Dynamic Decision-Making under Ambiguity: Recent developments

Marciano Siniscalchi

Northwestern University

May 21, 2010

Ambiguity and Dynamic Choice: Overview

The plan:

- Choice under ambiguity: "executive sumary"
- Updating ambiguous beliefs
- The key issue: dynamic (in)consistency
- Solution 1: tree consistency
- Solution 2: sophisticated choice
- Solution 3: non-consequentialist choice

Focus on multiple priors (MEU; Gilboa-Schmeidler, 1989) Most ideas generalize to "fancier" models

The Ellsberg Paradox, three-color urn edition

90 balls: 30 red, 60 green or blue.

One ball will be drawn; bets on its color.

	r	g	b
f _r	1	0	0
fg	0	1	0
f _{rb}	1	0	1
f _{gb}	0	1	1

Modal preferences: $f_r \succ f_g$, $f_{rb} \prec f_{gb}$: **ambiguity aversion**

Inconsistent with probabilistic reasoning: prefs indicate

$$P(r) > P(g), \quad P(r) + P(b) < P(g) + P(b)!$$

Notation and Setup

Basic setup:

- Ω : state space, with sigma-algebra Σ .
- charges $ba_1(\Sigma)$, or $\Delta(\Sigma)$ if finite.
- X: set of consequences
 Anscombe-Aumann: X cvx subset of lin space: e.g. Δ(Z)
- Acts are Σ -measurable functions $f : \Omega \to X$.
 - *L_c* or *X*: constant acts
 - L_0 : simple acts, i.e. f such that $f^{-1}(\Omega)$ discrete
- Mixtures on L_0 taken pointwise : $\alpha f(\omega) + (1 \alpha)g(\omega)$.
- Preferences on L_0 : \succ and (for $E \in \Sigma$ "not null") \succ_E

Representing functionals:

- $V: L_0 \to \mathbb{R}$ such that $f \succcurlyeq g$ iff $V(f) \ge V(g)$.
- EU: $V(h) = \mathbb{E}_p[u \circ h], p \in ba_1(\Sigma)$
- Maxmin EU: $V(h) = \min_{\rho \in C} E_{\rho}[u \circ h], \ C \subset ba_1(\Sigma).$

Conditional representing functional: $V_E : L_0 \to \mathbb{R}, E \in \Sigma$.

Basics

Compound acts:

Definition

For $f, g \in L_0$ and $E \in \Sigma$, fEg is the act with fEg(s) = f(s) for $s \in E$ and fEg(s) = g(s) for $s \in \Omega \setminus E$.

Basics

Compound acts:

Definition

For $f, g \in L_0$ and $E \in \Sigma$, fEg is the act with fEg(s) = f(s) for $s \in E$ and fEg(s) = g(s) for $s \in \Omega \setminus E$.

"Zero-probability" events:

Definition (Null event)

 $E \in \Sigma$ is **null for** $\hat{\succ}$ iff, for some $x, y \in X$ with $x \succ y$, $xEy \sim y$.

As in EU, condition on non-null events.

If condition on E, only outcomes in states $s \in E$ matter:

NC **Null Complement**: For all non- \geq -null $E \in \Sigma$, $\Omega \setminus E$ is \geq_E -null

Classical Updating Rules for MEU

$$V(h) = \min_{q \in C} \mathbb{E}_q[u \circ f], \qquad u: X \to \mathbb{R}, \quad C \subset ba_1(\Sigma).$$

Non-null means that $\min_{q \in C} q(E) > 0$.

Conditional MEU preference : $V_E = \min_{q \in C_E} E_q[u \circ f]$

Classical Updating Rules for MEU

$$V(h) = \min_{q \in C} \mathbb{E}_q[u \circ f], \qquad u: X \to \mathbb{R}, \quad C \subset ba_1(\Sigma).$$

Non-null means that $\min_{q \in C} q(E) > 0$.

Conditional MEU preference : $V_E = \min_{q \in C_E} E_q[u \circ f]$

Two "natural" updating rules:

- Prior-by-prior : $C_E = \{q(\cdot|E) : q \in C, q(E) > 0\}$
- Maximum-likelihood :

 $C_E = \{q(\cdot|E) \ : \ q \in C, \ q \in \arg\max_{q' \in C} q'(E)\}$

Rich history: Walley (1990), Gilboa-Schmeidler (1993), Jaffray (1994), Pires (2001)...

Jaffray (1994), Pires (2001).

EU: for all $f \in L_0$, E non-null, $x \sim_E f$ iff $fEx \sim x$:

Jaffray (1994), Pires (2001).

EU: for all $f \in L_0$, E non-null, $x \sim_E f$ iff $fEx \sim x$:

 $u(x) = \mathbb{E}[u \circ f | E]$ $\Leftrightarrow P(E)u(x) + P(\Omega \setminus E)u(x) = P(E)\mathbb{E}[u \circ f | E] + P(\Omega \setminus E)u(X)$ $\Leftrightarrow u(x) = \mathbb{E}[u \circ fEx]$

Jaffray (1994), Pires (2001).

EU: for all $f \in L_0$, E non-null, $x \sim_E f$ iff $fEx \sim x$:

 $u(x) = \mathbb{E}[u \circ f | E]$ $\Leftrightarrow P(E)u(x) + P(\Omega \setminus E)u(x) = P(E)\mathbb{E}[u \circ f | E] + P(\Omega \setminus E)u(X)$ $\Leftrightarrow u(x) = \mathbb{E}[u \circ fEx]$

Use as axiom:

FP **Fixpoint Preferences** For all $f \in L_0$ and $x \in X$:

 $f \sim_E x$ iff $fEx \sim x$.

Intuition: local mean

Jaffray (1994), Pires (2001).

EU: for all $f \in L_0$, E non-null, $x \sim_E f$ iff $fEx \sim x$:

 $u(x) = \mathbb{E}[u \circ f | E]$ $\Leftrightarrow P(E)u(x) + P(\Omega \setminus E)u(x) = P(E)\mathbb{E}[u \circ f | E] + P(\Omega \setminus E)u(X)$ $\Leftrightarrow u(x) = \mathbb{E}[u \circ fEx]$

Use as axiom:

FP **Fixpoint Preferences** For all $f \in L_0$ and $x \in X$: $f \sim_E x$ iff $fEx \sim x$.

Intuition: local mean

```
Proposition (Jaffray, Pires)
```

If $\succeq_{\mathsf{F}} \succeq_{\mathsf{E}}$ are MEU with same u, then NC and FP iff $C_{\mathsf{E}} = \{q(\cdot|\mathsf{E}) : q \in C\}.$

Gilboa and Schmeidler (1993): actually MEU \cap CEU

Assume there exist best, worst prize x^*, x_* .

