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1 Introduction and Motivation

Epistemic game theory formalizes assumptions about rationality and mutual beliefs in a formal
language, then studies their behavioral implications in games. Specifically, it asks: what do different
notions of rationality and different assumptions about what players believe about ... what others
believe about the rationality of players imply regarding play in a game? A well-known example is
the equivalence between common belief in rationality and iterated deletion of dominated strategies.

The reason why it is important to be formal and explicit is the standard one in economics.
Solution concepts are often motivated intuitively in terms of players’ beliefs and their rationality.
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However, the epistemic analysis may show limitations in these intuitions, reveal what additional
assumptions are hidden in the informal arguments, clarify the concepts or show how the intuitions
can be generalized. We now consider a number of examples.

Backwards induction was long thought to be obviously implied by “common knowledge of
rationality.” The epistemic analysis showed flaws in this intuition and it is now understood that
the characterization is much more subtle (Sections 7.4.3 and 7.5).

Next, consider the solution concept that deletes one round of weakly dominated strategies and
then iteratively deletes strictly dominated strategies. This concept was first proposed because it
is robust to payoff perturbations, which were interpreted as a way to perturb players’ rationality.
Subsequent epistemic analysis showed this concept is exactly equivalent to “almost common belief”
of rationality and of full-support conjectures – an explicit robustness check of common belief in
rationality (see Section 5). Thus the epistemic analysis generalizes and formalizes the connection
of this concept to robustness.

The common-prior assumption (Section 4.3) is used to characterize Nash equilibrium with n > 2
players, but not needed for two-player games (compare Theorems 5 and 7). This result highlights
the difference between the concept in these environments. Furthermore, the common-prior is known
to be equivalent to no betting when uncertainty is exogenous. We argue that the interpretation
of the common-prior assumption and its connection to no-betting results must be modified when
uncertainty is endogenous, e.g, about players’ strategies (see Example 4).

Finally, recent work has shown how forward induction and iterated deletion of weakly domi-
nated strategies can be characterized. These results turn out to identify important, non-obvious,
assumptions and require new notions of “beliefs.” Moreover, they clarify the connection between
these concepts. (See Section 7.4.4.)

Epistemic game theory may also help provide a rationale, or ‘justification,’ for or against specific
solution concepts. For instance, in Section 6 we identify those cases where interim independent
rationalizability is and is not a “suitable” solution concept for games of incomplete information.

We view non-epistemic justifications for solution concepts as complementary to the epistemic
approach. For some solution concepts, such as forward induction, we think the epistemic analysis
is more insightful. For others, such as Nash equilibrium, learning theory may provide the more
compelling justification. Indeed, we do not find the epistemic analysis of objective equilibrium
notions (Section 4) entirely satisfactory. This is because the epistemic assumptions needed are
often very strong and hard to view as a justification of a solution concept. Moreover, except for
special cases (e.g. pure-strategy Nash equilibrium), it is not really possible to provide necessary
and sufficient epistemic conditions for equilibrium behavior (unless we take the view that mixed
strategies are actually available to the players). Rather, the analysis constitutes a fleshing-out of
the textbook interpretation of equilibrium as ‘rationality plus correct beliefs.’ To us this suggests
that equilibrium behavior cannot arise out of strategic reasoning alone. Thus, as discussed above,
this epistemic analysis serves the role of identifying where alternative approaches are required to
justify standard concepts.

While most of the results we present are known from the literature, we sometimes present them
differently, to emphasize how they fit within our particular view. We have tried to present a wide
swath of the epistemic literature, analyzing simultaneous-move games as well as dynamic games,
considering complete and incomplete information games, and exploring both equilibrium and non-
equilibrium approaches. That said, our choice of specific topics and results is still quite selective
and we admit that our selection is driven by the desire to demonstrate our approach (discussed
next), as well as our interests and tastes. Several insightful and important papers could not be
included because they did not fit within our narrative. More generally, we have ignored several
literatures. The connection with the robustness literature mentioned above (see Kajii and Morris
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(1997b) for a survey) is not developed. Nor do we study self-confirming based solution concepts
(Fudenberg and Levine, 1993; Battigalli, 1987; Rubinstein and Wolinsky, 1994).1 Moreover, we
do not discuss epistemics and k-level thinking (Crawford, Costa-Gomes, and Iriberri, 2012; Kets,
2012) or unawareness (see Schipper, 2013, for a comprehensive bibliography). We find all this work
interesting, but needed to narrow the scope of this paper.

1.1 Philosophy/Methodology

The basic premise of this chapter is that the primitives of the model should be observable, at least
in principle. The primitives of epistemic game theory are players’ beliefs about the play of the
game, their beliefs about players’ beliefs about play, etc.; these are called hierarchies of beliefs.
Obviously these cannot be observed directly, but we can ask that they be elicitable from observable
choices, e.g., their betting behavior, as is standard in decision theory (De Finetti, 1992; Savage,
1972).

However, there are obvious difficulties with eliciting a players’ beliefs about his own behavior
and beliefs. Our basic premise then requires that we consider hierarchies of beliefs over other
players’ beliefs and rationality, thereby ruling out “introspective” beliefs (see also Section 2.6.3).
With this stipulation it is possible to elicit such hierarchies of belief; see Section 2.6.2.

By contrast much of the literature, following Aumann’s seminal developments, allows for intro-
spective beliefs (Aumann, 1987). This modeling difference does have implications, in particular in
characterization results that involve the common prior assumption (Theorems 4 and 8).

Rather than working with belief hierarchies directly, we use a convenient modeling device due to
Harsanyi (1967), namely type structures. In the simple case of strategic-form games, these specify
a set of “types” for each player, and for each type a belief over the opponents’ strategies and types.
Every type generates a hierarchy of beliefs over strategies, and conversely every hierarchy can be
generated in some type structure; details are provided in Sections 2.3 and 2.4.

We emphasize that we use type structures solely as a modeling device. Types are not real-
world objects; they simply represent hierarchies, which are. Therefore, although we will formally
state epistemic assumptions on types, we will consider only those assumptions that can also be
stated as restrictions on belief hierarchies, and we will interpret them as such. In particular,
our assumptions cannot differentiate between two types that generate the same belief hierarchy.
One concrete implication of this can be seen in the analysis of solution concepts for incomplete-
information games (Section 6.1).

To clarify this point further, note that type structures can be used in a different way. In
particular, they can be used to represent an information structure: in this case, a type represents
the hard information a player can receive—for example, a possible outcome of some study indicting
the value of an object being auctioned. Here, it makes perfect sense to distinguish between two
types with different hard information, even if the two pieces of information lead to the same value
for the object, and indeed the same belief hierarchy over the value of the object. However, in this
chapter, types will only be used to represent hierarchies of belief, without any hard information.2

Finally, it is important to understand how to interpret epistemic results. One interpretation
would go as follows. Assume we have elicited a player’s hierarchy of beliefs. The theorems identify
testable assumptions that determine whether that player’s behavior is consistent with a particular
solution concept. We do not find this interpretation very interesting: once we have elicited a player’s

1The concept of RPCE (Fudenberg and Kamada, 2011) is a recent example where epistemics seem to us useful.
Its definition is quite involved and, while examples illustrate the role of various assumptions, the epistemic analysis
confirms the equivalence of the solution concept to the assumptions used in its intuitive description.

2We can add hard information to our framework, at the cost of notational complexity: see footnote 47.
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hierarchy we know her best replies, so it is pointless to invest effort to identify what assumptions
are satisfied. Instead our preferred interpretation of the results are as statements about play that
follow without knowing the exact hierarchy. That is, the theorems we present answer the following
question: if all we knew about the hierarchies of beliefs was that they satisfied certain assumptions,
what would we be able to say about play? Naturally we cannot identify necessary conditions: a
player might play a Nash equilibrium strategy “just because” he wanted to. (There is, however,
a sense in which the results we present provide necessary conditions as well: see the discussion in
Section 3.2.)

2 Main ingredients

In this section we introduce the basic elements of our analysis. We begin with notation and a
formal definition of strategic-form games, continue with hierarchies of beliefs and type structures,
and conclude with rationality and beliefs.

2.1 Notation

For any finite set Y , let ∆ (Y ) denote the set of probability distributions over Y and any subset E
of Y is an event. For Y ′ ⊂ Y , ∆(Y ′) denotes the set of probabilities on Y that assign probability
1 to Y ′. The support of a probability distribution p ∈ ∆(Y ) is denoted by supp p. Finally, we
adopt the usual conventions for product sets: given sets Xi, with i ∈ I, we let X−i =

∏
j 6=iXj and

X =
∏
i∈I Xi.

All our characterization theorems include results for which infinite sets are not required. How-
ever, infinite sets are needed to formally present hierarchies of beliefs, their relationship to type
structures and for part of the characterization results. To minimize technical complications infi-
nite sets are assumed to be compact metric spaces endowed with the Borel sigma algebra. We
denote by ∆(Y ) the set of Borel probability measures on Y and endow ∆(Y ) with the weak conver-
gence topology.3 Cartesian product sets are endowed with the product topology and the product
sigma-algebra. Events are a measurable subsets of Y .

2.2 Strategic-form games

We define finite strategic-form games and best replies.

Definition 1 A (finite) strategic-form game is a tuple G = (I, (Si, ui)i∈I), where I is finite
and, for every i ∈ I, Si is finite and ui : Si × S−i → R.

As is customary, we denote expected utility from a mixed strategy of i, σi ∈ ∆(Si), and a
belief over strategies of opponents, σ−i ∈ ∆(S−i), by ui(σi, σ−i). We take the view that players
always choose pure strategies. On the other hand, certain standard solution concepts are defined in
terms of mixed strategies. In the epistemic analysis, mixed strategies of i are replaced by strategic
uncertainty of i’s opponents, that is, their beliefs about i’s choice of a pure strategy. We allow for
mixed strategies as actual choices only when there is an explicit mixing device appended to the
game.

Definition 2 Fix a game (I, (Si, ui)i∈I). A strategy si ∈ Si is a best reply to a belief σ−i ∈ ∆(S−i)
if, for all s′i ∈ Si, ui(si, σ−i) ≥ ui(s′i, σ−i); the belief σ−i is said to rationalize strategy si.

3For detailed definitions see, e.g., Billingsley (2008).
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2.3 Belief hierarchies

The essential element of epistemic analysis is the notion of hierarchies of belief. These are used to
define rationality and common belief in rationality, which are then used to characterize solution
concepts. A belief hierarchy specifies a player’s belief over the basic space of uncertainty (e.g.,
opponents’ strategies), her beliefs over opponents’ beliefs, etc..

To formally describe belief hierarchies, we first specify the basic space of uncertainty X−i for
each player i. In the epistemic analysis of a strategic-form game, the basic uncertainty is over the
opponents’ strategies, so X−i = S−i. More generally, we will allow for exogenous uncertainty as
well, which is familiar from the textbook analysis of incomplete-information games. For instance,
in a common-value auction, each player i is uncertain about the value of the object, so X−i includes
the set of possible values.

Once the sets X−i have been fixed, each player i’s hierarchy of beliefs is a sequence of probability
measures (p1

i , p
2
i , . . .). It is simpler to discuss these beliefs in the case of two players. Player i’s

first-order belief p1
i is a measure over the basic domain X−i: p

1
i ∈ ∆(X−i). Player i’s second-order

belief p2
i is a measure over the Cartesian product of X−i and the set of all possible first-order beliefs

for player −i: that is, p2
i ∈ ∆(X−i×∆(Xi)), where Xi is the domain of −i’s first-order beliefs. The

general form of this construction is as follows. First, let X0
−i = X−i for each player i = 1, 2; then,

inductively, for each k = 1, 2, . . ., let

Xk
−i = Xk−1

−i ×∆(Xk−1
i ). (1)

Then, for each k = 1, 2, . . ., the domain of player i’s k-th order beliefs is Xk−1
−i . Consequently, the

set of all belief hierarchies for player i is H0
i =

∏
k≥0 ∆(Xk

−i); the reason for the superscript “0”
will be clear momentarily.

Note that, for k ≥ 2, the domain of i’s k-th order beliefs includes the domain of her (k − 1)-th
order beliefs. For instance, p2

i ∈ ∆(X−i ×∆(Xi)), so the marginal of p2
i also specifies a belief for i

over X−i, just like p1
i . For an arbitrary hierarchy (p1

i , p
2
i , . . .), these beliefs may differ. The reader

may then wonder why we did not define i’s second-order beliefs just over her opponent’s first-order
beliefs, i.e., as measures over ∆(Xi) rather than X−i ×∆(Xi).

Intuitively, the reason is that we need to allow for correlation in i’s beliefs over X−i and −i’s
beliefs over Xi. Specifically, consider a simple 2 × 2 coordination game, with strategy sets Si =
{H,T} for i = 1, 2. Suppose that the analyst is told that player 1 (i) assigns equal probability to
player 2 choosing H or T , and (ii) also assigns equal probability to the events “player 2 believes that
1 chooses H” and “player 2 believes that 1 chooses T” (where by “believes that” we mean “assigns
probability one to the event that”). Can the analyst decide whether or not player 1 believes that
player 2 is rational? The answer is negative. Given the information provided, it may be the case
that player 1 assigns equal probability to the events “player 2 plays H and believes that 1 plays
T” and “player 2 plays T and believes that 1 plays H.”

To sum up, i’s second-order belief p2
i must be an element of ∆(X−i ×∆(Xi)). Hence, we need

to make sure that its marginal on X−i coincides with i’s first-order belief p1
i . More generally, we

restrict attention to coherent belief hierarchies, i.e. sequences (p1
i , p

2
i , . . .) ∈ H0

i such that, for all
k ≥ 2,

margXk−2
−i

pki = pk−1
i . (2)

Let H1
i denote the subset of H0

i consisting of coherent belief hierarchies.
Brandenburger and Dekel (1993) use Kolmogorov’s theorem (see Dellacherie and Meyer (1978),

p. 68, or Aliprantis and Border (2007) Section 15.6) to show that there exists a homeomorphism

fi : H1
i → ∆

(
X−i ×H0

−i
)

(3)
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that “preserves beliefs” in the sense that for hi =
(
pki
)∞
k=1

, margXk
−i
fi (hi) = pk+1

i . To understand

this, first note that fi maps a coherent hierarchy hi into a belief over i’s basic space of uncertainty,
X−i, and −i’s hierarchies, H0

−i. Therefore, we want this mapping to preserve i’s first-order beliefs.
In particular, hi’s first-order beliefs should equal the marginal of fi(hi) on X−i. Now consider
second-order beliefs. Recall that H0

−i =
∏
`≥0 ∆(X`

i ) = ∆(X0
i ) ×

∏
`≥1 ∆(X`

i ). Therefore, X−i ×
H0
−i = X−i ×∆(Xi)×

∏
`≥1 ∆(X`

i ) = X1
−i ×

∏
`≥1 ∆(X`

i ). Hence we can view fi(hi) as a measure

on X1
−i ×

∏
`≥1 ∆(X`

i ), so we can consider its marginal on X1
−i. Preserving beliefs means that

this marginal is the same as i’s second-order belief p2
i in the hierarchy hi. Higher-order beliefs are

similarly preserved.
The function fi in Equation 3 maps coherent hierarchies of player i to beliefs about the basic

uncertainty X−i and the hierarchies of the other player, H0
−i. Thus, in a sense, fi determines a

“first-order belief” over the expanded space of uncertainty X−i ×H0
−i. However, since fi is onto,

some coherent hierarchies of i assign positive probability to incoherent hierarchies of −i. These
hierarchies of −i do not correspond to beliefs over Xi×H0

i . Therefore, there are coherent hierarchies
of i for which “second-order beliefs” over the expanded space X−i×H0

−i are not defined. To address
this, we impose the restriction that coherency is “common belief”; that is, we restrict attention to

Hi = ∩∞k=0H
k
i , (4)

where for k > 0 Hk
i =

{
hi ∈ Hk−1

i : fi (hi)
(
X−i ×Hk−1

−i

)
= 1
}

. It can then be shown that the

function fi in Eq. (3) restricted to Hi is one-to-one and onto ∆(X−i×H−i).4 In the next subsection
we will interpret the elements of Hi as “types.” With this interpretation, that fi is one-to-one means
that distinct types have distinct beliefs over X−i and the opponent’s types. That fi is onto means
that any belief about X−i and the opponent’s types is held by some type of i.

It is important to note that belief hierarchies are elicitable via bets. We elaborate on this point
in Section 2.6.

2.4 Type structures

As Harsanyi noted, type structures provide an alternative way to generate hierarchies of beliefs. A
type structure specifies for each player i the space X−i over which i has uncertainty, the set Ti of
types of i, and each type ti’s hierarchy of beliefs, βi (ti).

5

Definition 3 For every player i ∈ I, fix a compact metric space X−i. An (X−i)i∈I-based type
structure is a tuple T = (I, (X−i, Ti, βi)i∈I) such that each Ti is a compact metric space and each
βi : Ti → ∆(X−i × T−i) is continuous.6 A type structure is complete if the maps βi are onto.

We discuss the notion of completeness immediately before Definition 7.
An epistemic type structure for a strategic-form game of complete information models players’

strategic uncertainty: hierarchies are defined over opponents’ strategies. This is just a special case

4 For further details on the construction of belief hierarchies, see Armbruster and Böge (1979), Böge and Eisele
(1979) Mertens and Zamir (1985), Brandenburger and Dekel (1993), Heifetz (1993) and Heifetz and Samet (1998),
among others.

5As we discussed in the Introduction, in this definition players do not have introspective beliefs—that is, beliefs
about their own strategies and beliefs: see Sec. 2.6 for a discussion of this modeling choice.

6 The topological assumptions we adopt are for convenience; we do not seek generality. For instance, compactness
of the type spaces and continuity of the belief maps βi provides an easy way to show that sets corresponding to
assumptions such as, “Player i is rational,” or “Player i believes that Player j is rational,” are closed, and hence
measurable.
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of Def. 3. However, since epistemic type structures play a central role in this chapter, we provide
an explicit definition for future reference. Also, when it is clear from the context, we will omit the
qualifier ‘epistemic.’

Definition 4 An epistemic type structure for the complete-information game G = (I, (Si, ui)i∈I)
is a type structure T = (I, (X−i, Ti, βi)i∈I) such that X−i = S−i for all i ∈ I.

Given an (epistemic) type structure T we can assess the belief hierarchy of each type ti. As
discussed earlier, type ti’s first-order belief is what she believes about S−i; her second-order belief
is what she believes about S−i and about other player j’s beliefs about S−j , and so on. Also recall
(Eq. 4) that the set of all hierarchies of beliefs over strategies for a player i is denoted by Hi.

Definition 5 Given a type structure T , the function mapping types into hierarchies is denoted by
ϕi (T ) : Ti → H. The type structure T is redundant if there are two types ti, t

′
i ∈ Ti with the same

hierarchy, i.e., such that ϕi(T )(ti) = ϕi(T )(t′i); such types are also called redundant.

When the type structure T is clear from the context, we will write ϕi(·) instead of ϕi(T )(·).
Because a type’s first-order beliefs – those over S−i – play a particularly important role, it is

convenient to introduce specific notation for them:

Definition 6 The first-order beliefs map fi : Ti → ∆(S−i) is defined by fi(ti) = margS−iβi(ti)
for all ti ∈ Ti.

Example 1 We illustrate these notions using a finite type structure.

L C R

T 2,1 3,1 0,0
M 4,3 0,2 4,0
B 3,0 1,2 2,5

(L, t12) (L, t22) (C, t12) (C, t22) (R, t12) (R, t22)
β1(t11) 1

2 0 1
2 0 0 0

β1(t21) 1 0 0 0 0 0

(T, t11) (T, t21) (M, t11) (M, t21) (B, t11) (B, t21)
β2(t12) 1 0 0 0 0 0
β2(t22) 0 0 1

2 0 0 1
2

Figure 1: A strategic-form game and an epistemic type structure

In the type structure on the right-hand side of Fig. 1, type t11 of player 1 (the row player) assigns
equal probability to player 2 choosing L and C: these are type t11’s first-order beliefs. Similarly, the
first-order beliefs of type t21 of player 1 assign probability one to player 2 choosing L. The second-
order beliefs of player 1’s types are straightforward, because both t11 and t21 assign probability one
to t12, and hence to the event that player 2 is certain that (i.e., assigns probability one to the event
that) 1 chooses T . Thus, for example, the second-order beliefs of type t11 are that, with probability
1
2 , player 2 chooses L and believes that 1 chooses T , and with probability 1

2 , player 2 chooses C
and believes that 1 chooses T .

Now consider type t22 of player 2, who assigns equal probability to the pairs (M, t11) and (B, t21).
This type’s first-order beliefs are thus that player 1 is equally likely to play M or B; his second-order
beliefs are that, with equal probability, either (i) player 1 plays M and expects player 2 to choose L
and C with equal probability, or (ii) player 1 plays B and is certain that 2 plays L. We can easily
describe type t22’s third-order beliefs as well: this type believes that, with equal probability, either
(i) player 1 plays M , expects 2 to choose L and C with equal probability, and is certain that 2 is
certain that 1 plays T ; or (ii) player 1 plays B, is certain that 2 chooses L, and is certain that 2 is
certain that 1 plays T .
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A number of questions arise in connection with type structures. Is there a type structure that
generates all hierarchies of beliefs? Is there a type structure into which any other type structure
can be embedded?7 Is a given type structure complete, as in Definition 3, i.e., such that every
belief over Player i’s opponents’ strategies and types is generated by some type of Player i? These
are all versions of the same basic question: is there a rich enough type structure that allows for
“all possible beliefs?” We ask this question because we take beliefs as primitive objects; hence, we
want to make sure that using type structures as a modeling device does not rule out any beliefs.

Under our assumptions on the sets X−i, the answer to these questions is affirmative. Indeed,
we can consider Hi (defined in Eq. 4) as a set of type profiles and define T = (I, (X−i, Ti, βi)i∈I)
where Ti = Hi and βi = fi (where fi was defined in Eq. 3). This is the “largest” non-redundant
type structure, that generates all hierarchies, embeds all other type structures, and is complete.8

Once again, type structures are devices and belief hierarchies are the primitive objects of in-
terest. Therefore, asking whether a player’s hierarchy of beliefs “resides” in one type structure or
another is meaningless. In particular, we cannot ask whether it “resides” in a rich type structure.
We state results regarding the implications of epistemic assumptions in both rich and arbitrary type
structures. The interest in rich type structures is twofold. First, one of convenience: while rich
type structures are uncountable and complex mathematical objects, the fact that they are complete
simplifies the statements of our characterization results. The second appeal of rich type structure
is methodological: because they generate all hierarchies, they impose no implicit assumption on
beliefs. Any smaller type structure does implicitly restrict beliefs; we explain this point in Section
7.4.4, because it is particularly relevant there. On the other hand, small (in particular, finite) type
structures are convenient to discuss examples of epistemic conditions and characterization results.

2.5 Rationality and belief

We can now define rationality (expected payoff maximization) and belief, by which we mean “belief
with probability one.”

Definition 7 Fix a type structure (I, (S−i, Ti, βi)i∈I) for a strategic game (I, (Si, ui)i∈I). For every
player i ∈ I:

1. strategy si ∈ Si is rational for type ti ∈ Ti if it is a best reply to fi(ti); let

Ri = {(si, ti) ∈ Si × Ti : si is rational for ti}.

2. type ti ∈ Ti believes event E−i ⊂ S−i × T−i if βi(ti)(E−i) = 1; let

Bi(E−i) = {(si, ti) ∈ Si × Ti : ti believes E−i}.

Note that Ri, the set of strategy-type pairs of i that are rational for i, is defined as a subset of
Si × Ti, rather than a subset of S × T . This is notationally convenient, and also emphasizes that
Ri is an assumption about Player i alone.

For any event E−i ⊂ S−i×T−i, Bi(E−i) represents the types of i that believe E−i obtains. It is
convenient to define it as an event in Si × Ti, but it is clear from the definition that no restriction

7We are not going to formally define the relevant notion of embedding. Roughly speaking, it is that each type in
one type space can be mapped to a type in the other in such a way as to preserve hierarchies of beliefs.

8Because we restrict attention to compact type spaces and continuous belief maps, these notions of “richness” are
all equivalent. See the references in Footnote 4 for details, as well as Friedenberg (2010). In particular, it is sufficient
that X−i and Ti are compact metrizable, and that the sets Ti are non-redundant.
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is imposed on i’s strategies.9 We abuse terminology and for sets Ei ⊂ Si × Ti write “ti in Ei” if
there exists si such that (si, ti) ∈ Ei.

The map associating with each event E−i ⊂ S−i × T−i the subset Bi(E−i) is sometimes called
Player i’s belief operator. While we do not develop a formal syntactic analysis, we do emphasize two
important related properties satisfied by probability-one belief, Monotonicity and Conjunction:10

for all events E−i, F−i ⊂ S−i × T−i,

E−i ⊂ F−i ⇒ Bi(E−i) ⊂ Bi(F−i) and Bi(E−i ∩ F−i) = Bi(E−i) ∩Bi(F−i). (5)

Finally, we define mutual and common belief. Consider events Ei ⊂ Si × Ti (with E =
∏
iEi

and E−i =
∏
j 6=iEi as usual). Then the events “E is mutually believed,” “k-th order believed,” and

“commonly believed” are

B1(E) = B(E) =
∏
i∈I

Bi(E−i), Bk(E) = B
(
Bk−1(E)

)
for k > 1, CB(E) =

⋂
k≥1

Bk(E). (6)

Note that each of these events is a Cartesian product of subsets of Si×Ti for i ∈ I, so we can write
Bk
i (E) and CB i(E) for the i-th projection of these events.11

2.6 Discussion

The above definitions of a game, type structure, rationality, and belief all incorporate the assump-
tion that players have state-independent expected-utility preferences. This modeling assumption
raises three issues, discussed next: relaxing state independence, relaxing expected utility, and elic-
iting beliefs. Another modeling assumption discussed subsequently is that the type structure in
principle allows any strategy to be played by any type. We conclude this discussion section by
commenting on our use of semantic models rather than the alternative syntactic approach.

