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Abstract

The analysis of dynamic games hinges on assumptions about players’ actions and be-

liefs at information sets that are not actually reached during game play, and that players

themselves do not expect to reach. However, it is not obvious how to elicit intended ac-

tions and conditional beliefs at such information sets. Hence, key concepts such as se-

quential rationality, backward induction, and forward induction do not readily translate

to testable behavioral assumptions. This paper addresses this concern by introducing a

novel optimality criterion, structural rationality. In any dynamic game, structural ratio-

nality implies sequential rationality. In addition, if players are structurally rational, their

intended actions and conditional beliefs can be elicited via the strategy method (Selten,

1967). Finally, structural rationality is consistent with experimental evidence indicating

that subjects behave differently in the strategic and extensive form, but take the extensive

form into account even if they are asked to commit to strategies ahead of time.
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1 Introduction

The analysis of simultaneous-move games is grounded in single-person choice theory. Players

are assumed to maximize their expected utility (EU)—a decision rule characterized by well-

known, testable properties of observed choices (Savage, 1954; Anscombe and Aumann, 1963).

Furthermore, beliefs can be elicited via incentive-compatible “side bets” whose outcomes de-

pend upon the strategies of coplayers (Luce and Raiffa, 1957, §13.6).1 Hence, it is possible to

intepret assumptions about players’ rationality and beliefs in simultaneous-move games as

testable restrictions on behavior.

On the other hand, the textbook treatment of dynamic games involves assumptions that

are intrinsically difficult, if not impossible, to translate into testable behavioral restrictions.

The prevalent notion of best response for dynamic games is sequential rationality (Kreps and

Wilson, 1982). Each player is assumed to hold well-defined conditional beliefs at every one of

her information sets—including those she does not expect to reach. A strategy is sequentially

rational if it maximizes the player’s conditional expected payoff at every information set.2 The

key difficulty is how to elicit a player’s conditional beliefs, and the action she would take, at

information sets that she does not expect to reach, and that indeed are not reached in the

observed play of the game. If the assumed optimality criterion is sequential rationality, such

beliefs and actions are neither directly observable, nor indirectly elicitable in an incentive-

compatible way from observed choices. Hence, one cannot verify whether a player is indeed

sequentially rational. A fortiori, key assumptions such as backward or forward induction can-

not be tested, because by definition they impose restrictions on beliefs and actions at un-

1The experimental literature illustrates how to implement side-bets in practice: see e.g. Van Huyck, Battalio,

and Beil (1990); Nyarko and Schotter (2002); Costa-Gomes and Weizsäcker (2008); Rey-Biel (2009). See also Au-

mann and Dreze, 2009 and Gilboa and Schmeidler, 2003.

2I abstract from differences in the representation of conditional beliefs, and/or in the optimality requirement,

that are inessential to the present argument.
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reached information sets. Section 2 illustrates these points with an example.

This paper proposes to address this fundamental methodological concern by taking a cue

from two experimental findings that appear to be contradictory from the perspective of stan-

dard game-theoretic analysis. On one hand, subjects appear to behave differently in a dy-

namic game and in the associated strategic (i.e., matrix) form (Cooper, DeJong, Forsythe,

and Ross, 1993; Schotter, Weigelt, and Wilson, 1994; Cooper and Van Huyck, 2003; Huck and

Müller, 2005). On the other hand, in a broad meta-analysis of dynamic-game experiments,

Brandts and Charness (2011) report that qualitatively similar findings are obtained when sub-

jects play a dynamic game directly, and when they are required to simultaneously commit to

an extensive-form strategy—a protocol known as the strategy method (Selten, 1967); see also

Fischbacher, Gächter, and Quercia (2012). These findings cannot be reconciled with standard

notions of rationality.3 Instead, they suggest that subjects may follow a different rationality

criterion—one that can potentially address the methodological concerns that motivate this

project. After all, subjects in the noted experiments take the extensive form into account, and

yet their strategies (and, potentially, their beliefs) can be elicited.

