fz(F
−1
z (s)) <∞ and sups∈(0,1) |λ′(s)| <∞, the proof is complete if

sup
s∈(0,1)

∣

∣

∣
f̂n

(

F̂−1
n (s)

)

− fz

(

F−1
z (s)

)

∣

∣

∣

≤ sup
s∈(0,1)

∣

∣

∣
f̂n

(

F̂−1
n (s)

)

− fz

(

F̂−1
n (s)

)
∣

∣

∣
+ sup

s∈(0,1)

∣

∣

∣
fz

(

F̂−1
n (s)

)

− fz

(

F−1
z (s)

)

∣

∣

∣
(3.8)

is op(1). Because sups∈IR |f̂n(s)−fz(s)| P→ 0 (for proof of this result, see Lemma 16 on page 88 of Andrews [3];

a similar result is given in Theorem 3 of Robinson [21]), the first term in (3.8) is op(1). We now consider

the second term and use an argument similar to one found in the proof of Lemma 4 in Koul, Sievers, and
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McKean [18]. Note that sups∈(0,1) |Fz(F̂
−1
n (s)) − s| = sups∈IR |F̂n(s) − Fz(s)|, and, using the Glivenko-

Cantelli theorem, it can be shown that sups∈IR |F̂n(s) − Fz(s)| P→ 0. Therefore, because fz

(

F−1
z (·)

)

is

uniformly continuous on (0, 1) and F−1
z (Fz(s)) = s for all s ∈ IR since Fz is strictly increasing on IR,

sup
s∈(0,1)

∣

∣

∣
fz

(

F̂−1
n (s)

)

− fz

(

F−1
z (s)

)

∣

∣

∣
= sup

s∈(0,1)

∣

∣

∣
fz

(

F−1
z

[

Fz

{

F̂−1
n (s)

}])

− fz

(

F−1
z (s)

)

∣

∣

∣

P→ 0.

2

It follows that

J̃ − (ŝ−1K̂z)
2

2(ŝL̂z − ŝ−1K̂z)2
P→ σ2J̃ − K̃2

2(σ2L̃− K̃)2
. (3.9)

Note that the Gaussian and the Students’ t densities satisfy the conditions for the kernel density function κ

in Corollary 3.1.

We now give the following corollary for use in order selection.

Corollary 3.2 Assume A1–A5 hold. If the true order of the all-pass model is r and the order of the fitted

model is p > r, then n1/2φ̂p,R
d→ N(0, (σ2J̃ − K̃2)/[2(σ2L̃− K̃)2]).

Proof: By Problem 8.15 in Brockwell and Davis [7], the pth diagonal element of Γ−1
p is σ−2 if p > r, and so

the result follows from (3.1). 2

A practical approach to order determination using a large sample follows:

1. For some large P , fit all-pass models of order p, p = 1, 2, . . . , P , via R-estimation and obtain the pth

coefficient, φ̂p,R, for each.

2. Let the model order r be the smallest order beyond which the estimated coefficients are statisti-

cally insignificant; that is, r = min{0 ≤ p ≤ P : |φ̂j,R| < 1.96 τ̂ n−1/2 for j > p}, where τ̂ :=

([J̃ − (ŝ−1K̂z)
2]/[2(ŝL̂z − ŝ−1K̂z)

2])1/2 and the estimates ŝ, K̂z, and L̂z are from the fitted P th order

model.
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Asymptotic Empirical
std. dev. mean std. dev. % coverage

n mean (LAD/Wilcoxon) (LAD/Wilcoxon) (LAD/Wilcoxon) (LAD/Wilcoxon)
500 φ1 = 0.5 0.0275/0.0354 0.499/0.497 0.0332/0.0593 97.7/96.2
5000 φ1 = 0.5 0.0087/0.0112 0.500/0.499 0.0093/0.0112 97.9/96.0
500 φ1 = 0.3 0.0291/0.0374 0.299/0.299 0.0413/0.0444 96.5/94.9

φ2 = 0.4 0.0291/0.0374 0.397/0.392 0.0479/0.0599 97.6/95.4
5000 φ1 = 0.3 0.0092/0.0118 0.300/0.300 0.0101/0.0122 97.6/95.2

φ2 = 0.4 0.0092/0.0118 0.399/0.399 0.0099/0.0119 97.5/96.7

Table 4.1: Empirical means, standard deviations, and percent coverages of nominal 95% confidence intervals

for R-estimates of all-pass model parameters. The LAD-like score function λ(s) = 2π−1 arctan(500(s−1/2))

and the Wilcoxon score function λ(s) = s − 1/2 were used. The noise distribution is Laplace with variance

one.