2.6.1 State dependence and non-expected utility

A more general definition of a game would specify a consequence for each strategy profile, and
a preference relation over acts that map opponents’ strategies into consequences.12 Maintaining
the expected-utility assumption one could allow for state dependence: the ranking of consequences
may depend on the opponents’ strategies (as in Morris and Takahashi, 2011). One could also allow
for a richer model where preferences may be defined over opponents’ beliefs (as in Geanakoplos,
Pearce, and Stacchetti, 1989) or preferences (as in Gul and Pesendorfer, 2010), as well as material
consequences. All these interesting directions lie beyond the scope of this chapter.

Moreover, type structures can also be defined without making the expected-utility assumption.
Some generalizations of expected utility are motivated by refinements: in particular, lexicographic
beliefs (Blume, Brandenburger, and Dekel, 1991) and conditional probability systems (Myerson,

9That is, if (si, ti) ∈ Bi(E−i) for some si ∈ Si, then (s′i, ti) ∈ Bi(E−i) for all s′i ∈ Si.
10 We can split the “=” in the Conjunction property into two parts, “⊂” and “⊃.” It is easy to see that the “⊂”

part is equivalent to Monotonicity for any operator, no matter how it is defined.
The “p-belief,” “strong belief” and “assumption”operators we consider in Sections 5, 7 and 8 respectively do not

satisfy Monotonicity and hence the “⊂” part of Conjunction—a fact that has consequences for the epistemic analysis
conducted therein.

11Thus CB(E) =
⋂
k≥1 B

k(E) =
∏
iBi(E−i) ∩

⋂
k≥2

∏
iBi(B

k−1
−i (E)) =

∏
i

(
Bi(E−i) ∩

⋂
k≥2 Bi(B

k−1
−i (E))

)
≡∏

i CB i(E). Hence, CB i(E) = B1
i (E) ∩

⋂
k≥2 Bi(B

k−1
−i (E)) =

⋂
k≥1 B

k
i (E), and also CB i(E) = Bi(E−i ∩⋂

k≥1 B
k
−i(E)) = Bi(E−i ∩ CB−i(E)).

12As in Anscombe and Aumann (1963), consequences could be lotteries over prizes.
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1997; Siniscalchi, 2011).13 We discuss these, and the type structures they induce, in Sections 7 and
8. Other generalizations of expected utility are motivated by the Allais and Ellsberg paradoxes;
Epstein and Wang (1996) show how type spaces can be constructed for a wide class of non-expected
utility preferences.14

2.6.2 Elicitation

Our analysis puts great emphasis on players’ beliefs; thus, as discussed in the Introduction, it is
crucial that such beliefs can in fact be elicited from preferences. Indeed one would expect that
Player 1’s beliefs about 2’s strategies can be elicited by asking 1 to bet on which strategy 2 will
in fact play, as in Savage (1972) and Anscombe and Aumann (1963). Given this, one can then
elicit 2’s beliefs about 1’s strategies and beliefs by having 2 bet on 1’s strategies and bets, etc.15

(Similarly, we could elicit utilities over consequences.) However, adding these bets changes the
game, because the strategy space and payoffs now must include these bets. Potentially, this may
change the players’ beliefs about the opponents’ behavior in the original game. Hence, some delicacy
is required in adding such bets to elicit beliefs.16

2.6.3 Introspective beliefs

Our definition of a type structure assumes that each type ti has beliefs over S−i × T−i. This has
two implications. First, players do not hold introspective beliefs, as we noted in the Introduction.
Second, by specifying a type space, the analyst restricts the hierarchies the player may hold, but
does not restrict play. An alternative popular model (Aumann, 1999a,b) associates with each type
ti a belief on opponents’ types and a strategy, σi(ti). Such a model restricts the strategies that a
player with a given hierarchy may choose; moreover, such restrictions are common belief among
the players. We can incorporate such assumptions as well, but, in keeping with our view of the
goals of the epistemic literature, we make them explicit: see for example Sec. 4.5.

2.6.4 Semantic/syntactic models

Finally we note that our modeling approach is what is called semantic: it starts from a type
structure, and defines the belief operator, Bi, using the elements of the type structure; its properties,
such as conjunction and monotonicity, follow from the way it is defined. An alternative approach,
called syntactic, is to start with a formal language in which a belief operator is taken as a primitive;
properties such as the analogs of conjunction and monotonicity are then explicitly imposed as
axioms. There is a rich literature on the relation between the semantic and syntactic approaches;
see for example Fagin, Halpern, Moses, and Vardi (1995), Aumann (1999a,b) and Heifetz and
Mongin (2001). Due to its familiarity to economists we adopt the semantic approach here.

13See also Asheim and Perea (2005). Morris (1997) considers alternative, preference-based definitions of belief.
14See also Ahn (2007), Di Tillio (2008) and Chen (2010).
15See Morris (2002) and Dekel, Fudenberg, and Morris (2006). More generally, one can in principle elicit Player

1’s preferences over acts mapping 2’s strategies to consequences, then elicit 2’s preferences over acts mapping 1’s
(strategies and) preferences to consequences, etc.; this underlies the aforementioned construction of Epstein and
Wang (1996).

16 Aumann and Dreze (2009) raise this concern, and propose a partial resolution, though they do not elicit unique
beliefs, and only study first-order beliefs. (A related concern was raised by Mariotti (1995) and addressed by Battigalli
(1996b).) Aumann and Dreze (2009) also note that, by assuming common belief in rationality—as we will through
most of this paper—beliefs can also be elicited by adding to the game bets with payoffs that are suitably small.
Aumann and Dreze (2004) Sec. 6.5 also note that elicitation of preferences may suffer from an additional problem:
to elicit the ranking of two acts by direct comparison requires restricting the choice set, and hence, again, changing
the game. Siniscalchi (2011) adds bets differently, avoiding all these concerns.
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3 Strategic games of complete information

In this section we study common belief in rationality, as this is a natural starting point. Like
the assumptions of perfect competition or rational expectations, common belief in rationality is
not meant to be descriptively accurate. However, like those notions, it is a useful benchmark. We
present the equivalence of the joint assumptions of rationality and common belief in rationality with
iterated deletion of dominated strategies, i.e. (correlated) rationalizability, and best-reply sets. We
also discuss a refinement of rationalizability that allows for additional restrictions on beliefs.

3.1 Rationality and Common Belief in Rationality

As noted, we focus on the joint assumptions of rationality and common belief in rationality. There
is more than one way of stating this assumption. The immediate definition is

RCBR = R ∩B(R) ∩B2(R) ∩ . . . ∩Bm(R) ∩ . . . = R ∩ CB(R).17 (7)

In words, RCBR is the event that everybody is rational, everybody believes that everone else is
rational, everybody believes that everyone else believes that others are rational, etc.. However there
is an alternative definition. For all i ∈ I let:

R1
i = Ri; (8)

and for any m ≥ 1,
Rm+1
i = Rmi ∩Bi(Rm−i). (9)

Finally, we let

RCBRi =
⋂
m≥1

Rmi and RCBR =
∏
i∈I

RCBRi. (10)

To see how 7 and 10 relate consider the case m = 3. We have

R3
1 = R1 ∩B1(R2) ∩B1(R2 ∩B2(R1))

whereas
R1 ∩B1(R2) ∩B2

1(R1) = R1 ∩B1(R2) ∩B1(B2(R1)).

Inspecting the last term, the definition of R3
1 is seemingly more demanding. However, thanks to

monotonicity and conjunction (see Eq. 5), the two are equivalent. Inductively, it is easy to see that
the two definitions of RCBRi in Eqs. (7) and (10) are also equivalent. However, when we consider
non-monotonic belief operators—as we will have to for studying refinements—this equivalence will
fail.

Having defined the epistemic assumptions of interest in this section, we now turn to the relevant
solution concepts. In general different (but obviously related) solution concepts characterize the
behavioral implications of epistemic assumptions such as RCBR in complete type structures, where
nothing is assumed beyond RCBR, and smaller type structures, in which players’ beliefs satisfy
additional (commonly believed) assumptions. Here, the relevant concepts are rationalizability and
best-reply sets.

17A typographical note: we write “RCBR” in the text as the acronym for “rationality and common belief in
rationality,” and “RCBR” in equations to denote the event that corresponds to it.

12



Definition 8 (Rationalizability) Fix a game (I, (Si, ui)i∈I). Let S0
i = Si for all i ∈ I. Induc-

tively, for m ≥ 0, let Sm+1
i be the set of strategies that are best replies to conjectures σ−i ∈ ∆(Sm−i).

The set S∞i =
⋂
m≥0 S

m
i is the set of (correlated) rationalizable strategies of Player i.

Bernheim (1984) and Pearce (1984) propose the solution concept of rationalizability, which
selects strategies that are best replies to beliefs over strategies that are themselves best replies,
and so on. Intuitively, one expects this to coincide with the iterative deletion procedure in Def. 8.
Indeed these authors prove this, except that they focus on beliefs that are product measures, i.e.
stochastically independent across different opponents’ strategies.

A strategy si ∈ Si is (strictly) dominated if there exists a distribution σi ∈ ∆(Si) such that,
for all s−i ∈ S−i, ui(σi, s−i) > ui(si, s−i). It is well-known (Pearce, 1984; Gale and Sherman, 1950;
Van Damme, 1983) that a strategy is strictly dominated if and only if it is not a best reply to any
belief about the opponents’ play.18 Therefore, S∞i is also the set of strategies of i that survives
iterated strict dominance, i.e., the solution concept that selects the iteratively undominated
strategies for each player. In the game of Fig. 1, it is easy to verify that S1 = {T,M} × {L,C,R}
and S2 = S∞ = {T,M} × {L,C}.

A best-reply set is a collection of strategy profiles with the property that every strategy of every
player is rationalized by (i.e., is a best response to) a belief restricted to opponents’ strategy profiles
in the set. A best-reply set is full if, in addition, all best replies to each such rationalizing belief
also belong to the set.19

Definition 9 Fix a game (I, (Si, ui)i∈I). A set B =
∏
i∈I Bi ⊂ S is a best-reply set (or BRS) if,

for every player i ∈ I, every si ∈ Bi is a best reply to a belief σ−i ∈ ∆(B−i).
B is a full BRS if, for every si ∈ Bi, there is a belief σ−i ∈ ∆(B−i) that rationalizes si and

such that all best replies to σ−i are also in Bi.

Notice that the player-by-player union of (full) BRSs is again a (full) BRS.20 Thus, there exists a
unique, maximal BRS, which is itself a full BRS, and is equal to S∞.

To clarify the notion of full BRS, refer to the game in Fig. 1. The profile (T,C) is a BRS, but
not a full BRS, because, if player 1 plays T , then L yields the same payoff to player 2 as C. On
the other hand, {T} × {L,C} is a full BRS, because T is the unique best reply for player 1 to a
belief that assigns equal probability to L and C, and L and C are the only best replies to a belief
concentrated on T .

We can now state the epistemic characterization result.

Theorem 1 (Brandenburger and Dekel (1987b), Tan and da Costa Werlang (1988)) 21

Fix a game G = (I, (Si, ui)i∈I).

1. In any type structure (I, (S−i, Ti, βi)i∈I) for G, projSRCBR is a full BRS.

2. In any complete type structure (I, (S−i, Ti, βi)i∈I) for G, projSRCBR = S∞.

3. For every full BRS B, there exists a finite type structure (I, (S−i, Ti, βi)i∈I) for G such that
projSRCBR = B.

18This equivalence holds for games with compact strategy sets and continuous payoff functions (in particular, the
finite games we consider here). See also Dufwenberg and Stegeman (2002) and Chen, Long, and Luo (2007).

19For related notions, see Basu and Weibull (1991).
20That is: if B =

∏
iBi and C =

∏
i Ci are (full) BRSs, then so is

∏
i(Bi ∪ Ci).

21See also Armbruster and Böge (1979) and Böge and Eisele (1979).
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We do not provide proofs in this chapter; they can be found in the cited papers, or can be
adapted from arguments therein. For some results, we provide the details in an online appendix,
Dekel, Pomatto, and Siniscalchi (2013b). We discuss this result in Section 3.2. For an example of
Theorem 1, consider the type structure of Fig. 1. Then projSRCBR = {T,M}×{L,C}, which is a
full BRS and indeed equals S∞. Next, consider the smaller type structure T ′ containing only type
t11 for player 1 and type t12 for player 2. Now projSRCBR = {T} × {L,C}, which, as noted above,
is indeed a full BRS.

3.2 Discussion

Theorem 1 characterizes the implications of RCBR. One could also study the weaker assumption
of common belief in rationality (CBR). The latter is strictly weaker because belief in an event does
not imply it is true. Hence, CBR only has implications for players’ beliefs; we focus on RCBR
because it also restricts behavior. Epistemic models that allow for introspective beliefs have the
feature that, if a player has correct beliefs about her own strategy and beliefs, then, if she believes
that she is rational she is indeed rational. Hence, in such models, CBR is equivalent to RCBR.

The interpretation of (1) in Theorem 1 is that, if the analyst assumes that RCBR holds, but
allows for the possibility that the players’ beliefs may be further restricted (i.e., something in
addition to rationality is commonly believed), then the analyst can only predict that play will
be consistent with some full BRS.22 This implies that, unless the analyst knows what further
restrictions on players’ beliefs hold, he must allow for the player-by-player union of all full BRSs.
As we noted, this is equal to S∞.

Part (2) in Theorem 1 is an epistemic counterpart to this. A complete type structure embeds
all other type structures; it is therefore “natural” to expect that the predictions of RCBR in a
complete structure should also be S∞. Theorem 1 shows that this is the case. This convenient
equivalence fails when we consider refinements.

Part (3) confirms that the result in (1) is tight: every full BRS represents the behavioral
implications of RCBR in some type structure. If this was not the case, then RCBR would have
more restrictive behavioral implications than are captured by the notion of full BRS. Furthermore,
the result in (3) indicates a sense in which RCBR is “necessary” for behavior to be consistent with
a full BRS. While, as noted in the Introduction, players may choose strategies in a given full BRS B
by accident, or following thought processes altogether different from the logic of RCBR, the latter
is always a possible reason why individuals may play strategy profiles in B.

3.3 ∆-rationalizability

As we discussed, a type structure encodes assumptions about players’ hierarchies of beliefs. This
may provide a convenient way to incorporate specific assumptions of interest. For example, one
may wish to study the assumption that players’ beliefs over opponents’ play are independent, or
that for some reason a particular strategy – even if it is rationalizable – will not be played, and
so on. An alternative approach (Battigalli and Siniscalchi, 2003) is to make them explicit. In this
subsection we outline one way to do so.

For every player i ∈ I, fix a subset ∆i ⊂ ∆(S−i). Given a type structure, the event that Player
i’s beliefs lie in the set ∆i is

[∆i] = {(si, ti) : fi(ti) ∈ ∆i} .

We wish to characterize RCBR combined with common belief in the restrictions ∆i.
23

22It must be a full BRS because we do not restrict play: see the discussion at the end of Sec. 2.
23For related solution concepts (albeit without a full epistemic characterization) see Rabin (1994) and Gul (1996).
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Definition 10 Fix a game (I, (Si, ui)i∈I) and a collection of restrictions ∆ = (∆i)i∈I . A set
B =

∏
i∈I Bi ⊂ S is a ∆-best-reply set (or ∆-BRS) if, for every player i ∈ I, every si ∈ Bi is a

best reply to a belief σ−i ∈ ∆(B−i) ∩∆i; it is a full ∆-BRS if, for every si ∈ Bi, there is a belief
σ−i ∈ ∆(B−i) ∩∆i that rationalizes si and such that all best replies to σ−i are also in Bi.

Definition 11 Fix a game (I, (Si, ui)i∈I). For each i ∈ I, let S∆,0
i = Si. Inductively, for m ≥ 0, let

S∆,m+1
i be the set of strategies that are best replies to conjectures σ−i ∈ ∆i such that σ−i(S

∆,m
−i ) = 1.

The set S∆,∞
i =

⋂
m≥0 S

∆,m
i is the set of ∆-rationalizable strategies of Player i.

Obviously the set of ∆-rationalizable strategies may be empty for certain restrictions ∆. Also,
note that S∆,∞

i is a full ∆-BRS.

Theorem 2 Fix a game G = (I, (Si, βi)i∈I and a collection of restrictions ∆ = (∆i)i∈I .

1. In any type structure (I, (S−i, Ti, βi)i∈I) for G, projS (RCBR ∩ CB([∆])) is a full ∆-BRS.

2. In any complete type structure (I, (S−i, Ti, βi)i∈I) for G, projS (RCBR ∩ CB([∆])) = S∆,∞.

3. For every full ∆-BRS B, there exists a finite type structure (I, (S−i, Ti, ui)i∈I) for G such
that projS (RCBR ∩ CB([∆])) = B.24

Results (1)–(3) in Theorem 2 correspond to results (1)–(3) in Theorem 1.
The notion of ∆-rationalizability extends easily to games with incomplete information, and is

especially useful in that context. We provide an example in Section 6.5; more applied examples can
be found, e.g., in Battigalli and Siniscalchi (2003). In the context of complete-information games,
Bernheim’s and Pearce’s original definition of rationalizability required that beliefs over opponents’
strategies be independent. This can also be formulated using ∆-rationalizability: for every player
i, let ∆i be the set of product measures over S−i. Restrictions on first-order beliefs may also arise
in a learning setting, where players observe only certain aspects of play in each stage. We return
to this point in Section 7.6, where we discuss self-confirming equilibrium in extensive games.

4 Equilibrium Concepts

4.1 Introduction

A natural question is what epistemic characterizations can be provided for equilibrium concepts.
By this we mean solution concepts where players best-reply to opponents’ actual strategies. This
is in contrast with solution concepts like rationalizability, where players best-reply to conjectures
about opponents’ strategies that may be incorrect.

Before turning to Nash equilibrium, we consider two weaker solution concepts, objective and
subjective correlated equilibrium. Somewhat surprisingly, it turns out that the latter equilibrium
concept is equivalent to correlated rationalizability. Hence, RCBR does provide a characterization
of an equilibrium concept as well. Subsection 4.2 develops this point. The main idea is that any
incorrect beliefs about opponents’ strategies can be “shifted” to incorrect beliefs about a correlating

24In fact, one can define a type structure in which the restrictions ∆ hold for every type. In such a structure,
projS (RCBR ∩ CB([∆])) = projSRCBR. It is also possible to construct a type structure that is not complete, but
is infinite and contains all belief hierarchies that are consistent with it being common belief that players’ first-order
beliefs satisfy the restrictions ∆. Unlike the type structures constructed to obtain part (3), this contains no other
assumptions on beliefs beyond common belief in ∆. Consequently, RCBR characterizes S∆,∞ in this structure.
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device, thereby maintaining the assumption that players have correct beliefs about the mapping
from correlating signals to strategies.

Subsection 4.3 and 4.4 characterize objective correlated and Nash equilibrium. In contrast to
other results in this paper, in which epistemic conditions fully characterize play, in Subsections
4.3 and 4.4 epistemic conditions only imply that beliefs correspond to equilibrium. For example,
we do not show that under certain conditions players play Nash-equilibrium strategies, only that
the profile of their first-order beliefs is an equilibrium profile. Indeed this is one of the insights
that emerges from the epistemic analysis: Nash equilibrium is usefully interpreted as a property of
(first-order) beliefs, not play. This point was made by Harsanyi (1973) and Aumann (1987), among
others.

A critical assumption in Subsections 4.3 and 4.4 is the existence of a “common prior” that
generates beliefs. While we mostly follow Aumann (1987) and Aumann and Brandenburger (1995),
in contrast to their approach we do not allow players to have beliefs over their own strategies.25

Due to this difference, a direct adaptation of the common prior assumption to our setting turns
out to be weaker than in those papers (indeed betting becomes possible). Hence, we formulate an
additional assumption that is needed for a full characterization of these equilibrium concepts. The
final subsection presents an alternative sufficient – but not necessary – assumption to obtain these
concepts.

4.2 Subjective Correlated Equilibrium

Aumann (1987) defined (subjective) correlated equilibria; these are equivalent to Nash equilibria
of a game in which players observe signals from a correlating device prior to choosing their actions.
A correlating device consists of a finite set Ω of realizations, and, for each player, a partition Πi of
this finite set, and a conditional probability distribution µi(·|πi) for each cell πi in the partition.26

In a correlated equilibrium of a strategic-form game G = (I, (Si, ui)i∈I), players choose strategies
in Si as a function of their signal πi ∈ Πi, so as to maximize their conditional expected payoff,
taking as given the equilibrium behavior of their opponents.

Definition 12 Fix a game G = (I, (Si, ui)i∈I).
A correlating device for the game G is a tuple C = (Ω, (Πi, µi)i∈I), where Ω is a finite set,

for every i ∈ I, Πi is a partition of Ω with typical element πi, and µi is a conditional belief, i.e.,
µi : 2Ω × Πi → [0, 1] satisfies µi(·|πi) ∈ ∆(Ω) and µi(πi|πi) = 1 for all πi ∈ Πi. If there exists
µ ∈ ∆(Ω) such that, for every i ∈ I, and πi ∈ Πi, µi(·|πi) = µ(·|πi), then it is an objective
correlating device.

A subjective correlated equilibrium is a correlating device and a tuple (si)i∈I where, for
each i ∈ I, si : Ω→ Si is measurable with respect to Πi and, for every πi ∈ Πi,∑

ω∈πi

µi({ω}|πi)ui(si(ω), s−i(ω)) ≥
∑
ω∈πi

µi({ω}|πi)ui(si, s−i(ω)) ∀si ∈ Si. (11)

An objective correlated equilibrium is a subjective correlated equilibrium where the corre-
lating device is objective.

Given an objective correlated equilibrium C = (Ω,Πi, µ), the objective correlated equilibrium
distribution induced by C is the probability distribution σ ∈ ∆(S) defined by σ(s) = µ({ω : s(ω) =
s}) for all s ∈ S.

25For other approaches, see Tan and da Costa Werlang (1988), Brandenburger and Dekel (1987b) and Perea (2007).
26Aumann (1987) defines correlating devices slightly differently; for details and to see how this affects the results

herein, see his paper. (See also Brandenburger and Dekel, 1987a)
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There are obvious formal similarities between type structures and correlating devices—although
their interpretation is very different. As noted repeatedly, a type structure is merely a mathematical
construct used to represent belief hierarchies. On the other hand, a correlating device is meant to
represent a real signal structure—something the players and (potentially) the analyst observe. The
formal similarities yield the following result.

Theorem 3 (Brandenburger and Dekel (1987b)) Fix a game G = (I, (Si, ui)i∈I).

1. For any type structure (I, (S−i, Ti, βi)i∈I) for G, there exists a subjective correlated equilibrium(
(Ω,Πi), s

)
of G such that, for all i ∈ I, projSiRCBRi = si(Ω).

2. Given any subjective correlated equilibrium
(
(Ω,Πi), s

)
of G there exists a type structure

(I, (S−i, Ti, βi)i∈I) for G such that projSiRCBRi ⊇ si(Ω) for all i ∈ I.

The essence of this theorem is that, under RCBR, the strategic uncertainty in an epistemic type
structure (or, equivalently, in rationalizability) is interchangeable with the exogenous uncertainty of
a (subjective) correlating device in a correlated equilibrium. The proof of part 1 sets Ω = RCBR ⊆
S×T , defines the cells in each player’s partition Πi to be of the form {(si, ti)}×RCBR−i, and chooses
the belief µi given the cell {(si, ti)}×RCBR−i so that its marginal on RCBR−i equals βi(ti). For part
2, let Ti = Πi and, for any π ∈ Πi, let βi(π)(s−i, π−i) = µi({ω : ∀j, sj(ω) = sj and Πj(ω) = πj}|πi),
where Πj(ω) denotes the element of Πj that contains ω. Note that, in part 2, there may be strategies
in RCBRi that are not played in the correlated equilibrium, but the set of (interim) payoffs under
RCBR and in the equilibrium are the same.

4.3 Objective correlated equilibrium

To characterize objective correlated equilibrium and Nash equilibrium, we want to define the event
that Player i’s beliefs are “consistent with a common prior.” By this we mean that her belief
hierarchy can be generated in some type structure where the beliefs held by each type ti can be
obtained from some probability measure µ (the common prior) over the profiles of strategies and
types S×T , by conditioning on the event that i’s type is indeed ti. Note that we state the common-
prior assumption as a property of belief hierarchies, rather than type structures; in this, we deviate
from the received literature, but are consistent with our premise that the primitives of our analysis
should be elicitable.

To make this formal, we proceed in two steps. First, a type structure T = (I, (S−i, Ti, βi)i∈I)
admits a common prior µ on S × T if the belief maps βi are obtained from µ by conditioning on
types. This differs from the standard definition (e.g., Aumann, 1987) because it conditions only on
types, not on strategies; we discuss this important point after Example 3. However, it is as “close”
as possible to the standard definition, given our premise that players do not hold beliefs about their
own strategies.

Definition 13 A finite type structure T = (I, (S−i, Ti, βi)i∈I) admits (or is generated by) a
common prior µ ∈ ∆(S × T ) if, for all ti ∈ Ti, µ(Si × {ti} × S−i × T−i) > 0 and βi(ti) =
margS−i×T−iµ(·|Si × {ti} × S−i × T−i).

