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Ambiguity and Dynamic Choice: Overview

The plan:

Choice under ambiguity: “executive sumary”
Updating ambiguous beliefs

The key issue: dynamic (in)consistency

Solution 1: tree consistency

Solution 2: sophisticated choice

Solution 3: non-consequentialist choice

Focus on multiple priors (MEU; Gilboa-Schmeidler, 1989)

Most ideas generalize to “fancier” models



The Ellsberg Paradox, three-color urn edition

90 balls: 30 red, 60 green or blue.

One ball will be drawn; bets on its color.

r g b
f |1 0 O
fe |0 1 0
f, |1 0 1
fep |0 1 1

Modal preferences: f, = fg, f;, < fgp: ambiguity aversion

Inconsistent with probabilistic reasoning: prefs indicate

P(r) > P(g), P(r)+ P(b) < P(g)+ P(b)!



Notation and Setup

Basic setup:
o (2. state space, with sigma-algebra X.
@ charges ba;(X), or A(X) if finite.
@ X: set of consequences
Anscombe-Aumann: X cvx subset of lin space: e.g. A(Z)
@ Acts are X-measurable functions f : Q — X.

e L. or X: constant acts
o Lo: simple acts, i.e. f such that f~1(Q) discrete

e Mixtures on Lo taken pointwise : af(w) + (1 — a)g(w).

@ Preferences on Ly: = and (for E € ¥ "not null") =g

Representing functionals:

o V: Ly — R suchthat f = g iff V(f) > V(g).

e EU: V(h) =Epluoh], p € bai(X)

e Maxmin EU: V(h) = minycc Ep[uo h], C C bai(X).
Conditional representing functional: Vg : Ly — R, E € ¥.



Basics

Compound acts:
Definition

For f,g € Lp and E € X, fEg is the act with fEg(s) = f(s) for
s € E and fEg(s) = g(s) fors € Q\ E.



Basics

Compound acts:

Definition
For f,g € Lp and E € X, fEg is the act with fEg(s) = f(s) for
s € E and fEg(s) = g(s) fors € Q\ E.

“Zero-probability” events:

Definition (Null event)

E € ¥ is null for = iff, for some x,y € X with x = y, xEy ~ y.
As in EU, condition on non-null events.

If condition on E, only outcomes in states s € E matter:

NC Null Complement: For all non->=-null E € ¥,
Q\ E is =g—null



Classical Updating Rules for MEU

V(h) = migEq[u o f], u:X—=R, CCba(X).
qe

Non-null means that mingec q(E) > 0.

Conditional MEU preference : Ve = mingec, Eqg[u o f]



Classical Updating Rules for MEU

V(h) = migEq[u o f], u:X—=R, CCba(X).
qe

Non-null means that mingec q(E) > 0.
Conditional MEU preference : Ve = mingec, Eqg[u o f]

Two “natural” updating rules:
@ Prior-by-prior : Ce ={q(:|E) : g € C, q(E) > 0}
o Maximum-likelihood :
Ce={q(‘|[E) : g€ C, g € argmaxgec ¢ (E)}

Rich history: Walley (1990), Gilboa-Schmeidler (1993), Jaffray
(1994), Pires (2001)...
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MEU: Prior-by-prior updating and the fixpoint axiom
Jaffray (1994), Pires (2001).

EU: for all f € Ly, E non-null, x ~g f iff fEx ~ x:

u(x) = Elu o f|E]
SP(E)u(x) + P(Q\ E)u(x) = P(E)E[uo F|E] + P(R\ E)u(X)
< u(x) = Elu o fEX]

Use as axiom:

FP Fixpoint Preferences For all f € Ly and x € X:
f ~g x iff fEx ~ x.

Intuition: local mean

Proposition (Jaffray, Pires)

If =, = are MEU with same u, then NC and FP iff
Ce ={q(-|E) : g€ C}.



MEU: Maximume-likelihood updating and pessimism axiom

Gilboa and Schmeidler (1993): actually MEU N CEU

Assume there exist best, worst prize x*, x,.

PE Pessimism For all f € Lg: f =g g iff fEx* = gEx*.