PE **Pessimism** For all $f \in L_0$: $f \succeq_E g$ iff $fEx^* \succeq_E gEx^*$. Intuition: disappointment due to loss of best prize Gilboa and Schmeidler (1993): actually MEU \cap CEU

Assume there exist best, worst prize x^*, x_* .

PE **Pessimism** For all $f \in L_0$: $f \succeq_E g$ iff $fEx^* \succeq_E gEx^*$.

Intuition: disappointment due to loss of best prize

Proposition (Gilboa and Schmeidler)

If \succeq, \succeq_E are both MEU and CEU with same u, then NC and PE iff $C_E = \{q(\cdot|E) : q \in \arg \max_{q' \in C} q'(E)\}.$

- More rules: Horie (2007), Eichberger, Grant, Kelsey (2009)...
- Good: Attitudes toward updating!
- Bad: Need to take a stand for unique predictions

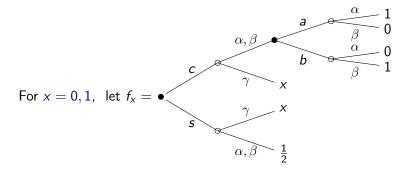
- More rules: Horie (2007), Eichberger, Grant, Kelsey (2009)...
- Good: Attitudes toward updating!
- Bad: Need to take a stand for unique predictions

Two main problems (or sides of the same coin):

- Dynamic Inconsistency
- Is \succeq_E observable or counterfactual?

Ambiguity and Dynamic Inconsistency

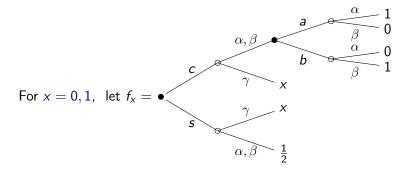
 $\Omega = \{\alpha, \beta, \gamma\}, E = \{\alpha, \beta\}. \text{ MEU prefs, } C = \{q : q(\alpha) = \frac{1}{3}\}.$ Prior-by-prior updating: $C_E = \{q : q(\alpha) \ge \frac{1}{3}, q(\gamma) = 0\}.$



Actions: a, b, s. Effectively acts (in this example). Plans: ca_0, ca_1, cb_0, cb_1 . Reduce to acts: e.g. $ca_1(\gamma) = 1$, etc.

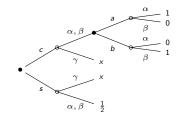
Ambiguity and Dynamic Inconsistency

 $\Omega = \{\alpha, \beta, \gamma\}, E = \{\alpha, \beta\}. \text{ MEU prefs, } C = \{q : q(\alpha) = \frac{1}{3}\}.$ Prior-by-prior updating: $C_E = \{q : q(\alpha) \ge \frac{1}{3}, q(\gamma) = 0\}.$

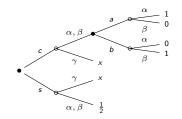


Actions: a, b, s. Effectively acts (in this example). Plans: ca_0, ca_1, cb_0, cb_1 . Reduce to acts: e.g. $ca_1(\gamma) = 1$, etc.

 $a \succ_E b$, but $cb_1 \succ ca_1$: dynamic inconsistency when x = 1.



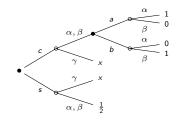
Inconsistency bad because unclear behavioral predictions Three possible fixes (in order of popularity, log scale):



Inconsistency bad because unclear behavioral predictions

Three possible fixes (in order of popularity, log scale):

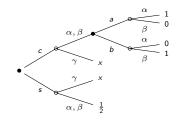
- Rectangularity: Restrict ambiguity in tree-specific ways
 - Epstein and Schneider (2003), many followers.
 - Impose DC on $\{\alpha, \beta\}$. But rule out Ellsberg!



Inconsistency bad because unclear behavioral predictions

Three possible fixes (in order of popularity, log scale):

- Rectangularity: Restrict ambiguity in tree-specific ways
 - Epstein and Schneider (2003), many followers.
 - Impose DC on $\{\alpha, \beta\}$. But rule out Ellsberg!
- Sophisticated choice: Anticipate "bad" behavior
 - Based on Strotz (1956). Ambiguity: yours truly (2009).
 - In f_1 , DM knows that c leads to a, so f_1 "as if" ca_1 .



Inconsistency bad because unclear behavioral predictions

Three possible fixes (in order of popularity, log scale):

- Rectangularity: Restrict ambiguity in tree-specific ways
 - Epstein and Schneider (2003), many followers.
 - Impose DC on $\{\alpha, \beta\}$. But rule out Ellsberg!
- Sophisticated choice: Anticipate "bad" behavior
 - Based on Strotz (1956). Ambiguity: yours truly (2009).
 - In f_1 , DM knows that c leads to a, so f_1 "as if" ca_1 .
- Non-consequentialist choice: \succeq_E 's can depend on the tree
 - Hanany and Klibanoff (2007/9), based on Machina (1989).
 - DM prefers a in f_0 but b in f_1 .

Start with classic, or "Full" Dynamic Consistency axiom:

FDC For all $f, g \in L_0$ and non-null $E \in \Sigma$: if $f \succcurlyeq_E g$ (resp. $f \succ_E g$) and $f \succcurlyeq_{\Omega \setminus E} g$, then $f \succcurlyeq_B g$ (resp. $f \succ_B$)

Start with classic, or "Full" Dynamic Consistency axiom:

FDC For all
$$f, g \in L_0$$
 and non-null $E \in \Sigma$: if $f \succcurlyeq_E g$ (resp. $f \succ_E g$) and $f \succcurlyeq_{\Omega \setminus E} g$, then $f \succcurlyeq_F g$ (resp. $f \succ_G$)

Also recall the Sure-Thing Principle

STP For all $f, g, h, k \in L_0$ and $E \in \Sigma$ not \geq -null: $fEh \geq gEh$ implies $fEk \geq gEk$

Start with classic, or "Full" Dynamic Consistency axiom:

FDC For all
$$f, g \in L_0$$
 and non-null $E \in \Sigma$: if $f \succcurlyeq_E g$ (resp. $f \succ_E g$) and $f \succcurlyeq_{\Omega \setminus E} g$, then $f \succcurlyeq_E g$ (resp. $f \succ_G$)

Also recall the Sure-Thing Principle

STP For all $f, g, h, k \in L_0$ and $E \in \Sigma$ not \succeq -null: $fEh \succcurlyeq gEh$ implies $fEk \succcurlyeq gEk$

Modal behavior in the Ellsberg paradox violates the STP:

 $f_r(\omega) = f_{rb}(\omega)$ for $\omega = r, g$, etc. Yet $f_r \succ f_g$, $f_{rb} \prec f_{gb}$

One advantage of STP: can define/elicit conditional prefs! SavU For all $f, g \in L_0$ and $E \in \Sigma$ not \succeq -null: $f \succeq_E g$ iff $fEh \succeq_g gEh$ for some $h \in L_0$.