We now translate Definition 13 into one that is stated in terms of hierarchies, rather than types.
Given any type structure T , we deem type ti ∈ Ti consistent with a common prior µ if its induced
hierarchy is the same as the one which would arise in the ancillary type structure T µ which admits
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µ as a common prior, where the type spaces of T µ are subsets of those in T .27 The following
definition makes this precise.

Definition 14 Fix a finite type structure T = (I, (S−i, Ti, βi)i∈I), a player i ∈ I, and a probability
µ ∈ ∆(S × T ). Consider the type structure T µ = (I, (S−i, T

µ
i , β

µ
i )i∈I) that admits µ as a common

prior and such that, for every i ∈ I, Tµi ⊆ Ti. The event “Player i’s beliefs are consistent with a
common prior µ” is

CP i(µ) =
{

(si, ti) : µ(S × {ti} × T−i) > 0 and ϕi(T )(ti) = ϕi(T µ)(ti)
}
. (12)

The prior µ is minimal for ti if ti is in CP i(µ) and, for all ν ∈ ∆(S × T ) with ti in CP i(ν),
suppν 6⊂ suppµ.

The following examples illustrate Definition 14.

Example 2 Definition 14 is stated in terms of hierarchies, which are elicitable. This example
shows a further benefit of this formulation. Let T1 = {t1} , T2 = {t2} , T3 = {t′3, t′′3}, Si = {si}
for all i, β1 (t1) (t2, t

′
3, s2, s3) = 1, β2 (t2) (t1, t

′′
3, s1, s3) = 1, β3 (t3) (t1, t2, s1, s2) = 1 for t3 ∈ T3.

Since all players have a single strategy, all types commonly believe the profile (s1, s2, s3), so the
hierarchies of beliefs over strategies should be deemed consistent with a common prior; indeed, this
is the case according to our Definition 14. Yet this type space does not have a common prior in the
standard sense of Definition 13 because of the redundancy. Specifically, t′3 and t′′3 induce the same
hierarchies, even though they are distinct types: Player 1 is sure 3’s type is t′3 while 2 is sure 3’s
type is t′′3. Note that, as an alternative to the definition above, another way around this difficulty
is to rule out redundant type spaces.

Example 3 We illustrate two aspects of Definition 14: first, the role of minimality, and second,
why we allow the type spaces Tµi in the ancillary structure T µ to be a strict subset of the type
spaces Ti in the original structure.

Let T be the type structure with Ti =
{
tai , t

b
i

}
, Si =

{
sai , s

b
i

}
, βi

(
tki
) (
sk−i, t

k
−i
)

= 1. This type
structure is really the combination of two separate structures, T a and T b: in each structure T k, for
k = a, b, the type spaces are T ki = {tki } for i = 1, 2 and the profile sk is commonly believed. The
structure T is consistent with any common prior µ that assigns probability µk > 0 to

(
ski , t

k
i

)
i∈I

with µa+µb = 1. However, focusing on minimal common priors treats the two components T a and
T b distinctly. In particular, the minimal common prior for both types tai assigns probability one to
(sai , t

a
i )i∈I ; it generates the beliefs in the ancillary type structure T a.

Treating T a as distinct from T b is important to characterize correlated equilibrium. Assume
that sai is strictly dominant for i = 1, 2. Consider type structure T . Then at (sai , t

a
i )i=1,2 RCBR

holds and by construction beliefs are consistent with the common prior µ. However, margSµ assigns
positive probability to the strictly dominated strategies sbi , i = 1, 2, and hence it is not a correlated
equilibrium distribution. On the other hand, margSµ

a is a correlated equilibrium distribution.

Aumann proved the important result that a common prior together with common belief in
rationality implies that the distribution over actions is an objective correlated equilibrium distri-
bution. Aumann’s framework is different from ours: in his model, player i’s “type” incorporates
i’s strategy, and hence corresponds to a pair (si, ti) in our framework. As a result, the existence

27To clarify, to obtain T µ from T we may eliminate some types, and replace the belief maps βi with maps βµi
derived from µ by conditioning.
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of a common prior in Aumann’s framework requires that ti’s beliefs be obtained by conditioning
on (si, ti), rather than just ti as in Def. 13. This implies that a common prior in the sense of Def.
13 need not be a common prior in Aumann’s framework. The implications of this distinction are
apparent in the following example (due to Brandenburger and Dekel, 1986).

Example 4 Consider the game in Table 1 (due to Bernheim, 1984) and the type structure T
generated by the common prior µ in Table 2 as per Definition 13 (adapted from Brandenburger
and Dekel, 1986). A fortiori, each type’s belief hierarchy is consistent with the common prior µ in
the sense of Def. 14; furthermore, RCBR holds for every strategy-type profile, i.e., RCBR = S×T .
For instance, (T, t1) and (M, t1) are both rational because T and M are best replies to type t1’s
first-order belief that 2 plays L and C with equal probability. Yet, the distribution over strategies
induced by µ is not an objective correlated equilibrium distribution. (The only objective correlated
equilibrium places probability one on the profile (M,C).) Thus, a common prior in the sense of
Definition 13 and RCBR do not characterize objective correlated equilibrium.

L C R

T 7, 0 0, 5 0, 7
M 5, 0 2, 2 5, 0
B 0, 7 0, 5 7, 0

Table 1: A two-player game

(L, t2) (C, t2) (C, t′2) (R, t′2)

(T, t1) 0 0 1
4 0

(M, t1) 1
4 0 0 0

(M, t′1) 0 0 0 1
4

(B, t′1) 0 1
4 0 0

Table 2: The common prior

(L, t2) (C, t2) (C, t′2) (R, t′2)

β1(t1) 1
2 0 1

2 0
β1(t′1) 0 1

2 0 1
2

Table 3: Player 1’s beliefs over S2 × T2

(T, t1) (M, t1) (M, t′1) (B, t′1)

β2(t2) 0 1
2 0 1

2
β2(t′2) 1

2 0 1
2 0

Table 4: Player 2’s beliefs over S1 × T1

Moreover, the beliefs in the example permit a form of betting between individual players and
an outside observer (or dummy player) whose beliefs are given by the prior µ. Consider the bet
described in Table 5, where the numbers specify the payments from the outside observer to Player
1.

L C R

T 1 −1
2 0

M −1
2 1 −1

2
B 0 −1

2 1

Table 5: A bet between Player 1 and an
outside observer

L C R

T 0 1
4 0

M 1
4 0 1

4
B 0 1

4 0

Table 6: The outside observer’s beliefs over
S

The outside observer computes the value of this bet using the prior µ from Table 2; the marginal
on S is given in Table 6. The observer expects to receive 1

2 with probability one. The unusual
feature of this example (relative to the literature) is that Player 1 is betting on his own actions as
well as those of Player 2. Suppose his type is t1; in this case he is indifferent between T and M
in terms of his payoffs in the game. Moreover, by playing either T or M , he expects to get 1 or
−1

2 with equal probability from the bet. As type t1 is indifferent between T and M , and strictly
prefers both to B in the game and in the bet, the outside observer has no concern that the bet will

19



affect type t1’s incentives. The same analysis applies to type t′1. Therefore, the observer and both
types of Player 1 expect strictly positive payoffs from the bet.

The preceding example may seem puzzling in light of the so-called “no-trade theorems.” These
results state that, in a setting in which type structures are used to model hierarchical beliefs about
exogenous events, rather than strategic uncertainty, the existence of a common prior is equivalent
to the absence of mutually agreeable bets.28 Example 4 instead shows that, in an environment in
which the events of interest are endogenous—each player chooses his strategy—certain bets are not
ruled out by the existence of a common prior in the sense of Def. 14.29 These bets can be ruled
out if we impose a further assumption on the common prior—one that is automatically satisfied in
Aumann’s model, due to the way “types” are defined. This assumption, condition AI of Definition
15, states that conditioning the prior on a player’s strategy does not imply more information than
conditioning only on his type. Clearly, the prior in Table 2 violates this: µ (·| (t1, T )) 6= µ (·| (t1,M)).
We conjecture that, in the present setting where uncertainty is strategic, a suitable definition of
“no betting” that takes into account the fact that players can choose their own strategies, do not
have beliefs about them, but can bet on them as well as on opponents’ play, can characterize this
additional assumption on the common prior.30

Definition 15 A prior µ ∈ ∆(S × T ) satisfies Condition AI if, for every i ∈ I, event E−i ⊂
S−i×T−i, strategies si, s

′
i ∈ Si and type ti ∈ Ti with µ({(si, ti)}×S−i×T−i) > 0 and µ({(s′i, ti)}×

S−i × T−i) > 0,

µ(E−i × Si × Ti|{(si, ti)} × S−i × T−i) = µ(E−i × Si × Ti|{(s′i, ti)} × S−i × T−i). (13)

Roughly speaking, Condition AI requires that the conditional probability µ(E−i×Si×Ti|{(si, ti)}×
S−i × T−i) be independent of si. We discuss this condition further in Subsection 4.6.1.

We then obtain a version of Aumann’s celebrated result: correlated equilibrium is equivalent
to RCBR and hierarchies consistent with a common prior that is minimal and satisfies Condition
AI.31

Theorem 4 Fix a game G = (I, (Si, ui)i∈I).

1. For every type structure (I, (S−i, Ti, βi)i∈I), if (si, ti) ∈ CP i(µ)∩RCBRi for some µ ∈ ∆(S×
T ), and µ is minimal for ti and satisfies Condition AI, then margSµ is an objective correlated
equilibrium distribution.

2. Conversely, for every objective correlated equilibrium distribution ν of G, there is a type
structure (I, (S−i, Ti, βi)i∈I), a prior µ ∈ ∆(S×T ) that satisfies Condition AI, and such that
margSµ = ν and, for all states (s, t) ∈ supp µ, (s, t) ∈ CP(µ) ∩ RCBR.

28That a common prior implies no betting follows from Aumann (1976) and the subsequent no-trade literature (Mil-
grom and Stokey, 1982; Rubinstein and Wolinsky, 1990). The opposite direction requires a more involved statement;
see Morris (1994), Bonanno and Nehring (1999), Feinberg (2000), Samet (1998a). For different characterizations (not
in terms of betting), see Samet (1998b) and Heifetz (2006).

29As noted previously, another difference with the received literature is that here players do not have beliefs about
their own strategies, whereas no-trade theorems consider environments in which every agent’s beliefs are defined over
the entire state space.

30For a different perspective on obtaining objective correlated equilibrium from no-betting conditions, see Nau and
McCardle (1990).

31Barelli (2009) shows that a characterization of correlated equilibrium in the Aumann (1987) setting can be
obtained using a weaker common-prior assumption that only restricts first-order beliefs.
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4.4 Nash Equilibrium

We turn now to Nash equilibrium. We start with two players as the epistemic assumptions required
are much weaker. In particular this is the only objective equilibrium assumption for which no cross-
player consistency assumptions (such as a common prior or agreement) must be imposed.

For every i ∈ I, let φi ∈ ∆(S−i) be a conjecture of Player i about her opponents’ play. In
any type structure (I, (S−i, Ti, βi)i∈I), let [φi] = {(si, ti) : fi(ti) = φi} be the event that Player i’s
first-order beliefs are given by φi. Then the following theorem says that if 1’s and 2’s first-order
beliefs are (φ2, φ1), their first-order beliefs are mutually believed to be (φ2, φ1) and rationality is
also mutually believed, then (φ1, φ2) is a Nash equilibrium. As discussed in the introduction to
this Section, this result, as well as the subsequent generalizations, provide conditions under which
beliefs—not play—form a Nash equilibrium.

Theorem 5 Assume that I = 2. If [φ] ∩B(R ∩ [φ]) 6= ∅, then (φ2, φ1) is a Nash equilibrium.32

We can obtain a straightforward extension of Theorem 5 to n-player games by explicitly adding
the assumptions that players’ beliefs over opponents’ strategies are independent, and that any two
players have the same beliefs over any common opponent’s strategies. In particular, define the
events “i has independent first-order beliefs” and “i’s opponents agree”:

Ind i =
{

(si, ti) : fi(ti) = Πj 6=imargSjfi(ti)
}
,

Agree−i =
{

(s−i, t−i) : ∀j, k, ` ∈ I s.t. j 6= i, k 6= i, j 6= `, k 6= `,margS`fj(tj) = margS`fk(tk)
}
.

It is worth emphasizing that Agree−i, like the common prior, is a restriction that relates different
players’ beliefs, in contrast to all the other assumptions throughout this paper.

Theorem 6 If [φ] ∩
⋂
i∈I Bi(R−i ∩ [φ]−i ∩ Ind−i ∩ Agree−i) 6= ∅, then there exist σj ∈ ∆(Sj) for

all j such that σ is a Nash equilibrium and φj =
∏
k 6=j σj for all j.

Aumann and Brandenburger (1995) show that these additional conditions can be derived from
arguably more primitive assumptions: the common prior and common belief in the conjectures.
For the reasons discussed in the preceding section, we need to add Condition AI.33

32 Aumann and Brandenburger (1995) require only mutual belief in rationality and in the conjectures. This is
because, in their framework, players have beliefs about their own strategies and hierarchies, and furthermore these
beliefs are correct. Thus, mutual belief in the conjectures φ implies that i’s conjecture is φi. As we do not model a
player’s introspective beliefs (here beliefs about her own beliefs), we need to explicitly assume that the conjectures
are indeed φ.

Alternatively, in Theorems 5, 6, 7 and 9 we could drop the event [φ] and replace “B” with “B2.” We could also
state these results using only assumptions on one player’s beliefs, as in Theorem 4. For example, in Theorem 5 and
for i = 1, the assumptions would be B1([φ2]) ∩ B1(B2(R1)) ∩ B1(B2([φ1])) and B1(B2([φ1])) ∩ B1(B2(B1(R2))) ∩
B1(B2(B1([φ2]))).

Finally, Aumann and Brandenburger allow for incomplete information in the sense of Sec. 6, but assume that there
is common belief in the game being played. Liu (2010) shows that this assumption can be weakened to second-order
mutual belief in the game, but not to mutual belief.

33 To see why assumption AI is necessary, consider the three-player game in Fig. 5 of Aumann and Brandenburger
(1995). Let Ti = {ti} for i = 1, 2, 3, and define µ ∈ ∆(S × T ) by µ(H, t1, h, t2,W, t3) = µ(T, t1, t, t2,W, t3) = 0.4,
µ(H, t1, t, t2,W, t3) = µ(T, t1, h, t2,W, t3) = 0.1. Define β1 and β2 via µ, as in Example 4 The first-order beliefs
of types t1 and t2 place equal probability on H,T and h, t respectively; therefore, Ri = Si × Ti = Si × {ti} for
i = 1, 2. Furthermore, player 3 assigns a high probability to players 1 and 2 playing either (H,h) or (T, t), so that
R3 = {(W, t3)}. Thus, there is common belief in rationality and the first-order beliefs, as well as a common prior
in the sense of Def. 14. However, player 3 has a correlated first-order belief, so we do not get a Nash equilibrium.
Furthermore, players 1 and 3 could bet on the correlation between 1’s and 2’s strategies, so once again the common
prior does not preclude bets.
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Theorem 7 If there is a probability µ ∈ ∆(S × T ) that satisfies Condition AI, and a tuple
(t1, . . . , tI) in CP(µ) ∩ [φ] ∩ CB([φ]) ∩ B(R) for which µ is minimal, then there exist σj ∈ ∆(Sj)
for all j such that σ is a Nash equilibrium and φj =

∏
k 6=j σj for all j.

4.5 The book-of-play assumption

We now consider a related approach to dealing with the issues pointed out in Example 4 and
footnote 33. We introduce a “book of play”: a commonly believed function from hierarchies into
strategies (Brandenburger and Dekel, 1986). The interpretation is that, once we condition on a
player’s hierarchical beliefs, there is no residual uncertainty about her play. The existence of such a
function reflects a (perhaps naive) determinism perspective—a player’s hierarchical beliefs uniquely
determine his strategy—and hence may be of interest in its own right.

It turns out that common belief in a “book of play” implies that Condition AI in Definition
15 holds. Therefore, we can obtain sufficient epistemic conditions for objective correlated and
Nash equilibrium by replacing Condition AI with common belief in a “book of play.” We do so in
Theorems 8 and 9. The advantage relative to Theorems 4 and 7 is that common belief in a “book
of play” is a more easily interpretable assumption. However, we will see in Example 5 below that,
in the absence of any exogenous uncertainty, this assumption is restrictive: essentially, it rules out
certain forms of randomization.34

Consider a game G = (I, (Si, ui)i∈I), a type structure T = (I, (S−i, Ti, βi)i∈I), and a function

ni : ϕi(T )(Ti)→ Si; (14)

this specifies, for each type of Player i, the strategy she is “ expected” to play, where any given
hierarchy is associated with a unique (pure) strategy.35 We then define the event that “i’s play
adheres to the book ni”:

[ni] = {(si, ti) : si = ni(ϕi(T )(ti))} . (15)

Theorem 8 Fix a game G = (I, (Si, ui)i∈I). For every type structure (I, (S−i, Ti, βi)i∈I) and book
of play n, if (si, ti) ∈ CP i(µ)∩RCBRi ∩CB([n])i for some µ ∈ ∆(S×T ), and µ is minimal for ti,
then margSµ is an objective correlated equilibrium distribution.

Theorem 9 Fix a type structure (I, (S−i, Ti, βi)i∈I). If there is a book of play n and a probability
µ ∈ ∆(S × T ), and it is the case that [φ]∩B(R)∩CP(µ)∩CB([φ])∩CB([n]) 6= ∅, then there exist
σj ∈ ∆(Sj) for all j such that σ is a Nash equilibrium and φj =

∏
k 6=j σj for all j.

Notice that we did not state a converse to the preceding theorems. In fact, as the following
example due to Du (2011) shows, the converses are false.

Example 5 Consider Matching Pennies. The unique correlated and Nash equilibrium is of course
σ1 = σ2 =“1

2 Heads, 1
2 Tails.”

First, consider the converse to Theorem 9. Fix a type ti. If there is common belief that the
conjectures are (σ2, σ1), then every type tj to which ti assigns positive probability must have the

34One can also explore the implications of this assumption in non-equilibrium contexts. Under RCBR, Bran-
denburger and Friedenberg (2008) consider weaker conditions that enable them to study the notion of ‘intrinsic’
correlation in games with more than 2 players, which corresponds to it being common belief that there are no exoge-
nous unmodeled correlating devices. Peysakhovich (2011) shows that objective correlated equilibrium outcomes are
also consistent with RCBR and intrinsic correlation. The converse is false, as Example 4 shows.

35Here, as is the case throughout this chapter with the exception of Theorem 10, players do not have access to
randomizing devices. Rather, randomizations reflect opponents’ beliefs, as discussed in Section 2.2.
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same belief hierarchy, and hence, by the book-of-play assumption, must play the same strategy,
either Heads or Tails. But then type ti’s first-order belief cannot be σ−i.

Next, consider the converse to Theorem 8. Fix a type structure, a type t1, and a common prior
µ minimal for t1 and such that its marginal on S is the equilibrium distribution. Because common
belief in the book of play holds (in the eyes of t1), we can partition the types of each player i in
the support of µ into those that play Heads and those that play Tails, say THi and T Ti . Consider
a type t′1 ∈ TH1 ; assuming wlog that he wants to match, (common belief in) rationality requires
that t′1 assigns probability at least 1

2 to Heads. Repeating the argument for all types in TH1 implies
that the common prior must assign probability at least 1

2 to Heads conditional on 1’s type being
in TH1 . This is equivalent to saying, that, conditional on 1 playing Heads, 2 must play Heads with
probability at least 1

2 . But by assumption, conditional on 1 playing Heads, 2 plays heads with
probability exactly 1

2 . This implies that all types in TH1 have the same first-order beliefs, i.e., σ2.
Repeating the argument shows that all types of i in the support of µ have the same first-order
beliefs, for i = 1, 2. Hence, all types of each player i have the same hierarchy of beliefs, and by
common belief in the book of play, they must actually be playing the same strategy.

The essence of the example is that the book-of-play assumption makes it impossible, in certain
games, to attribute mixed-strategies to beliefs and not to actual mixing. Thus this important
perspective, highlighted by Harsanyi and Aumann – indeed one of the benefits of the epistemic
perspective – is not possible under the book-of play assumption. Indeed, one way to obtain a
converse to Theorems 8 and 9 is to either explicitly allow for mixing, or to add extrinsic uncertainty
(so as to “purify” the mixing). Once we allow for mixed strategies to be played, first-order beliefs
are over mixed strategies; that is, for player j, they are measures φj ∈ ∆(

∏
k 6=j ∆(Sk)). It is then

useful to have a notation for the “expected belief” over pure strategies; given a first-order belief φj ,
let Eφj ∈ ∆(S−j) be defined by Eφj(s−j) =

∫∏
k 6=j ∆(Sk) σ̄−j(s−j)φj(dσ̄−j) for all s−j . We can then

state the following converse to Theorem9: given a Nash equilibrium, there is a type structure where
hierarchies of beliefs are consistent with a common prior, and there is common belief in rationality,
the book of play, and first-order beliefs whose expectations are the equilibrium strategy profile.

Theorem 10 For any Nash equilibrium (σi)i∈I , σi ∈ ∆ (Si), there is a first-order belief φj ∈
∆
(∏

j 6=i ∆ (Sj)
)

such that Eφj =
∏
k 6=j σk for every j, and a type structure (I, (

∏
j 6=i ∆ (Sj) , Ti, βi)i∈I),

such that, for all i, Ti = CP i(µ) ∩ CB(R)i ∩ CB([n]) ∩ CB([φ]).

4.6 Discussion

4.6.1 Condition AI

In Theorem 4, we assume that a player’s hierarchy is consistent with a common prior µ which
satisfies Condition AI. This is an elicitable assumption because it is about beliefs, but it is arguably
somewhat opaque. As noted above, we conjecture that common priors satisfying Condition AI
may be characterized via a suitable no-betting condition. This would provide a more transparent
behavioral characterization.

We emphasize that we cannot interpret Condition AI, i.e., Eq. (13), directly as a restriction
on Player i’s beliefs: in our environment, players do not have beliefs about their own strategies.
Instead, it is a restriction on the beliefs of the other players, and perhaps those of an outside
observer whose beliefs are given by µ. In Example 4, it implies in particular that, conditional on t1,
an outside observer must believe that Player 1’s and 2’s strategies are stochastically independent.
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Hence, the name of the condition: Aumann I ndependence.36

We observed that Condition AI is implied by the common-prior assumption in Aumann’s model,
due to the fact that a “type” therein comprises both a belief about the other players and a strategy.37

Our framework instead requires that we make this independence assumption explicit, and hence
helps us highlight a key epistemic condition required to characterize objective correlated and Nash
equilibrium.

Finally, at the risk of delving too far into philosophy, one can also relate Condition AI to the
notion of free will. If there is “free will” then players cannot learn anything from their own choice
of strategy. If instead players’ choices are pre-determined, then it is possible they would learn
something from their own choices, unless one explicitly assumes that there is enough independence
to rule out any such learning. Condition AI requires that there be no such learning, either because
of “free will” or because there is sufficient independence so that there is nothing to learn.

4.6.2 Comparison with Aumann (1987)

Our characterization of objective correlated equilibrium in Theorem 4 seems more complex than
Aumman’s original result. Translated to our setting, his result is as follows:

Let T be a type structure that admits a common prior µ (in the sense of Def. 13)
which satisfies Condition AI. If supp µ ⊂ R, then margSµ is an objective correlated
equilibrium distribution.

While elegant, this formulation involves hypotheses that are not directly verifiable. To begin
with, we cannot verify whether “the type structure admits a common prior” because, as we have
noted several times, we cannot elicit the type structure that generated the players’ actual belief
hierarchies. This is why we were led to Definition 14 rather than 13. Once we have elicited a
player’s hierarchy, we can verify whether that hierarchy is consistent with a common prior. Our
theorem 4 translates Aumann’s result above into the language of hierarchies. Moreover, Aumann’s
hypothesis of rationality for every strategy-type pair in the support of the prior implies, but does
not explicitly state, that RCBR will also hold. Our focus on hierarchies forces us to make this
latter assumption explicit.

4.6.3 Nash equilibrium

As discussed, the epistemic analysis leads to the interpretation of Nash equilibria in mixed strategies
as descriptions of players’ conjectures, rather than their actual behavior. The definition of Nash
equilibrium then becomes a mutual consistency requirement: conjectures must be correct and
consistent with rationality. In games with more than two players, they must also be independent
and suitably consistent across players. Theorems 5–6 may be seen as essentially formalizing the
Nash consistency requirement in the language of belief hierarchies.

A separate question is whether these results provide a “justification” for equilibrium concepts. In
games with more than two players, the assumptions of independence and agreement (corresponding
to the events Ind i and Agree−i used in Theorem 6) appear strong; understandably, the literature
has sought more basic conditions. Theorems 7–10 clarify the need for Condition AI or common

36Aumann deserves no blame for this definition; the label only indicates that it is inspired by his analysis.
37By the CPA, the beliefs of an Aumann type for player i about the other players’ Aumann types is derived from a

common prior µ by conditioning on i’s Aumann type, and hence by definition on both that type’s beliefs and strategy.
Therefore, if we condition µ on two Aumann types that feature the same beliefs about the other players, but different
strategies, the two resulting measures must obviously have the same marginal on the set of other players’ Aumann
types. This corresponds to Eq. (13).
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belief in the “book of play.” Ultimately, we interpret Theorems 6–10 as negative: they highlight
the demanding epistemic assumptions needed to obtain equilibrium concepts. Naturally, there is
room for other types of justification for equilibrium analysis, such as learning and evolution.

5 Strategic-form refinements

In this section we provide a first introduction to the epistemic analysis of refinements of rationaliz-
ability. These are important for two reasons. First, refinements yield tighter predictions, and hence
can be useful in applications. Second, the epistemic conditions that yield them turn out to be of
interest. In particular, this section introduces the notions of admissibility / weak dominance and
common p-belief.