4 Numerical Results

4.1 Simulation Study

In this section, we give the results of a simulation study to assess the quality of the asymptotic approximations

for finite samples. First, for each of 1000 replicates, we simulated all-pass data and found φ̂R by minimizing

D in (2.4). To reduce the possibility of the optimizer getting trapped at local minima, we chose 1000 random

starting values for each replicate. We evaluated D at each of the 1000 candidate values and then reduced the

collection of initial values to the twelve with the smallest values of D. Optimized values were found using

these twelve initial values as starting points. The optimized value for which D was smallest was chosen to

be φ̂R. Confidence intervals for the elements of φ0 were constructed using (3.1) and the estimator in (3.9).

For the kernel density estimator (3.7), we used the standard Gaussian kernel density function and, because

of its recommendation in Silverman [22] (page 48), we used bandwidth bn = 0.9n−1/5 min{ŝ, IQR/1.34},

where ŝ, defined in (3.6), is the sample standard deviation for {zt(φ̂R)} and IQR is the interquartile range

for {zt(φ̂R)}.

Results of these simulations appear in Tables 4.1 and 4.2. We show the empirical means, standard

deviations, and percent coverages of nominal 95% confidence intervals for the R-estimates of all-pass model
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Asymptotic Empirical
std. dev. mean std. dev. % coverage

n mean (LAD/Wilcoxon) (LAD/Wilcoxon) (LAD/Wilcoxon) (LAD/Wilcoxon)
500 φ1 = 0.5 0.0327/0.0279 0.499/0.498 0.0405/0.0331 95.8/96.2
5000 φ1 = 0.5 0.0103/0.0088 0.500/0.500 0.0110/0.0090 95.2/95.6
500 φ1 = 0.3 0.0346/0.0296 0.301/0.299 0.0403/0.0366 95.1/94.7

φ2 = 0.4 0.0346/0.0296 0.396/0.396 0.0418/0.0366 95.2/94.9
5000 φ1 = 0.3 0.0109/0.0093 0.300/0.300 0.0118/0.0095 94.0/95.4

φ2 = 0.4 0.0109/0.0093 0.400/0.400 0.0115/0.0097 94.6/95.1

Table 4.2: Empirical means, standard deviations, and percent coverages of nominal 95% confidence intervals

for R-estimates of all-pass model parameters. The LAD-like score function λ(s) = 2π−1 arctan(500(s−1/2))

and the Wilcoxon score function λ(s) = s− 1/2 were used. The noise distribution is Students’ t with three

degrees of freedom.

parameters. The LAD-like score function λ(s) = 2π−1 arctan(500(s− 1/2)) and the Wilcoxon score function

λ(s) = s−1/2 were used. Asymptotic means and standard deviations were obtained using Theorem 3.1. Note

that the R-estimates appear nearly unbiased and the confidence interval coverages are close to the nominal

95% level. The asymptotic standard deviations tend to understate the true variability of the estimates when

n = 500, but are fairly accurate when n = 5000. Normal probability plots show that the R-estimates are

approximately normal, particularly when n = 5000. The quality of the asymptotic approximations for finite

samples is similar for LAD and ML estimates (see Breidt, Davis, and Trindade [6] and Andrews, Davis, and

Breidt [2]).

We also ran simulations to assess the order selection procedure described in Section 3.2. For each of 100

replicates, we simulated all-pass data and estimated the model order r using the procedure in Section 3.2

with P = 5 and Wilcoxon scores. Table 4.3 gives the frequencies for each estimate of r. In all cases, the

procedure appears to be fairly successful at identifying the true value of r. Model orders less than r were

never selected, so underestimating r is clearly not a concern.
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Laplace Noise t Noise
n Model Parameters 0 1 2 3 4 5 0 1 2 3 4 5

500 φ0 = 0.5 0 58 7 10 8 17 0 52 8 9 13 18
5000 (r = 1) 0 67 2 3 7 21 0 56 0 3 7 34
500 φ0 = (0.3, 0.4)′ 0 0 69 1 16 14 0 0 57 13 16 14
5000 (r = 2) 0 0 82 5 5 8 0 0 81 5 6 8

Table 4.3: The frequencies for each estimate of model order r when P = 5 and the Wilcoxon scores were

used.

4.2 Deconvolution

Applications for all-pass models are not limited to uncorrelated time series. As discussed in the Introduction

and in Andrews, Davis, and Breidt [2], all-pass models can also be used to identify and model noncausal and

noninvertible ARMA series. If, for example, a causal, invertible ARMA model is fit to a causal, noninvertible

series, the residuals follow a causal all-pass model of order r, where r is the number of roots of the true

moving average polynomial inside the unit circle. Therefore, the order of noninvertibility of the ARMA, r,

can be determined by identifying the all-pass order of the residuals.

Consider the simulated water gun seismogram {Xt}1000
t=1 shown in Figure 4.1(a), where Xt =

∑

k βkZt−k,

{βk} is the water gun wavelet sequence in Figure 8(2) of Lii and Rosenblatt [19], and {Zt} is a reflectivity

sequence which was simulated as iid noise from the Students’ t-distribution with five degrees of freedom.