Intuition: disappointment due to loss of best prize



MEU: Maximume-likelihood updating and pessimism axiom

Gilboa and Schmeidler (1993): actually MEU N CEU
Assume there exist best, worst prize x*, x,.

PE Pessimism For all f € Lg: f =g g iff fEx* = gEx*.

Intuition: disappointment due to loss of best prize

Proposition (Gilboa and Schmeidler)

If =, =g are both MEU and CEU with same u, then NC and PE iff
Ce ={q(-|E) : g € argmaxgcc q'(E)}.
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@ More rules: Horie (2007), Eichberger, Grant, Kelsey (2009)...
@ Good: Attitudes toward updating!

@ Bad: Need to take a stand for unique predictions



Updating: A summary

@ More rules: Horie (2007), Eichberger, Grant, Kelsey (2009)...
@ Good: Attitudes toward updating!
@ Bad: Need to take a stand for unique predictions

Two main problems (or sides of the same coin):

@ Dynamic Inconsistency

@ Is =g observable or counterfactual?



Ambiguity and Dynamic Inconsistency

Q={a,B,7}, E={a,B}. MEU prefs, C = {q: q(a) = %}
Prior-by-prior updating: Ce = {q: q(a) > %, q(y) = 0}.

For x=0,1, let f,=e

Actions: a, b, s. Effectively acts (in this example).
Plans: cag, ca1, cbg, cb;. Reduce to acts: e.g. cai(y) =1, etc.

O OF



Ambiguity and Dynamic Inconsistency

Q={a,B,7}, E={a,B}. MEU prefs, C = {q: q(a) = %}
Prior-by-prior updating: Ce = {q: q(a) > %, q(y) = 0}.

O OF

For x=0,1, let f,=e

Actions: a, b, s. Effectively acts (in this example).
Plans: cag, ca1, cbg, cb;. Reduce to acts: e.g. cai(y) =1, etc.

a =g b, but cb; > ca;: dynamic inconsistency when x = 1.
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How to fix this?

Inconsistency bad because unclear behavioral predictions

Three possible fixes (in order of popularity, log scale):

@ Rectangularity: Restrict ambiguity in tree-specific ways
o Epstein and Schneider (2003), many followers.
o Impose DC on {a, 8}. But rule out Ellsberg!

@ Sophisticated choice: Anticipate “bad” behavior
o Based on Strotz (1956). Ambiguity: yours truly (2009).
o In fi, DM knows that c leads to a, so f; “as if" ca;.

@ Non-consequentialist choice: =g's can depend on the tree
o Hanany and Klibanoff (2007/9), based on Machina (1989).
o DM prefers ain fy but b in f;.
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Start with classic, or “Full” Dynamic Consistency axiom:

FDC For all f,g € Lp and non-null E € X: if f =g g (resp.
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Dynamic Consistency and the Sure-Thing Principle (1)

Start with classic, or “Full” Dynamic Consistency axiom:

FDC For all f,g € Lp and non-null E € X: if f =g g (resp.
f - g)and f =g\ g, then f = g (resp. f - g)

Also recall the Sure-Thing Principle

STP Forall f,g,h, k € Ly and E € X not >=-null: fEh = gEh
implies fEk = gEk

Modal behavior in the Ellsberg paradox violates the STP:

‘ r g b
f |11 0 O
fe |0 1 0
fb, |1 0 1
fep [0 1 1

fr(w) = fip(w) for w =r, g, etc. Yet f, = £, fi, < fap
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for some h € Lg.
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e Update prefs (e.g. via Bayes' Rule if EU)
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Result is same as choosing ex-ante optimal plan/act.



Dynamic Consistency and the Sure-Thing Principle (2)

One advantage of STP: can define/elicit conditional prefs!

SavU For all f,g € Lg and E € X not =-null: f =g g iff fEh = gEh
for some h € Lg.

Theorem (“Folk theorem” of dynamic choice)
For =, =g weak orders, the following are equivalent:

(1) = satisfies STP and =g is obtained via SavU
(2) =, = jointly satisfy NC and FDC

Furthermore, if =, =g are EU, Bayesian updating.