The main contribution of this paper is to identify a criterion, structural rationality, that ex-

hibits these features. This notion evaluates strategies from the ex-ante perspective, but takes

a player’s conditional beliefs into account. Theorem 1 shows that, if a strategy is structurally

rational given a player’s conditional beliefs, then it is also sequentially rational for the same

beliefs. Theorem 2 then shows that, if players are structurally rational, a version of the strategy

method can be used to elicit their conditional beliefs and planned strategies in an incentive-

compatible way. Theorem 3 identifies a crucial consistency property of conditional beliefs

3When players commit to extensive-form strategies ex-ante, sequential rationality yields the same predictions

as ex-ante payoff maximization in the strategic form, and hence weaker predictions than in the original dynamic

game. Alternatively, the invariance hypothesis (Kohlberg and Mertens, 1986) predicts that behavior should be

the same in all three presentations of the game. Thus, neither textbook analysis based on sequential rationality,

nor theories based on invariance, can accommodate the noted evidence.
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that is required for structural rationality to be well-defined. A companion paper, Siniscalchi

(2016a), provides axiomatic foundations for structural rationality; in-progress work (Sinis-

calchi, 2016b) demonstrates how structural rationality can be incorporated in solution con-

cepts. Taken together, these results offer an approach that builds upon the received theory of

dynamic games, but places it upon solid choice-theoretic foundations.

While the motivation for this paper is mainly methodological, structural rationality is more

closely aligned with the evidence from experiments than the received theory. In particular, it

provides a theoretical rationale for the strategy method

The remainder of this paper is organized as follows. Section 3 presents the setup. Sec-

tion 4 formalizes structural preferences and structural rationality. Section 5 relates structural

and sequential rationality, and Section 6 formalizes the elicitation result. Section 7 analyzes

the consistency of conditional beliefs. Section 8 comments on the results and discusses the

related literature. All proofs are in the Appendix.

2 Heuristics: sequential rationality is not testable

To illustrate the difficulties inherent in eliciting beliefs and verifying sequential rationality,

consider the “burning money” game of Ben-Porath and Dekel (1992), depicted in Figure 1.
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Figure 1: Burning Money
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In any given play of the game, only one of the two simultaneous-moves subgames will be

reached. Following Ann’s initial choice, an experimenter can offer side bets on the actions in

the subgame that is actually reached, and thus elicit players’ conditional beliefs in that sub-

game. But how about their conditional beliefs in the other subgame? The experimenter might

offer “conditional” side bets at the beginning of the game. For instance, before Ann makes her

initial choice, the experimenter might offer Ann (resp. Bob) a bet on lb vs. rb (resp. U vs.

D ) following Burn, with the understanding that the bet will be called off if Ann chooses Not.

However, two difficulties arise. First, Ann’s own choice of Burn vs. Not determines which of

the two subgames will be reached. If, for instance, she decides to choose Not, then she effec-

tively causes the conditional side bet on Bob’s actions in the subgame on the left to be called

off—so whether she accepts or rejects such a bet conveys no information about her beliefs.

Second, suppose that Bob initially assigns zero probability to Ann’s choice of Burn. Then, at

the beginning of the game, Bob expects the conditional side bet on U vs. D following Burn to

be called off; therefore, again, whether he accepts or rejects such a bet conveys no information

about the conditional beliefs he would hold, were Ann to unexpectedly choose Burn.

Thus, neither Ann’s nor Bob’s beliefs can be fully elicited via side bets. In addition, their

strategies are not fully observable, as only one of the two proper subgames will be reached in a

given play. As a consequence, in the game of Figure 1 the choices and beliefs that are actually

observed and elicited may fail to provide evidence either for or against sequential rationality.4

Furthermore, it is not possible to verify whether actions and beliefs off the observed path of

play satisfy properties of interest—for instance, whether they are consistent with backward-

or forward-induction reasoning.

4Suppose that Ann chooses Not followed by D . Suppose further that Ann believes that Bob will choose rn

following Not, and that this is elicited via suitable side bets. It may be that Ann additionally believes that Bob

would have chosen lb following Burn, in which case Ann’s choice of Not would not be sequentially rational.

Alternatively, it may be that Ann believes that Bob would have chosen rb in the subgame on the left, in which

case Not is indeed sequentially rational.
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To summarize, by definition, only choices or side bets made by players simultaneously at

the beginning of the game are guaranteed to be observable, regardless of how play continues.

However, sequential rationality only requires that these choices maximize ex-ante expected

payoffs. Hence, under sequential rationality, such initial choices can convey no information

about a player’s intended actions or conditional beliefs at information sets that the player does

not expect to reach, or causes not to reach.5

3 Setup

This paper considers dynamic games with imperfect information, defined essentially as in

Osborne and Rubinstein (1994, Def. 200.1, pp. 200-201; OR henceforth). This section only

introduces notation and definitions that are essential to state the main results of this paper.