One advantage of STP: can define/elicit conditional prefs!

SavU For all $f, g \in L_0$ and $E \in \Sigma$ not \succeq -null: $f \succeq_E g$ iff $fEh \succeq_E gEh$ for some $h \in L_0$.

Theorem ("Folk theorem" of dynamic choice)

For \geq , \geq_E weak orders, the following are equivalent: (1) \geq satisfies STP and \geq_E is obtained via SavU (2) \geq, \geq_E jointly satisfy NC and FDC Furthermore, if \geq, \geq_E are EU, Bayesian updating.

One advantage of STP: can define/elicit conditional prefs!

SavU For all $f, g \in L_0$ and $E \in \Sigma$ not \succeq -null: $f \succeq_E g$ iff $fEh \succeq_E gEh$ for some $h \in L_0$.

Theorem ("Folk theorem" of dynamic choice)

For \succ, \succcurlyeq_E weak orders, the following are equivalent: (1) \succ satisfies STP and \succcurlyeq_E is obtained via SavU (2) \succ, \succcurlyeq_E jointly satisfy NC and FDC Furthermore, if \succ, \succcurlyeq_E are EU, Bayesian updating.

Foundation for standard approach to dynamic choice:

- Reduce (continuation) plans to acts
- Update prefs (e.g. via Bayes' Rule if EU)
- Apply Backward induction/recursion

Result is same as choosing ex-ante optimal plan/act.

One advantage of STP: can define/elicit conditional prefs!

SavU For all $f, g \in L_0$ and $E \in \Sigma$ not \succeq -null: $f \succeq_E g$ iff $fEh \succeq_E gEh$ for some $h \in L_0$.

Theorem ("Folk theorem" of dynamic choice)

For \succ, \succcurlyeq_E weak orders, the following are equivalent: (1) \succ satisfies STP and \succcurlyeq_E is obtained via SavU (2) \succ, \succcurlyeq_E jointly satisfy NC and FDC Furthermore, if \succ, \succcurlyeq_E are EU, Bayesian updating.

Foundation for standard approach to dynamic choice:

- Reduce (continuation) plans to acts
- Update prefs (e.g. via Bayes' Rule if EU)
- Apply Backward induction/recursion

Result is same as choosing ex-ante optimal plan/act.

Then, in standard approach, ambiguity and FDC are inconsistent

Dynamic Consistency in a tree

Epstein and Schneider, JET 2003. Many followers!

- Fix a filtration $\mathcal{F} = (\mathcal{F}_0, \dots, \mathcal{F}_T)$ in Σ
- \mathcal{F} -adapted prefs $\succeq_{t,\omega}$ over \mathcal{F} -adapted consumption plans:

$$h = (h_t)_{t=0,...,T}, \quad h_t : \Omega \to \mathbb{R} \ \mathcal{F}_t$$
-meas.

- Impose DC on every $E \in \mathcal{F}_t$, $t = 0, \dots, T$
- Consider MEU conditional prefs. Literature considers other models: variational, smooth.
- Recursive Multiple Priors:

$$V_t(h)(\omega) = u(h_t(\omega)) + \beta \min_{\rho \in C_t(\omega)} \mathbb{E}_{\rho}[V_{t+1}(h)]$$

 V_t , $C_t \mathcal{F}_t$ -meas., $V_{T+1}(h) = u \circ h$, $p(\mathcal{F}_t(\omega)) = 1 \ \forall p \in C_t(\omega)$ • Key: characterizing sets C_t

Rectangularity: the case T = 1

To understand key issues, assume:

- T = 1, $\mathcal{F}_0 = \{\Omega\}$, $\mathcal{F}_1 = \{E_1, \dots, E_N\}$.
- Consumption at t = T + 1 = 2 only

Can identify consumption plans with acts

Write $\succeq_{1,n}$ and $C_{1,n}$ for $\succeq_{t,\omega}$, $C_1(\omega)$ with $\omega \in E_n$.

Assume every $E_n \in \mathcal{F}_1$ not \succeq_0 -null.

Rectangularity: the case T = 1

To understand key issues, assume:

- T = 1, $\mathcal{F}_0 = \{\Omega\}$, $\mathcal{F}_1 = \{E_1, \dots, E_N\}$.
- Consumption at t = T + 1 = 2 only

Can identify consumption plans with acts

Write $\succeq_{1,n}$ and $C_{1,n}$ for $\succeq_{t,\omega}$, $C_1(\omega)$ with $\omega \in E_n$. Assume every $E_n \in \mathcal{F}_1$ not \succeq_0 -null.

 \mathcal{F}_1 -NC Null Complement: For all $n, \Omega \setminus E_n$ is $\succeq_{1,n}$ -null

- \mathcal{F}_1 -DC For all $f, g \in L_0$: if $f \succcurlyeq_{1,n} g$ for each n (resp and $f \succ_{1,m} g$ for some m) then $f \succcurlyeq_0 g$ (resp. $f \succ_0 g$)
- \mathcal{F}_1 -STP For all $f, g, h, k \in L_0$, all n and $E_n \in \mathcal{F}_1$: $fE_nh \succcurlyeq_0 gE_nh$ implies $fE_nk \succcurlyeq_0 gE_nk$
- \mathcal{F}_1 -SavU For all $f, g \in L_0$, all n and $E_n \in \mathcal{F}_1$: $f \succcurlyeq_{1,n} g$ iff $fE_nh \succcurlyeq_0 gE_nh$ for some $h \in L_0$.

Proposition

Let $\succeq_0, \succeq_{1,1}, \ldots \succeq_{1,N}$ be weak orders. Assume each $E \in \mathcal{F}_1$ is not \succeq_0 -null. The following are equivalent:

(1) \succ_0 satisfies \mathcal{F}_1 -STP, and each $\succ_{1,n}$ is obtained via \mathcal{F}_1 -SavU.

Proposition

Let $\succeq_0, \succeq_{1,1}, \ldots \succeq_{1,N}$ be weak orders. Assume each $E \in \mathcal{F}_1$ is not \succeq_0 -null. The following are equivalent:

(1) \succeq_0 satisfies \mathcal{F}_1 -STP, and each $\succeq_{1,n}$ is obtained via \mathcal{F}_1 -SavU. (2) \succeq_0 , $(\succeq_{1,n})_{n=1,...,N}$ satisfy \mathcal{F}_1 -NC and \mathcal{F}_1 -DC.