Foundation for standard approach to dynamic choice:
@ Reduce (continuation) plans to acts
e Update prefs (e.g. via Bayes' Rule if EU)
@ Apply Backward induction/recursion

Result is same as choosing ex-ante optimal plan/act.

Then, in standard approach, ambiguity and FDC are inconsistent



Dynamic Consistency in a tree

Epstein and Schneider, JET 2003. Many followers!

e Fix a filtration F = (Fo,...,F71)in X

o F-adapted prefs =;, over F—adapted consumption plans:
h=(ht)e=o0,..7, he: Q— R Fi-meas.

@ Impose DCon every E € F;, t=0,..., T

@ Consider MEU conditional prefs. Literature considers other
models: variational, smooth.

@ Recursive Multiple Priors:

Vi(h)(w) = U(hr(W))ﬂLBpeng't? Ep[Vir1(h)]

Vt, Ct ft—meas., VT+1(h) = uo h, p(]:t(OJ)) =1 \V/,D € Ct(LU)

@ Key: characterizing sets C;



Rectangularity: the case T =1

To understand key issues, assume:
o T =1, Fo={Q}, Fi ={E1,...,En}.
@ Consumptionatt =T +1 =2 only
Can identify consumption plans with acts
Write =1, and Gy, for =¢,,, Ci(w) with w € Ej,.

Assume every E, € F1 not =g—null.



Rectangularity: the case T =1

To understand key issues, assume:
o T =1, Fo={Q}, Fi ={E1,...,En}.
@ Consumptionatt =T +1 =2 only
Can identify consumption plans with acts

Write =1, and Gy, for =¢,,, Ci(w) with w € Ej,.

Assume every E, € F1 not =g—null.

F1=NC Null Complement: For all n, Q\ E, is =1 ,—null
F1-DC For all f, g € Lo: if f =1, g for each n (resp and f =1, g for
some m) then f =g g (resp. f >0 g)
F1-STP For all f,g,h,k € Lo, all nand E, € Fi: fE,h =0 gEnh
implies fE k =0 gEnk
F1=SavU For all f,g € Lo, all nand E, € F1: f =1, g iff
fEnh =0 gEnh for some h € L.



Rectangularity: characterization with T =1

Proposition

Let =0, 71,1,... =18 be weak orders. Assume each E € F; is not
>=o—null. The following are equivalent:

(1) =o satisfies F1-STP, and each =1 , is obtained via F1-SavU.
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Rectangularity: characterization with T =1

Proposition
Let =0,%=11,... =1,n be weak orders. Assume each E € Fi is not
>=o—null. The following are equivalent:

(1) =o satisfies F1-STP, and each =1 , is obtained via F1-SavU.
(2) =0, (%17,,),,:17.”7/\/ satisfy F1—NC and F1-DC.

Furthermore, if =q is MEU with priors Cy, then (1)-(2) hold iff
(3) For every n, Prior-by-Prior Updating: =1, is MEU with beliefs

Ci,n={q(-|En) : g€ G}

morevorer, F1—Rectangularity:

N
Co= {Z qo(En)qn:qo € Co,qgn € Cipn=1,..., N} )
n=1



Rectangularity

N
Co= {Z qo(En)qn: qo € Co,qn € Crpn=1,...
n=1

Key idea: can choose
@ go "on" Fi (one-step-ahead measure) and
® g, € G (conditional measures)

independently of one another!



Rectangularity

N
CO = {Z qO(En)qn - qo S C(),qn [ CLnn — ]_7 . ’N} .
n=1

Key idea: can choose
@ go "on" Fi (one-step-ahead measure) and
® g, € G (conditional measures)

independently of one another!

Implies, indeed equivalent to
N

min E,[u o hl = Vo(h) = min E,) min E, |uoh
4eCo q[ ] 0( ) qoec();%( n)qn€C1,n qn[ ]

i.e. recursion.
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Assume F1-STP, F1-SavU.
Then F1;—-NC is obvious from F;-SavU.
If f =1, g forall n, let hg=f, hy =gEshp—1. So hy = g.
Then, for every n=1,..., N, by /1-NC:
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@ Therefore, by F1-SavU,
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Assume F1—-NC, F1-DC

F1-SavU easy from F1—-NC, F;-DC.