Andrews, Davis, and Breidt [2] modeled {Xt} as a possibly noninvertible ARMA, using ML estimation for

all-pass models to identify an appropriate order of noninvertibility. The wavelet and reflectivity sequences

were then reconstructed from {Xt} using the fitted ARMA model. This deconvolution procedure is of in-

terest because, for an observed water gun seismogram, the reflectivity sequence is unknown and corresponds

to reflection coefficients for layers of the earth. In this section, we identify an appropriate order of nonin-

vertibility for {Xt} using R-estimation for all-pass models, and we compare the R-estimation results to ML

results in Andrews, Davis, and Breidt [2].

Andrews, Davis, and Breidt [2] first fit a causal, invertible ARMA(12,13) model φ(B)Xt = θ(B)Wt to the

simulated seismogram {Xt} using Gaussian ML. The residuals from this fitted ARMA model are denoted
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Figure 4.1: (a) The simulated seismogram of length 1000, {Xt}, and the sample autocorrelation functions

with bounds ±1.96/
√

1000 for (b) {Ŵt}, (c) {Ŵ 2
t } , and (d) {|Ŵt|}.

{Ŵt}. From the sample autocorrelation functions for {Ŵt}, {Ŵ 2
t }, and {|Ŵt|} in Figure 4.1(b)–(d), it

appears these ARMA residuals are uncorrelated but dependent, suggesting that a causal, invertible model is

inappropriate for {Xt}. Using ML estimation and the Students’ t-density, a causal all-pass model of order

two was determined to be most suitable for {Ŵt} (Andrews, Davis, and Breidt [2]). The ML estimates of

the all-pass model parameters are φ̂ML = (1.5286,−0.5908)′, both with standard error 0.0338. Since the

all-pass residuals appear independent, Andrews, Davis, and Breidt [2] concluded that a causal, noninvertible

ARMA(12,13) with two roots of the moving average polynomial inside the unit circle is an appropriate model

for {Xt}.

When the Wilcoxon weight function, the standard Gaussian kernel density function, and bandwidth bn =

0.9n−1/5 min{ŝ, IQR/1.34} are used, the order selection procedure described in Section 3.2 also indicates that

an all-pass model of order two is appropriate for {Ŵt}. The R-estimates of the all-pass model parameters are

φ̂R = (1.5052,−0.5700)′, both with standard error 0.0343. In Figure 4.2, we show the sample autocorrelation

functions for the squares and absolute values of {Ẑt}, the residuals from the all-pass model fit to {Ŵt} using

R-estimation; these all-pass residuals appear independent. Therefore, in this example, the ML and R all-
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Figure 4.2: Diagnostics for the all-pass model of order two fit to the causal, invertible ARMA residuals using

R-estimation. The sample autocorrelation functions with bounds ±1.96/
√

1000 for (a) {Ẑ2
t } and (b) {|Ẑt|}.

pass estimation results are nearly identical, even though no specific distributional information was used for

R-estimation.

Appendix

This section contains proofs of the lemmas used to establish the results of Section 3. Assume A1–A5 hold

throughout. First, note that, for j ∈ {1, . . . , p} and t ∈ {1, . . . , n− p},

∂zt(φ)

∂φj
=

1

φ(B−1)
{Xt+p−j + zt+j(φ)} (5.1)

(see Andrews, Davis, and Breidt [2] for details). Evaluating (5.1) at the true value of φ and ignoring the

effect of recursion initialization, we have

∂zt(φ0)

∂φj
=

1

φ0(B−1)

{−φ0(B
−1)Bpzt+p−j

φ0(B)
+ zt+j(φ0)

}

≃ −zt−j

φ0(B)
+

zt+j

φ0(B−1)
, (5.2)

where the first term is an element of σ(zt−1, zt−2, . . .) and the second term is an element of σ(zt+1, zt+2, . . .)

because φ0(B) is a causal operator and φ0(B
−1) is a purely noncausal operator. It follows that (5.2) is

independent of zt = φ−1
0r Zt. Thus, if Fz is the distribution function of z1 and gt(φ) := λ(Fz(zt))zt(φ), then,
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for j ∈ {1, . . . , p},

∂gt(φ0)

∂φj
= λ(Fz(zt))

∂zt(φ0)

∂φj
≃ λ(Fz(zt))

{−zt−j

φ0(B)
+

zt+j

φ0(B−1)

}

=:
∂g∗t (φ0)

∂φj
.

The expected value of ∂g∗t (φ0)/∂φj is zero by the independence of its two terms.