Proposition

Let $\geq_0, \geq_{1,1}, \ldots \geq_{1,N}$ be weak orders. Assume each $E \in \mathcal{F}_1$ is not \geq_0 -null. The following are equivalent: (1) \geq_0 satisfies \mathcal{F}_1 -STP, and each $\geq_{1,n}$ is obtained via \mathcal{F}_1 -SavU. (2) \geq_0 , $(\geq_{1,n})_{n=1,\ldots,N}$ satisfy \mathcal{F}_1 -NC and \mathcal{F}_1 -DC. Furthermore, if \geq_0 is MEU with priors C_0 , then (1)-(2) hold iff (3) For every n, Prior-by-Prior Updating: $\geq_{1,n}$ is MEU with beliefs

$$C_{1,n} = \{q(\cdot|E_n) : q \in C_0\};$$

Proposition

Let $\geq_0, \geq_{1,1}, \dots \geq_{1,N}$ be weak orders. Assume each $E \in \mathcal{F}_1$ is not \geq_0 -null. The following are equivalent: (1) \geq_0 satisfies \mathcal{F}_1 -STP, and each $\geq_{1,n}$ is obtained via \mathcal{F}_1 -SavU. (2) \geq_0 , $(\geq_{1,n})_{n=1,\dots,N}$ satisfy \mathcal{F}_1 -NC and \mathcal{F}_1 -DC. Furthermore, if \geq_0 is MEU with priors C_0 , then (1)-(2) hold iff (3) For every n, Prior-by-Prior Updating: $\geq_{1,n}$ is MEU with beliefs

$$C_{1,n} = \{q(\cdot|E_n) : q \in C_0\};$$

morevorer, \mathcal{F}_1 -Rectangularity:

$$C_0 = \left\{ \sum_{n=1}^N q_0(E_n)q_n : q_0 \in C_0, q_n \in C_{1,n}n = 1, \dots, N \right\}.$$

Rectangularity

$$C_0 = \left\{ \sum_{n=1}^N q_0(E_n)q_n : q_0 \in C_0, q_n \in C_{1,n}n = 1, \dots, N \right\}.$$

Key idea: can choose

• q_0 "on" \mathcal{F}_1 (one-step-ahead measure) and

•
$$q_n \in C_{1,n}$$
 (conditional measures)

independently of one another!

Rectangularity

$$C_0 = \left\{ \sum_{n=1}^N q_0(E_n)q_n : q_0 \in C_0, q_n \in C_{1,n}n = 1, \dots, N \right\}.$$

Key idea: can choose

• q_0 "on" \mathcal{F}_1 (one-step-ahead measure) and

•
$$q_n \in C_{1,n}$$
 (conditional measures)

independently of one another!

Implies, indeed equivalent to

$$\min_{q\in C_0} \operatorname{E}_q[u\circ h] = V_0(h) = \min_{q_0\in C_0} \sum_{n=1}^N q_0(E_n) \min_{q_n\in C_{1,n}} \operatorname{E}_{q_n}[u\circ h]$$

i.e. recursion.

Assume \mathcal{F}_1 -STP, \mathcal{F}_1 -SavU.

Assume \mathcal{F}_1 -STP, \mathcal{F}_1 -SavU.

Then \mathcal{F}_1 -NC is obvious from \mathcal{F}_1 -SavU.

Assume \mathcal{F}_1 -STP, \mathcal{F}_1 -SavU.

Then \mathcal{F}_1 -NC is obvious from \mathcal{F}_1 -SavU. If $f \succeq_{1,n} g$ for all n, let $h_0 = f$, $h_n = gE_nh_{n-1}$. So $h_N = g$.

Assume \mathcal{F}_1 -STP, \mathcal{F}_1 -SavU.

Then \mathcal{F}_1 -NC is obvious from \mathcal{F}_1 -SavU. If $f \succeq_{1,n} g$ for all n, let $h_0 = f$, $h_n = g E_n h_{n-1}$. So $h_N = g$. Then, for every n = 1, ..., N, by \mathcal{F}_1 -NC:

• $h_{n-1} \sim_{1,n} f \succcurlyeq_{1,n} g \sim_{1,n} h_n$.

Assume \mathcal{F}_1 -STP, \mathcal{F}_1 -SavU.

Then \mathcal{F}_1 -NC is obvious from \mathcal{F}_1 -SavU. If $f \succeq_{1,n} g$ for all n, let $h_0 = f$, $h_n = g E_n h_{n-1}$. So $h_N = g$. Then, for every n = 1, ..., N, by \mathcal{F}_1 -NC:

- $h_{n-1} \sim_{1,n} f \succcurlyeq_{1,n} g \sim_{1,n} h_n$.
- Therefore, by \mathcal{F}_1 -SavU, $h_{n-1} =$

Assume \mathcal{F}_1 -STP, \mathcal{F}_1 -SavU.

Then \mathcal{F}_1 -NC is obvious from \mathcal{F}_1 -SavU. If $f \succeq_{1,n} g$ for all n, let $h_0 = f$, $h_n = g E_n h_{n-1}$. So $h_N = g$. Then, for every n = 1, ..., N, by \mathcal{F}_1 -NC:

- $h_{n-1} \sim_{1,n} f \succcurlyeq_{1,n} g \sim_{1,n} h_n$.
- Therefore, by \mathcal{F}_1 -SavU,

 $h_{n-1}=h_{n-1}E_nh_{n-1}$

Assume \mathcal{F}_1 -STP, \mathcal{F}_1 -SavU.

Then \mathcal{F}_1 -NC is obvious from \mathcal{F}_1 -SavU. If $f \succeq_{1,n} g$ for all n, let $h_0 = f$, $h_n = g E_n h_{n-1}$. So $h_N = g$. Then, for every n = 1, ..., N, by \mathcal{F}_1 -NC:

- $h_{n-1} \sim_{1,n} f \succcurlyeq_{1,n} g \sim_{1,n} h_n$.
- Therefore, by \mathcal{F}_1 -SavU,

 $h_{n-1} = h_{n-1}E_nh_{n-1} \succeq_0 h_nE_nh_{n-1}$

Assume \mathcal{F}_1 -STP, \mathcal{F}_1 -SavU.

Then \mathcal{F}_1 -NC is obvious from \mathcal{F}_1 -SavU. If $f \succeq_{1,n} g$ for all n, let $h_0 = f$, $h_n = g E_n h_{n-1}$. So $h_N = g$. Then, for every n = 1, ..., N, by \mathcal{F}_1 -NC:

- $h_{n-1} \sim_{1,n} f \succcurlyeq_{1,n} g \sim_{1,n} h_n$.
- Therefore, by \mathcal{F}_1 -SavU,

 $h_{n-1} = h_{n-1}E_nh_{n-1} \succeq_0 h_nE_nh_{n-1} = h_n.$

Assume \mathcal{F}_1 -STP, \mathcal{F}_1 -SavU.

