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Ambiguity and Dynamic Choice: Overview

The plan:

Choice under ambiguity: “executive sumary”

Updating ambiguous beliefs

The key issue: dynamic (in)consistency

Solution 1: tree consistency

Solution 2: sophisticated choice

Solution 3: non-consequentialist choice

Focus on multiple priors (MEU; Gilboa-Schmeidler, 1989)

Most ideas generalize to “fancier” models



The Ellsberg Paradox, three-color urn edition

90 balls: 30 red, 60 green or blue.

One ball will be drawn; bets on its color.

r g b

fr 1 0 0
fg 0 1 0
frb 1 0 1
fgb 0 1 1

Modal preferences: fr � fg , frb ≺ fgb: ambiguity aversion

Inconsistent with probabilistic reasoning: prefs indicate

P(r) > P(g), P(r) + P(b) < P(g) + P(b)!



Notation and Setup

Basic setup:

Ω: state space, with sigma-algebra Σ.

charges ba1(Σ), or ∆(Σ) if finite.

X : set of consequences
Anscombe-Aumann: X cvx subset of lin space: e.g. ∆(Z )

Acts are Σ-measurable functions f : Ω→ X .

Lc or X : constant acts
L0: simple acts, i.e. f such that f −1(Ω) discrete

Mixtures on L0 taken pointwise : αf (ω) + (1− α)g(ω).

Preferences on L0: < and (for E ∈ Σ “not null”) <E

Representing functionals:

V : L0 → R such that f < g iff V (f ) ≥ V (g).

EU: V (h) = Ep[u ◦ h], p ∈ ba1(Σ)

Maxmin EU: V (h) = minp∈C Ep[u ◦ h], C ⊂ ba1(Σ).

Conditional representing functional: VE : L0 → R, E ∈ Σ.



Basics

Compound acts:

Definition

For f , g ∈ L0 and E ∈ Σ, fEg is the act with fEg(s) = f (s) for
s ∈ E and fEg(s) = g(s) for s ∈ Ω \ E .

“Zero-probability” events:

Definition (Null event)

E ∈ Σ is null for <̂ iff, for some x , y ∈ X with x � y , xEy ∼ y .

As in EU, condition on non-null events.

If condition on E , only outcomes in states s ∈ E matter:

NC Null Complement: For all non-<-null E ∈ Σ,
Ω \ E is <E–null
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Classical Updating Rules for MEU

V (h) = min
q∈C

Eq[u ◦ f ], u : X → R, C ⊂ ba1(Σ).

Non-null means that minq∈C q(E ) > 0.

Conditional MEU preference : VE = minq∈CE
Eq[u ◦ f ]

Two “natural” updating rules:

Prior-by-prior : CE = {q(·|E ) : q ∈ C , q(E ) > 0}
Maximum-likelihood :
CE = {q(·|E ) : q ∈ C , q ∈ arg maxq′∈C q′(E )}

Rich history: Walley (1990), Gilboa-Schmeidler (1993), Jaffray
(1994), Pires (2001)...
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MEU: Prior-by-prior updating and the fixpoint axiom

Jaffray (1994), Pires (2001).

EU: for all f ∈ L0, E non-null, x ∼E f iff fEx ∼ x :

u(x) = E[u ◦ f |E ]

⇔P(E )u(x) + P(Ω \ E )u(x) = P(E )E[u ◦ f |E ] + P(Ω \ E )u(X )

⇔u(x) = E[u ◦ fEx ]

Use as axiom:

FP Fixpoint Preferences For all f ∈ L0 and x ∈ X :
f ∼E x iff fEx ∼ x .

Intuition: local mean

Proposition (Jaffray, Pires)

If <, <E are MEU with same u, then NC and FP iff
CE = {q(·|E ) : q ∈ C}.
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MEU: Maximum-likelihood updating and pessimism axiom

Gilboa and Schmeidler (1993): actually MEU ∩ CEU

Assume there exist best, worst prize x∗, x∗.