Fix f,g,h,k € Lo, n=1,...,N: then
o fE,h =9 gEnh implies fE,h =1, gEnh by F1-SavU
e But fE,k ~1,, fEph =10 8Enh ~1,n gEnk by F1—-NC
e Thus fEqk =9 gEnk by F1—-SavU

Hence F1-STP.



Proof of (2) < (3)
Assume =g is MEU. (3) = (2) not hard; focus on (2) = (3)

To show =1, is MEU with Full Bayesian Updating, fix f € Lg.
o f ~qpx iff fEpx ~¢ x by F1-DC



Proof of (2) < (3)
Assume =g is MEU. (3) = (2) not hard; focus on (2) = (3)

To show =1, is MEU with Full Bayesian Updating, fix f € Lg.
o f ~qpx iff fEpx ~¢ x by F1-DC
@ But this is FP! So C; , obtained from Cp via FBU.



Proof of (2) < (3)
Assume =g is MEU. (3) = (2) not hard; focus on (2) = (3)

To show =1, is MEU with Full Bayesian Updating, fix f € Lg.
o f ~qpx iff fEpx ~¢ x by F1-DC
@ But this is FP! So C; , obtained from Cp via FBU.

Now to show Rectangularity of Cy, fix f € L.
o Let x, € X best. f~y,x,forn=1,...,N.



Proof of (2) < (3)
Assume =g is MEU. (3) = (2) not hard; focus on (2) = (3)

To show =1, is MEU with Full Bayesian Updating, fix f € Lg.
o f ~qpx iff fEpx ~¢ x by F1-DC
@ But this is FP! So C; , obtained from Cp via FBU.

Now to show Rectangularity of Cy, fix f € L.
o Let x, € X best. f~y,x,forn=1,...,N.

o u(xy) = ming,ec , Eg,[uof].



Proof of (2) < (3)
Assume =g is MEU. (3) = (2) not hard; focus on (2) = (3)

To show =1, is MEU with Full Bayesian Updating, fix f € Lg.
o f ~qpx iff fEpx ~o x by F1-DC
@ But this is FP! So C; , obtained from Cp via FBU.

Now to show Rectangularity of Cy, fix f € L.
o Let x, € X best. f~y,x,forn=1,...,N.
o u(xy) = ming,ec , Eg,[uof].

@ Then F1-DC implies f ~ x1E1xoEp ... xy—1En—1xy (obvious
notation).



Proof of (2) < (3)
Assume =g is MEU. (3) = (2) not hard; focus on (2) = (3)

To show =1, is MEU with Full Bayesian Updating, fix f € Lg.
o f ~qpx iff fEpx ~o x by F1-DC
@ But this is FP! So C; , obtained from Cp via FBU.

Now to show Rectangularity of Cy, fix f € L.
o Let x, € X best. f~y,x,forn=1,...,N.
o u(xy) = ming,ec , Eg,[uof].

@ Then F1-DC implies f ~ x1E1xoEp ... xy—1En—1xy (obvious
notation).

@ Hence Vo(f) = minqoeco qu[u o X1E1X2E2 e XN_1EN_1XN]



Proof of (2) < (3)
Assume =g is MEU. (3) = (2) not hard; focus on (2) = (3)

To show =1, is MEU with Full Bayesian Updating, fix f € Lg.
o f ~qpx iff fEpx ~o x by F1-DC
@ But this is FP! So C; , obtained from Cp via FBU.

Now to show Rectangularity of Cy, fix f € L.
o Let x, € X best. f~y,x,forn=1,...,N.
o u(xy) = ming,ec , Eg,[uof].

@ Then F1-DC implies f ~ x1E1xoEp ... xy—1En—1xy (obvious
notation).

@ Hence Vo(f) = minqoeco qu[u o X1E1X2E2 ce XN_1EN_1XN] =
MiNg,c ¢, ZnN:1 qo(En) ming,cc, , Eqg,[u o f]. Recursion!