Then \mathcal{F}_1 -NC is obvious from \mathcal{F}_1 -SavU. If $f \succeq_{1,n} g$ for all n, let $h_0 = f$, $h_n = g E_n h_{n-1}$. So $h_N = g$. Then, for every n = 1, ..., N, by \mathcal{F}_1 -NC:

- $h_{n-1} \sim_{1,n} f \succcurlyeq_{1,n} g \sim_{1,n} h_n$.
- Therefore, by \mathcal{F}_1 -SavU,

 $h_{n-1} = h_{n-1}E_nh_{n-1} \succeq_0 h_nE_nh_{n-1} = h_n.$

So $f = h_0 \succcurlyeq h_1 \succcurlyeq \ldots \succcurlyeq h_N = g$. Strict prefs analogous, so \mathcal{F}_1 -DC

Assume \mathcal{F}_1 -STP, \mathcal{F}_1 -SavU.

Then \mathcal{F}_1 -NC is obvious from \mathcal{F}_1 -SavU. If $f \succeq_{1,n} g$ for all n, let $h_0 = f$, $h_n = g E_n h_{n-1}$. So $h_N = g$. Then, for every n = 1, ..., N, by \mathcal{F}_1 -NC:

- $h_{n-1} \sim_{1,n} f \succcurlyeq_{1,n} g \sim_{1,n} h_n$.
- Therefore, by \mathcal{F}_1 -SavU,

 $h_{n-1} = h_{n-1}E_nh_{n-1} \succeq_0 h_nE_nh_{n-1} = h_n.$

So $f = h_0 \succcurlyeq h_1 \succcurlyeq \ldots \succcurlyeq h_N = g$. Strict prefs analogous, so \mathcal{F}_1 -DC

Assume \mathcal{F}_1 -NC, \mathcal{F}_1 -DC

 \mathcal{F}_1 -SavU easy from \mathcal{F}_1 -NC, \mathcal{F}_1 -DC.

Assume \mathcal{F}_1 -STP, \mathcal{F}_1 -SavU.

Then \mathcal{F}_1 -NC is obvious from \mathcal{F}_1 -SavU. If $f \succeq_{1,n} g$ for all n, let $h_0 = f$, $h_n = g E_n h_{n-1}$. So $h_N = g$. Then, for every n = 1, ..., N, by \mathcal{F}_1 -NC:

- $h_{n-1} \sim_{1,n} f \succcurlyeq_{1,n} g \sim_{1,n} h_n$.
- Therefore, by \mathcal{F}_1 -SavU,

 $h_{n-1} = h_{n-1}E_nh_{n-1} \geq_0 h_nE_nh_{n-1} = h_n.$

So $f = h_0 \succcurlyeq h_1 \succcurlyeq \ldots \succcurlyeq h_N = g$. Strict prefs analogous, so \mathcal{F}_1 -DC

Assume \mathcal{F}_1 -NC, \mathcal{F}_1 -DC \mathcal{F}_1 -SavU easy from \mathcal{F}_1 -NC, \mathcal{F}_1 -DC. Fix $f, g, h, k \in L_0, n = 1, ..., N$: then • $fE_nh \succeq_0 gE_nh$ implies $fE_nh \succeq_{1,n} gE_nh$ by \mathcal{F}_1 -SavU

Assume \mathcal{F}_1 -STP, \mathcal{F}_1 -SavU.

Then \mathcal{F}_1 -NC is obvious from \mathcal{F}_1 -SavU. If $f \succeq_{1,n} g$ for all n, let $h_0 = f$, $h_n = g E_n h_{n-1}$. So $h_N = g$. Then, for every n = 1, ..., N, by \mathcal{F}_1 -NC:

- $h_{n-1} \sim_{1,n} f \succcurlyeq_{1,n} g \sim_{1,n} h_n$.
- Therefore, by \mathcal{F}_1 -SavU,

 $h_{n-1} = h_{n-1}E_nh_{n-1} \succcurlyeq_0 h_nE_nh_{n-1} = h_n.$

So $f = h_0 \succcurlyeq h_1 \succcurlyeq \ldots \succcurlyeq h_N = g$. Strict prefs analogous, so \mathcal{F}_1 -DC

Assume \mathcal{F}_1 –NC, \mathcal{F}_1 -DC

 \mathcal{F}_1 -SavU easy from \mathcal{F}_1 -NC, \mathcal{F}_1 -DC. Fix $f, g, h, k \in L_0, n = 1, \dots, N$: then

- $fE_nh \succeq_0 gE_nh$ implies $fE_nh \succeq_{1,n} gE_nh$ by \mathcal{F}_1 -SavU
- But $fE_nk \sim_{1,n} fE_nh \succcurlyeq_{1,n} gE_nh \sim_{1,n} gE_nk$ by \mathcal{F}_1 -NC

Assume \mathcal{F}_1 -STP, \mathcal{F}_1 -SavU.

Then \mathcal{F}_1 -NC is obvious from \mathcal{F}_1 -SavU. If $f \succeq_{1,n} g$ for all n, let $h_0 = f$, $h_n = g E_n h_{n-1}$. So $h_N = g$. Then, for every n = 1, ..., N, by \mathcal{F}_1 -NC:

- $h_{n-1} \sim_{1,n} f \succcurlyeq_{1,n} g \sim_{1,n} h_n$.
- Therefore, by \mathcal{F}_1 -SavU,

 $h_{n-1} = h_{n-1}E_nh_{n-1} \geq_0 h_nE_nh_{n-1} = h_n.$

So $f = h_0 \succcurlyeq h_1 \succcurlyeq \ldots \succcurlyeq h_N = g$. Strict prefs analogous, so \mathcal{F}_1 -DC

Assume \mathcal{F}_1 –NC, \mathcal{F}_1 -DC

 \mathcal{F}_1 -SavU easy from \mathcal{F}_1 -NC, \mathcal{F}_1 -DC. Fix $f, g, h, k \in L_0$, $n = 1, \dots, N$: then

- $fE_nh \succcurlyeq_0 gE_nh$ implies $fE_nh \succcurlyeq_{1,n} gE_nh$ by \mathcal{F}_1 -SavU
- But $fE_nk \sim_{1,n} fE_nh \succcurlyeq_{1,n} gE_nh \sim_{1,n} gE_nk$ by \mathcal{F}_1 -NC
- Thus $fE_nk \succcurlyeq_0 gE_nk$ by \mathcal{F}_1 -SavU

Hence \mathcal{F}_1 -STP.

Assume \succcurlyeq_0 is MEU. (3) \Rightarrow (2) not hard; focus on (2) \Rightarrow (3)

To show $\succeq_{1,n}$ is MEU with Full Bayesian Updating, fix $f \in L_0$.

• $f \sim_{1,n} x$ iff $fE_n x \sim_0 x$ by \mathcal{F}_1 -DC

Assume \succcurlyeq_0 is MEU. (3) \Rightarrow (2) not hard; focus on (2) \Rightarrow (3)

To show $\geq_{1,n}$ is MEU with Full Bayesian Updating, fix $f \in L_0$.