Weak dominance is a strengthening of Bayesian rationality (expected-utility maximization). A
strategy si ∈ Si is weakly dominated if there exists a distribution σi ∈ ∆(Si) such that, for all
s−i ∈ S−i, ui(σi, s−i) ≥ ui(si, s−i), and the inequality is strict for at least one s∗−i ∈ S−i. A strategy
is admissible if it is not weakly dominated. Analogously to strict dominance, a strategy is weakly
dominated if and only if it is not a best reply to any full-support belief about the opponents’ play
(that is, a belief that assigns strictly positive probability to every opponents’ strategy profile).

A natural first step to refine the assumption of RCBR might be to consider “admissibility and
common belief in admissibility” and try to obtain an analog of Theorem 1 above. However, there
is a tension between the logic of admissibility and that of common belief. Loosely speaking, the
former is motivated from the perspective that anything is possible, whereas the latter does restrict
what is possible.38 To address this tension, one can relax the definition of belief.

Monderer and Samet (1989) introduce the notion of p-belief, i.e., belief with probability at least
p, to game theory.39 For p = 1, this is the notion of belief we have considered so far. For p close to
1, p-belief has similar behavioral implications, but it enables us to resolve the tension just discussed.
It makes it possible to formulate “almost” common belief in admissibility, which is consistent with
full-support beliefs (anything is possible).

As we just noted, one motivation for our discussion of p-belief is the observation that, while
admissibility is an interesting and common strengthening of rationality (expected-payoff maximiza-
tion), common belief in admissibility leads to difficulties. Common p-belief in admissibility may
be viewed as one one way to approximate these epistemic conditions of interest. However, there
are two additional reasons. First, as we shall see momentarily, for p sufficiently high, common
p-belief in admissibility characterizes a solution concept that was originally motivated by different
considerations. Thus, Theorem 11 below provides a different perspective on the derived solution
concept. Second, we can employ the notion of p-belief to carry out a robustness check for our anal-
ysis of RCBR. It can be shown that, for p sufficiently close to 1, rationality and common p-belief
of rationality has the same behavioral implications as RCBR (in stark contrast with admissibility
and common p-belief thereof): see Hu (2007).

Definition 16 Fix a game G = (I, (Si, ui)i∈I) and a type structure T = (I, (S−i, Ti, βi)i∈I) for G.
The event that Player i assigns probability at least p ∈ [0, 1] to E−i ⊂ S−i × T−i is

Bp
i (E−i) = {(si, ti) : βi(ti)(E−i) ≥ p} . (16)

38See e.g. Samuelson (1992).
39This notion originates in modal logic: see e.g. Fagin and Halpern (1994), Fagin, Halpern, and Megiddo (1990),

and the references therein.
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The event that Player i has full-support beliefs is

FS i = {(si, ti) : supp fi(ti) = S−i} . (17)

We can now define “admissibility” and “mutual and common p-belief of admissibility” as follows.
We proceed analogously to the definition of the event RCBRi in Equations 8 and 9. We assume
full-support belief in addition to rationality, and weaken belief to p-belief. (As noted, rationality
and full support are equivalent to admissibility). For every i ∈ I, let

ACBAp,0
i = Ri ∩ FS i,

ACBAp,k
i = ACBAp,k−1

i ∩Bp
i (ACBAp,k−1

−i ) and (18)

ACBAp
i =

⋂
k≥0

ACBAp,k
i .

Here it does matter whether we define mutual and common p-belief as above, or by iterating the
p-belief operator as in Eq. (7).40 The reason is that p-belief does not satisfy the Conjunction
property in Eq. (5). On the other hand, given any finite type structure, there is a π ∈ (0, 1) such
that, for all p ≥ π, Conjunction holds, i.e., player i p-believes events A−i and B−i if and only if she
p-believes A−i ∩B−i. A similar statement holds for Monotonicity.

To capture the behavioral implications of ACBA, consider the following adaptation of the notion
of best-reply sets (Def. 9).41

Definition 17 Fix p ∈ [0, 1]. A set B =
∏
i∈I Bi ⊂ S is a p-best-reply set (or p-BRS) if,

for every player i ∈ I, every si ∈ Bi is a best reply to a full-support belief σ−i ∈ ∆(S−i) with
σ−i(B−i) ≥ p; it is a full p-BRS if, for every si ∈ Bi, there is a rationalizing full-support belief
σ−i ∈ ∆(B−i) with σ−i(B−i) ≥ p such that all best replies to σ−i are also in Bi.

A basic refinement of rationalizability is to carry out one round of elimination of weakly domi-
nated strategies, followed by the iterated deletion of strictly dominated strategies. This procedure
was introduced in Dekel and Fudenberg (1990), who—following Fudenberg, Kreps, and Levine
(1988)—were motivated by robustness considerations.42 Let S∞W denote the set of strategy pro-
files that survive this procedure.

For every game, there exists π ∈ (0, 1) such that every p-BRS with p ≥ π is contained in S∞W .
Furthermore, S∞W is itself a p-BRS, for p ≥ π. This inclusion is a consequence of the fact that,
as discussed above, p-belief satisfies Conjunction and Monotonicity for p large enough.

Theorem 11 Fix a game G = (I, (Si, ui)i∈I). Then there is π ∈ (0, 1) such that, for p ≥ π:43

1. in any type structure (I, (S−i, Ti, βi)i∈I), projSACBAp is a full p-BRS contained in S∞W ;

40Indeed, Bp1 (R2 × S3 × T3) ∩Bp1 (S2 × T2 ×R3) 6= Bp1 (R2 ×R3) in general, whereas equality does hold for p = 1.
41For related notions see Tercieux (2006) and Asheim, Voorneveld, W Weibull, et al. (2009).
42Like Bernheim’s perfect rationalizability (Bernheim, 1984), this procedure is a non-equilibrium analog to

trembling-hand perfection (Selten, 1975). Borgers (1994) (see also Hu, 2007) provided a characterization using
common p-belief. The main difference with perfect rationalizability is that in S∞W it is not assumed that players
agree about the the trembles of other players, and trembles are not required to be independent. For refinements of
rationalizability motivated by proper equilibrium (Myerson, 1978), see Pearce (1984) section 3, Schuhmacher (1999),
and Asheim (2002).

43If p < π, then these results are modified as follows. First, (1) holds except for the claim that the p-BRS
is contained in S∞W . Regarding (2), ACBA characterizes the largest p-BRS, which can be computed using the
procedure in Borgers (1994). Finally, (3) holds for all p.
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2. in any complete type structure, (I, (S−i, Ti, βi)i∈I), projSACBAp = S∞W ;

3. for every full p-BRS B, there exists a finite type structure (I, (S−i, Ti, βi)i∈I) such that
projSACBAp = B.

Note that π depends upon the game G. Consequently, the epistemic conditions that deliver
S∞W depend upon the game. We view this as unappealing, because to some extent the assumptions
are tailored to the game. We will shortly mention an alternative approach that avoids this issue.
However, this approach requires a different notion of type structure. The advantage of Theorem
11 is that it can be stated using the machinery developed so far.

An alternative way to characterize S∞W builds on Schuhmacher (1999). Instead of weaken-
ing belief to p-belief, we weaken rationality to “ε-rationality.” This is easiest to implement in a
model where players can explicitly randomize, as in Theorem 10.44 Consider the mixed extension

(I, (∆(Si), ui)i∈I of the original game (I, (Si, ui)i∈I), and a type structure
(
I,
(∏

j 6=i ∆(Sj), Ti, βi

)
i∈I

)
.

For given ε > 0, a (mixed) strategy-type pair (σi, ti) is ε-rational if σi assigns probability at most
ε to any pure strategy that is not a best reply to type ti’s first-order beliefs;45 we thus define the
event

Rεi =

{
(σi, ti) : ui(si,Efi(ti)) < max

s′i∈Si
ui(s

′
i,Efi(ti))⇒ σi(si) ≤ ε.

}
,

where, as in Theorem 10, Efi(ti) is the reduction of the measure fi(ti), which is
As in Theorem 11, we need a full-support assumption in order to obtain admissibility. Given that

we consider the mixed extension of the game, as in the discussion preceding Theorem 10, player i’s
first-order beliefs are now a probability measure over profiles of mixed strategies of the opponents.
The appropriate full-support assumption remains over pure strategy profiles. We formalize this
using “expected” first-order beliefs: e.g., for type ti, Efi(ti) ∈ ∆(S−i) has full support. The event
where this is the case is

F̂S i = {(σi, ti) : [Efi(ti)](s−i) > 0 ∀s−i ∈ S−i} .

Theorem 12 Fix a game G = (I, (Si, ui)i∈I). Then there is ε̄ ∈ (0, 1) such that, for ε ≤ ε̄,

1. in any complete type structure (I, (
∏
j 6=i ∆(Sj), Ti, βi)i∈I), s ∈ S∞W if and only if there is

(σi, ti)i∈I ∈ Rε ∩ F̂S ∩ CB(Rε ∩ F̂S ) such that σi(si) > ε for each i.

2. in any type structure (I, (
∏
j 6=i ∆(Sj), Ti, βi)i∈I), if (σi, ti)i∈I ∈ Rε ∩ F̂S ∩CB(Rε ∩ F̂S ) then

σi(si) > ε for each i implies s ∈ S∞W .

Schuhmacher (1999) uses this approach to define a counterpart to Myerson (1978)’s notion
of proper equilibrium. He strengthens ε-rationality to “ε-properness”: σi must be completely
mixed and, if a strategy si is worse than another strategy s′i given player i’s first-order beliefs,
then σi(si) ≤ εσi(s

′
i), where σi is i’s mixed strategy.46 A strategy σi is then deemed “ε-properly

44This characterization (Theorem 12 below) could also be stated without the mixed-strategy extension, but as a
result concerning beliefs and not play (see our discussion in the third paragraph of Section 4.1).

45Note that this is not the same as saying that the strategy obtains within ε of the maximal payoff; this is also
often called “ε-rationality.” The definition in the text is in the spirit of Selten (1975) and Myerson (1978), as well as
Schuhmacher (1999).

46Without the requirement that σi be completely mixed, ε-properness may lose its bite: if, given i’s beliefs, strategy
si is strictly better than s′i, which in turn is strictly better than s′′i , then a mixed strategy that assigns probability
one to si would formally be ε-proper, but one could not say that s′i is “much more likely” than s′′i .
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rationalizable” if there is a type structure and a type ti such that the pair (si, ti) is consistent with ε-
properness and common belief thereof. Notice that this definition is epistemic; Schuhmacher (1999)
provides an algorithmic procedure that yields some, but not all properly rationalizable strategies;
Perea (2011a) provides a full algorithmic characterization. Finally, Asheim (2002) provides an
epistemic definition of proper rationalizability using lexicographic probability systems.

At this point it would be natural to investigate epistemic conditions leading to iterated admissi-
bility. These would require strengthening common p-belief. It turns out that it is possible to do so
by replacing probabilistic beliefs with lexicographic probability systems. This in turn necessitates
modifying the notion of a type structure. (This is the different type structure alluded to above
in which an alternative version of Theorem 11 can be given: see Brandenburger (1992).) It is
convenient to present this material after studying extensive-form refinements: see sections 8.

6 Incomplete Information

6.1 Introduction

A game has incomplete information if the payoff to one or more players is not fully determined by
the strategy profile; we therefore allow for a parameter θ ∈ Θ that enters players’ payoff functions.47

In this section we provide an epistemic analysis of such games, focusing mainly on RCBR.
The key issue that arises is to what extent the model is meant to be “complete,” that is, to

describe all possible aspects of the world that might be relevant to the agents. The alternative is to
adopt a “small worlds” perspective, where we understand that many aspects are not included in
our specification. This is a general issue in modeling, that is particularly relevant in this paper, and
that is especially critical in this section. The particular aspect of concern is whether there might be
additional uncertainty and information beyond what the model describes. Such information could
enable correlations that we might otherwise exclude.

One way to deal with this is to adopt the small-worlds approach and study solution concepts
that are “robust” to adding such unmodeled uncertainty explicitly. The other is to insist on the
model being complete. We consider both in this section.

To clarify this issue we consider two distinct solution concepts that embody different degrees
of correlation: interim independent and correlated rationalizability (denoted IIR and ICR respec-
tively). Consider the game of incomplete information in Tab. 7.

θ1 L R

U 1,1 0,0
D 1

4 ,0 1
4 ,0

θ2 L R

U 0,0 1,1
D 1

4 ,0 1
4 ,0

Table 7: An incomplete-information game

The players’ hierarchy of beliefs over Θ = {θ1, θ2} corresponds to it being common belief that
the two parameters are equally likely. (Neither player receives any hard information.) These
hierarchies can be modeled using two distinct type structure based on Θ (i.e., X−i = Θ), denoted
T N =

{
I, (Θ, TNi , β

N
i )i∈I

}
and T R =

{
I, (Θ, TRi , β

R
i )i∈I

}
. For both structures, player 1 has a

single type: TN1 = {tN1 } and TR1 = {tR1 }. However, TN2 =
{
tN2
}

, whereas TR2 =
{
tR2 , t̄

R
2

}
. The

belief maps βNi and βRi are described in Table 8. Notice that these type structures describe beliefs

47To economize on notation, this formulation does not allow for hard private information (signals) the players may
receive. To accommodate private information, one can let Θ = Θ0 ×

∏
i∈I Θi, where Θi is the set of signals that i

may receive and Θ0 represents residual uncertainty. For example, see Battigalli, Di Tillio, Grillo, and Penta (2010).
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about Θ alone, and not also about players’ strategies (that is, X−i = Θ). Solution concepts for
incomplete-information games typically use such Θ-based type structures. When we turn to the
epistemic analysis, we will need to consider type structures that model beliefs about both Θ and
players’ strategies (i.e., X−i = Θ× S−i).

(θ1, t
N
2 ) (θ2, t

N
2 )

βN1 (tN1 ) 1
2

1
2

(θ1, t
N
1 ) (θ2, t

N
1 )

βN2 (tN2 ) 1
2

1
2

(θ1, t
R
2 ) (θ1, t

R
2 ) (θ2, t̄

R
2 ) (θ2, t̄

R
2 )

βR1 (tR1 ) 1
2 0 0 1

2

(θ1, t
R
1 ) (θ2, t

R
1 )

βR2 (tR2 ) 1
2

1
2

βR2 (t̄R2 ) 1
2

1
2

Table 8: A non-redundant (top) and a redundant (bottom) type structure for the game in Fig. 7

Structure T R has redundant types (cf. Definition 5), since the hierarchies of beliefs of types tR2
and t̄R2 are the same. Furthermore, there is no hard private information in this example: types are
used solely to model hierarchies of beliefs.48 In this sense, tR2 and t̄R2 are indistinguishable.

We can (iteratively) delete strategies that are dominated (i.e., non-best replies) for a given
type. We now present some intuitive arguments about two different deletion procedures; these are
formally defined in sections 6.2 and 6.3. First consider structure T R. One might argue that D is
not dominated for tR1 : it is a best reply to the belief that tR2 plays R and t̄R2 plays L. This conclusion
crucially depends on the fact that type tR1 believes that 2’s type is tR2 when θ = θ1 and t̄R2 when
θ = θ2. This induces a correlation between the strategy that tR1 expects 2 to play and the payoff
parameter θ; this correlation is essential for D to be a best reply.

For structure T N the analysis is more subtle. One could argue that D is dominated for player
1’s sole type tN1 since, for any belief over S2 independently combined with the belief that θ1 and θ2

are equally likely, D is not a best reply. This is the perspective underlying the solution concept of
IIR, which we analyze in subsection 6.3. Alternatively one could argue that D is not dominated:
it is a best reply to the belief that, with probability one-half, player 2’s sole type tN2 plays R and
the state is θ1, and otherwise tN2 plays L and the state is θ2. This corresponds to ICR (subsection
6.2). Is this latter belief “reasonable”? Certainly yes if there is unmodeled uncertainty: player 1
can believe that player 2’s actions are correlated with θ through some unmodeled payoff-irrelevant
signal.49 If there is no unmodeled uncertainty however, one might want to exclude such beliefs.

To do so, we introduce an explicit independence assumption into the epistemic model. In-
tuitively, in the absence of unmodeled hard information, we want to rule out the possibility of
“excessive” correlation between the payoff-relevant parameter θ and 2’s strategy. However, what is
“excessive” needs to be defined with care. It certainly seems reasonable to allow player 1 to believe
that 2 plays differently depending on 2’s hierarchical beliefs about Θ. However, conditional on 2’s
hierarchy of beliefs over Θ, 1’s beliefs about θ and 2’s strategies should be independent. Thus,
by definition – since types that have the same hierarchy must be treated the same – an epistemic
analysis that adopts this independence assumption will not result in different solutions for the two
type structures.50

48If there was private information, we would model it explicitly: see footnote 47.
49Indeed, one view of ICR is that it is the same as IIR when certain types of unmodeled correlation are explicitly

added. For related ideas see Liu (2009), who discusses this idea in the context of Bayesian Nash equilibrium. See
also Sadzik (2011) and Bergemann and Morris (2011).

50This formulation of independence is due to Battigalli, Di Tillio, Grillo, and Penta (2011a). These authors
emphasize that epistemic analysis should be carried out solely in terms of expressible assumptions about the primitives
of the model. For incomplete-information games, the primitives are the payoff states θ and the strategy sets; in our
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In the next two subsections we develop this formally. First we show ICR characterizes RCBR.
Then we show that IIR corresponds to RCBR plus common belief of a suitable independence
assumption if the type space is non-redundant (and IIR is a coarser solution concept in general).
We then briefly discuss ∆-rationalizability (section 3.3) for incomplete-information games. In the
last subsection we briefly discuss equilibrium concepts. Little has been done here in terms of using
the ideas of Section 4 above under incomplete information to characterize standard equilibrium
concepts, and in particular the many different versions of correlated equilibrium concepts in the
literature.

6.2 Interim Correlated Rationalizability

We begin by formally defining incomplete-information games. We then define ICR and conclude
this subsection by relating this solution concept to RCBR.

Definition 18 A (finite) (strategic-form) incomplete-information game is a tuple G =
(I,Θ, (Si, ui)i∈I), where I and Θ are finite and, for every i ∈ I, Si is finite and ui : Si×S−i×Θ→ R.

This description is partial because it does not specify the players’ (hierarchies of) beliefs about
Θ. Thus, we will append to the game the players’ hierarchies of beliefs over Θ. We model these
hierarchies using a Θ-based type structure, i.e., a type structure as in Def. 3 where we set X−i = Θ.

As discussed, ICR is the solution concept that iteratively eliminates strategies that are not best
replies to beliefs over Θ× S−i, where beliefs allow for correlation.51

Definition 19 52 Consider a game G = (I,Θ, (Si, ui)i∈I) and a Θ-based type structure T Θ =
(Θ, (TΘ

i , β
Θ
i )i∈I). For every tΘi ∈ TΘ

i , let

• ICR0
i (t

Θ
i ) = Si;

• for k > 0, si ∈ ICRk
i (t

Θ
i ) if there exists a map σ−i : Θ × TΘ

−i → ∆(S−i) such that, for all

θ ∈ Θ and tΘ−i ∈ TΘ
−i, σ−i(θ, t

Θ
−i)(ICRk−1

−i (tΘ−i)) = 1 and

∀s′i ∈ Si,
∑
θ,tΘ−i

βΘ
i (tΘi )(θ, tΘ−i)

∑
s−i

σ−i(θ, t
Θ
−i)(s−i)ui(si, s−i, θ) ≥

∑
θ,tΘ−i

βΘ
i (tΘi )(θ, tΘ−i)

∑
s−i

σ−i(θ, t
Θ
−i)(s−i)ui(s

′
i, s−i, θ).

The set ICR∞i (tΘi ) =
⋂
k≥0 ICRk

i (t
Θ
i ) is the set of interim correlated rationalizable strategies

for type tΘi .

probabilistic setting, the only expressible assumptions are those about each player i’s hierarchies of beliefs on Θ×S−i.
We agree with these authors’ emphasis on expressibility. In fact, as argued in the Introduction, we take the stronger
stand that assumptions should be elicitable.

51With I > 2 players, there are two forms of correlation: that between the underlying uncertainty and opponents’
strategies, and (as in correlated rationalizability—Def. 8—and correlated equilibrium—Def. 12) that among oppo-
nents’ strategies, even conditioning on the underlying uncertainty. One could allow one but not the other, in principle.
For simplicity we allow for both.

52The definition of ICR we adopt differs in inessential ways from the one originally proposed by Dekel, Fudenberg,
and Morris (2007). See also Liu (2011) and Tang (2011).
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To understand this definition, recall that, in a Θ-based structure (Θ, (TΘ
i , β

Θ
i )i∈I), player i’s type

tΘi represents her beliefs about Θ × TΘ
−i, but not S−i. ICR then assumes that beliefs over S−i are

determined by a function σ−i : Θ×TΘ
−i → ∆(S−i). Specifically, the probability that type tΘi assigns

to opponents playing a given profile s−i equals∑
(θ,tΘ−i)

βΘ
i (tΘi )(θ, tΘ−i)) · σ−i(θ, tΘ−i)(s−i). (19)

The fact that σ−i(·) ∈ ∆(S−i) depends upon both θ and tΘ−i allows for the possibility of unmodeled
correlating information received by i’s opponents, as discussed. For example, in the game of Table
7 augmented with Θ-based type structure T 1, the strategy D of player 1 is a best reply for type
t1 given the belief on Θ × S−i constructed by defining σ2(θ1, t

′
2)(R) = 1 and σ2(θ2, t

′′
2)(L) = 1.

The strategy D is also a best reply for type t1 of player 1 in the structure T 2 when we define
σ2(θ1, t2)(R) = 1 and σ2(θ2, t2)(L) = 1.

To study the relationship between RCBR and ICR, we start with an epistemic type structure
where X−i = Θ × S−i. It is important to keep track of the difference between this and the Θ-
based type structure appended to the game of incomplete information and used in defining ICR
(Definition 19). Of course, in our epistemic analysis, we will need to relate the belief hierarchies
generated by the Θ-based type structure to the Θ × S−i-based hierarchies in the epistemic type
structure.

Thus, consider an epistemic type structure T = (I, (Θ× S−i, Ti, βi)i∈I). As in Def. 6, continue
to denote the first-order belief map for player i by fi : Ti → ∆(Θ × S−i), defined by fi(ti) =
margΘ×S−iβi(ti). Naturally, first-order beliefs are now over Θ × S−i. Analogously to Def. 7, a
strategy si is rational for type ti ∈ Ti, written (si, ti) ∈ Ri, iff

∀s′i ∈ Si,
∑

θ∈Θ,s−i∈S−i

fi(ti)(θ, s−i)ui(si, s−i, θ) ≥
∑

θ∈Θ,s−i∈S−i

fi(ti)(θ, s−i)ui(s
′
i, s−i, θ).

The event, “Player i believes event E−i ⊂ Θ × S−i × T−i” is defined as in Def. 7 part (2):
(si, ti) ∈ Bi(E−i) if βi(ti)(E−i) = 1. As before, both Ri and Bi(·) are subsets of Si×Ti. Recall that
we defined mutual belief in a product event E =

∏
iEi, where Ei ⊆ Si×Ti, as B(E) =

∏
iBi(E−i).

Since now beliefs are also about Θ, in order simplify the definition of B(B(E)) and so on, it is
convenient to instead have B(E) be a subset of Θ× S × T , as follows. For F = Q×

∏
iEi, where

Q ⊂ Θ and Ei ⊆ Si × Ti, let

B(F ) = Θ×
∏
i∈I

Bi(Q× E−i).

This way, B(F ) has the same product structure as F , so common belief can be defined as before
by iterating B(·). Correspondingly, we adapt the definition of RCBR:

RCBR = (Θ×R) ∩ CB(Θ×R).

As noted, in order to provide an epistemic analysis of ICR, we must discuss the relationship
between the epistemic type structure and the Θ-based type structure that we append to the game
of incomplete information and use to define solution concepts. We start with a type tΘi in a Θ-based
type structure—such as tNi in T N , or tRi in T R—which induces a belief hierarchy over Θ. Denote
this hierarchy by ϕΘ

i (tΘi ). We then ask whether a type ti in the epistemic type structure, which
induces belief hierarchies over Θ× S−i, has the same “marginal” hierarchy on Θ, denoted ϕi,Θ(ti).
To illustrate this, we relate the type structure T N of Table 8 to the epistemic type structure defined
in Table 9 below.
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(θ1, L, t2) (θ1, L, t
′
2) (θ1, R, t2) (θ1, R, t

′
2) (θ2, L, t2) (θ2, L, t

′
2) (θ2, R, t2) (θ2, R, t

′
2)

β1(t1) 0 0 1
2 0 1

2 0 0 0
β1(t′1) 1

2 0 0 0 0 1
2 0 0

(θ1, U, t1) (θ1, U, t
′
1) (θ1, D, t1) (θ1, D, t

′
1) (θ2, U, t1) (θ2, U, t

′
1) (θ2, D, t1) (θ2, D, t

′
2)

β2(t2) 1
2 0 0 0 1

2 0 0 0
β2(t′2) 0 1

3 0 0 0 2
3 0 0

Table 9: An epistemic type structure for the game in Tab. 7.