We now compute the autocovariance function γ†(h) of the zero-mean, stationary process {u′∂g∗t (φ0)/∂φ}

for u ∈ IRp:

γ†(h) = E

{

u′ ∂g
∗
t (φ0)

∂φ

(

∂g∗t+h(φ0)

∂φ

)′

u

}

= u′[νjk(h)]pj,k=1u,

where

νjk(h) :=







2φ−2
0r J̃γ(j − k), if h = 0,

−ψ|h|−jψ|h|−kφ
−2
0r K̃

2, if h 6= 0,

and the ψl are given by
∑∞

l=0 ψlz
l = 1/φ0(z) with ψl = 0 for l < 0. Thus,

γ†(0) + 2

∞
∑

h=1

γ†(h) = u′







[2φ−2
0r J̃γ(j − k)]pj,k=1 − 2φ−2

0r K̃
2

[

∞
∑

h=1

ψh−jψh−k

]p

j,k=1







u

= 2φ−2
0r (σ2J̃ − K̃2)u′σ−2Γpu.

The preceding calculations lead directly to the following lemma.

Lemma 5.1 As n→ ∞, n−1/2
∑n−p

t=1 ∂gt(φ0)/∂φ
d→ N ∼ N(0, 2φ−2

0r {σ2J̃ − K̃2}σ−2Γp).

Proof: Note that, for t ∈ {0, . . . , n− p− 1},

zn−p−t =

∞
∑

l=0

ψl

(

φ0(B
−1)zn−p−t+l

)

and zn−p−t(φ0) =

t
∑

l=0

ψl

(

φ0(B
−1)zn−p−t+l

)

. (5.3)

Because there exist constants c > 0 and 0 < d < 1 such that |ψl| < cdl for all l ∈ {0, 1, . . .} (see Brockwell

and Davis [7], Section 3.3),

n−p
∑

t=1

E

∣

∣

∣

∣

∣

∂gt(φ0)

∂φj
− ∂g∗t (φ0)

∂φj

∣

∣

∣

∣

∣

=

n−p
∑

t=1

E

∣

∣

∣

∣

∣

λ(Fz(zt))

{

zt+j(φ0)

φ0(B−1)
− zt+j

φ0(B−1)

}

∣

∣

∣

∣

∣

= O(1)

for j ∈ {1, . . . , p}. Consequently, n−1/2
∑n−p

t=1 [∂gt(φ0)/∂φ−∂g∗t (φ0)/∂φ] → 0 in L1 and hence in probability.

Let u ∈ IRp. By the Cramér-Wold device, it suffices to show n−1/2
∑n−p

t=1 u′∂g∗t (φ0)/∂φ
d→ u′N ∼

N(0, 2φ−2
0r {σ2J̃ − K̃2}u′σ−2Γpu). Elements of the infinite order moving average stationary sequence
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{u′∂g∗t (φ0)/∂φ} can be truncated to create a finite order moving average stationary sequence. By ap-

plying a central limit theorem (Brockwell and Davis [7], Theorem 6.4.2) to each truncation level, asymptotic

normality can be deduced. The details are omitted. 2

Now consider the mixed partials of gt(φ). For j, k ∈ {1, . . . , p},

∂2zt(φ0)

∂φj∂φk
=

1

φ2
0(B

−1)
{Xt+p+j−k +Xt+p+k−j + 2zt+j+k(φ0)}

≃ −zt+j−k − zt+k−j

φ0(B−1)φ0(B)
+

2zt+j+k

φ2
0(B

−1)

= −
∞
∑

m=0

∞
∑

ℓ=0

ψmψℓ(zt+j−k−ℓ+m + zt+k−j−ℓ+m) +
2zt+j+k

φ2
0(B

−1)
,

and so

∂2gt(φ0)

∂φj∂φk
= λ(Fz(zt))

∂2zt(φ0)

∂φj∂φk

≃ λ(Fz(zt))

{

−
∞
∑

m=0

∞
∑

ℓ=0

ψmψℓ(zt+j−k−ℓ+m + zt+k−j−ℓ+m) +
2zt+j+k

φ2
0(B

−1)

}

=:
∂2g∗t (φ0)

∂φj∂φk
. (5.4)

(5.4) has expectation −2σ−2γ(j − k)
∫ 1

0 F
−1
z (s)λ(s) ds = −2|φ0r|−1K̃σ−2γ(j − k).

Lemma 5.2 As n→ ∞, n−1
∑n−p

t=1 ∂
2gt(φ0)/(∂φ∂φ′)

P→ −2|φ0r|−1K̃σ−2Γp.

Proof: It can be shown that n−1
∑n−p

t=1 [∂2gt(φ0)/(∂φ∂φ′) − ∂2g∗t (φ0)/(∂φ∂φ′)] → 0 in L1 and probability.