- $f \sim_{1,n} x$ iff $fE_n x \sim_0 x$ by \mathcal{F}_1 -DC
- But this is FP! So $C_{1,n}$ obtained from C_0 via FBU.

Assume \succcurlyeq_0 is MEU. (3) \Rightarrow (2) not hard; focus on (2) \Rightarrow (3)

To show $\succeq_{1,n}$ is MEU with Full Bayesian Updating, fix $f \in L_0$.

- $f \sim_{1,n} x$ iff $fE_n x \sim_0 x$ by \mathcal{F}_1 -DC
- But this is FP! So $C_{1,n}$ obtained from C_0 via FBU.

Now to show Rectangularity of C_0 , fix $f \in L_0$.

• Let $x_n \in X$ be s.t. $f \sim_{1,n} x_n$ for $n = 1, \ldots, N$.

Assume \succcurlyeq_0 is MEU. (3) \Rightarrow (2) not hard; focus on (2) \Rightarrow (3)

To show $\succeq_{1,n}$ is MEU with Full Bayesian Updating, fix $f \in L_0$.

- $f \sim_{1,n} x$ iff $fE_n x \sim_0 x$ by \mathcal{F}_1 -DC
- But this is FP! So $C_{1,n}$ obtained from C_0 via FBU.

- Let $x_n \in X$ be s.t. $f \sim_{1,n} x_n$ for $n = 1, \ldots, N$.
- $u(x_n) = \min_{q_n \in C_{1,n}} \operatorname{E}_{q_n}[u \circ f].$

Assume \succcurlyeq_0 is MEU. (3) \Rightarrow (2) not hard; focus on (2) \Rightarrow (3)

To show $\geq_{1,n}$ is MEU with Full Bayesian Updating, fix $f \in L_0$.

- $f \sim_{1,n} x$ iff $fE_n x \sim_0 x$ by \mathcal{F}_1 -DC
- But this is FP! So $C_{1,n}$ obtained from C_0 via FBU.

- Let $x_n \in X$ be s.t. $f \sim_{1,n} x_n$ for $n = 1, \ldots, N$.
- $u(x_n) = \min_{q_n \in C_{1,n}} \mathbb{E}_{q_n}[u \circ f].$
- Then \mathcal{F}_1 -DC implies $f \sim x_1 E_1 x_2 E_2 \dots x_{N-1} E_{N-1} x_N$ (obvious notation).

Assume \succcurlyeq_0 is MEU. (3) \Rightarrow (2) not hard; focus on (2) \Rightarrow (3)

To show $\geq_{1,n}$ is MEU with Full Bayesian Updating, fix $f \in L_0$.

- $f \sim_{1,n} x$ iff $fE_n x \sim_0 x$ by \mathcal{F}_1 -DC
- But this is FP! So $C_{1,n}$ obtained from C_0 via FBU.

- Let $x_n \in X$ be s.t. $f \sim_{1,n} x_n$ for $n = 1, \ldots, N$.
- $u(x_n) = \min_{q_n \in C_{1,n}} \operatorname{E}_{q_n}[u \circ f].$
- Then *F*₁-DC implies *f* ~ *x*₁*E*₁*x*₂*E*₂...*x*_{N-1}*E*_{N-1}*x*_N (obvious notation).
- Hence $V_0(f) = \min_{q_0 \in C_0} \mathbb{E}_{q_0}[u \circ x_1 E_1 x_2 E_2 \dots x_{N-1} E_{N-1} x_N]$

Assume \succcurlyeq_0 is MEU. (3) \Rightarrow (2) not hard; focus on (2) \Rightarrow (3)

To show $\geq_{1,n}$ is MEU with Full Bayesian Updating, fix $f \in L_0$.

- $f \sim_{1,n} x$ iff $fE_n x \sim_0 x$ by \mathcal{F}_1 -DC
- But this is FP! So $C_{1,n}$ obtained from C_0 via FBU.

- Let $x_n \in X$ be s.t. $f \sim_{1,n} x_n$ for $n = 1, \ldots, N$.
- $u(x_n) = \min_{q_n \in C_{1,n}} \operatorname{E}_{q_n}[u \circ f].$
- Then \$\mathcal{F}_1\$-DC implies \$f ~ x_1 E_1 x_2 E_2 \ldots x_{N-1} E_{N-1} x_N\$ (obvious notation).
- Hence $V_0(f) = \min_{q_0 \in C_0} \mathbb{E}_{q_0}[u \circ x_1 E_1 x_2 E_2 \dots x_{N-1} E_{N-1} x_N] = \min_{q_0 \in C_0} \sum_{n=1}^N q_0(E_n) \min_{q_n \in C_{1,n}} \mathbb{E}_{q_n}[u \circ f]$. Recursion!

Assume \succcurlyeq_0 is MEU. (3) \Rightarrow (2) not hard; focus on (2) \Rightarrow (3)

To show $\geq_{1,n}$ is MEU with Full Bayesian Updating, fix $f \in L_0$.

- $f \sim_{1,n} x$ iff $fE_n x \sim_0 x$ by \mathcal{F}_1 -DC
- But this is FP! So $C_{1,n}$ obtained from C_0 via FBU.

- Let $x_n \in X$ be s.t. $f \sim_{1,n} x_n$ for $n = 1, \ldots, N$.
- $u(x_n) = \min_{q_n \in C_{1,n}} \operatorname{E}_{q_n}[u \circ f].$
- Then \$\mathcal{F}_1\$-DC implies \$f ~ x_1 E_1 x_2 E_2 \ldots x_{N-1} E_{N-1} x_N\$ (obvious notation).
- Hence $V_0(f) = \min_{q_0 \in C_0} \mathbb{E}_{q_0}[u \circ x_1 E_1 x_2 E_2 \dots x_{N-1} E_{N-1} x_N] = \min_{q_0 \in C_0} \sum_{n=1}^N q_0(E_n) \min_{q_n \in C_{1,n}} \mathbb{E}_{q_n}[u \circ f]$. Recursion!
- Hence $\overline{C}_0 \equiv \{\sum_n q_0(E_n)q_n : q_0 \in C_0, q_n \in C_{1,n}\}$ represents \succeq_0 ; by uniqueness of priors, $C_0 = \overline{C}_0$. Q.E.D

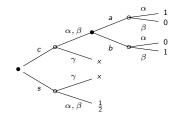
The general case and extensions

- With arbitrary horizon, add discounting
- Rectangularity extends naturally: Def. 3.1
- Recursive approach equivalent to ex-ante MEU:

$$V_0(h)(\omega) = \min_{q \in C_0} \mathbb{E}_q \left[\sum_{t=0}^{T+1} \beta^t u \circ h_t \right]$$