In this epistemic type structure, types t1 and t2 both believe that θ1 and θ2 are equally likely;
furthermore, t1 assigns probability one to 2’s type being t2, and conversely. So, if players’ belief
hierarchies over Θ× S−i × T−i are described by t1 and t2 respectively, there is common belief that
each payoff parameter θi is equally likely. This is the same belief hierarchy over Θ held by types
tN1 and tN2 in the Θ-based type structure T N . Formally, we have ϕΘ

i (tNi ) = ϕi,Θ(ti).
To further illustrate how to construct ϕi,Θ(·), consider type t′1. This type also believes that θ1

and θ2 are equally likely; however, t′1 has more complex second-order beliefs. Specifically, t′1 assigns
probability 1

2 to the event that the payoff parameter is θ1 and that 2 thinks θ1 and θ2 are equally
likely, and probability 1

2 to the event that the payoff state is θ2 and 2 thinks that the probability of
θ1 is 1

3 . Iterating this procedure yields the hierarchical beliefs on Θ held by t′1, i.e., ϕi,Θ(t′1). Notice
that no type in the Θ-based structure T N (or T R) generates this hierarchy over Θ.

Thus, for an epistemic type structure T and Θ-based type structure T Θ, we can define the
event that each player i’s hierarchy over Θ is the one generated by some type tΘi in T Θ:

[ϕΘ(tΘ)] =
{

(θ, s, t) : ∀i, ϕi,Θ(ti) = ϕΘ
i (tΘi )

}
.

Then, we can ask what strategies are consistent with RCBR and the assumption that hierarchical
beliefs on Θ are generated by a given type tΘi in the Θ-based structure T Θ. The following theorem
states that these are precisely the strategies in ICR∞i (tΘi ).53

Theorem 13 Fix a Θ-based type structure and a complete epistemic type structure for a game(
I, (Si)i∈I ,Θ, (ui)i∈I

)
. Then, for any Θ-type profile tΘ ∈ TΘ,

ICR∞(tΘ) = projS
(
RCBR ∩ [ϕΘ(tΘ)]

)
.

One important implication of this characterization is that the set of ICR strategies for a Θ-based
type tΘi depends solely upon the hierarchical beliefs on Θ that it generates. In particular, if two
such types tΘi , t̂

Θ
i induce the same hierarchies, i.e., if they are redundant, they share the same set

of ICR strategies (see Dekel et al., 2007).

6.3 Interim Independent Rationalizability

As noted above, a key feature of ICR is the fact that it allows a player to believe that her opponents’
strategic choices are correlated with the uncertainty Θ. The definition of ICR does so by introducing
maps σ−i : Θ × TΘ

−i → ∆(S−i), which explicitly allow player i’s conjecture about her opponents’
play to depend upon the realization of θ, in addition to their Θ-based types t−i. Correspondingly,

53For brevity, we only state the analog to part (2) in Theorems 1, 2, and 11. We could also define a notion of
best-response set and provide analogs to parts (1) and (3) as well. In particular, in any epistemic type structure,
ICR∞(tΘ) ⊇ projS

(
RCBR ∩ [ϕΘ(tΘ)]

)
.
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in an epistemic type structure, any correlation between the Θ and S−i components of the first-order
beliefs is allowed.

As discussed, if there is no unmodeled uncertainty one might want to rule out such correlations
and assume that, conditioning on opponents’ hierarchies, opponents’ strategies should be uncor-
related with Θ. Interim Independent Rationalizability, or IIR, reflects such considerations. Like
ICR, this procedure applies to an incomplete-information game augmented with a Θ-based type
structure (I, (Θ, TΘ

i , β
Θ
i )i∈I), and iteratively eliminates strategies that are not best replies for each

player type. The difference is in the way beliefs about S−i are constructed: IIR employs maps
σ−i : TΘ

−i → ∆(S−i) that associate with each profile t−i ∈ TΘ
−i a distribution over strategy profiles.

This explicitly rules out the possibility that opponents’ strategies may be directly correlated with
the payoff parameter θ. The probability that a type tΘi attaches to strategy profile s−i, given the
function σ−i, is then ∑

tΘ−i

βΘ
i (tΘi )(Θ× {tΘ−i})) · σ−i(tΘ−i)(s−i), (20)

in contrast with Eq. (19). Any correlation between the payoff parameter θ and opponents’ play must
thus come from correlation between θ and opponents’ types, because direct correlation between θ
and s−i is ruled out by the definition of the maps σ−i(·). This implies that redundant types can
matter. Consider the game in Tab. 7 and the type structure T R defined in Tab. 8. Strategy D is
a best reply for type tR1 , given the function σ2 : TR2 → ∆(S2) such that σ2(tR2 )(R) = 1 = σ2(t̄R2 )(L);
notice how the belief over Θ × S2 derived from βR1 (tR1 ) ∈ ∆(Θ × TR2 ) and σ2 induces correlation
between θ and 2’s strategy via correlation between θ and 2’s type. If we instead consider the type
structure T N , it is impossible to induce correlation between θ and 2’s strategy in this indirect
way, because 2 has only one type. As a result, D is not a best reply given this type structure.
This indicates that IIR can deliver different predictions in type structures that generate the same
hierarchical beliefs about Θ.

The IIR procedure (Ely and Peski, 2006) is formally defined as follows.

Definition 20 54 Consider a game G = (I,Θ, (Si, ui)i∈I) and a Θ-based type structure T Θ =
(Θ, (TΘ

i , β
Θ
i )i∈I). For every tΘi ∈ TΘ

i , let

• IIR0
i (t

Θ
i ) = Si;

• for k > 0, si ∈ IIRk
i (t

Θ
i ) if there exists a map σ−i : TΘ

−i → ∆(S−i) such that, for all tΘ−i ∈ TΘ
−i,

σ−i(t
Θ
−i)(IIRk−1

−i (tΘ−i)) = 1 and

∀s′i ∈ Si,
∑
θ,tΘ−i

βΘ
i (tΘi )(θ, tΘ−i)

∑
s−i

σ−i(t
Θ
−i)(s−i)ui(si, s−i, θ) ≥

∑
θ,tΘ−i

βΘ
i (tΘi )(θ, tΘ−i)

∑
s−i

σ−i(t
Θ
−i)(s−i)ui(s

′
i, s−i, θ).

The set IIR∞i (tΘi ) =
⋂
k≥0 IIRk

i (t
Θ
i ) is the set of interim independent rationalizable strategies

for type tΘi .

We now turn to the epistemic characterization of IIR. The key is to formalize the assumption
that player i’s beliefs about Θ × S−i are independent, conditional upon any hierarchical beliefs

54IIR can also be described as “rationalizability in the agent strategic form”: see Battigalli et al. (2011a).
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about Θ that i thinks may be held by her opponents. Thus, fix a finite Θ-based type structure T Θ

and an epistemic type structure T . We denote by Ti,CI the set of i’s types ti whose beliefs satisfy
this assumption: formally, ti ∈ Ti,CI if

margΘ×S−iβi(ti)
(
·
∣∣[ϕΘ
−i(t

Θ
−i)]
)

is the product of its marginals on Θ and S−i, whenever the above conditional probability is well-
defined, i.e., for every type tΘ−i in the Θ-based structure T Θ such that βi(ti)([ϕ

Θ
−i(t

Θ
−i]) > 0.55

Finally, let
CI = {(θ, s, t) : ∀i, ti ∈ Ti,CI }.

For example, consider the epistemic type structure in Table 9 and the Θ-based type structure
T R. Recall that both types tR2 and t̄R2 in T R generate the same hierarchy of beliefs about Θ,
namely that it is common belief that θ1 and θ2 are equally likely. Observe that epistemic type t2
generates precisely this hierarchical belief about Θ, whereas epistemic type t′2 generates a different
hierarchy. Therefore, the events [ϕΘ

2 (tR2 )] and [ϕΘ
2 (t̄R2 )] coincide and are equal to Θ×S2×{t2} in the

epistemic structure of Table 9. Now consider player 1’s type t1. This type assigns probability one
to 2’s type t2, and hence to the event [ϕΘ

2 (tR2 )]. Conditional on this event, t1’s beliefs over Θ× S2

assign equal probability to (θ2, L) and (θ1, R), which is not an independent product. Therefore,
t1 6∈ T1,CI . On the other hand, type t′1 assigns positive probability to both types t2 and t′2 of player
2. Conditional on t2, i.e., conditional on [ϕΘ

2 (tR2 )], t′2 assigns probability one to (θ1, L), which is
trivially an independent product. Conditional independence does not impose any further restriction
on t′1, because the Θ-hierarchy generated by t′2 differs from the hierarchy of any type in the Θ-based
structure T R. Therefore, t′1 ∈ T1,CI .

We then have the following characterization (Battigalli et al., 2010).

Theorem 14 Fix a finite Θ-based type structure T Θ and a complete epistemic type structure T
for the game

(
I, (Si)i∈I ,Θ, (ui)i∈I

)
. Then, for any profile of Θ-types tΘ ∈ TΘ,

IIR∞(tΘ) ⊃ projS
(
RCBR ∩ CI ∩ CB(CI ) ∩ [ϕΘ(tΘ)]

)
;

if, furthermore, the Θ-based type structure is not redundant (see Definition 5), then the above
inclusion is an equality.

Note that the inclusion in Theorem 14 may be strict when the Θ-based structure is redundant,
even if the epistemic type structure is complete. This contrasts with the results in Theorems 1, 2,
11 and 13, where completeness implies equality. In those four theorems, inclusion may be strict only
if some rationalizing beliefs are simply not present in a given incomplete epistemic type structure.

To see that the inclusion in Theorem 14 may be strict in a redundant Θ-based structure, consider
the game in Tab. 7 augmented with the type structure T R. As was argued before Definition 20,
IIR∞(tR1 ) = {U,D}. Now consider a strategy-type pair (s1, t1) ∈ RCBR1 ∩ CI 1 ∩ CB1(CI 2) ∩
[ϕΘ

1 (tR1 )] in a complete epistemic type structure for this game. Since (s1, t1) ∈ [ϕΘ
1 (tR1 ), epistemic

type t1 must satisfy common belief that θ1, θ2 are equally likely. Hence, t1 must believe that 2 also
commonly believes this. Therefore, (s1, t1) ∈ CI 1 implies that t1’s beliefs about Θ and S2 must be
independent conditional on 2 commonly believing this. But then, D cannot be a best reply: that
is, (s1, t1) ∈ RCBR1 ∩ CI 1 ∩ CB1(CI 2 ∩ [ϕΘ

1 (tR1 )] implies s1 = U . Thus the epistemic assumptions
result in {U}, a strict subset of the IIR prediction of {U,D}. On the other hand, repeating the
analysis in the structure T N leads to an equality: the only IIR strategy for type tN1 is U .

55For completeness, [ϕΘ
−i(t

Θ
−i)] =

{
(θ, s−i, t−i) : ∀j 6= i, ϕj,Θ(tj) = ϕΘ

j (tΘj )
}

.
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To summarize, the main point is quite simple: if the type space has redundant types, then
the solution concept should treat them symmetrically, since they are decision-theoretically indis-
tinguishable.56

6.4 Equilibrium concepts

The characterization of Nash equilibrium in games of incomplete information requires significantly
stronger assumptions relative to the complete-information case (cf. Theorem 5). There are two
differences. One is that the first-order belief of a type in an epistemic type structure is a belief
about opponents’ strategies, s−i ∈ S−i, whereas an equilibrium of an incomplete-information game
specifies maps from Θ-types into strategies. Therefore, while Theorem 5 obtained Nash equilibrium
by assuming that first-order beliefs are mutually believed, now this needs to be modified so that
the maps from Θ-hierarchies into strategies are (at least) mutually believed. The other, and more
interesting, difference is that the assumption of mutual belief of these maps and of rationality needs
to be strengthened to common belief. The following example illustrates this.

Example 6 Consider a 2-person game with payoff irrelevant uncertainty Θ = {θ, θ′}; player 2 has
only one action, L, player 1 has two actions, U,D where U is strictly dominant, and the Θ-based
type structure T Θ is generated by the common prior in Table 10:

θ tΘ2 t̂Θ2
tΘ1

1
2

1
4

t̂Θ1 0 0

θ′ tΘ2 t̂Θ2
tΘ1 0 0

t̂Θ1 0 1
4

Table 10: A Θ-based type structure

Consider the following maps from types in T Θ to strategies: ψ1(tΘ1 ) = U , ψ1(t̂Θ1 ) = D, ψ2(tΘ2 ) =
ψ2(t̂Θ2 ) = L. The pair ψ = (ψ1, ψ2) is obviously not a Bayesian Nash equilibrium. However, consider
the common-prior epistemic type structure T obtained from T Θ and ψ being common belief: see
Table 11.

θ L, t2 L, t̂2
U, t1

1
2

1
4

D, t̂1 0 0

θ′ L, t2 L, t̂2
U, t1 0 0

D, t̂1 0 1
4

Table 11: An epistemic type structure

The Θ-based hierarchies generated by the epistemic type structure T coincide with those gen-
erated by T Θ: for example, ϕ1,Θ(t1) = ϕΘ

1 (tΘ1 ). The type profile (t1, t2) satisfies rationality and
mutual, but not common, belief in rationality. Finally, by construction, Player 2’s beliefs about
1’s strategies, conditional on 1’s Θ-hierarchy, are as specified by ψ1, and this is common belief (the
same is trivially true for Player 1’s beliefs about 2’s sole strategy). This shows that mutual belief

56In an intriguing and surprising result, Ely and Peski (2006) show that one can associate with each type a hierarchy
of beliefs about ∆(Θ), rather than Θ, in such a way as to distinguish between types that are redundant in the usual
sense. However, we do not understand how their notion of hierarchy can be elicited. For example, the first-order
belief of player i in an Ely-Pesky hierarchy is an element of ∆(∆(Θ)), representing i’s beliefs about her own beliefs
about Θ (for details, see p. 28 in their paper). As we argued in Sec. 2.6, introspective beliefs cannot easily be
interpreted behaviorally. Moreover, a probability measure in ∆(∆(Θ)) is meant to represent how i’s beliefs about Θ
would change if i were informed of j’s type. This obviously depends on the type space chosen to represent beliefs;
we do not see how one could elicit these beliefs.

35



in rationality, even with common belief in the maps ψi, is not enough to obtain Bayesian Nash
equilibrium.57

We now show that strengthening the assumptions of Theorem 5 as indicated above yields
a characterization of Bayesian Nash equilibrium in two-player games (see Pomatto (2011) and
Sadzik (2011)). We believe (but have not verified) that a similar analog to Theorem 7 holds
for games with more than two players. There exist several incomplete-information versions of
correlated equilibrium (Forges, 1993, 2006; Liu, 2011; Bergemann and Morris, 2011). The epistemic
characterizations for these concepts may be insightful, and have not yet been developed.

Fix a non-redundant Θ-based type structure TΘ on Θ, and maps ψi : TΘ
−i → ∆(S−i). For every

i, we interpret this map as Player i’s conjecture about the behavioral strategy of her opponents.58

Given an epistemic type structure T , let [s−i] = Θ× {s−i} × T−i and [tΘ−i] = Θ× S−i × {t−i :
ϕ−i,Θ(t−i) = ϕΘ

−i(t
Θ
−i)}. These are the events that “the opponents play s−i” and “the opponents’

Θ-hierarchies are as specified by tΘ−i.” Then, the event that “each player’s first-order beliefs are
consistent with ψ” is

[ψ] =
{

(θ, s, t) : ∀i, ∀tΘ−i ∈ TΘ
−i s.t. βi(ti)([t

Θ
−i]) > 0, βi(ti)([s−i]|[tΘ−i]) = ψi(t

Θ
−i)(s−i)

}
. (21)

Define “Θ-hierarchies are consistent with a given Harsanyi type structure T Θ”:

[T Θ] =
{

(θ, s, t) : ∀i, ϕi,Θ(ti) ∈ ϕΘ
i (TΘ

i ).
}
.

We need one more definition. Θ-based structure T Θ is minimal if, for every pair of players
and types i, j ∈ I, tΘi ∈ TΘ

i , tΘj ∈ TΘ
j , there is a finite sequence t1i(1), . . . , t

N
i(N) such that i(1) = 1,

t1i(1) = tΘi , i(N) = j, tNi(N) = tΘj , and for all n = 2, . . . , N , βΘ
i(n−1)(t

n−1)([tni(n)]) > 0. That is, loosely

speaking, it is not possible to partition T Θ into two components such that each component is a
type structure in and of itself.

Theorem 15 Assume that there are two players. Fix an incomplete-information game G and
a non-redundant, minimal Θ-based type structure T Θ and maps ψ1, ψ2 as above. If there is an
epistemic type structure T in which CB([T Θ]) ∩ CB([ψ]) ∩ CB(Θ × R) 6= ∅, then (ψ2, ψ1) is a
Bayesian Nash equilibrium of the Bayesian game (G, T Θ).

6.5 ∆-rationalizability

The role of Θ-based type structures in the definition of ICR and IIR is to represent assump-
tions about players’ interactive beliefs concerning exogenous payoff uncertainty, Θ. An alternative
approach is to adapt the notion of ∆-rationalizability discussed in Sec. 3.3. Doing so is straight-
forward: for every player i, let ∆i ⊂ ∆(Θ× S−i) represent the restrictions on i’s first-order beliefs
that we would like to maintain. Notice that these restrictions can also be about i’s opponents’
strategies, not just the exogenous uncertainty. The set of ∆-rationalizable profiles, which we con-
tinue to denote by S∆,∞, can then be defined exactly as in Def. 11, with the understanding that
players best-respond to conjectures σ−i ∈ ∆(Θ× S−i), rather than in ∆(S−i). The epistemic char-
acterization of S∆,∞ via RCBR and common beliefs in the restrictions ∆i provided in Theorem 2
also extends, provided RCBR is defined as in Sec. 6.2.

57Furthermore, for any finite k ≥ 2, we can modify the above example so that there is k-th order mutual belief in
rationality, and still the conjectures do not form a Bayesian Nash equilibrium. Similarly, the necessity of common
belief in ψ can be demonstrated. See Pomatto (2011).

58The maps ψi resemble, but are distinct from, the “books of play” ni (see Eq. 14) since the former map from
Θ-hierarchies, whereas the latter map from S−i-hierarchies.
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This framework allows us to model, for example, a situation in which players’ ordinal preferences
over strategy profiles are fixed (and commonly believed), but their cardinal preferences (i.e., their
risk attitudes) are unknown. To study this situation, Börgers (1993) proposes the following notion
of rationality: given a complete-information game (I, (Si, ui)i∈I), si is rational if and only if there
is a belief σ−i ∈ ∆(S−i) and a function vi : S → R that is a strictly increasing transformation of ui
such that si is a best reply to σ−i with utility function vi. He characterizes this notion of rationality
in terms of a novel pure-strategy dominance property, and argues that common belief in his notion
of rationality corresponds to the iterated deletion of strategies that are pure-strategy dominated
in his sense. As Borgers notes, it is straightforward to formalize this by suitably modifying the
definition of the events Ri, and hence RCBR.

Instead of modifying the notion of rationality for complete-information games, we can obtain
an alternative epistemic characterization of iterated pure-strategy dominance in Borgers’ sense by
considering a related game in which players have incomplete information about the risk preferences
of their opponents, but know their ordinal rankings. To do so, we retain the usual notion of
rationality for incomplete-information games, and consider the implications of RCBR and common
belief of the ordinal rankings. We model common belief of the ordinal rankings by a suitable
choice of payoff parameter space Θ and commonly-believed restrictions on first-order beliefs ∆.
By the incomplete-information analog of Theorem 2, RCBR and common belief of the ordinal
rankings characterize the set S∆,∞ of ∆-rationalizable profiles. Given the choice of Θ and ∆,
S∆,∞ is precisely the set of iteratively pure-strategy undominated profiles. To sum up, Borgers
relates iterated pure-strategy dominance to RCBR in the original complete-information game, but
redefines what it means for a player to be rational. The argument described here relates iterated
pure-strategy dominance to RCBR and common belief in the ordinal rankings in an associated
incomplete-information game, where rationality has the usual meaning.

To make this precise, we specify the appropriate Θ and ∆. Given the complete-information
game G = (I, (Si, ui)i∈I), let Θi be the set of all payoff functions θi : S → [0, 1], and Θu

i be the set
of utilities θui ∈ Θi that are ordinally equivalent to ui. Furthermore, let ∆i be the set of all finite-
support probability measures σ−i ∈ ∆(Θ×S−i) such that player i (i) is certain of her own cardinal
utility, and (ii) is certain of her opponents’ ordinal preferences: i.e., σ−i({θui }×Θu

−i× S−i) = 1 for
some θui ∈ Θu

i . Note that (i) says that Player i is certain of her own risk preferences, but these need
not coincide with ui. Finally, we define the incomplete-information game in the obvious way, that is,
(I,Θ, (Si, υi)i∈I), where υi(θ, s) = θi(s) for every θ ∈ Θ and s ∈ S. With these definitions, a strategy
si ∈ Si is a best reply for i in the incomplete-information game (I,Θ, (Si, υi)i∈I) if and only if it is
a best reply for i given some (complete-information) payoff function θi : S → R that is ordinally
equivalent to ui, i.e., if it is not pure-strategy dominated in the sense of Borgers. It follows that
S∆,∞ coincides with iterated pure-strategy dominance; thus, by the incomplete-information analog
of Theorem 2, iterated pure-strategy dominance in the complete-information game (I, (Si, ui)i∈I) is
characterized by RCBR with the restrictions ∆ specified here for the incomplete-information game
(I,Θ, (Si, υi)i∈I).

6.6 Discussion

The epistemic analysis of games of incomplete information is recent and indeed incomplete. The
results above make three points. First, IIR is suitable only when there are no redundant types and
no unmodeled correlation. ICR on the other hand is a robust solution concept that corresponds
to RCBR. Finally, we saw that equilibrium concepts are difficult to characterize with clean and
insightful epistemic conditions. The assumptions required are more demanding than the analogous
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concepts in complete-information games.59

As we do throughout this chapter, in this section we continue to interpret type structures
merely as representations of hierarchies of beliefs. As we noted in Section 1.1 type structures are
also used to model hard information. If one takes this view, then one would want to replace the
independence assumption CI with the statement that, conditional on types, beliefs are independent.
Together with the other epistemic assumptions in Theorem 14, this would fully characterize IIR.
However, we prefer to model such hard information explicitly and distinctly from types. The basic
space of uncertainty should include the hard information, and each player’s hierarchy of beliefs
should be consistent with the hard information received. In such a structure, types associated with
different hard information are distinguishable – they have different beliefs about the information.
In particular, the suitable analogs to type structures T N and T R are not equivalent in terms of
hierarchies, and the types in the latter are not redundant. Consequently, the epistemic assumptions
in Theorem 14 would yield different answers for the two structures, consistently with IIR.

We do not discuss almost common belief in the payoff structure within the context of games with
incomplete information. This is an issue which, starting from Rubinstein (1989)’s email game, has
led to many interesting developments. Among others, these include Monderer and Samet (1989)’s
introduction of p-belief in game theory, and the literature on global games and robustness (see, e.g.,
Carlsson and Van Damme, 1993; Morris and Shin, 2003; Kajii and Morris, 1997a; Weinstein and
Yildiz, 2007). Some of these issues (in particular, almost common belief in rationality for games
with incomplete information) may benefit from epistemic analysis.

7 Extensive-form games

7.1 Introduction

The results in the previous sections apply verbatim to the strategic form of a multistage game.
However, merely invoking those results disregards an essential implication of the dynamic nature
of the interaction: players may be surprised in the course of game play. As is familiar from the
textbook presentation of extensive-form solution concepts such as sequential equilibrium (Kreps and
Wilson, 1982), and refinements such as the Intuitive Criterion of Cho and Kreps (1987), different
assumptions about beliefs at unexpected histories can lead to very different predictions. Epistemic
game theory provides a rich framework to analyze such assumptions. We now illustrate this using
as an example the debate on the relationship between backward induction and “common belief in
rationality.”

Consider the three-legged centipede game in Fig. 2. A common, informal—and, it turns out,
controversial—argument suggests that “common belief in rationality” implies that the backward-
induction (BI) outcome should be played: Player 1, if rational, will choose D at the third node;
but then, if Player 2 is rational and believes that 1 is rational, he should choose d at the second
node; finally, if Player 1 is rational and anticipates all this, she will choose D at the initial node.

The problem with this informal argument is that it is not immediately obvious what is meant
by ‘belief’ and ‘rationality’ in an extensive game such as the Centipede. Trivially, if one assumes
that players commit to their strategies (perhaps by delegating actual play to agents, or machines)
at the beginning of the game, and are rational in the sense of Sec. 3, then one reduces the situation
to a game with simultaneous moves. It is easy to verify that, in that strategic-form game, RCBR
only eliminates strategy AA for Player 1. Thus, choosing D at the initial node is consistent with

59 This point, from a different perspective, is consistent with the work on learning in games, which argues for
weaker concepts than Nash equilibrium, such as self-confirming equilibrium (see, e.g., Fudenberg and Levine (1993);
Dekel, Fudenberg, and Levine (1999); Dekel, Fudenberg, and Levine (2004); and Fudenberg and Kamada (2012)).
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Figure 2: A three-legged centipede game

RCBR, but so is choosing A at the first node and then D at the third node. In particular, player 1
will rationally commit to play strategy AD if she believes that 2 will play a with sufficiently high
probability. In turn, player 2 will commit to play a if he expects 1 to actually choose D at the
first node, because in this case his choice will not matter. So, the profile (AD , a) is consistent with
RCBR.

A possible objection to this argument begins by noting that, if the game actually reaches the
second node, player 2 may regret his commitment to a. At the second node, he knows that player
1 did not choose D. Thus, if he continues to believe that 1 has committed to a strategy consistent
with RCBR, he concludes that 1 will play D next. In this case, player 2’s commitment to a results
in a net loss of 1 “util.” Then, since 2’s choice of a vs. d only matters if play reaches the second
node, shouldn’t player 2 anticipate all this and commit to d instead?