Because (5.4) has expectation −2|φ0r|−1K̃σ−2γ(j − k), n−1
∑n−p

t=1 ∂
2g∗t (φ0)/(∂φ∂φ′)

P→ −2|φ0r|−1K̃σ−2Γp

by the ergodic theorem. 2

Lemma 5.3 For any T ∈ (0,∞), as n→ ∞,

sup
‖u‖≤T

∣

∣

∣

∣

∣

n−1/2

n−p
∑

t=1

u′

[

λ

(

Rt

(

φ0 + n−1/2u
)

n− p+ 1

)

− λ(Fz(zt))

]

∂zt(φ0)

∂φ
− 2|φ0r|−1L̃u′Γpu

∣

∣

∣

∣

∣

P→ 0. (5.5)

Proof: Observe that the left-hand side of (5.5) is bounded above by

sup
‖u‖≤T

∣

∣

∣

∣

∣

1√
n

n−p
∑

t=1

u′λ′(Fz(zt))
∂zt(φ0)

∂φ

[

Rt

(

φ0 + n−1/2u
)

n− p+ 1
− Fz(zt)

]

− 2|φ0r|−1L̃u′Γpu

∣

∣

∣

∣

∣

(5.6)

+ sup
‖u‖≤T

∣

∣

∣

∣

∣

1√
n

n−p
∑

t=1

u′
[

λ′(F ∗
t,n(u)) − λ′(Fz(zt))

] ∂zt(φ0)

∂φ

[

Rt

(

φ0 + n−1/2u
)

n− p+ 1
− Fz(zt)

] ∣

∣

∣

∣

∣

, (5.7)
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where F ∗
t,n(u) is between Fz(zt) and Rt(φ0 +n−1/2u)/(n−p+1). If Fn(x) := n−1

∑n−p
t=1 I{zt ≤ x}, an upper

bound for (5.6) is

sup
‖u‖≤T

∣

∣

∣

∣

∣

1√
n

n−p
∑

t=1

u′λ′(Fz(zt))
∂zt(φ0)

∂φ

[

Rt

(

φ0 + n−1/2u
)

n− p+ 1
− Fn

(

zt

(

φ0 +
u√
n

))

]
∣

∣

∣

∣

∣

(5.8)

+ sup
‖u‖≤T

∣

∣

∣

∣

∣

1√
n

n−p
∑

t=1

u′λ′(Fz(zt))
∂zt(φ0)

∂φ

[

Fn

(

zt

(

φ0 +
u√
n

))

− Fz

(

zt

(

φ0 +
u√
n

))]

∣

∣

∣

∣

∣

(5.9)

+ sup
‖u‖≤T

∣

∣

∣

∣

∣

1√
n

n−p
∑

t=1

u′λ′(Fz(zt))
∂zt(φ0)

∂φ

[

Fz

(

zt

(

φ0 +
u√
n

))

− Fz(zt)

]

− 2|φ0r|−1L̃u′Γpu

∣

∣

∣

∣

∣

. (5.10)

Because

sup
‖u‖≤T

1

n

n−p
∑

t=1

∣

∣

∣

∣

∣

u′λ′(Fz(zt))
∂zt(φ0)

∂φ

∣

∣

∣

∣

∣

= Op(1)

and, by Lemma 3 on page 55 of Andrews [3],

sup
‖u‖≤T,t∈{1,...,n−p}

√
n

∣

∣

∣

∣

∣

Rt

(

φ0 + n−1/2u
)

n− p+ 1
− Fn

(

zt

(

φ0 +
u√
n

))

∣

∣

∣

∣

∣

P→ 0, (5.11)

(5.8) is op(1). Lemma 10 on page 76 of Andrews [3] establishes that (5.9) is op(1). Finally,

sup
‖u‖≤T

∣

∣

∣

∣

∣

1√
n

n−p
∑

t=1

u′λ′(Fz(zt))
∂zt(φ0)

∂φ

[

Fz

(

zt

(

φ0 +
u√
n

))

− Fz(zt)

]

− 2|φ0r|−1L̃u′Γpu

∣

∣

∣

∣

∣

= sup
‖u‖≤T

∣

∣

∣

∣

∣

1√
n

n−p
∑

t=1

u′λ′(Fz(zt))
∂zt(φ0)

∂φ
fz(z

∗
t,n(u))

(

zt

(

φ0 +
u√
n

)

− zt

)

− 2|φ0r|−1L̃u′Γpu

∣

∣

∣

∣

∣

≤ sup
‖u‖≤T

∣

∣

∣

∣

∣

1√
n

n−p
∑

t=1

u′λ′(Fz(zt))
∂zt(φ0)

∂φ
fz(z

∗
t,n(u))(zt(φ0) − zt)

∣

∣

∣

∣

∣

+ sup
‖u‖≤T

∣

∣

∣

∣

∣

1

n

n−p
∑

t=1

λ′(Fz(zt))fz(z
∗
t,n(u))

(

u′ ∂zt(φ0)