- Extensions/adaptations:
 - variational/multiplier: Maccheroni, Marinacci and Rustichini ECMA 2006, JET 2006
 - smooth ambiguity: Klibanoff, Marinacci and Mukerji ECMA 2005, JET 2009
 - vector expected utility: yours truly ECMA 2009, in progress 2010

The price of rectangularity

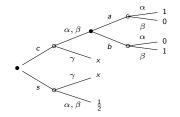


Back to our example:

- Must take $\mathcal{F}_1 = \{\{\alpha, \beta\}, \{\gamma\}\} \equiv \{E, \Omega \setminus E\}.$
- \mathcal{F}_1 -DC implies \mathcal{F}_1 -STP
- But then $ca_0 \succeq_0 cb_0$ iff $ca_1 \succeq_0 cb_1$: no Ellsberg!
- Indeed $C = \{q \in \Delta(\{\alpha, \beta, \gamma\}) : q(\alpha) = \frac{1}{3}\}$ is not rectangular: take $q_0, q_{1,1}, q_{1,2}$ s.t. $q_0(\{\alpha, \beta\}) = 1, q_{1,1}(\beta) = 0$; then $q \equiv \sum_n q_0(E_n)q_{1,n} \notin C$ as $q(\alpha) = 1$.

Sophistication and Consistent Planning

Strotz (1956); for ambiguity yours truly (mimeo, 2009)



MEU prefs, $C = \{q : q(\alpha) = \frac{1}{3}\}$, $C_{\alpha,\beta} = \{q : q(\alpha) \ge \frac{1}{3}, q(\gamma) = 0\}$.

- In tree with x = 1, $a \succ_E b$.
- Sophistication: DM should anticipate a at t = 0.
- Hence DM realizes c is same as $ca_1 \prec_0 s$
- So, even though $cb_1 \succ_0 s$, DM will choose s if x = 1.
- (for completeness, c then a if x = 0)

Consistent Planning and its challenges

Consistent Planning (CP) generalizes/strengthens this idea:

[The DM should choose] the best plan among those that he will actually follow (Strotz, 1956, p. 173)

- Multi-period algorithm / procedure
- Like backward induction with specific tie-breaking rule

Consistent Planning and its challenges

Consistent Planning (CP) generalizes/strengthens this idea:

[The DM should choose] the best plan among those that he will actually follow (Strotz, 1956, p. 173)

- Multi-period algorithm / procedure
- Like backward induction with specific tie-breaking rule

Main challenge: game or decision tree?

The individual over time is an infinity of individuals (Strotz, 1956, p. 179)

Other challenges:

- Sophistication quite delicate with ambiguity
- Tie-breaking rule subtle
- CP itself not straightforward (plans, actions)

Consistent Planning and its challenges

Consistent Planning (CP) generalizes/strengthens this idea:

[The DM should choose] the best plan among those that he will actually follow (Strotz, 1956, p. 173)

- Multi-period algorithm / procedure
- Like backward induction with specific tie-breaking rule

Main challenge: game or decision tree?

The individual over time is an infinity of individuals (Strotz, 1956, p. 179)

Other challenges:

- Sophistication quite delicate with ambiguity
- Tie-breaking rule subtle
- CP itself not straightforward (plans, actions)

Essential to adopt preferences over trees as primitive

Formalizing Sophistication

What does it mean for DM to "anticipate choice of a"?

Formalizing Sophistication

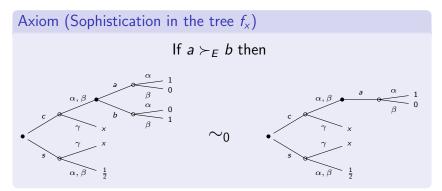
What does it mean for DM to "anticipate choice of a"?

- If $a \succ_E b$, then as if b was not there
- Full tree f_1 (i.e. x = 1) same as tree with b removed

Formalizing Sophistication

What does it mean for DM to "anticipate choice of a"?

- If $a \succ_E b$, then as if b was not there
- Full tree f_1 (i.e. x = 1) same as tree with b removed



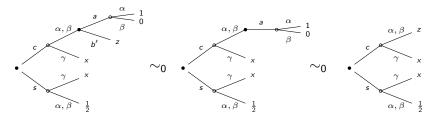
Note: to state this axiom, \sim_0 must be defined on trees.

Note use of strict preference in premise: $a \succ_E b$. What if we allowed for \succcurlyeq_E ? Gives Strong Sophistication

Note use of strict preference in premise: $a \succ_E b$.

What if we allowed for \geq_E ? Gives Strong Sophistication

Bad idea! E.g. z = certainty equiv of a given E. Replace b with b' s.t. $b'(\alpha) = b'(\beta) = z$. Strong Sophistication implies

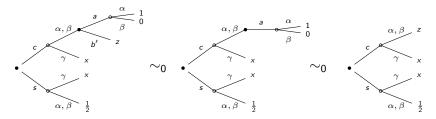


Strong Soph \Rightarrow can replace *a* with CE

Note use of strict preference in premise: $a \succ_E b$.

What if we allowed for \succeq_E ? Gives Strong Sophistication

Bad idea! E.g. z = certainty equiv of a given E. Replace b with b' s.t. $b'(\alpha) = b'(\beta) = z$. Strong Sophistication implies

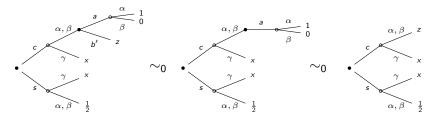


Strong Soph \Rightarrow can replace *a* with CE \Rightarrow **recursion**

Note use of strict preference in premise: $a \succ_E b$.

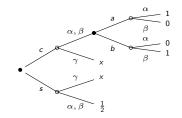
What if we allowed for \geq_E ? Gives Strong Sophistication

Bad idea! E.g. z = certainty equiv of a given E. Replace b with b' s.t. $b'(\alpha) = b'(\beta) = z$. Strong Sophistication implies



Strong Soph \Rightarrow can replace *a* with CE \Rightarrow **recursion** $\Rightarrow \mathcal{F}-DC$! This is a general result. See paper.

Tie-breaking in CP



Different MEU prefs: $C = \{q : \frac{1}{90} \le q(\alpha) \le \frac{30}{90}, \frac{2}{90} \le q(\beta) \le \frac{15}{90}\},$ $C_{\alpha,\beta} = \{q : q(\alpha), q(\beta) \ge \frac{1}{16}, q(\gamma) = 0\}.$

- In tree with x = 1, $a \sim_E b$.
- However, $ca_1 \succ_0 cb_1$.
- Now Sophistication has no bite
- Should DM be able to "commit" to a? Strotz says "yes"!
- Must formalize this tie-breaking assumption in CP.

Formalizing tie-breaking (Weak Commitment)

What does it mean for DM to be able to "commit to a"?