PE Pessimism For all f ∈ L0: f <E g iff fEx∗ < gEx∗.

Intuition: disappointment due to loss of best prize

Proposition (Gilboa and Schmeidler)

If <,<E are both MEU and CEU with same u, then NC and PE iff
CE = {q(·|E ) : q ∈ arg maxq′∈C q′(E )}.
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Updating: A summary

More rules: Horie (2007), Eichberger, Grant, Kelsey (2009)...

Good: Attitudes toward updating!

Bad: Need to take a stand for unique predictions

Two main problems (or sides of the same coin):

Dynamic Inconsistency

Is <E observable or counterfactual?
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Ambiguity and Dynamic Inconsistency

Ω = {α, β, γ}, E = {α, β}. MEU prefs, C = {q : q(α) = 1
3}.

Prior-by-prior updating: CE = {q : q(α) ≥ 1
3 , q(γ) = 0}.

For x = 0, 1, let fx =

1
2

α, β

xγ
s

xγ
1β

0α
b

0β

1α
a

α, β

c

Actions: a, b, s. Effectively acts (in this example).
Plans: ca0, ca1, cb0, cb1 . Reduce to acts: e.g. ca1(γ) = 1, etc.

a �E b, but cb1 � ca1: dynamic inconsistency when x = 1.
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How to fix this?

1
2

α, β

xγ

s

xγ
1

β

0
α

b

0
β

1
α

a

α, β

c

Inconsistency bad because unclear behavioral predictions

Three possible fixes (in order of popularity, log scale):

Rectangularity: Restrict ambiguity in tree-specific ways
Epstein and Schneider (2003), many followers.
Impose DC on {α, β}. But rule out Ellsberg!

Sophisticated choice: Anticipate “bad” behavior
Based on Strotz (1956). Ambiguity: yours truly (2009).
In f1, DM knows that c leads to a, so f1 “as if” ca1.

Non-consequentialist choice: <E ’s can depend on the tree
Hanany and Klibanoff (2007/9), based on Machina (1989).
DM prefers a in f0 but b in f1.
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Dynamic Consistency and the Sure-Thing Principle (1)

Start with classic, or “Full” Dynamic Consistency axiom:

FDC For all f , g ∈ L0 and non-null E ∈ Σ: if f <E g (resp.
f �E g) and f <Ω\E g , then f < g (resp. f � g)

Also recall the Sure-Thing Principle

STP For all f , g , h, k ∈ L0 and E ∈ Σ not <-null: fEh < gEh
implies fEk < gEk

Modal behavior in the Ellsberg paradox violates the STP:

r g b

fr 1 0 0
fg 0 1 0
frb 1 0 1
fgb 0 1 1

fr (ω) = frb(ω) for ω = r , g , etc. Yet fr � fg , frb ≺ fgb
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Dynamic Consistency and the Sure-Thing Principle (2)

One advantage of STP: can define/elicit conditional prefs!

SavU For all f , g ∈ L0 and E ∈ Σ not <-null: f <E g iff fEh < gEh
for some h ∈ L0.

Theorem (“Folk theorem” of dynamic choice)

For <,<E weak orders, the following are equivalent:
(1) < satisfies STP and <E is obtained via SavU
(2) <, <E jointly satisfy NC and FDC

Furthermore, if <,<E are EU, Bayesian updating.

Foundation for standard approach to dynamic choice:

Reduce (continuation) plans to acts

Update prefs (e.g. via Bayes’ Rule if EU)

Apply Backward induction/recursion

Result is same as choosing ex-ante optimal plan/act.

Then, in standard approach, ambiguity and FDC are inconsistent
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Dynamic Consistency in a tree

Epstein and Schneider, JET 2003. Many followers!

Fix a filtration F = (F0, . . . ,FT ) in Σ

F-adapted prefs <t,ω over F–adapted consumption plans:

h = (ht)t=0,...,T , ht : Ω→ R Ft-meas.