∂φ

)2

− 2|φ0r|−1L̃u′Γpu

∣

∣

∣

∣

∣

+ sup
‖u‖≤T

∣

∣

∣

∣

∣

1

2n
√
n

n−p
∑

t=1

λ′(Fz(zt))fz(z
∗
t,n(u))u′ ∂zt(φ0)

∂φ
u′
∂2zt(φ

∗
t,n(u))

∂φ∂φ′ u

∣

∣

∣

∣

∣

,

where fz is the density function for z1, z
∗
t,n(u) is between zt and zt(φ0 + n−1/2u), and φ∗

t,n(u) is between

φ0 and φ0 + n−1/2u. From (5.3), the first term on the right-hand side is op(1), and, since there exists a

geometrically decaying, non-negative, real-valued sequence {π̈k}∞k=−∞ such that

sup
‖u‖≤T

∣

∣

∣

∣

∣

u′
∂2zt(φ

∗
t,n(u))

∂φ∂φ′ u

∣

∣

∣

∣

∣

≤
∞
∑

k=−∞

π̈k|zt−k| ∀t ∈ {1, . . . , n− p}
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for all n sufficiently large (Brockwell and Davis [7], Section 3.3), the third term is also op(1). Using the

uniform continuity of fz, the second term equals

sup
‖u‖≤T

∣

∣

∣

∣

∣

1

n

n−p
∑

t=1

λ′(Fz(zt))fz(zt)

(

u′ ∂zt(φ0)

∂φ

)2

− 2φ−2
0r

(
∫ 1

0

fz(F
−1
z (s))λ′(s) ds

)

u′Γpu

∣

∣

∣

∣

∣

+ op(1),

which is op(1) by the ergodic theorem. Therefore, (5.10) and consequently (5.6) are op(1). Similarly, using

the uniform continuity of λ′, it can be shown that (5.7) is op(1). 2

Lemma 5.4 For any T ∈ (0,∞), as n→ ∞,

sup
‖u‖,‖v‖≤T

∣

∣

∣

∣

∣

n−1

n−p
∑

t=1

u′

[

λ

(

Rt

(

φ0 + n−1/2v
)

n− p+ 1

)

− λ(Fz(zt))

]

∂2zt(φ0)

∂φ∂φ′ u

∣

∣

∣

∣

∣

P→ 0.

Proof: Note that, because Fz is a continuous distribution function, it is also uniformly continuous on IR.

Using (5.11), the Glivenko-Cantelli theorem, and the uniform continuity of Fz , for any ǫ, η > 0, it can be

shown that there exists an integer m such that

P

(

sup
‖v‖≤T,t∈{1,...,n−p−m}

∣

∣

∣

∣

∣

Rt

(

φ0 + n−1/2v
)

n− p+ 1
− Fz(zt)

∣

∣

∣

∣

∣

> η

)

≤ P

(

sup
‖v‖≤T,t∈{1,...,n−p}

∣

∣

∣

∣

∣

Rt

(

φ0 + n−1/2v
)

n− p+ 1
− Fn

(

zt

(

φ0 +
v√
n

))

∣

∣

∣

∣

∣

>
η

3

)

+ P

(

sup
x∈IR

|Fn(x) − Fz(x)| >
η

3

)

+ P

(

sup
‖v‖≤T,t∈{1,...,n−p−m}

∣

∣

∣

∣

∣

Fz

(

zt

(

φ0 +
v√
n

))

− Fz(zt)

∣

∣

∣

∣

∣

>
η

3

)

is less than ǫ for all n sufficiently large. Hence,

sup
‖u‖,‖v‖≤T

∣

∣

∣

∣

∣

1

n

n−p
∑

t=1

u′

[

λ

(

Rt

(

φ0 + n−1/2v
)

n− p+ 1

)

− λ(Fz(zt))

]

∂2zt(φ0)

∂φ∂φ′ u

∣

∣

∣

∣

∣

= sup
‖u‖,‖v‖≤T

∣

∣

∣

∣

∣

1

n

n−p
∑

t=1

u′λ′(F ∗
t,n(v))

∂2zt(φ0)

∂φ∂φ′

[

Rt

(

φ0 + n−1/2v
)

n− p+ 1
− Fz(zt)

]

u

∣

∣

∣

∣

∣

P→ 0,

where F ∗
t,n(v) is between Fz(zt) and Rt(φ0 + n−1/2v)/(n− p+ 1), since

sup
‖u‖,‖v‖≤T

1

n

n−p
∑

t=1

∣

∣

∣

∣

∣

u′λ′(F ∗
t,n(v))

∂2zt(φ0)

∂φ∂φ′ u

∣

∣

∣

∣

∣

= Op(1).
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2

For u ∈ IRp and δ1, δ2 ∈ [0, 1], let

Un(u, δ1, δ2) =

n−p
∑

t=1

λ

(

Rt

(

φ0 + n−1/2δ1u
)

n− p+ 1

)

[

zt

(

φ0 +
δ2u√
n

)

− zt

(

φ0 +
δ1u√
n

)]

and

Vn(u, δ1, δ2) =

n−p
∑

t=1

λ

(

Rt

(

φ0 + n−1/2δ2u
)

n− p+ 1

)

[

zt

(

φ0 +
δ2u√
n

)

− zt

(

φ0 +
δ1u√
n

)]

.