An extensive game form is a tuple Γ = (N , H , P, (Ii )i∈N ), where N is the set of players, H is

a finite collection of histories, i.e., finite sequences (a1, . . . , an ) of actions drawn from some set

A and containing the empty sequenceφ, P is the player function, which associates with each

history h the player on the move at h , and each Ii is a partition of the histories where Player

i moves; the elements of Ii are player i ’s information sets. Information sets are ordered by a

precedence relation, denoted “<.” The game form is assumed to have perfect recall, as per

Def. 203.3 in OR. For simplicity, chance moves are omitted.

Given an extensive game form, certain derived objects of interest, including strategies, can

be defined. A history is terminal if it is not the initial segment of any other history; the set of

terminal histories is denoted Z . The set of actions available at an information set I ∈ Ii is

denoted A(I ). For every player i ∈N , a strategy is a map si : Ii → A such that si (I ) ∈ A(I ) for

5One might consider adding “trembles” to the game, so that, for instance, when Ann chooses Burn, there is a

small probability that Not will be played instead (and Bob cannot tell whether the move was intentional or not).

This does eliminate zero-probability information sets, but also defeats the purpose of the elicitation—testing

assumptions about what players would do (and believe) following unexpected moves of their opponents.
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all I ∈ I ; the set of strategies for i is denoted Si , and the usual conventions for product sets

are employed. The terminal history induced by strategy profile s ∈ S is denoted ζ(s ).

For every information set I ∈ Ii , S (I ) is the set of strategy profiles that reach I ; its pro-

jections on Si and S−i respectively are denoted Si (I ) and S−i (I ); perfect recall implies that

S (I ) = Si (I )× S−i (I ). For histories h ∈ H , the notation S (h ) has a similar interpretation. It is

also useful to define player i ’s information setsIi (si ) allowed by strategy si : that is, for every

I ∈Ii , I ∈Ii (si ) if and only if si ∈ Si (I ).

A dynamic game adds to the extensive game form a specification of the material (i.e., phys-

ical or monetary) consequences for each player at every terminal history; it is also useful

to allow for exogenous uncertainty. Formally, fix a set X of outcomes, and a (finite or infi-

nite) set Θ, endowed with a sigma-algebra T . For each player i , define the outcome func-

tion ξi : Z ×Θ → X . When terminal history z is reached and the realization the exogenous

uncertainty is θ ∈ Θ, player i ’s material outcome is ξi (z ,θ ). A dyamic game is then a tuple

(Γ , X ,Θ,T , (ξi )i∈N ), where Γ is an extensive game form with player set N , Θ characterizes pay-

off uncertainty, and ξi is i ’s outcome function.

Each player is characterized by a utility function ui : X → R, and conditional beliefs, de-

fined below. The payoff of player i at terminal history z , when the exogenous uncertainty is

θ , is then ui (ξi (z ,θ )).6

4 Conditional Beliefs and Structural Preferences

4.1 Conditional Probability Systems

At any point in the game, the domain of player i ’s uncertainty comprises the strategies of her

coplayers, as well as the exogenous uncertainty; let Ωi = S−i ×Θ, and endow this set with the

6The utility function ui does not depend upon θ ∈Θ; as shall be seen momentarily, neither do i ’s conditional

beliefs. As discussed in Section 8, this reflects the interim perspective in games of incomplete information.
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product sigma-algebra Σi = 2S−i ×T .

Player i ’s beliefs at an information set I are conditional upon the information she receives

at I regarding the play of others. Since beliefs are defined over Ωi = S−i ×Θ, this information

is formalized as a subset of Ωi as well. Upon reaching I , Player i can rule out strategies of her

coplayers that do not allow I . Thus, for each I ∈Ii , the conditioning event corresponding to

information set I is

[I ] = S−i (I )×Θ; (1)

the collection of all conditioning events for player i is then

Fi = {Ωi }∪ {[I ] : I ∈Ii }. (2)

Observe that Ωi is always a conditioning event, even if there is no information set I ∈Ii such

that S−i (I )×Θ = Ωi . This is convenient (though not essential) to relate structural preferences

to ex-ante expected-utility maximization.

Finally, for a measurable space (Y ,Y ), pr(Y ) denotes the set of probability measures on

(Y ,Y ).7 Conditional beliefs can now be formally defined.