Proof of (2) < (3)
Assume =g is MEU. (3) = (2) not hard; focus on (2) = (3)

To show =1, is MEU with Full Bayesian Updating, fix f € Lg.
o f ~qpx iff fEpx ~o x by F1-DC
@ But this is FP! So C; , obtained from Cp via FBU.

Now to show Rectangularity of Cy, fix f € L.
o Let x, € X best. f~y,x,forn=1,...,N.
o u(xy) = ming,ec , Eq,[uof].
@ Then F1-DC implies f ~ x1E1xoEp ... xy—1En—1xy (obvious
notation).
e Hence Vo(f) = ming,eq, Eqolt o x1ExxoEn .. . xy—1En—1Xn] =
MiNg,c ¢, ZnN:1 qo(En) ming,cc, , Eqg,[u o f]. Recursion!

e Hence (p = {3°,90(En)qn: qo € Co,qn € Ci,n} represents
>0, by uniqueness of priors, Cy = (. Q.E.D



The general case and extensions

o With arbitrary horizon, add discounting
@ Rectangularity extends naturally: Def. 3.1

@ Recursive approach equivalent to ex-ante MEU:

T4+1
Z Btuo ht] .

t=0

Vo(h)(w) = min Eq

e Extensions/adaptations:
e variational /multiplier: Maccheroni, Marinacci and Rustichini
ECMA 2006, JET 2006
e smooth ambiguity: Klibanoff, Marinacci and Mukerji ECMA
2005, JET 2009
@ vector expected utility: yours truly ECMA 2009, in progress
2010



The price of rectangularity

Back to our example:

o Must take 71 = {{a, 8}, {7v}} ={E.Q\ E}.

o F1-DC implies F1-STP

@ But then cag =¢ cbg iff ca; =¢ cbi: no Ellsberg!

@ Indeed C = {q € A({e, 3,7}) : q(a) = %} is not rectangular:

take qo, g1,1,G12 .t qo({, B}) = 1, q1.1(B) = O;
then ¢ =3, qo(En)qun & C as g(a) = 1.



Sophistication and Consistent Planning

Strotz (1956); for ambiguity yours truly (mimeo, 2009)

MEU prefs, C = {q: q(a) = 1}, Cop = {q: q(a) > 1,q(v) = 0}.

@ In treewith x=1, a > b.

@ Sophistication: DM should anticipate a at t = 0.

@ Hence DM realizes c is same as ca; <g S

@ So, even though cby >¢ s, DM will choose s if x = 1.

o (for completeness, c then a if x =0)
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Consistent Planning and its challenges

Consistent Planning (CP) generalizes/strengthens this idea:
[The DM should choose] the best plan among those that
he will actually follow (Strotz, 1956, p. 173)

e Multi-period algorithm / procedure
o Like backward induction with specific tie-breaking rule

Main challenge: game or decision tree?

The individual over time is an infinity of individuals
(Strotz, 1956, p. 179)

Other challenges:
@ Sophistication quite delicate with ambiguity
o Tie-breaking rule subtle
o CP itself not straightforward (plans, actions)

Essential to adopt preferences over trees as primitive
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Formalizing Sophistication

What does it mean for DM to “anticipate choice of 3" ?

@ If a =g b, then as if b was not there

e Full tree f1 (i.e. x = 1) same as tree with b removed

Axiom (Sophistication in the tree f,)

If a >¢ b then
a, B 2
G
ol X
NO °
oY X
s
a, B %

Note: to state this axiom, ~g must be defined on trees.
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Note use of strict preference in premise: a g b.
What if we allowed for =7 Gives Strong Sophistication

Bad idea! E.g. z = certainty equiv of a given E. Replace b with b’
s.t. b/(a) = b'(8) = z. Strong Sophistication implies

@

a
o, B
B
c
il x
~ X
X<
a8 4

Strong Soph = can replace a with CE

1
0
~0 .