Impose DC on every E ∈ Ft , t = 0, . . . ,T

Consider MEU conditional prefs. Literature considers other
models: variational, smooth.

Recursive Multiple Priors:

Vt(h)(ω) = u(ht(ω)) + β min
p∈Ct(ω)

Ep[Vt+1(h)]

Vt , Ct Ft-meas., VT+1(h) = u ◦ h, p(Ft(ω)) = 1 ∀p ∈ Ct(ω)

Key: characterizing sets Ct



Rectangularity: the case T = 1

To understand key issues, assume:

T = 1, F0 = {Ω}, F1 = {E1, . . . ,EN}.
Consumption at t = T + 1 = 2 only

Can identify consumption plans with acts

Write <1,n and C1,n for <t,ω, C1(ω) with ω ∈ En.

Assume every En ∈ F1 not <0–null.

F1–NC Null Complement: For all n, Ω \ En is <1,n–null

F1–DC For all f , g ∈ L0: if f <1,n g for each n (resp and f �1,m g for
some m) then f <0 g (resp. f �0 g)

F1–STP For all f , g , h, k ∈ L0, all n and En ∈ F1: fEnh <0 gEnh
implies fEnk <0 gEnk

F1–SavU For all f , g ∈ L0, all n and En ∈ F1: f <1,n g iff
fEnh <0 gEnh for some h ∈ L0.
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Rectangularity: characterization with T = 1

Proposition

Let <0,<1,1, . . . <1,N be weak orders. Assume each E ∈ F1 is not
<0–null. The following are equivalent:

(1) <0 satisfies F1–STP, and each <1,n is obtained via F1–SavU.

(2) <0, (<1,n)n=1,...,N satisfy F1–NC and F1-DC.

Furthermore, if <0 is MEU with priors C0, then (1)-(2) hold iff

(3) For every n, Prior-by-Prior Updating: <1,n is MEU with beliefs

C1,n = {q(·|En) : q ∈ C0} ;

morevorer, F1–Rectangularity:

C0 =

{
N∑

n=1

q0(En)qn : q0 ∈ C0, qn ∈ C1,nn = 1, . . . ,N

}
.
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Rectangularity

C0 =

{
N∑

n=1

q0(En)qn : q0 ∈ C0, qn ∈ C1,nn = 1, . . . ,N

}
.

Key idea: can choose

q0 “on” F1 (one-step-ahead measure) and

qn ∈ C1,n (conditional measures)

independently of one another!

Implies, indeed equivalent to

min
q∈C0

Eq[u ◦ h] = V0(h) = min
q0∈C0

N∑
n=1

q0(En) min
qn∈C1,n

Eqn [u ◦ h]

i.e. recursion.
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Proof of (1) ⇔ (2) [and “Folk Theorem”]

Assume F1–STP, F1–SavU.

Then F1–NC is obvious from F1–SavU.
If f <1,n g for all n, let h0 = f , hn = gEnhn−1. So hN = g .
Then, for every n = 1, . . . ,N, by F1–NC:

hn−1 ∼1,n f <1,n g ∼1,n hn.

Therefore, by F1–SavU,
hn−1 = hn−1Enhn−1 <0 hnEnhn−1 = hn.

So f = h0 < h1 < . . . < hN = g . Strict prefs analogous, so F1-DC
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Proof of (2) ⇔ (3)

Assume <0 is MEU. (3) ⇒ (2) not hard; focus on (2)⇒ (3)

To show <1,n is MEU with Full Bayesian Updating, fix f ∈ L0.

f ∼1,n x iff fEnx ∼0 x by F1-DC

But this is FP! So C1,n obtained from C0 via FBU.

Now to show Rectangularity of C0, fix f ∈ L0.

Let xn ∈ X be s.t. f ∼1,n xn for n = 1, . . . ,N.

u(xn) = minqn∈C1,n Eqn [u ◦ f ].