Despite their intuitive appeal, these considerations pertain to player 2’s knowledge, beliefs,
and expected payoffs at the second node, and as such are irrelevant from the ex-ante point of view.
What then if one abandons this ex-ante perspective? Suppose one takes into account the beliefs that
players would actually hold at different points in the game, and correspondingly adopts ‘sequential
rationality’ as the appropriate behavioral principle (Kreps and Wilson, 1982). For player 2, this
requires that his choice of a or d be optimal given the beliefs she would hold at the second node.
The preceding argument now seems to apply: at that node, player 2 knows that 1 did not play D,
and it appears that player 2 should conclude that 1 is rationally playing AD , whatever 2’s initial
beliefs might have been. Thus, it appears that the informal argument supporting the BI solution
does in fact apply if one takes the dynamic nature of the game into consideration.

However, in an important contribution, Reny (1992) questions the argument just given. Reny
points out that, while this argument allows for the possibility that player 2’s beliefs about 1’s play
may change as the game progresses, it implicitly assumes that 2’s beliefs about 1’s rationality will
not. If one instead allows 2’s beliefs about 1’s rationality to change, the BI prediction need not
obtain, even though initially there is common belief in (sequential) rationality. The intuition is as
follows. Suppose that, before the game is played, player 2 expects the BI outcome, with the usual
rationalization: that is, 2 expects 1 to choose D at the initial node because 1 expects d, which is
in turn justified by 2’s belief that 1 will choose D at the third node. However, if the second node
is reached—an event that 2 does not expect to occur—then player 2 changes his mind about 1’s
rationality. This is not unreasonable: after all, if 1 expects 2 to choose d, 1 should not play A
at the first node, so observing A does provide circumstantial evidence to the effect that 1 is not
rational. In particular, upon reaching the second node, player 2 revises his beliefs about 1’s play
and now expects 1 to choose A at the third node as well; this makes his own choice of a sequentially
rational. To sum up, player 2’s beliefs may initially be consistent with BI, and—informally—with
RCBR, and yet he may (plan to) play a. Furthermore, suppose player 1 is rational and has correct
beliefs about 2’s strategy and beliefs. Then, 1 will rationally choose A at the first node, and then
D at the third. The point is that, while 2’s beliefs about 1’s behavior and beliefs are incorrect,
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both players’ initial beliefs are consistent with RCBR. Yet, BI does not obtain.60

BI can be obtained if we translate into an epistemic model the assumptions that players make
conditionally optimal choices at all information sets, and that they believe the same is true of
opponents at all subsequent decision nodes; see subsection 7.5. We find it more surprising that
it also follows from a strengthening of the notion of belief that is motivated by forward-induction
ideas, i.e., from requiring that players “believe in rationality as much as possible”: see Corollary 1
in subsection 7.4.

This example illustrates that a careful, explicit modeling of interactive beliefs is extremely
important in extensive games. In particular, Reny’s argument points out a hidden assumption in
the informal argument relating ‘common belief in rationality’ and BI. These subtle issues suggest
that a formal epistemic analysis may be insightful. Indeed, as with simultaneous-move games,
epistemic models provide the language and tools to study the implications of common belief in
rationality in dynamic games, and to study how modifications of the notion of rationality and
belief characterize different solution concepts. Moreover, as before, dynamic epistemic models can
and should force the theorist to make all assumptions explicit (or, at least, they can make it easier
to spot hidden assumptions).

The present chapter emphasizes this role of epistemic models. We begin by characterizing initial
RCBR in multistage games with observed actions, based on the work of Ben-Porath (1997) and
Battigalli and Siniscalchi (1999). We then introduce the notion of strong belief, and show that, in
complete type structures, rationality and common strong belief thereof (RCSBR) is characterized
by extensive-form rationalizability (Pearce, 1984; Battigalli, 1997). RCSBR captures a (strong)
principle of forward induction (Kohlberg and Mertens, 1986), as we indicate by means of examples.
At the same time, RCSBR in complete type structures implies that the backward-induction outcome
will obtain in generic perfect-information games; thus, it provides sufficient conditions for BI (see
Battigalli and Siniscalchi (2002)).

7.2 Basic ingredients

For notational convenience, we focus on multistage games with observed actions (Fudenberg and
Tirole, 1991a; Osborne and Rubinstein, 1994). These are extensive games in which play proceeds
in stages. Perfect-information games are an example, but more generally, two or more players may
be active in a given stage, in which case they choose simultaneously. The crucial assumption is that
players observe all past choices at the beginning of each stage. Although we shall not do so, it is
trivial to add incomplete information to such games (see Subsection 7.7). Most extensive games of
interest in applications are in fact multistage games with observed actions (henceforth, “multistage
game”) and possibly incomplete information.

We follow the definition of multistage games in Osborne and Rubinstein (1994, section 6.3.2),
and introduce here only the notation that we need subsequently. We identify a multistage game Γ
with the tuple (I,H, (Hi, Si(·), ui)i∈I), where:

• H is the set of (terminal and non-terminal) histories in Γ. In a perfect-information game,
these are (possibly partial) sequences of actions. In the Centipede game of Fig. 2, 〈A, a,D〉 is
a (terminal) history. In a general multistage game, histories are sequences of action profiles.
For simplicity, the profiles only indicate actions of players who have non-trivial choices. In
the game of Fig. 3, 〈In〉 and 〈In, (T, L)〉 are both histories.

60One might further conjecture that assuming RCBR at every history may deliver the BI solution. However, in
many games, RCBR cannot possibly hold at every history: this is the case for centipede games, for instance. See
Reny (1993) and Battigalli and Siniscalchi (1999) for details and additional results.
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• Hi is the subset of H where Player i has non-trivial choices, and ∅ denotes the initial history;

• Si is the set of strategic-form strategies of Player i: these are maps from histories to actions;

• Hi(si) is the set of histories in Hi that are not precluded if i plays strategy si (whether or not
any h ∈ Hi(si) is actually reached thus only depends upon the play of i’s opponents);

• Si(h) is the set of strategies of player i that allow history h to be reached. The Cartesian
product S(h) =

∏
i Si(h) = Si(h)×S−i(h) is the set of strategy profiles that reach h.61. Note

also that Si(∅) = Si;

• ui : S → R is i’s strategic-form payoff function.

A history represents a (possibly partial) path of play. In a perfect-information game, a history
is an ordered list of actions

In order to analyze players’ reasoning at each point in the game, it is necessary to adopt an ex-
panded notion of probabilistic beliefs, and correspondingly redefine type structures. Specifically, we
need a model of conditional beliefs. Following Ben-Porath (1997) (see also Battigalli and Siniscalchi,
1999), we adopt the following notion, originally proposed by Rényi (1955).

Definition 21 Fix a measurable space (Ω,Σ) and a countable collection B ⊂ Σ. A conditional
probability system, or CPS, is a map µ : Σ× B → [0, 1] such that:

1. For each B ∈ B, µ(·|B) ∈ ∆(Ω) and µ(B|B) = 1.

2. If A ∈ Σ and B,C ∈ B with B ⊂ C, then µ(A|C) = µ(A|B) · µ(B|C).

The set of CPSs on (Ω,Σ) with conditioning events B is denoted ∆B(Ω).

A conditional probability system is a belief over a space of uncertainty Ω, together with condi-
tional beliefs over a collection B of conditioning events B ⊂ Ω.62 In the simplest application of this
definition we shall consider, we take the point of view of Player i: the domain Ω of her uncertainty
is the set S−i of strategy profiles that may be played by her opponents, and, roughly speaking, B is
the set of i’s information sets. Formally, if play reaches a (non-terminal) history h ∈ H, Player i can
infer that her opponents played a strategy profile in S−i(h). Thus, the relevant set of conditioning
events is B ≡ {S−i(h) : h ∈ H}, and µ(·|S−i(h)) denotes the conditional belief held by i at history
h.

Condition 2 is the essential property of CPSs: it requires that Bayesian updating be applied
“whenever possible.” Note that player i’s initial beliefs are given by µ(·|S−i(∅)) = µ(·|S−i). Now
suppose that, in a given play of the game, the the history reached next is h. If Player i initially
considered h possible—that is, if µ(S−i(h)|S−i) > 0—then her beliefs µ(·|S−i(h)) must be obtained
from µ(·|S−i) via the usual updating formula. If, on the other hand, Player i initially assigned
zero probability to the event that h was reached (more precisely, to opponents’ strategies that
allow h to be reached), then the Bayesian updating formula clearly cannot apply, and µ(·|S−i(h)) is
unconstrained (except for the natural requirement that µ(S−i(h)|S−i(h)) = 1). However, suppose
that the history reached after h is h′, and µ(S−i(h

′)|S−i(h)) > 0: in this case, Condition 2 requires

61For general extensive games, one can define the sets S(h), Si(h) and S−i(h); the equality S(h) = Si(h)× S−i(h)
requires perfect recall. The class of games we consider do satisfy perfect recall, so this equality holds.

62For a decision-theoretic analysis of conditional probability systems, see Myerson (1997), Blume et al. (1991), and
Siniscalchi (2011).
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that Player i derive µ(·|S−i(h′)) from µ(·|S−i(h)) via Bayesian updating. That is, following a
surprise event, a player is allowed to revise her beliefs in an essentially unconstrained way; however,
once she has done so, she has to conform to Bayesian updating until a new surprise event is
observed. Analogous assumptions underlie solution concepts such as sequential equilibrium (Kreps
and Wilson, 1982) or perfect Bayesian equilibrium (Fudenberg and Tirole, 1991b); however, these
equilibrium concepts add further restrictions on beliefs following surprise events.

For example, consider the centipede game of Fig. 2, and suppose that 2’s initial beliefs µ are
µ({AD}|S1) = µ({D} |S1) = 0.5. Then, conditional upon reaching the second node, player 2 must
assign probability one to AD . If instead µ({D} |S1) = 1, then 2’s conditional beliefs at the second
node must assign probability zero to strategies that choose D at the initial node, but are otherwise
unconstrained.

We now define sequential rationality with respect to a CPS over opponents’ strategies. Unlike,
e.g., Kreps and Wilson (1982), but as in, e.g., Rubinstein (1991), Reny (1992), and Dekel et al.
(1999), we do not require that a strategy si of Player i be optimal at all histories, but only at those
that are not ruled out by si itself.63

Here and subsequently, we denote by B−i the conditioning events S−i(h), h ∈ H.

Definition 22 ((Weak) Sequential Rationality) Fix a player i ∈ I, a CPS µ ∈ ∆B−i(S−i)
and a strategy si ∈ Si. Say that si is a sequential best response to µ iff, for all h ∈ Hi(si) and
all s′i ∈ Si(h),

Eµ(·|S−i(h))[ui(si, ·)] ≥ Eµ(·|S−i(h))[ui(s
′
i, ·)].

In this case, we say that the CPS µ rationalizes the strategy si.

That is, the strategy specified by si at every information set it reaches is optimal given the condi-
tional beliefs at that information set.

Finally, we define type structures for multistage games. The definition is analogous to the one
for strategic-form games (Def. 3); the key difference is that types are mapped to CPSs (rather than
probabilities) over opponents’ strategies and types. An essential element of the following definition
is the assumption that each type holds beliefs conditional upon reaching every history; thus, the
conditioning events are of the form S−i(h)× T−i.

Definition 23 A type structure for the multistage game Γ = (I,H, (Hi, Si(·), ui)i∈I) is a tuple
T = (I, (C−i, Ti, βi)i∈I), where each Ti is a compact metric space,

1. C−i = {S−i(h)× T−i : h ∈ H},

2. βi : Ti → ∆C−i(S−i × T−i),

and each βi is continuous.64 We also write βi,h(ti) = βi(ti)(·|S−i(h)× T−i).

Note that a type ti for player i specifies conditional beliefs at histories h where i has non-trivial
choices to make, and also histories at which i is essentially not active. In particular, this is true
for h = ∅, the initial history. This simplifies the discussion of assumptions such as “common

63 Choices specified by si at histories precluded by si itself are payoff-irrelevant. They are important in equilibrium
notions such as Sequential Equilibrium because they represent other players’ beliefs about i’s play at counterfactual
histories; in particular, the requirement that choices at such histories be optimal reflect the assumption that opponents
believe i to be rational. For example, in the game of Fig. 2, 1’s BI strategy DD encodes 2’s belief that 1 will choose
D at the last node. But, in an epistemic approach such assumptions can and should be modeled explicitly using
opponents’ CPSs.

64The set ∆C−i(S−i × T−i) is endowed with the relative product topology.
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belief in rationality at a history” (e.g., initial CBR). It is sometimes convenient to refer to a tuple
(s, t) = (si, ti)i∈I as a state.

Battigalli and Siniscalchi (1999) construct a type structure for extensive games that is canonical
(types are collectively coherent hierarchies of conditional beliefs), embeds all other structures as a
belief-closed subset, and is complete. Their construction extends the one we provided in Section 2
for strategic-form games. As in that section, we denote by Hi the set of X−i-based hierarchies of
conditional beliefs for player i, and by ϕi : Ti → Hi the belief hierarchy map that associates with
each type in a type structure T the hierarchy of conditional beliefs that it generates (cf. Definition
5).

As in the previous sections, it is convenient to introduce explicit notation for first-order beliefs.
The first-order beliefs of a type ti in an epistemic type structure for an extensive game is a CPS on
S−i. Thus, given a type structure (I, (C−i, Ti, βi)i∈I) for the extensive game (I,H, (Hi, Si(·), ui)i∈I),
the first-order belief map fi : Ti → ∆B−i(S−i) for Player i is defined by letting fi(ti)(·|S−i(h)) =
margS−iβi,h(ti) for all h ∈ H. It can be shown that fi(ti) is indeed a CPS on S−i with conditioning
events S−i(h), h ∈ H.

We now define the key ingredients of our epistemic analysis. The following is analogous to
Definition 7 in Section 2.

Definition 24 (Rationality and Conditional Belief) The event “Player i is sequentially ra-
tional” is

Ri = {(si, ti) ∈ Si × Ti : si is a sequential best reply to fi(ti)}.65

For every measurable subset E−i ⊂ S−i × T−i and history h ∈ H, the event “Player i would believe
that E−i if h was reached” is

Bi,h(E−i) = {(si, ti) ∈ Si × Ti : βi,h(ti)(E−i) = 1}.

7.3 Initial CBR

We begin with the simplest set of epistemic assumptions that take into account the extensive-form
nature of the game, but are still close to strategic-form analysis in spirit.

Following Ben-Porath (1997), we consider the assumption that players are (sequentially) rational
and initially commonly believe in (sequential) rationality:

RICBR0
i = Ri,

RICBRk
i = RICBRk−1

i ∩Bi,φ(RICBRk−1
−i ) for k > 0, (22)

RICBRi =
⋂
k≥0

RICBRk
i .

Except for the fact that rationality is interpreted in the sense of Def. 24, these epistemic
assumptions are analogous to RCBR in simultaneous-moves games, as defined in Eqs. 9 and 10.
Direct restrictions on beliefs are imposed only at the beginning of the game–the “I” in RICBRk

i

refers to this feature. In particular, following a surprise move by an opponent, Player i’s beliefs are
not constrained.

We now illustrate the above definitions. Table 12 represents a type structure for the Centipede
game in Fig. 2. Because we need to represent beliefs at different points in the game, we adopt a
more compact notation than in the preceding sections. For each player, we indicate a numbered

65This is a slight abuse of notation, because we have used Ri to denote strategic-form rationality in Def. 7.
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(non-exhaustive) list of strategy-type pairs; for each such pair (si, ti), we describe the (conditional)
beliefs associated with type ti as a probability vector over the strategy-type pairs of the opponent.
By convention, all strategy-type pairs that are not explicitly listed are assigned zero probability at
all histories. Furthermore, we omit beliefs at histories that are not relevant for the analysis.

(s1, t1) β1,φ(t1) β1,〈A,a〉(t1)
1 (D, t11) (1,0) (0,1)
2 (AD, t21) (0,1) (0,1)
3 (AA, t31) ( 1

2 ,
1
2 ) (0,1)

(s2, t2) β2,φ(t2) β2,〈A〉(t2)

1 (d, t12) (1,0,0) (0,1,0)
2 (a, t22) (1,0,0) (0,0,1)

Table 12: A type structure for the Centipede game of Fig. 2.

To interpret, each row in the two tables corresponds to a pair consisting of a strategy and a
type for a player. Each vector in such a row is that type’s probability distribution over the rows
of the other player’s table, conditional on reaching the history described by the column label. For
example, consider the row numbered ‘1’ in the table on the left, which corresponds to strategy-type
pair (D, t11) of player 1. The vector (1, 0) indicates that, at the initial history φ, type t11 believes
that player 2 would choose d at the second node, and that 2’s type is t12; the vector (0, 1) indicates
that at the third node, i.e. after history 〈A, a〉, type t11 believes that player 2 actually chose a at
the second node. The interpretation of the other types is similar. Since we do not list strategy-type
pair (D, t21) in the table on the left, player 2 assigns probability 0 to it at every history.

State (D, d, t11, t
1
2) supports the BI prediction. Player 1 chooses D at the initial node φ because

she expects 2 to play d at the second node 〈A〉; Player 2 initially expects 1 to play D at φ, but
indeed plans to choose d at 〈A〉 because, should he observe A, he would revise his beliefs and
conclude that 1 is actually (rationally) playing AD . Instead, state (AD , a, t21, t

2
2) corresponds to

Reny’s story, as formalized by Ben-Porath: player 1 initially expects 2 to choose a, and thus
best-responds with AD ; player 2 initially expects 1 to play D and to hold beliefs consistent with
backward induction, but upon observing A he revises his beliefs and concludes that 1 is actually
irrational, and will continue with A at the third node. Both states are consistent with RICBR.
We obtain RICBR1

1 =
{

(D, t11), (AD , t21)
}

and RICBR1
2 =

{
(d, t12), (a, t22)

}
. (Recall that subscripts

refer to players and superscripts to iterations.) Note that all strategy-type pairs for 2 are in
RICBR1

2; hence, every type for 1 in RICBR1
1 trivially assigns probability one to RICBR1

2 at the
initial history, so RICBR2

1 = RICBR1
1. Moreover, every type of 2 initially assigns probability one

to (D, t11), which is in RICBR1
1; hence, RICBR2

2 = RICBR1
2. Repeating the argument shows that

RICBRk
i = RICBR1

i for all k ≥ 1. Thus, as claimed in the introduction to this section, the BI
prediction is consistent with RICBR, but so is the profile (AD , a).

As is the case for RCBR in simultaneous-move games, RICBR can be characterized via an
iterative deletion algorithm (Battigalli and Siniscalchi, 1999) as well as a suitable notion of best
reply set. Initial rationalizability (Definition 25) is like rationalizability, in that it iteratively deletes
strategies that are not best replies. In each iteration, players’ beliefs are restricted to assign positive
probability only to strategies that survived the previous rounds. The differences are that here ‘best
reply’ means ‘sequential best reply’ to a CPS, and only beliefs at the beginning of the game are
restricted. Definition 26 is similarly related to best-reply sets, as in Definition 9.

Definition 25 (Initial Rationalizability) Fix a multistage game (I,H, (Hi, Si(·), ui)i∈I). For
every player i ∈ I, let S0

i,φ = Si. Inductively, for every k > 0, let Ski,φ be the set of strategies si ∈ Si
that are sequential best replies to a CPS µ ∈ ∆B−i(S−i) such that µ(Sk−1

−i,φ|S−i) = 1. Finally, the

set of initially rationalizable strategies for i is S∞i,φ =
⋂
k≥0 S

k
i,φ.
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Definition 26 Fix a multistage game (I,H, (Hi, Si(·), ui)i∈I). A set B =
∏
i∈I Bi ⊂ S is a se-

quential best-reply set (or SBRS) if, for every player i ∈ I, every si ∈ Bi is a sequential best
reply to a CPS µ−i ∈ ∆B−i(S−i) such that µ(B−i|S−i) = 1.

B is a full SBRS if, for every si ∈ Bi, there is a CPS µ−i ∈ ∆B−i(S−i) that rationalizes it
and such that (i) µ(B−i|S−i) = 1, and (ii) all sequential best replies to µ−i are also in Bi.

One can easily see that, in any extensive game, S∞φ is the largest SBRS. We have:

Theorem 16

1. In any type structure T , projSRICBR is a full SBRS;

2. in any complete type structure T , projSRICBR = S∞φ ;

3. for every full SBRS Q there exists a type structure T such that Q = projSRICBR.

Ben-Porath (1997) shows that, in generic perfect-information games, RICBR characterizes the
S∞W procedure discussed in Sec. 5. Since S∞φ coincides with S∞W in such games, Theorem 16
generalizes Ben-Porath’s. Thus, for generic perfect-information games, Theorem 16 or, equivalently,
Ben-Porath’s result, provide an alternative, but related, interpretation of the S∞W procedure:
instead of relying on common p-belief in strategic-form rationality (Definition 7), RICBR imposes
common 1-belief in sequential rationality (Definition 22) at the beginning of the game, but no
restrictions on beliefs at other points in the game.

7.4 Forward Induction

While the literature has considered a wide variety of ‘forward-induction’ notions,66 a common
thread emerges: surprise events are regarded as arising out of purposeful choices of the opponents,
rather than mistakes or ‘trembles.’ In turn, this implies that a player may try to draw inferences
about future play from a past surprising choice made by an opponent. This leads to restrictions on
beliefs conditional upon unexpected histories—precisely the beliefs that RICBR does not constrain.

In this section we consider a particular way to constrain beliefs at unexpected histories, namely
iterated strong belief in rationality. We first define strong belief (section 7.4.1) and provide examples
showing how strong belief in rationality yields forward and backward induction (section 7.4.2). After
providing the characterization results in Section 7.4.3, we discuss important properties of the notion
of strong belief in Section 7.4.4.

7.4.1 Strong Belief

Stalnaker (1998) and, independently, Battigalli and Siniscalchi (2002) introduce the notion of
‘strong belief’ and argue that it is a key ingredient of forward-induction reasoning:

Definition 27 (Strong Belief) Fix a type structure (I, (C−i, Ti, βi)i∈I) for an extensive game
(I,H, (Hi, Si(·), ui)i∈I). For any player i ∈ I and measurable subset E−i ⊂ S−i × T−i, the event
“Player i strongly believes that E−i” is

SB i(E−i) =
⋂

h∈H:[S−i(h)×T−i]∩E−i 6=∅

Bi,h(E−i).

66The expression ‘forward induction’ was coined by Kohlberg and Mertens (1986). The Battle of the Sexes with an
outside option is an early example, which Kreps and Wilson (1982) attribute to Kohlberg. See also Cho and Kreps
(1987). A recent axiomatic approach is proposed by Govindan and Wilson (2009) (though axioms are imposed on
solution concepts, not behavior or beliefs).
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In words: if E−i could be true in a state of the world where h can be reached,67 then, upon reaching
h, Player i must believe that E−i is in fact true. More concisely: Player i believes that E−i is true
whenever possible.

7.4.2 Examples

In this subsection we discuss the implications of strong belief in rationality for the Centipede game
(Fig. 2) and the Battle of the Sexes with an outside option (Fig. 3; see Kohlberg and Mertens,
1986).

Example 7 (The Centipede Game) Consider again the type structure in Table 12. As noted
above, type t22 of player 2 initially believes that 1 is rational, but becomes convinced that Player
1 is irrational in case 1 chooses A at φ. However, note that there is a rational strategy-type pair
for player 1 that chooses A at φ, namely (AD , t21). Strong belief in 1’s rationality, SB2(R1), then
requires player 2 to believe at the second node, i.e., at history 〈A〉, that 1 is rational. Therefore,
type t22 of player 2 is not consistent with strong belief in 1’s rationality, because, conditional on 〈A〉,
he assigns probability one to 1 playing the irrational strategy AA. On the other hand, consider
now type t12: upon seeing 〈A〉 type t12 assigns probability one precisely to 1’s strategy-type pair
(AD , t21); therefore, t12 is the only type of 2 that is consistent with strong belief in 1’s rationality.

Since SB2(R1) =
{
t12
}

and t12 expects player 1 to play D at the third node, R2 ∩ SB2(R1) ={
(d, t12)

}
. That is, the joint assumptions that 2 is rational and that he strongly believes in 1’s

rationality yield the conclusion that 2 should plan to play d. Thus, in the type structure of Table
12, rationality and strong belief in rationality eliminates the non-BI outcome (AD , a). Observe that
this is achieved not by arguing that, at the second node, player 2 believes that 1’s initial choice of
A was a mistake—an unintended deviation from her planned strategy; rather, player 2 interprets
prior actions as purposeful, insofar as this is possible. If in addition player 1 is rational and
strongly believes R2∩SB2(R1), one obtains the backward -induction outcome via forward -induction
reasoning. We will return to this point in subsection 7.4.3.

Example 8 (Battle of the Sexes with an outside option) Consider the game in Fig. 3.

1
�

�
�
�
�

Out

2,2

In
@
@
@
@
@

2
L R

1
T

B

3,1 0,0

0,0 1,3

(s1, t1) β1,φ(t1) β1,〈In〉(t1)
1 (InB , t11) 0,1,0 0,1,0
2 (InT , t11) 0,1,0 0,1,0
3 (Out , t11) 0,1,0 0,1,0
4 (InT , t21) 0,0,1 0,0,1

(s2, t2) β2,φ(t2) β2,〈In〉(t2)
1 (L, t12) 0,1,0,0 0,1,0,0
2 (R, t22) 0,0,1,0 1,0,0,0
3 (L, t32) 0,0,0,1 0,0,0,1

Figure 3: Battle of the Sexes with an outside option and the type structure T FI

An informal forward-induction argument runs as follows: InB is a strictly dominated strategy
for Player 1, because Out yields a strictly higher payoff regardless of 2’s choice. “Therefore,” if
the simultaneous-moves subgame is reached, Player 2 should expect Player 1 to play T , and best-
respond with L. But then, if Player 1 anticipates this, she will best-respond with In, followed by
T (i.e., she will choose strategy InT ).