é a,B_ z
c
v X
f\/O Y
v x
s
a B 1
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Sophistication: a caveat

Note use of strict preference in premise: a g b.
What if we allowed for =7 Gives Strong Sophistication

Bad idea! E.g. z = certainty equiv of a given E. Replace b with b’
s.t. b/(a) = b'(8) = z. Strong Sophistication implies

@
@

1
0
B a, B 2 é a,B_ z
z B
c c

vy X 2l x
NO Y NO Y

v X v_x
\s< \<

o, B % a, B %

Strong Soph = can replace a with CE = recursion = F-DC!

This is a general result. See paper.



Tie-breaking in CP

Different MEU prefs:
C={q:&§q(a)§3*87%%§q(ﬁ)éfo},
Cap={q:q(a),q(B) >
@ In tree with x =1, a ~g b.
@ However, ca; =q cbs.
@ Now Sophistication has no bite
@ Should DM be able to “commit” to a7 Strotz says "yes"!
@ Must formalize this tie-breaking assumption in CP.
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Formalizing tie-breaking (Weak Commitment)

What does it mean for DM to be able to “commit to a"?
@ If a ~g b, then no reason at t = 1 to overrule time-0 choice

@ Tree fi (i.e. x =1) same as tree with immediate (t = 0)
commitment to a vs. b

Axiom (Weak Commitment in the tree f,)

If a ~g b then

s vy X

oa,p 1

Note: to formalize, need precise notation for tree surgery.



If you really want to know more

Rest of the paper:

Make CP precise, formal characterization result
e Eliciting conditional preferences

@ Application to value of information

@ Application to Raiffa’s critique
°

Related literature, esp. Kreps, DLR, Gul-Pesendorfer.
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Non-Consequentialist choice

Machina (1989); ambiguity Hanany-Klibanoff (2007/9)

Prior MEU prefs: C = {q: g(a) = %}

@ Want Weak DC: carry out ex-ante optimal plans

@ Turn problem on its head: what conditional preferences
guarantee WeakDC?

@ Here: b =g —1aifx=1, a=g,— bif x=0.

o Conditional preferences may depend on context

@ Machina: “experiencing, not realizing, possibility of x" may
influence conditional preferences.
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Dynamically Consistent MEU rules

Given:
e Conditioning event E € ¥ (non-null)
e Feasible acts B C Ly (restrictions — think plans in tree)
@ Ex-ante optimal act g € B (possibly one of many)
Hanany-Klibanoff propose “two-step procedure”: given C,
O QF8B ={qge C:Eyluog]>E4[ucf]VfeBst flw)=
g(w) Vw ¢ E}
@ Cey5 C{q(-|E): q € C} such that, for some q* € QE&B,
qg*(-|E) € arg MiNgece s Eqluo g].
Our example: C ={q: q(a) = 3}, E = {a, 8}
e B, = {s, cay, cby} (identify plans with acts)
e x=0: g =cag
o QF&F ={q:q(f) < 3 =q(a)}
° CegC{q:9(7)=0,53 <q(e) <1
e x=1g=ch
o QF&F ={q:q(p)
° Cege Cia:q(n)

N= H

1
3

0,

v

g(a
< q(a) <1 <q(B)}

wn—\ ||



Hanany-Klibanoff 2007

What's in the paper:

e Update rule: from =g, B C Lo, g € B (*=0—optimal in B) and
EeX to FEg,B-

@ An update rule is WeakDC iff
grofVfeB = girpgpfVfeB

forall E, g, B.
@ Characterize WeakDC update rules for MEU and UAP
@ Characterize Maximal-Ambiguity update rule for MEU

e Compare with stronger forms of DC (impossibilities)



(Non-)Consequential choice under ambiguity

One reason for concern.

Prior MEU prefs: C = {q: g(a) = %,q(ﬂ) < %} Uniform q,,.
@ x = 0: cag optimal. Max ambiguity rule: update all of C.
@ x = 1. cb; optimal. Must update only q,!
@ Hence after E, EU if x =1 and MEU if x = 0.
e Conditional perception of ambiguity can depend on x!

@ Runs counter to usual interpretation of ambiguity.