Formalizing tie-breaking (Weak Commitment)

What does it mean for DM to be able to "commit to a"?

- If $a \sim_E b$, then no reason at t = 1 to overrule time-0 choice
- Tree f₁ (i.e. x = 1) same as tree with immediate (t = 0) commitment to a vs. b

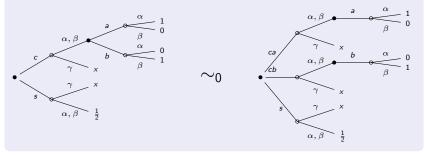
Formalizing tie-breaking (Weak Commitment)

What does it mean for DM to be able to "commit to a"?

- If $a \sim_E b$, then no reason at t = 1 to overrule time-0 choice
- Tree f₁ (i.e. x = 1) same as tree with immediate (t = 0) commitment to a vs. b

Axiom (Weak Commitment in the tree f_x)

If $a \sim_E b$ then

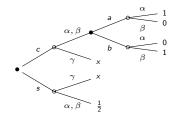


Note: to formalize, need precise notation for tree surgery.

Rest of the paper:

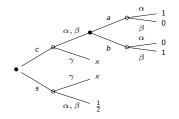
- Make CP precise, formal characterization result
- Eliciting conditional preferences
- Application to value of information
- Application to Raiffa's critique
- Related literature, esp. Kreps, DLR, Gul-Pesendorfer.

Machina (1989); ambiguity Hanany-Klibanoff (2007/9)



Prior MEU prefs: $C = \{q : q(\alpha) = \frac{1}{3}\}.$

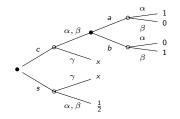
Machina (1989); ambiguity Hanany-Klibanoff (2007/9)



Prior MEU prefs: $C = \{q : q(\alpha) = \frac{1}{3}\}.$

• Want Weak DC: carry out ex-ante optimal plans

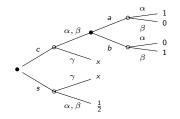
Machina (1989); ambiguity Hanany-Klibanoff (2007/9)



Prior MEU prefs: $C = \{q : q(\alpha) = \frac{1}{3}\}.$

- Want Weak DC: carry out ex-ante optimal plans
- Turn problem on its head: *what conditional preferences guarantee WeakDC*?
- Here: $b \succcurlyeq_{E,x=1} a$ if x = 1, $a \succcurlyeq_{E,x=0} b$ if x = 0.

Machina (1989); ambiguity Hanany-Klibanoff (2007/9)



Prior MEU prefs: $C = \{q : q(\alpha) = \frac{1}{3}\}.$

- Want Weak DC: carry out ex-ante optimal plans
- Turn problem on its head: *what conditional preferences guarantee WeakDC*?
- Here: $b \succcurlyeq_{E,x=1} a$ if x = 1, $a \succcurlyeq_{E,x=0} b$ if x = 0.
- Conditional preferences may depend on context
- Machina: "experiencing, not realizing, possibility of x" may influence conditional preferences.

Dynamically Consistent MEU rules

Given:

- Conditioning event $E \in \Sigma$ (non-null)
- Feasible acts $B \subset L_0$ (restrictions think plans in tree)
- Ex-ante optimal act $g \in B$ (possibly one of many)

Dynamically Consistent MEU rules

Given:

- Conditioning event $E \in \Sigma$ (non-null)
- Feasible acts $B \subset L_0$ (restrictions think plans in tree)
- Ex-ante optimal act $g \in B$ (possibly one of many)

Hanany-Klibanoff propose "two-step procedure": given C,

- $Q^{E,g,B} = \{q \in C : E_q[u \circ g] \ge E_q[u \circ f] \ \forall f \in B \text{ s.t. } f(\omega) = g(\omega) \ \forall \omega \notin E\}$
- ② $C_{E,g,B} \subset \{q(\cdot|E) : q \in C\}$ such that, for some $q^* \in Q^{E,g,B}$, $q^*(\cdot|E) \in \arg \min_{q \in C_{E,g,B}} E_q[u \circ g].$

Dynamically Consistent MEU rules

Given:

- Conditioning event $E \in \Sigma$ (non-null)
- Feasible acts $B \subset L_0$ (restrictions think plans in tree)
- Ex-ante optimal act $g \in B$ (possibly one of many)

Hanany-Klibanoff propose "two-step procedure": given C,

$$Q^{E,g,B} = \{ q \in C : E_q[u \circ g] \ge E_q[u \circ f] \ \forall f \in B \text{ s.t. } f(\omega) = g(\omega) \ \forall \omega \notin E \}$$

② $C_{E,g,B} \subset \{q(\cdot|E) : q \in C\}$ such that, for some $q^* \in Q^{E,g,B}$, $q^*(\cdot|E) \in \arg\min_{q \in C_{E,g,B}} E_q[u \circ g].$

Our example: $C = \{q : q(\alpha) = \frac{1}{3}\}, E = \{\alpha, \beta\}$

B_x = {s, ca_x, cb_x} (identify plans with acts)
 x = 0: σ = ca₀

•
$$C_{E,g,B} \subset \{q: q(\gamma) = 0, \frac{1}{2} \leq q(\alpha) \leq 1\}$$

$$\begin{array}{l} x = 1: \ g = cb_1 \\ \bullet \ Q^{E,g,B} = \{q: q(\beta) \ge \frac{1}{3} = q(\alpha)\} \\ \bullet \ C_{E,g,B} \subset \{q: q(\gamma) = 0, \frac{1}{3} \le q(\alpha) \le \frac{1}{2} \le q(\beta) \end{array}$$

Hanany-Klibanoff 2007

What's in the paper:

- Update rule: from \succcurlyeq_0 , $B \subset L_0$, $g \in B$ (\succcurlyeq_0 -optimal in B) and $E \in \Sigma$ to $\succcurlyeq_{E,g,B}$.
- An update rule is WeakDC iff

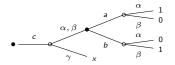
$$g \succcurlyeq_0 f \ \forall f \in B \quad \Rightarrow \quad g \succcurlyeq_{E,g,B} f \ \forall f \in B$$

for all E, g, B.

- Characterize WeakDC update rules for MEU and UAP
- Characterize Maximal-Ambiguity update rule for MEU
- Compare with stronger forms of DC (impossibilities)

(Non-)Consequential choice under ambiguity

One reason for concern.



Prior MEU prefs: $C = \{q : q(\alpha) = \frac{1}{3}, q(\beta) \le \frac{1}{3}\}$. Uniform q_u .

- x = 0: ca_0 optimal. Max ambiguity rule: update all of C.
- x = 1: cb_1 optimal. Must update only $q_u!$
- Hence after E, EU if x = 1 and MEU if x = 0.
- Conditional perception of ambiguity can depend on x!
- Runs counter to usual interpretation of ambiguity.