Then F1-DC implies f ∼ x1E1x2E2 . . . xN−1EN−1xN (obvious
notation).

Hence V0(f ) = minq0∈C0 Eq0 [u ◦ x1E1x2E2 . . . xN−1EN−1xN ] =

minq0∈C0

∑N
n=1 q0(En) minqn∈C1,n Eqn [u ◦ f ]. Recursion!

Hence C̄0 ≡ {
∑

n q0(En)qn : q0 ∈ C0, qn ∈ C1,n} represents
<0; by uniqueness of priors, C0 = C̄0. Q.E.D
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The general case and extensions

With arbitrary horizon, add discounting

Rectangularity extends naturally: Def. 3.1

Recursive approach equivalent to ex-ante MEU:

V0(h)(ω) = min
q∈C0

Eq

[
T+1∑
t=0

βtu ◦ ht

]
.

Extensions/adaptations:

variational/multiplier: Maccheroni, Marinacci and Rustichini
ECMA 2006, JET 2006
smooth ambiguity: Klibanoff, Marinacci and Mukerji ECMA
2005, JET 2009
vector expected utility: yours truly ECMA 2009, in progress
2010



The price of rectangularity

1
2

α, β

xγ

s

xγ
1

β

0
α

b

0
β

1
α

a

α, β

c

Back to our example:

Must take F1 = {{α, β} , {γ}} ≡ {E ,Ω \ E}.
F1–DC implies F1–STP

But then ca0 <0 cb0 iff ca1 <0 cb1: no Ellsberg!

Indeed C = {q ∈ ∆({α, β, γ}) : q(α) = 1
3} is not rectangular:

take q0, q1,1, q1,2 s.t. q0({α, β}) = 1, q1,1(β) = 0;
then q ≡

∑
n q0(En)q1,n 6∈ C as q(α) = 1.



Sophistication and Consistent Planning

Strotz (1956); for ambiguity yours truly (mimeo, 2009)

1
2

α, β

xγ

s

xγ
1

β

0
α

b

0
β

1
α

a

α, β

c

MEU prefs, C = {q : q(α) = 1
3}, Cα,β = {q : q(α) ≥ 1

3 , q(γ) = 0}.

In tree with x = 1, a �E b.

Sophistication: DM should anticipate a at t = 0.

Hence DM realizes c is same as ca1 ≺0 s

So, even though cb1 �0 s, DM will choose s if x = 1.

(for completeness, c then a if x = 0)



Consistent Planning and its challenges

Consistent Planning (CP) generalizes/strengthens this idea:

[The DM should choose] the best plan among those that
he will actually follow (Strotz, 1956, p. 173)

Multi-period algorithm / procedure

Like backward induction with specific tie-breaking rule

Main challenge: game or decision tree?

The individual over time is an infinity of individuals
(Strotz, 1956, p. 179)

Other challenges:

Sophistication quite delicate with ambiguity

Tie-breaking rule subtle

CP itself not straightforward (plans, actions)

Essential to adopt preferences over trees as primitive
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Formalizing Sophistication

What does it mean for DM to “anticipate choice of a”?

If a �E b, then as if b was not there

Full tree f1 (i.e. x = 1) same as tree with b removed

Axiom (Sophistication in the tree fx)

If a �E b then
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Note: to state this axiom, ∼0 must be defined on trees.
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Sophistication: a caveat

Note use of strict preference in premise: a �E b.

What if we allowed for <E? Gives Strong Sophistication

Bad idea! E.g. z = certainty equiv of a given E . Replace b with b′

s.t. b′(α) = b′(β) = z . Strong Sophistication implies
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Strong Soph ⇒ can replace a with CE ⇒ recursion ⇒ F–DC!

This is a general result. See paper.
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Tie-breaking in CP
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Different MEU prefs:
C = {q : 1

90 ≤ q(α) ≤ 30
90 ,

2
90 ≤ q(β) ≤ 15

90},
Cα,β = {q : q(α), q(β) ≥ 1

16 , q(γ) = 0}.