67That is, if there is a profile (s−i, t−i) ∈ E−i such that s−i ∈ S−i(h).
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The right-hand side of Figure 3 displays a type structure, denoted T FI , where strong belief
in rationality reflects this reasoning process. Note that InB is irrational regardless of 1’s beliefs,
and furthermore InT is irrational for 1’s type t11, because this type expects 2 to play R. Thus,
R1 = {(Out , t11), (InT , t21)}; moreover, all strategy-type pairs are rational for Player 2. Neither
types t12 nor type t22 are in SB2(R1). To see this, first note that, conditional on every history,
type t12 assigns probability one to the irrational strategy-type pair (InT , t11). Second, type t22
initially believes that Player 1 rationally chooses Out , but upon observing 〈In〉, he switches to the
belief that 1 plays the irrational strategy InB . On the other hand, t32 is consistent with SB2(R1).
Since furthermore L is rational for type t32, we have R2 ∩ SB2(R1) = {(L, t32)}. Consequently,
if one further assumes that 1 strongly believes that R2 ∩ SB2(R1), type t11 of player 1 must be
eliminated (because it assigns probability one to (R, t22) 6∈ R2 ∩ SB2(R1) at every history). Thus,
R1 ∩ B1,φ(R2 ∩ SB2(R1)) =

{
(InT , t21)

}
. We have obtained the forward-induction outcome of this

game, as claimed. Notice that the assumption that 1 initially believes that R2 ∩ SB2(R1) is an
assumption on how 1 expects 2 to revise his beliefs in case 2 is surprised: specifically, 1 expects 2
to maintain the belief that 1 is rational as long as possible.

In the preceding examples, iterated strong belief in rationality selects backward- and forward-
induction outcomes. Theorem 17 and Corollary 1 in section 7.4.3 show that in complete type
structures this always holds.68 The following example shows that, in arbitrary, small type struc-
tures, these results need not hold. Section 7.4.4 discusses the reasons for the different conclusions
reached in Examples 8 and 9. Theorem 17 also provides a characterization of iterated strong belief
in rationality for arbitrary type structures.

Example 9 Consider the type structure in Table 13, denoted T NFI , for the game in Fig. 3.

(s1, t1) β1,φ(t1) β1,(In)(t1)

1 (InB, t11) 0,1 0,1
2 (InT, t11) 0,1 0,1
3 (Out, t11) 0,1 0,1

(s2, t2) β2,φ(t2) β2,(In)(t2)

1 (L, t12) 0,1,0 0,1,0
2 (R, t22) 0,0,1 1,0,0

Table 13: Type structure T NFI for the Battle of the Sexes.

Note that, relative to the type structure T FI given in the table in Fig. 3, we have removed type
t21 for Player 1. As a consequence, now R1 =

{
(Out , t11)

}
. This implies that there is no rational

strategy-type pair of Player 1 who plays In in the type structure T NFI . Therefore, upon observing
In, Player 2’s beliefs are unconstrained by strong belief; thus, type t22 is consistent with SB2(R1)
in T NFI . Therefore, repeating the analysis in subsection 7.4.2 now leads to a different conclusion:
if Player 1 initially (or strongly) believes R2 ∩ SB2(R1), and if she is rational, she will choose the
action Out at the initial node, contrary to what the standard FI argument for this game predicts.

7.4.3 RCSBR and Extensive-Form Rationalizability

Battigalli and Siniscalchi (2002) consider the implications of rationality and common strong belief
in rationality (RCSBR), which is the strong-belief counterpart of Eq. (8) and (9) for belief and,

68Recall that in a complete type structure the belief maps are onto.
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respectively, Eq. (18) for p-belief. For every player i ∈ I, let

RCSBR0
i = Ri,

RCSBRk
i = RCSBRk−1

i ∩ SB i(RCSBRk−1
−i ) for k > 0, (23)

RCSBRi =
⋂
k≥0

RCSBRk
i .

As was the case for iterated p-belief, it does matter whether we define mutual and common strong
belief as above, or by iterating the strong belief operator as in Eq. (7). Once again, the reason is
that strong belief does not satisfy the Conjunction property in Eq. (5). We discuss this further in
section 7.4.4.

To see why RCSBR selects the forward-induction outcome, as illustrated by Example 8, we
study Eq. (23) in more detail. Consider the two-player case for simplicity, take the point of view
of player 1, and focus on k = 2 to illustrate:

RCSBR2
1 = R1 ∩ SB1(R2) ∩ SB1

(
R2 ∩ SB2(R1)

)
. (24)

Note that, since R2∩SB2(R1) ⊂ R2, every history h in an arbitrary game can fall into one of three
categories: (0) histories inconsistent with R2 and hence a fortiori with R2 ∩ SB2(R1); (1) histories
consistent with R2 but not with R2 ∩SB2(R1); and (2) histories consistent with R2 ∩SB2(R1) and
hence a fortiori R2. Eq. (24) requires the following: at histories of type 1, player 1 should assign
probability one to R2; at histories of type 2, she should assign probability one to R2 ∩ SB2(R1).69

Interpreting R2 ∩ SB2(R1) as a ‘strategically more sophisticated’ assumption about 2’s behavior
and beliefs than R2, Eq. (24) requires that, at any point in the game, players draw inferences
from observed play by attributing the highest possible degree of strategic sophistication to their
opponents.70

Theorem 17 below shows that RCSBR is characterized by extensive-form rationalizability
(Pearce, 1984) in any complete type structure, and by the notion of ‘extensive-form best reply
set’ (Battigalli and Friedenberg, 2010) in arbitrary type structures. Extensive-form rationalizabil-
ity is similar to initial rationalizability (Definition 25), except that beliefs are restricted to assign
positive probability to strategies that survive the previous rounds at all histories where it is pos-
sible to do so: see Eq. (25). Extensive-form best-reply sets bear the same relationship to SBRSs
(Definition 26).

Definition 28 (Extensive-Form Rationalizability) Fix a multistage game (I,H, (Hi, Si(·), ui)i∈I).
For every player i ∈ I, let Ŝ0

i = Si. Inductively, for every k > 0, let Ŝki be the set of strategies
si ∈ Ŝk−1

i that are sequential best replies to a CPS µ ∈ ∆B−i(S−i) such that

for every h ∈ Hi, S−i(h) ∩ Ŝk−1
−i 6= ∅ implies µ(Ŝk−1

−i |S−i(h)) = 1. (25)

Ŝ∞ =
⋂
k≥0 Ŝ

k is the set of extensive-form rationalizable strategy profiles.

Definition 29 Fix a two-player multistage game ({1, 2},H, (Hi, Si(·), ui)i=1,2).71 A set B = B1×
B2 ⊂ S is an extensive-form best-reply set (or EFBRS) if, for every player i = 1, 2, every

69Because strong belief does not satisfy conjunction, the right-hand side of Eq. (24) is not equivalent to R1 ∩
SB1(R2 ∩ SB2(R1)).

70Battigalli (1996a) calls this the Best Rationalization Principle.
71We restrict attention to the two-player case to avoid issues of correlation (see Battigalli and Friedenberg, 2010,

sec. 9c for additional discussion).
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si ∈ Bi is a sequential best reply to a CPS µ−i ∈ ∆B−i(S−i) such that, for every h ∈ Hi with
S−i(h) ∩B−i 6= ∅, µ(B−i|S−i(h)) = 1.

B is a full EFBRS if, for every i = 1, 2 and si ∈ Bi, there is a CPS µ−i ∈ ∆B−i(S−i) that
rationalizes si, and such that (i) µ(B−i|S−i) = 1 for every h ∈ Hi that satisfies S−i(h) ∩ B−i 6= ∅,
and (ii) all sequential best replies to µ−i are also in Bi.

Theorem 17

1. In any type structure T for a two-player multistage game, projSRCSBR is a full EFBRS;

2. in any complete type structure T for an arbitrary multistage, projSRCSBR = Ŝ∞;

3. for every full EFBRS Q of a two-player multistage game, there exists a type structure T such
that Q = projSRCSBR.

One consequence of Theorem 17 and the notion of strong belief is that, if a history h is reached
under a strategy profile s ∈ Ŝ∞, then there is common belief in rationality at h. Thus, while there
may be histories where common belief in rationality may fail to hold, it does hold on the path(s) of
play predicted by RCSBR. Though he does not use type structures, Reny (1993) defines iterative
procedures motivated by the assumption that rationality is common belief at a given history.

Extensive-form rationalizability yields the BI outcome in generic perfect-information games
(Battigalli, 1997; Heifetz and Perea, 2013). Combining this with Theorem 17, we obtain the fol-
lowing

Corollary 1 In any complete type structure T for a generic perfect-information game Γ, any
strategy profile s ∈ projSRCSBR induces the backward-induction outcome.

Corollary 1 thus states that RCSBR in a complete type structure provides a sufficient epistemic
condition for the BI outcome. Note that Corollary 1 does not state that s ∈ projSRCSBR is the
(necessarily unique) BI profile , but only that such an s induces the BI outcome. Indeed, the BI
profile may even be inconsistent with RCSBR. Both points are illustrated by the game in Fig. 4,
due to Reny (1992).

s1 A

D

3,0

s2 a

d

1,2

s1 A

D

2,1

s2 a

d

0,3

4,0

Figure 4: Backward and forward induction

The unique BI profile in this game is (DD , dd). However, the extensive-form rationalizable
profiles—hence, the profiles supported by RCSBR in complete type structures—are ({DD ,DA}, ad).
To see this, note that strategy AD is strictly dominated by choosing D at the initial node. Hence,
if play reaches the second node, player 2 must conclude that player 1 is playing AA, which makes
ad strictly better than choosing d at the second node (note that strategy aa is not sequentially
rational). In turn, this leads player 1 to choose D at the first node; hence, the backward-induction
outcome obtains. However, RCSBR implies that, conditional upon observing A at the first node,
and hence reaching the second node, 2 would expect that 1 will continue with A at the third node.
Therefore, RCSBR implies that 2 would play ad , which is not his backward-induction strategy.
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7.4.4 Discussion

The different predictions in examples 8 and 9 raise several questions. First, in one case the event
RCSBR yields the forward-induction outcome, and in the other case it does not. While we noted
that the forward-induction conclusion relies on the type structure being sufficiently rich, this merits
further discussion. Relatedly, in example 8 type t22 in T FI is in RCSBR, while in example 9 type
t22 in T NFI , which has exactly the same hierarchy of beliefs, is not in RCSBR. This raises doubts
about whether RCSBR depends only on belief hierarchies, or on the type structure as well, i.e.,
whether it is an elicitable assumption or not. In this section we address these concerns. It is useful
to begin with a discussion of properties of strong belief.

Strong belief is not monotonic, and violates conjunction (cf. Equation 5).72 To see this, consider
again the type structure in Table 12 for the Centipede game, and focus on the events

SB1(R2 ∩ SB2(R1)) and SB1(R2) ∩ SB1(SB2(R1)).

As shown in Example 7, R2 ∩ SB2(R1) =
{

(d, t12)
}

. Now observe that type t11 initially assigns
probability one to {d, t12)}. Furthermore, if player 2 plays d, history 〈A, a〉 is not reached; hence,
strong belief in R2∩SB2(R1) =

{
(d, t12)

}
imposes no restriction on beliefs at 〈A, a〉. Therefore, type

t11 strongly believes R2∩SB2(R1), so SB1(R2∩SB2(R1)) 6= ∅. On the other hand, SB1(SB2(R1)) =
∅. To see this, note first that SB2(R1) = S2 × {t12}. This event is consistent with the third node,
i.e. history 〈A, a〉, being reached; therefore, strong belief in SB2(R1) requires that player 1 assign
probability one to this event conditional on 〈A, a〉. However, no type of player 1 in Table 12
assigns positive probability to 2’s type t12 at that history. Hence, SB1(R2) ∩ SB1(SB2(R1)) = ∅ 6=
SB1(R2 ∩ SB2(R1)).73 This failure of Monotonicity and Conjunction plays an important role in
the subsequent discussion.

Throughout this paper, we interpret events such as Ri, Bi(E−i) or SB i(E−i) defined in a given
type structure T as “player i is rational,” “player i believes E−i” or “player i strongly believes
E−i.” While convenient, this is not quite accurate. Every type structure defines the set of belief
hierarchies that are allowed for each player. For instance, consider type structure T NFI in example
9 and denote by ϕNFI

i its belief hierarchy maps (definition 5). The event R1 in T NFI should
be interpreted as “player 1 is rational and her belief hierarchy is ϕNFI

1 (t11).” Similarly, the event
B2,φ(R1) should be interpreted as “player 2 initially believes that ‘1 is rational and her belief
hierarchy is ϕNFI

1 (t11)’ and 2’s belief hierarchy is either ϕNFI
2 (t12) or ϕNFI

2 (t22).” We typically avoid
such convoluted statements, but must recognize that the simpler statements “1 is rational” and “2
initially believes that 1 is rational” are precise interpretations of R1 and B2,φ(R1) only if we define
these events in a rich type structure—one that generates all hierarchies of (conditional) beliefs.

Fortunately, this is not an issue when interpreting results that use monotonic belief operators.
For example, consider Theorem 1. On the one hand, the event RCBR is accurately interpreted as
“rationality and common belief in rationality,” RCBR, only in a complete type structure. Indeed,
in smaller type structures, as explained above, the event RCBR should be interpreted as RCBR
jointly with additional assumptions about hierarchical beliefs. On the other hand, because of
Monotonicity,74 the hierarchies consistent with the event RCBR in a small type structure are also

72We noted in footnote 10 that Monotonicity is equivalent to the “⊂” part of Conjunction. Indeed, that is the only
part of Conjunction that strong belief does not satisfy.

73It can also be shown that SB1(R2) ∩ SB1(SB2(R1)) is empty in any complete type structure for the Centipede
game in Fig. 2.

74If a hierarchy of player 2 is consistent with belief in 1’s rationality under the assumption that 1’s beliefs are
constrained in some specific way, then by Monotonicity it is also consistent with belief in 1’s rationality without
additional restrictions on 1’s beliefs (and obviously this argument can be iterated).
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consistent with RCBR in a complete type structure. Consequently, every full BRS is a subset of the
rationalizable set S∞. Since the latter strategies are the unambiguously interpreted as consistent
with RCBR (because S∞ = projSRCBR in a complete type structure), so are the former.

Now consider strong belief. A cumbersome but precise interpretation of the event SB2(R1) in
the type structure T NFI is as follows: “player 2 believes that ‘player 1 is rational and her belief
hierarchy is ϕNFI

1 (t11)’ at every history that can be reached if this assertion is true, and 2’s belief
hierarchy is either ϕNFI

2 (t12) or ϕNFI
2 (t22).” If instead we define event SB2(R1) in the type structure

T FI of Figure 3, its precise interpretation is, “player 2 believes that ‘player 1 is rational and her
belief hierarchy is either ϕFI

1 (t11) or ϕFI
1 (t21)’ at every history that can be reached if this assertion

is true, and 2’s belief hierarchy is ϕFI
2 (t12),ϕFI

2 (t22) or ϕFI
2 (t32).”

Observe that these statements are expressed in terms of strategies and hierarchies of condi-
tional beliefs, and hence they may be elicited in principle. Thus, there is no conflict between our
goal of elicitation and the notion of strong belief. The apparent conflict arises from an imprecise
interpretation of strong belief in small type structures.

That said, the interpretation of the event RCSBR in small type structures is subtle because
strong belief does not satisfy Monotonicity. As above, the event RCSBR is accurately interpreted as
“rationality and common strong belief in rationality,” RCSBR, only in a complete type structure.
However, in contrast to the case of RCBR, due to the failure of Monotonicity, the hierarchies
consistent with the event RCSBR in a small type structure need not be consistent with RCSBR
in a larger (a fortiori, in a complete) type structure.75 Hence, a full EFBRS need not be a subset
of the extensive-form rationalizable set Ŝ∞.76 Thus, while the latter strategies can accurately be
interpreted as consistent with RCSBR, this is not the case for the former. We can say, however, that
strategies in an EFBRS are consistent with “rationality plus additional assumptions on hierarchies,
and common strong belief thereof.”

So, what is the “right” solution concept? If the analyst is interested in the implications of
RCSBR, without any additional assumptions, then the answer is Ŝ∞. (Analogously, for simultaneous-
move games, the answer is S∞). If the the analyst wants to impose some particular additional
assumption about beliefs, then the answer is a particular EFBRS; which EFBRS depends on the
assumption. (For simultaneous-move games, the answer is a particular BRS). Finally, if the analyst
wants to be “cautious” and consider the predictions that would arise were she to adopt any possible
assumption, then the answer is the (player-by-player) union of all EFRBS’s. (For simultaneous-
move games, the answer is the union of all BRS’s, which in this case is again S∞.) The bottom
line is that, when interpreting assumptions involving strong belief, one should be careful to specify
whether or not additional assumptions are imposed on players’ beliefs.

These considerations apply in particular to the relationship between strong belief and forward-
induction reasoning. As we noted, the basic intuition underlying forward induction is that players
attempt to maintain the assumption that their opponents are rational as long as possible, in the face
of unexpected behavior. This suggests that no a priori constraint is placed on players’ attempt to
rationalize deviations. In other words, a connection can be established between forward induction
and (iterated) strong belief in complete type structures. Theorem 17 confirms this. When strong

75Recall that, in examples 8 and 9, the hierarchy ϕNFI
2 (t22) = ϕFI

2 (t22) of player 2 is consistent with strong belief in
the statement “1 is rational and 1’s hierarchy is ϕNFI

1 (t11),” but not with strong belief in the statement “1 is rational
and 1’s hierarchy is either ϕFI

1 (t11) = ϕNFI
1 (t11) or ϕFI

1 (t21).”
76Consider for instance the game in Fig. 3. As we noted above, Ŝ∞ = {InT} × {L}. However, consider the set

Q = {Out}×{R}. The strategy Out for player 1 is the unique (sequential) best reply to any CPS that initially assigns
probability 1 to R. Furthermore, R is the unique sequential best reply to the CPS that assigns probability one to
Out at the beginning of the game, and to InB conditional on reaching the simultaneous-move subgame. Therefore,
Q is an EFBRS, because Q1 does not reach the subgame and so there are no further restrictions on 2’s beliefs. Yet,
the sets Q and Ŝ∞ are disjoint, and induce distinct outcomes.
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belief is applied in small type structures, there is an interaction between the rationalization logic
of forward induction and whatever assumptions are exogenously imposed on beliefs; this yields
EFBRS’s, as stated in Theorem 17.77

7.5 Backward Induction

As we noted above, RCSBR in a complete type structure yields the backward-induction outcome,
but not the backward-induction profile. The game of Fig. 4 provides an example. An alternative
way to get backward induction is to simply make explicit the assumption inherent in BI: at all
nodes where he is active, i makes conditionally optimal choices, i believes that his opponent j does
so at subsequent histories where she is active, i believes that j believes that k will also choose
optimally at subsequent nodes where k is active, etc.; see Perea (2011b).78

Aumann (1995) (see also Balkenborg and Winter, 1997) derives the backward induction profile
from ‘common knowledge of rationality’ in a very different epistemic model.79 As it does not
explicitly incorporate belief revision, Aumann’s model lies outside our framework. If we translate
Aumann’s assumptions into our framework, we obtain the conditions discussed in the previous
paragraph.

7.6 Equilibrium

The epistemic analysis of equilibrium concepts for extensive games is largely yet to be developed. In
this subsection we briefly describe results on subgame-perfect equilibrium, self-confirming equilib-
rium in signaling games, and the relationship between EFBRS’s and (subgame-perfect) equilibrium.

A basic question is whether sufficient conditions for subgame-perfect equilibrium (Selten, 1975)
can be provided by adapting the results of Aumann and Brandenburger (1995). Theorem 5, on
two-player games, can be easily adapted. As this is not in the literature, we sketch the steps here.

To avoid introducing new notation, we describe i’s play in an extensive-form game using a
CPS σi on Si, instead of using behavioral strategies.80 Thus, a subgame-perfect equilibrium (SPE)
of a multistage game (I,H, (Hi, Si(·), ui)i∈I) is a profile (σi)i∈I , where σi ∈ ∆Bi(Si) is a CPS on
Si with conditioning events Bi = {Si(h) : h ∈ H} for each player i, such that, at every history
h ∈ H,

(
σi(·|Si(h))

)
i∈I is a Nash equilibrium of the strategic-form game

(
I,
(
Si(h), ui

)
i∈I
)
. To

clarify how this definition is related to the usual ones, consider the profile (OutB , R) in the game
of Fig. 3. Player 1’s strategy is represented by any CPS σ1 such that σ1({OutT ,OutB}|S1) = 1
and σ1({InB}|S1(h)) = 1, where h denotes the simultaneous-move subgame. Player 2’s strategy is
represented by the CPS σ2 defined by σ2({R}|S2) = σ2({R}|S2(h)) = 1. It is easy to verify that
the profile of CPSs (σ1, σ2) satisfies the definition of SPE we have just given.

77An equivalent way (in our setting) to incorporate belief restrictions in the analysis is to work in the canonical
type structure and explicitly define events Ci that formalize the desired additional assumptions. Then, studying the
behavioral implications of events such as Ri ∩ Ci ∩ SB i(R−i ∩ C−i) is the same as studying the implications of the
event Ri ∩ SB i(R−i) in a type structure that incorporates the desired restrictions on beliefs. A detailed discussion of
these issues can be found in Battigalli and Friedenberg (2010) and Battigalli and Prestipino (2011).

78Stalnaker (1998) discusses belief revision in dynamic games. In particular, he characterizes backward induction
in a similar way to that discussed above, but interprets belief in subsequent optimality as a consequence of a suitable
independence assumption on beliefs about future and past play. See also Perea (2008).

79See also Aumann (1998) and Samet (1996). Samet (2013) extends Aumann (1995)’s analysis from knowledge to
belief.

80We use σi to denote the CPS on Si that describes i’s play, as opposed to i’s beliefs, denoted µi below, which are
defined on S−i.
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Turning to the epistemic analysis, we adapt the notation from Sec. 4: given a CPS µi ∈
∆B−i(S−i) and a type structure (I, (C−i, Ti, βi)i∈I), let [µi] be the event that i’s first-order belief is
µi; given a profile (µi)i∈I , the event [µ] is defined as the intersection of all [µi] for i ∈ I. Finally,
define the event “Player i makes a rational choice at history h ∈ H” as

Ri,h =

{
(si, ti) : si ∈ arg max

s′i∈Si(h)
ui(s

′
i, fi,h(ti))

}
.81

To see how this is different from event Ri (definition 24), consider strategy InB in the game of
Fig. 3. This is strictly dominated, hence (sequentially) irrational in the entire game; however, it
does specify a choice in the simultaneous-move subgame that is a best reply to, e.g., the belief that
assigns probability one to 2 playing R.

We can now state the counterpart to Theorem 5. Fix a CPS µi ∈ ∆B−i(S−i) for i = 1, 2. If
[µ] ∩

⋂
h∈HBh(Rh ∩ [µ]) 6= ∅, then (σ1, σ2) = (µ2, µ1) is a SPE.82

As is the case for simultaneous-move games, the situation is more delicate if there are more than
two players. One approach is to adapt the definitions of agreement and independence of first-order
beliefs in Sec. 4.4, thereby obtaining a counterpart to Theorem 6. Alternatively (cf. Barelli, 2010),
one can adapt the notion of common prior (Def. 14) and obtain a counterpart to Theorem 7.83 In
order to adapt the arguments used to prove Theorem 7, the common “prior” for a type structure
(I, (C−i, Ti, βi)i∈I) must be defined as a CPS µ ∈ ∆B(S × T ), where B = {S(h) : h ∈ H} such that
βi,h(ti) = margS−i×T−iµ(·|S(h)× {ti} × T−i) for all histories h ∈ H.84

Asheim and Perea (2005) provide an epistemic characterization of sequential equilibrium (Kreps
and Wilson, 1982) in two-player games. In their analysis, beliefs are represented using a general-
ization of lexicographic probability systems.

A different approach is explored by Battigalli and Siniscalchi (2002) in the context of signaling
games. We do not formalize it, because doing so would require introducing notation that we do
not use anywhere else in this chapter. Roughly speaking, they show that, in any epistemic model,
if there is a state in which players’ first-order beliefs are consistent with an outcome of the game
(that is, a probability distribution over terminal histories), and there is initial mutual belief in
rationality and in the event that first-order beliefs are consistent with the outcome, then there
exist a self-confirming equilibrium that induces that outcome. They also provide necessary and
sufficient epistemic conditions for the outcome to be supported in a self-confirming equilibrium
that satisfies the Intuitive Criterion of Cho and Kreps (1987).

Finally, Battigalli and Friedenberg (2010) relate EFBRSs, and hence iterated strong belief in ra-
tionality, with Nash and subgame-perfect equilibrium in two-person multistage games with observ-
able actions. Every pure-strategy SPE is contained in some EFBRS. Moreover, under a no-relevant
ties condition (Battigalli, 1997), a pure-strategy SPE profile is an EFBRS. In perfect-information
games that satisfy the “transfer of decision-maker indifference” of Marx and Swinkels (1997), if a

81Recall that fi(ti) is ti’s first-order belief, and fi,h(ti) is the conditional of the CPS fi(ti) given history h.
82Alternatively, one could get sufficient epistemic conditions for SPE by assuming that conjectures are given by µ

and, at every history, there is mutual belief in R ∩ [µ], where R is the event that all players are sequentially rational
in the sense of Def. 24. This is the approach taken by Barelli (2009). However, these conditions rule out the SPE
(OutB , R) in the game of Fig. 3. More generally, they may preclude certain SPE in games in which some histories
can only be reached if a player plays a strictly dominated strategy.