Using Taylor series expansions,

Un(u, δ1, δ2) =

n−p
∑

t=1

λ

(

Rt

(

φ0 + n−1/2δ1u
)

n− p+ 1

)

{[

zt

(

φ0 +
δ2u√
n

)

− zt(φ0)

]

−
[

zt

(

φ0 +
δ1u√
n

)

− zt(φ0)

]}

=
δ2 − δ1√

n

n−p
∑

t=1

u′λ

(

Rt

(

φ0 + n−1/2δ1u
)

n− p+ 1

)

∂zt(φ0)

∂φ

+
1

2

δ22 − δ21
n

n−p
∑

t=1

u′λ

(

Rt

(

φ0 + n−1/2δ1u
)

n− p+ 1

)

∂2zt(φ0)

∂φ∂φ′ u

+
1

2

δ22
n

n−p
∑

t=1

u′λ

(

Rt

(

φ0 + n−1/2δ1u
)

n− p+ 1

)

[

∂2zt(φ
∗
n(u, δ1, δ2))

∂φ∂φ′ − ∂2zt(φ0)

∂φ∂φ′

]

u

−1

2

δ21
n

n−p
∑

t=1

u′λ

(

Rt

(

φ0 + n−1/2δ1u
)

n− p+ 1

)

[

∂2zt(φ
∗
n(u, δ1, δ1))

∂φ∂φ′ − ∂2zt(φ0)

∂φ∂φ′

]

u (5.12)

and, similarly,

Vn(u, δ1, δ2) =
δ2 − δ1√

n

n−p
∑

t=1

u′λ

(

Rt

(

φ0 + n−1/2δ2u
)

n− p+ 1

)

∂zt(φ0)

∂φ

+
1

2

δ22 − δ21
n

n−p
∑

t=1

u′λ

(

Rt

(

φ0 + n−1/2δ2u
)

n− p+ 1

)

∂2zt(φ0)

∂φ∂φ′ u

+
1

2

δ22
n

n−p
∑

t=1

u′λ

(

Rt

(

φ0 + n−1/2δ2u
)

n− p+ 1

)

[

∂2zt(φ
∗
n(u, δ2, δ2))

∂φ∂φ
′ − ∂2zt(φ0)

∂φ∂φ
′

]

u

−1

2

δ21
n

n−p
∑

t=1

u′λ

(

Rt

(

φ0 + n−1/2δ2u
)

n− p+ 1

)

[

∂2zt(φ
∗
n(u, δ2, δ1))

∂φ∂φ′ − ∂2zt(φ0)

∂φ∂φ′

]

u, (5.13)

where the values of φ∗
n(u, ·, ·) lie between φ0 and φ0 + n−1/2u.

Lemma 5.5 For u ∈ IRp, let Sn(u) = D(φ0 + n−1/2u) − D(φ0) and S(u) = u′N +

|φ0r|−1(σ2L̃ − K̃)u′σ−2Γpu, where N ∼ N(0, 2φ−2
0r {σ2J̃ − K̃2}σ−2Γp). Then Sn(·) d→ S(·) on C(IRp),

the space of continuous functions on IRp where convergence is equivalent to uniform convergence on every

compact set.



Rank Estimation for All-Pass Models 23

Proof: Let u ∈ IRp and suppose m is any positive integer. Because

D
(

φ0 + n−1/2u
)

−D(φ0) =
m
∑

k=1

[

D

(

φ0 +
ku

m
√
n

)

−D

(

φ0 +
(k − 1)u

m
√
n

)]

,

we have
m
∑

k=1

Un

(

u,
k − 1

m
,
k

m

)

≤ D
(

φ0 + n−1/2u
)

−D(φ0) ≤
m
∑

k=1

Vn

(

u,
k − 1

m
,
k

m

)

(5.14)

by Theorem 2.1. Using (5.12), (5.13), and Lemmas 5.1, 5.2, 5.3, and 5.4,
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2
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Un

(
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m , 1

)

Vn

(

u, 0, 1
m
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(
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2
m

)

...