In tree with x = 1, a ∼E b.

However, ca1 �0 cb1.

Now Sophistication has no bite

Should DM be able to “commit” to a? Strotz says “yes”!

Must formalize this tie-breaking assumption in CP.



Formalizing tie-breaking (Weak Commitment)

What does it mean for DM to be able to “commit to a”?

If a ∼E b, then no reason at t = 1 to overrule time-0 choice

Tree f1 (i.e. x = 1) same as tree with immediate (t = 0)
commitment to a vs. b

Axiom (Weak Commitment in the tree fx)

If a ∼E b then
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Note: to formalize, need precise notation for tree surgery.
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If you really want to know more

Rest of the paper:

Make CP precise, formal characterization result

Eliciting conditional preferences

Application to value of information

Application to Raiffa’s critique

Related literature, esp. Kreps, DLR, Gul-Pesendorfer.



Non-Consequentialist choice

Machina (1989); ambiguity Hanany-Klibanoff (2007/9)
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Prior MEU prefs: C = {q : q(α) = 1
3}.

Want Weak DC: carry out ex-ante optimal plans

Turn problem on its head: what conditional preferences
guarantee WeakDC?

Here: b <E ,x=1 a if x = 1, a <E ,x=0 b if x = 0.

Conditional preferences may depend on context

Machina: “experiencing, not realizing, possibility of x” may
influence conditional preferences.
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Dynamically Consistent MEU rules

Given:

Conditioning event E ∈ Σ (non-null)

Feasible acts B ⊂ L0 (restrictions — think plans in tree)

Ex-ante optimal act g ∈ B (possibly one of many)

Hanany-Klibanoff propose “two-step procedure”: given C ,
1 QE ,g ,B = {q ∈ C : Eq[u ◦ g ] ≥ Eq[u ◦ f ] ∀f ∈ B s.t. f (ω) =

g(ω) ∀ω 6∈ E}
2 CE ,g ,B ⊂ {q(·|E ) : q ∈ C} such that, for some q∗ ∈ QE ,g ,B ,

q∗(·|E ) ∈ arg minq∈CE ,g,B
Eq[u ◦ g ].

Our example: C = {q : q(α) = 1
3}, E = {α, β}

Bx = {s, cax , cbx} (identify plans with acts)
x = 0: g = ca0

QE ,g ,B = {q : q(β) ≤ 1
3 = q(α)}

CE ,g ,B ⊂ {q : q(γ) = 0, 1
2 ≤ q(α) ≤ 1

x = 1: g = cb1

QE ,g ,B = {q : q(β) ≥ 1
3 = q(α)}

CE ,g ,B ⊂ {q : q(γ) = 0, 1
3 ≤ q(α) ≤ 1

2 ≤ q(β)}
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Hanany-Klibanoff 2007

What’s in the paper:

Update rule: from <0, B ⊂ L0, g ∈ B (<0–optimal in B) and
E ∈ Σ to <E ,g ,B .

An update rule is WeakDC iff

g <0 f ∀f ∈ B ⇒ g <E ,g ,B f ∀f ∈ B

for all E , g ,B.

Characterize WeakDC update rules for MEU and UAP

Characterize Maximal-Ambiguity update rule for MEU

Compare with stronger forms of DC (impossibilities)



(Non-)Consequential choice under ambiguity

One reason for concern.

xγ
1

β

0
α

b

0
β

1
α

a

α, β
c

Prior MEU prefs: C = {q : q(α) = 1
3 , q(β) ≤ 1

3}. Uniform qu.

x = 0: ca0 optimal. Max ambiguity rule: update all of C .

x = 1: cb1 optimal. Must update only qu!

Hence after E , EU if x = 1 and MEU if x = 0.

Conditional perception of ambiguity can depend on x!

Runs counter to usual interpretation of ambiguity.