83In this approach, since we continue to assume that players only hold beliefs about their opponents, the indepen-
dence condition in Def. 15 would also have to be adapted. Note that Barelli (2009) allows players to hold beliefs
about their own strategies, and hence does not require any additional condition.

84Barelli (2009) notes that this notion is very demanding, because it requires no betting even conditional upon
histories that players do not expect to be reached.
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state (s, t) in a type structure is consistent with the event RCSBR, then s is outcome-equivalent
to a Nash equilibrium. Conversely, in games with no relevant ties, for any Nash equilibrium profile
(s1, s2) such that each strategy si is also a sequential best reply to some CPS on S−i, there is a
type structure and a profile t of types such that (s, t) is consistent with the event RCSBR.85

As should be clear from the above, this area is fertile ground for research. For instance, it
would be interesting to investigate the implications of strong belief in rationality, and of the best-
rationalization principle, in an equilibrium setting. Care is needed; for instance, one cannot assume
that—as may appear natural—there is mutual or common belief in the conjectures at every infor-
mation set, because that may be inconsistent with the logic of best rationalization.86, 87

7.7 Discussion

Strategies The choice-theoretic interpretation of strategies deserves some comment. In a simultaneous-
move game, whether or not a player plays a given strategy is easily observed ex-post. In an extensive
game, however, a strategy specifies choices at several histories as play unfolds. Some histories may
be mutually exclusive, so that it is simply not possible to observe whether a player actually follows
a given strategy. Furthermore, it may be the case that epistemic assumptions of interest imply
that a given history h will not be reached, and at the same time have predictions about what the
player on the move at h would do if, counterfactually, h was reached. Consider for instance the
Centipede game of Figure 2: as we noted above, RCSBR (in the type structure of Table 12) implies
that player 1 will choose D at the initial node, and that player 2 would choose d if the second
node was reached. Verifying predictions about such unobserved objects seems problematic. This is
troublesome both in terms of testing the theory, and because it is not obvious how to elicit players’
beliefs about such objects.

One obvious way to avoid this difficulty is to assume that players commit to observable contin-
gent plans at the beginning of the game. While this immediately addresses the issue of verifiability,
it seems to do so at the cost of turning the extensive game into a strategic-form game. However,
one can impose the requirement that players prefer their plans to be conditionally, not just ex-ante
optimal, even at histories they do not expect to be reached.88 In this case, while players com-
mit to specific plans, the extensive-form structure retains its role. Siniscalchi (2011) develops this
approach.

An alternative approach, explored in Battigalli, Di Tillio, and Samet (2011b), is to take as
primitives the paths of play, rather than strategy profiles. In this case, at any history, player i
chooses an action, given her beliefs about possible continuation paths. Notice that these paths
include actions by i’s opponents as well as actions that i herself takes. In this respect, such a model
requires introspective beliefs about one’s future play, in conflict with one of our key desiderata (Sec.
2.6.3). However, this approach does resolve the issue of verifiability of predictions, because these

85Proposition 7.1 in Brandenburger and Friedenberg (2010) implies that a similar relationship exists between
Nash equilibria of perfect-information games and the epistemic conditions of lexicographic rationality and common
assumption thereof, which we analyze in Sec. 8.

86For example, consider the game in Figure 2. RCSBR suggests that, on the one hand, player 1 believes that player
2 will choose d at his final decision node. On the other hand, if player 2 observes that player 1 has unexpectedly
chosen A at her first move, then RCSBR within a complete type structure requires that player 2 explain this event
by believing that player 1 believes that player 2 will choose a at his final decision node. In other words, RCSBR in a
rich type structure implies that the equilibrium continuation strategies are not commonly believed at the third node.

87Reny (1992) introduces a notion of explicable equilibrium that is similarly motivated, though his analysis does
not employ type structures and is thus closer to Pearce (1984)’s definition of extensive-form rationalizability.

88This is related to, but weaker than lexicographic expected utility maximization (Def. 32); for details, see Sinis-
calchi (2011).
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are now observable paths of play and not strategy profiles.89

It also enables decomposing the assumption of sequential rationality into the assumptions that
(i) the player expects her (future) actions to be optimal given her (future) beliefs, and (ii) her actual
choices at a state coincide with her planned actions.90 This more expressive language can be used to
elegantly characterize backwards induction and should also be useful to study environments where
players do not correctly forecast their own play (including cases where utility depends on beliefs
and are hence not necessarily dynamically consistent).91

Incomplete information The definition of multistage games can be easily extended to incor-
porate payoff uncertainty. As for simultaneous-move games, we specify a set Θ of payoff states or
parameters, and stipulate that each player’s payoff function takes the form ui : Θ × S → R. If
one assumes that payoff states are not observed, the analysis in the preceding subsections requires
only minimal changes.92 First-order beliefs are modeled as CPSs on Θ × S, with i’s condition-
ing events being B−i = {Θ × S−i(h) : h ∈ H}. In an epistemic type structure, the conditioning
events are C−i = {Θ × S−i(h) × T−i : h ∈ H} and the belief maps are defined as functions
βi : Ti → ∆C−i(Θ×S−i×T−i). Chen (2011) and Penta (2012) extend the notion of ICR to dynamic
games. It is also straightforward to adapt the notion of ∆-rationalizability to allow for incomplete
information; one obtains versions of initial or strong rationalizability that incorporate commonly-
believed restrictions on first-order beliefs. Epistemic characterizations adapting Theorems 16 and
17 may be found in Battigalli and Siniscalchi (2007) and Battigalli and Prestipino (2011).

8 Admissibility

We now return to strategic-form analysis to analyze epistemic conditions and solution concepts
related to admissibility, i.e., ruling out weakly dominated strategies. In particular, we will discuss
epistemic conditions for iterated admissibility. This continues the analysis in Sec. 5: as noted
therein, there is a conceptual inconsistency between the ‘everything is possible’ logic behind ad-
missibility, and common-belief conditions. In Sec. 5 we introduced the notion of p-belief to resolve
this inconsistency, and weakened the notion of common belief accordingly. This section explores an
alternative approach: we replace probabilistic beliefs with the richer concept of a lexicographic prob-
ability system (LPS). These are related to the CPSs introduced in Section 7 to study extensive-form
solution concepts; we elaborate on the connection in Section 8.4. We saw that common p-belief in
rationality yields S∞W . We shall now see that suitable epistemic conditions characterize iterated
admissibility (and its best-reply set analog, ‘self-admissible sets’). The main idea (Brandenburger
et al., 2008) is to introduce an analog to the notion of strong belief (Def. 27) for LPSs, called
assumption.

A lexicographic probability system is a finite array µ0, . . . , µK of probabilistic beliefs over, say,
opponents’ strategy profiles; µk is the k-th level of the LPS (distinct from a k-th order belief in
a belief hierarchy). The lowest-level beliefs are the most salient, in the sense that, if a strategy
si yields a strictly higher expected utility than another strategy s′i with respect to µ0, then si is
preferred to s′i. If, however, si and s′i have the same µ0–expected utility, then Player i computes
µ1–expected utilities, and so on. Thus, higher-level (less salient) probabilities are used to break

89A related model of conditional beliefs in dynamic games is considered by Di Tillio, Halpern, and Samet (2012).
90See also Bach and Heilmann (2011).
91The characterization is elegant in that it obtains backward induction by weakening the assumption of correct

forecasting (which is a way to model “trembles”).
92Even if there is private information, the changes required to adapt the analysis are only notational.
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ties.93 In order to formalize the notion of ‘common assumption in lexicographic rationality,’ we
need to modify our notion of type structure: types will now be mapped to LPSs over opponents’
strategies and types.

8.1 Basics

We begin by defining LPSs and lexicographic type spaces.

Definition 30 (Blume et al. 1991; Brandenburger et al. 2008) A lexicographic probabil-
ity system (or LPS) σ = (µ0, . . . , µn−1) on a compact metric space Ω is a sequence of length n <∞
in ∆(Ω).

An LPS σ = (µ0, . . . , µn−1) has full support if
⋃
` supp µ` = Ω. The set of LPSs on Ω is

denoted L(Ω). The set of full-support LPSs on Ω is denoted L+(Ω).

Definition 31 A lexicographic type structure for the strategic-form game G = (I, (Si, ui)i∈I)
is T = (N, (Ti, βi)i∈I) where each Ti is a compact metric space and each βi : Ti → L(S−i × T−i) is
continuous.

In order to define best replies, we first recall the lexicographic (i.e., “dictionary”) order on
vectors.

Definition 32 Fix vectors x = (x`)
n−1
`=0 , y = (y`)

n−1
`=0 ∈ Rn, write x ≥L y iff

yj > xj implies xk > yk for some k < j.94 (26)

Given a strategic-form game G = (I, (Si, ui)i∈I), a strategy si of player i is a (lexicographic)
best reply to an LPS σ−i = (µ0, . . . , µn−1) on S−i if (πi(si, µ`))

n−1
`=0 ≥L (πi(s

′
i, µ`))

n−1
`=0 for all

s′i ∈ Si.

It is easy to see that a strategy is admissible if and only if it is a lexicographic best reply to a
full-support LPS.

Given a type structure, we define “rationality” as usual; we also define “full-support beliefs”
analogously to Def. 16.

Definition 33 Fix a lexicographic type structure T = (I, (Ti, βi)i∈I) for the game G. The event
that Player i is rational is

Ri =

{
(si, ti) : si is a lexicographic best reply to

(
margS−iµ`

)n−1

`=0
, where βi(ti) = (µ0, . . . , µn−1)

}
.95

(27)
The event that Player i has full-support beliefs is

FS i =
{

(si, ti) : βi(ti) ∈ L+(S−i × T−i)
}
.96 (28)

93A behavioral characterization of lexicographic expected utility maximization is provided by Blume et al. (1991).
94That is: either x = y, or there exists k ∈ {0, . . . , n− 1} such that xj = yj for j = 0, . . . , k − 1, and xk > yk.
95As in Def. 24, the repeated use of Ri is a slight abuse of notation.
96Note that, in Def. 16, the event FS i required full support of the beliefs over opponents’ strategies only; here we

follow Brandenburger et al. (2008) and require that the beliefs on strategies and types have full support. We do not
know whether full-support first-order beliefs would be enough to obtain the results in this section.
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8.2 Assumption and Mutual Assumption of Rationality

We can now introduce the notion of assumption.

Definition 34 Fix a lexicographic type structure T = (I, (Ti, βi)i∈I) and an event E−i ⊂ S−i×T−i.
Then (si, ti) assumes E−i, written (si, ti) ∈ Ai(E−i), iff βi(ti) = (µ0, . . . , µn−1) has full support
and there is `∗ ∈ {0, . . . , n− 1} such that:

(i) µ`(E−i) = 1 for ` ≤ `∗;
(ii) E−i ⊆

⋃
`≤`∗ supp µ`;

97

(iii) for every ` > `∗ there exist numbers α1, . . . , α`∗ ∈ R such that, for every event F−i ⊆ E−i
such that µ`(F−i) > 0, µ`(F−i) =

∑
k≤`∗ αkµk(F−i).

Assumption captures the notion that E−i and all its subsets are infinitely more likely than the
complement of E−i. The level-zero measure must assign probability one to E−i, although its
support may be a strict subset of E−i. If it is a strict subset, then the remainder of E−i must
receive probability one in the next level, and so on, until all of E−i has been “covered.” For those
measures that assign positive probability outside E−i, i.e. those after level `∗, their restriction
to E−i is behaviorally irrelevant. To elaborate, in any LPS on a set Ω, a measure that is a linear
combination of lower-level measures can be removed without changing lexicographic expected-utility
rankings. Therefore, part (iii) of Definition 34 states that, at levels ` > `∗, either µ`(E−i) = 0, or
µ`(·|E−i) is a linear combination of lower-level conditionals, and hence is irrelevant on E−i. For
example, if Ω consists of three points, the LPS given by (1

2 ,
1
2 , 0), (1

3 ,
1
3 ,

1
3) will assume the event

consisting of the first two points; the LPS given by (1
2 ,

1
2 , 0), (1

2 ,
1
4 ,

1
4) will not.

Strong belief in an event also captures the notion that it is infinitely more likely than its
complement; we discuss the connection between assumption and strong belief in Section 8.4. In view
of this connection, it should come as no surprise that assumption also violates both Monotonicity
and Conjunction (cf. Eq. (5)). As for strong belief, this implies that care must be taken when
iterating the assumption operator. Furthermore, as for RCSBR, the behavioral implications of
rationality and common assumption of rationality will not be monotonic with respect to the type
structure. The discussion of these and related issues in Sec. 7.4.4 apply here verbatim.

We can now define the events “admissibility and mutual or common assumption thereof.”

ACAA0
i = Ri ∩ FS i; (29)

ACAAk
i = ACAAk−1

i ∩Ai(ACAAk−1
−i ) for k > 0.

The event that admissibility and common assumption of admissibility hold is ACAA =
⋂
k≥0 ACAAk.

8.3 Characterization

Just like we need sufficiently rich type structures for RCSBR to yield forward induction (more
precisely, extensive-form rationalizability: see Section 7.4.4), now we need sufficiently rich structures
to obtain iterated admissibility from mutual or common assumption of admissibility. Adapting
arguments from Brandenburger et al. (2008), one can readily show that there exists a complete
lexicographic type structure.98

97Since the support of a measure is the smallest closed set with measure 1, this condition implies that the notion
of ‘assumption’ depends upon the topology; see also Sec. 7.7.

98 Specifically, one can adapt the proof of Proposition 7.2 in Brandenburger et al. (2008) (p. 341). Their argument
goes further because they restrict attention to a subset of LPSs (see Sec. 8.4). We suspect, but have not proved,
that a canonical construction à la Mertens and Zamir (1985) or Brandenburger and Dekel (1993) is also possible for
LPSs. Ganguli and Heifetz (2012) show how to construct a non-topological “universal” type structure for LPSs, such
that every other such LPS-based type structure can be uniquely embedded in it.
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We recall the definitions of admissibility with respect to a Cartesian product of strategy sets and
iterated admissibility. We then introduce a suitable analog of best-reply sets. As in Brandenburger
et al. (2008), we restrict attention to two-player games.

Definition 35 Fix B1 × B2 ⊂ S1 × S2. An action si ∈ Bi is weakly dominated with respect
to B1 × B2 if there is µi ∈ ∆(Bi) such that ui(µi, s−i) ≥ ui(si, s−i) for all s−i ∈ B−i, and
ui(µi, s

∗
−i) > ui(si, s

∗
−i) for some s∗−i ∈ B−i. The action si ∈ Bi is admissible with respect to

B1 ×B2 if it is not weakly dominated with respect to B1 ×B2.

Definition 36 (Iterated Admissibility) Fix a two-player strategic-form game (I, (Si, ui)i∈I).
For every player i ∈ I, let W 0

i = Si. For k > 0, let si ∈ W k
i iff si ∈ W k−1

i and si is admissible
w.r.to W k−1

1 ×W k−1
2 . The set of iteratively admissible strategies is W∞.

We need an additional definition. Say that a strategy s′i ∈ Si of player i supports si ∈ Si if
there exists a mixed strategy σi ∈ Si for i that duplicates si and has s′i in its support: that is,
ui(σi, s−i) = ui(si, s−i) for all s−i ∈ S−i, and σi(s

′
i) > 0.

Definition 37 Fix a two-player strategic-form game (I, (Si, ui)i∈I). A set B =
∏
i∈I Bi ⊂ S is a

self-admissible set (or SAS) if, for every player i ∈ I, every si ∈ Bi is admissible with respect to
both Si × S−i and Si × B−i;99 it is a full SAS if, in addition, for every player i ∈ I and strategy
si ∈ Bi, if s′i supports si then s′i ∈ Bi.

In the definition of full SAS, including in the set Bi a strategy s′i that supports some other
strategy si ∈ Bi plays the same role as including all best replies to a belief that justifies some
element of a full BRS. For additional discussion, see Brandenburger et al. (2008).

As is the case for extensive-form rationalizability and EFBRSs, the set W∞ is a full SAS;
however, it is not the largest (full) SAS, and indeed there may be games in which a full SAS is
disjoint from the IA set. For example, in the strategic form of the game in Fig. 3, the unique IA
profile is (InT , L); however, B = {OutT ,OutB} × {R} is also a full SAS.

The characterization result is as follows.

Theorem 18 Fix a two-person game G = (I, (Si, ui)i∈I).

1. In any lexicographic type structure (I, (Si, Ti, βi)i∈I) for G, projSACAA is a full SAS.

2. In any complete lexicographic type structure (I, (Si, Ti, βi)i∈I) for G, and for every k ≥ 0,
projSACAAk = W k+1.

3. For every full SAS B, there exists a finite lexicographic type structure (I, (Si, Ti, βi)i∈I) for G
such that projSACAA = B.

99To see why we need admissibility with respect to both Si ×B−i and Si × S−i, consider the following two-person
games (only Player 1’s payoffs are indicated).

L R

T 0 0
B 0 1

L R

T 0 1
B 1 0

In the game on the left, T is admissible with respect to S1 × {L}, but not with respect to S1 × S2. On the other
hand, in the game on the right, T is admissible with respect to S1 × S2, but not with respect to S1 × {L}.
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8.4 Discussion

We start by discussing three issues in the characterization of IA. These are the relationship to
the characterization in Brandenburger et al. (2008), the full-support assumption, and common vs.
mutual assumption of admissibility. We then discuss the relationship between the current section
and the extensive-form analysis of Section 7. In particular, we relate LPSs to CPSs, assumption to
strong belief, and admissibility to sequential rationality.

Before turning to these issues, we note that, as is the case for strong belief, since assumption
violates Monotonicity and Conjunction, its interpretation in small type structures is somewhat
delicate. We do not repeat the discussion of these issues here, as the treatment in Sec. 7.4.4
regarding RCSBR applies verbatim here.

8.4.1 Issues in the characterization of IA

Relationship with Brandenburger et al. (2008) Our presentation differs from Branden-
burger et al. (2008) in that their main results are stated for LPSs with disjoint supports; following
Blume et al. (1991), we call these “lexicographic conditional probability systems,” or LCPSs. We
choose to work with LPSs to avoid certain technical complications that arise with LCPSs (for ex-
ample, the definition and construction of a complete type structure). The proof of Theorem 18 can
be found in Dekel, Friedenberg, and Siniscalchi (2013a).

Full-support beliefs The characterization of IA focuses on types that commonly assume ratio-
nality and full-support beliefs. This raises the question whether one could incorporate the full-
support assumption in the definition of lexicographic type structures. That is, could we assume
that all types have full-support beliefs, or at least full-support first-order beliefs? Recall that, in
the characterization of S∞W in Section 5, we also focus on types that commonly p-believe in both
rationality and full-support beliefs. There, we could restrict attention to type structures where each
type’s belief over the opponents’ strategies have full support. The following example demonstrates
that we cannot do this in the current environment.

Example 10 (Figure 2.6 in Brandenburger et al. (2008), attributed to P. Battigalli)
Consider the strategic-form game in Table 14. The IA set is {U,M,D} × {C,R}.

L C R

U 4,0 4,1 0,1
M 0,0 0,1 4,1
D 3,0 2,1 2,1

Table 14: Iterated admissibility and ACAA

Fix an arbitrary lexicographic type structure. Note first that, since L is strictly dominated for
player 2, (L, t2) 6∈ R2 for any type t2 of 2; a fortiori, (L, t2) 6∈ R2 ∩FS 2. Moreover, C and R always
yield a payoff of 1, and hence both (C, t2) ∈ R2 ∩ FS 2 and (R, t2) ∈ R2 ∩ FS 2 hold if and only if
type t2 has full-support beliefs.

Now consider a type t1 of player 1 such that (D, t1) ∈ R1 ∩ FS 1 ∩ A1(R2 ∩ FS 2), and let
β1(t1) = (µ0, . . . , µn−1). Since the definition of assumption (Def. 34) requires full-support beliefs,
as t1 assumes R2 ∩ FS 2, this type must have full-support beliefs; in particular, there must be an
order k with µk({L} × T2) > 0. Furthermore, since t1 assumes R2 ∩ FS 2, and L is irrational for 2,
it must be the case that k > 0.
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Next, by lexicographic utility maximization, for all ` = 0, . . . , k−1, we must have µ`({C}×T2) =
µ`({R} × T2) = 1

2 for 0 ≤ ` ≤ k − 1: otherwise, D could not be a best reply. But then, U and M
are also best replies to margS2

µ`, ` = 0, . . . , k − 1. In other words, D ties with U and M against
the beliefs margS2

µ0, . . . ,margS2
µk−1. Then, the optimality of D requires that D also be a best

response to the k-th level belief margS2
µk.

Finally, for this to be the case, we must have µk({R}×T2) > 0. Moreover, as µk({L}×T2) > 0
and L is not rational for 2, µk(R2) < 1, hence µk(R2 ∩ FS 2) < 1. However, t1 assumes R2 ∩ FS 2.
Therefore, by the definition of assumption, µk(R2 ∩ FS 2) must equal either 1 or 0. Hence, it must
be the case that µk(R2 ∩ FS 2) = 0. On the other hand, µk({R} × T2) > 0, so there must be types
t2 of 2 for whom (R, t2) 6∈ R2∩FS 2. That is, because 1’s kth-level belief assigns zero probability to
2 being rational and having full-support beliefs, and positive probability to 2 playing R, it must be
that 1 expects those types of 2 who are playing R to hold beliefs that either do not rationalize R,
or do not have full support. But, since R is a best reply against any beliefs, the only way this can
hold is if 1 expects 2’s type to not have full-support beliefs. This means that the type structure
under consideration must contain types for player 2 that do not have full-support beliefs.

Common vs. mutual assumption of admissibility Finally, there is an additional subtlety.
Note that Theorem 18 does not characterize common assumption of admissibility for complete type
structures–merely finite-order assumption of admissibility. Indeed, Brandenburger et al. (2008)
show that, under completeness and restricting attention to LCPSs,

⋂
k≥0 ACAAk

i is empty. Admis-
sibility and common assumption of admissibility thus cannot hold in a complete, LCPS-based type
structure. We believe (but have not proved) that the same is true when beliefs are represented by
LPSs.

This is a puzzling result. In a recent paper, Lee and Keisler (2011) demonstrate that the
problem arises out of the requirement in Def. 31 that the belief maps βi be continuous. If one
drops this requirement, and merely asks that they be measurable, it is possible to construct a
complete, LCPS-based type structure in which projSACAA equals IA, so that ACAA is possible
(and characterizes iterated admissibility).100

8.4.2 Extensive-form analysis and strategic-form refinements

LPSs and CPSs LPSs and CPSs are clearly similar. CPSs are also collections of probabilities,
that also may differ in terms of saliency (lower-saliency beliefs come into play as unexpected events
are encountered). However, there are also differences, due to the fact that the former are strategic-
form objects whereas the latter are defined for extensive-form games.101 Probabilities in an LPS
are completely ordered, whereas in a CPS the order is partial. For example, consider a game in
which Player 1 can choose T,M or B, and Player 2 (who moves immediately after 1) is initially
certain of T . Then, Player 2’s conditional beliefs following M and B are not ranked in terms of
their salience, although they are less salient than Player 2’s initial belief. Second, the supports
of any two probabilities in a CPS are either disjoint, or one is included in the other; in an LPS,
the supports can overlap arbitrarily. In addition, a technical distinction in the context of type
structures is that, for a finite extensive game, the number of probabilities in a CPS is fixed and
equal to the number of non-terminal histories in the game; on the other hand, in general there is
no upper bound on the number of levels in an LPS.

100Other papers that provide epistemic conditions related to IA include Asheim and Dufwenberg (2003), Barelli and
Galanis (2011), Yang (2011) and Perea (2012).

101In fact, CPSs are no different from regular probabilities for extensive forms of simultaneous-move games.
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Strong belief and assumption As we noted above, both strong belief and assumption capture
the notion that an event and its subsets are infinitely more likely than its complement. Recall that
player i assumes E−i if she assigns probability one to it or some subset of it in each of the first `∗

levels of her LPS, until all of E−i has been given probability 1 at some level; furthermore, higher-level
measures either assign probability zero to E−i, or are behaviorally irrelevant conditional on E−i.
Analogously, if player i strongly believes E−i in an extensive game, then her initial beliefs assign
probability one to E−i or some subset thereof. Moreover, so long as E−i has not been contradicted
by observed play, when player i revises her beliefs,102 she continues to assign probability one to
some subset of E−i. Once E−i has been contradicted, it must receive probability zero. Thus,
with strong belief, the ‘level’ at which E−i is no longer believed is objective, while in the case of
assumption, the level at which i no longer believes E−i is subjective. Nevertheless, assumption
and strong belief are quite similar. Specifically, for finite spaces Ω, there is a one-to-one mapping
between LCPSs (but not arbitrary LPSs) and CPSs in which the set of conditioning events consists
of all non-empty subsets of Ω. Furthermore, an LCPS λ ‘assumes’ an event E−i (analogously to
Def. 34) if and only if the corresponding CPS µ ‘strongly believes’ E−i.

103

Admissibility and sequential rationality Brandenburger (2007) shows that, in single-person,
dynamic choice problems, admissibility is equivalent to sequential rationality in all decision trees
that have the same strategic form, up to the addition or deletion of strategies that are convex
combinations of other strategies (i.e., trees that have the same fully reduced normal form in the
sense of Kohlberg and Mertens, 1986). Nevertheless, Brandeburger’s result is about single-person
problems; adding or deleting convex combinations of existing strategies in an extensive game may
affect the players’ strategic reasoning (see e.g. Hillas (1994) and Govindan and Wilson (2009)).
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