Vn

(

u, m−1
m , 1
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
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


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
























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



























1
mu′N− |φ0r |−1

[

(

1
m

)2 −
(

0
m

)2
]

K̃u′σ−2Γpu

1
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2 1
m2σ
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(

2
m
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(

1
m
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0
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1
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2
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(

1
m
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1
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2 m
m2σ
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(

m
m
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(
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)2
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















on IR2m since

sup
‖u‖,‖v‖≤T

1

n

n−p
∑

t=1

∣

∣

∣

∣

∣

u′

(

∂2zt

(

φ0 + n−1/2v
)

∂φ∂φ′ − ∂2zt (φ0)

∂φ∂φ′

)

u

∣

∣

∣

∣

∣

P→ 0

for any T > 0 and sups∈(0,1) |λ(s)| <∞ by the uniform continuity of λ′. Hence,









∑m
k=1 Un

(

u, k−1
m , k

m

)

∑m
k=1 Vn

(

u, k−1
m , k

m

)









d→









u′N + |φ0r |−1
(

m−1
m σ2L̃− K̃

)

u′σ−2Γpu

u′N + |φ0r|−1
(

m+1
m σ2L̃− K̃

)

u′σ−2Γpu









on IR2. For any ǫ > 0, there exists an integer m large enough so that

u′N + |φ0r|−1

(

m− 1

m
σ2L̃− K̃

)

u′σ−2Γpu and u′N + |φ0r |−1

(

m+ 1

m
σ2L̃− K̃

)

u′σ−2Γpu

are both in an ǫ-neighborhood of S(u) = u′N + |φ0r|−1(σ2L̃ − K̃)u′σ−2Γpu. Thus, for any u ∈ IRp,

Sn(u)
d→ S(u). It can be shown similarly that all finite-dimensional distributions of Sn(·) converge to those

of S(·).
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Also using (5.14), it can be shown that limδ→0+ lim supn→∞ P(sup
u,v∈K,‖u−v‖≤δ |Sn(u)−Sn(v)| > η) = 0

for any η > 0 and any compact subset K ⊂ IRp (see Andrews [3], pages 84-86). It follows that Sn(·) must be

tight on C(K) and, therefore, because compact K ⊂ IRp is arbitrary, Sn(·) d→ S(·) on C(IRp) by Theorem 7.1

in Billingsley [4]. 2

Lemma 5.6 If ǫ > 0 is sufficiently small so that φ forms a causal polynomial for all φ ∈ Φ := {φ ∈ IRp :

‖φ − φ0‖ ≤ ǫ}, then n−1
∑n−p

t=1 z
2
t (φ)

a.s.→ E{z̃2
1(φ)} and n−1D(φ)

a.s.→
∫ 1

0
F−1

z̃(φ)
(s)λ(s) ds uniformly on Φ,

where z̃t(φ) := −φ−1(B−1)φ(B)Xt+p and Fz̃(φ)(·) is the distribution function for z̃1(φ).

Proof: For any φ ∈ Φ, n−1
∑n−p

t=1 z
2
t (φ)

a.s.→ E{z̃2
1(φ)} and n−1D(φ)

a.s.→ E{λ(Fz̃(φ)(z̃1(φ)))z̃1(φ)} =

∫ 1

0 F
−1

z̃(φ)
(s)λ(s) ds by the ergodic theorem. Therefore, since n−1

∑n−p
t=1 z

2
t (·) and n−1D(·) are equicontin-

uous and uniformly bounded on Φ almost surely (see Lemma 15 on page 86 of Andrews [3]; similar results

are obtained in the proof of Proposition 1 in Breidt, Davis, and Trindade [6]), the lemma follows by the

Arzelà-Ascoli theorem. 2
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[15] Jurec̆ková, J. and Sen, P.K. (1996). Robust Statistical Procedures: Asymptotics and Interrelations. Wiley, New

York.

[16] Koul, H.L. and Ossiander, M. (1994). Weak convergence of randomly weighted dependent residual empiricals

with applications to autoregression. Ann. Statist. 22 540–562.



Rank Estimation for All-Pass Models 26

[17] Koul, H.L. and Saleh, A.K.Md.E. (1993). R-estimation of the parameters of autoregressive [Ar(p)] models. Ann.

Statist. 21 534–551.

[18] Koul, H.L., Sievers, G.L., and McKean, J.W. (1987). An estimator of the scale parameter for the rank analysis

of linear models under general score functions. Scand. J. Statist. 14 131–141.

[19] Lii, K.-S. and Rosenblatt, M. (1988). Nonminimum phase non-Gaussian deconvolution. J. Multivariate Anal. 27

359–374.

[20] Mukherjee, K. and Bai, Z.D. (2002). R-estimation in autoregression with square-integrable score function. J.

Multivariate Anal. 81 167–186.

[21] Robinson, P.M. (1987). Time series residuals with application to probability density estimation. J. Time Ser.

Anal. 8 329–344.

[22] Silverman, B.W. (1986). Density Estimation for Statistics and Data Analysis. Chapman and Hall, New York.

[23] Terpstra, J.T., McKean, J.W., and Naranjo, J.D. (2001). Weighted Wilcoxon estimates for autoregression. Aust.

N. Z. J. Stat. 43 399–419.