Definition 1 (Rényi (1955); Ben-Porath (1997); Battigalli and Siniscalchi (1999, 2002)) A con-

ditional probability system (CPS) for player i in the dynamic game (Γ , X ,Θ,T , (ξi )i∈N ) is a

collection µi ≡
�

µi (·|F )
�

F ∈Fi
such that:

(1) for every F ∈Fi , µi (·|F ) ∈ pr(Σi ) and µi (F |F ) = 1;

(2) for every E ∈Σi and F,G ∈Fi such that E ⊆ F ⊆G ,

µi (E |G ) =µi (E |F ) ·µi (F |G ); (3)

The characterizing feature of a CPS is the assumption that the chain rule of conditioning,

Equation 3, holds even conditional upon events that have zero ex-ante probability.

7Recall that, while S−i is finite, the set Θ, and hence the state space Ωi , need not be.
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The set of CPS for player i is denoted by cpr(Σi ,Fi ). For any probability measureπ ∈ pr(Σi )

and measurable function a : Ωi → R, let Eπ[a ] =
∫

Ωi
a dπ; when no confusion can arise, I will

sometimes omit the square brackets.

4.2 Structural Preferences

The key notion of structural preferences can now be formalized. I proceed in three steps. First,

I observe that a CPS µ of player i induces an ordering over information sets (more precisely,

the corresponding conditioning events) that refines the precedence ordering given by the ex-

tensive form of the game. Second, I note that any “consistent” CPSµ also uniquely identifies a

collection of probabilities, interpreted as alternative ex-ante beliefs that generate µ by condi-

tioning. (The exact formulation of this statement is Theorem 3 in Section 7). Third, and finally,

I define structural preferences in terms of these ex-ante beliefs. I then illustrate the definition

by means of examples, and conclude with heuristics that motivate the proposed definition.

Throughout this subsection, fix a dynamic game (Γ , X ,Θ,T , (ξi )i∈N ).

A preorder over conditioning events. Fix two information sets I , J ∈ Ii . If I < J , then it is

easy to see that, by perfect recall, S−i (I )⊇ S−i (J ). If µ is a CPS for i , it must be the case that

µ([I ]|[J ])≥µ([J ]|[J ]) = 1> 0.

One might say that, if J is reached, then it is at least as plausible that I is also reached—indeed,

in this case, I must be reached if J is. This intuition generalizes. For information sets I , J ∈Fi

such that µ([I ]|[J ])> 0, one may say that reaching I is at least as plausible as reaching J : at J ,

player i believes that at least some of the strategies that her coplayers are following allow I as

well. This intuition generalizes further, by appealing to transitivity.

Definition 2 Fix a CPS µ on (Σ,Fi ). For all D , E ∈Fi , D is at least as plausible as E (D .E ) if

there are F1, . . . , FN ∈ E such that F1 = E , FN =D , and for all n = 1, . . . , N −1, µ(Fn+1|Fn )> 0.

9



By construction, the plausibility relation . is a preorder (i.e., it is reflexive and transitive). How-

ever, it is not complete: an example is given below (see the discussion following Eq. 5).

A collection of alternative prior beliefs. Consider the game in Figure 2; Bob’s payoffs are

omitted as they are not relevant to the discussion. Ann and Bob choose an action simultane-

ously. If Bob chooses o , the game ends. Otherwise, Ann’s action determines what she learns

about Bob’s choice.

Ann R

t

m
b

0o

1

T 6

B 3

T 3

B 5L

t

0

m

b
o

1

T ′2

B ′0

T ′1

B ′0
Bob

Ann I

AnnJ

Figure 2: Alternative theories and plausibility

Assume that there is no payoff uncertainty, so ΩAnn = SBob. Ann’s CPS µ is given by

µ({o}|[φ]) = 1, µ({t }|[I ]) =µ({m}|[I ]) =µ({m}|[J ]) =µ({b }|[J ]) =
1

2
. (4)

Ann’s CPS does not directly convey any information about the relative likelihood of t and b :

ex ante, both actions have probability zero, and there is no further conditioning event thta

contains both. However, I suggest that, indirectly, µ does pin down their relative likelihood:

since µ({t }|[I ]) =µ({t }|{t , m}) = 1
2 , Ann deems t and m equally likely, conditional on Bob not

choosing o ; similarly,µ({m}|[J ]) =µ({m}|{m , b }) = 1
2 , Ann deems m and b equally likely, again

conditional on Bob not choosing o . This suggest that, conditional upon Bob not choosing o ,

Ann deems t and b equally likely.

Even more can be said. Given Ann’s CPSµ, her conditioning events are ranked as follows in

terms of plausibility (Def. 2): SBob.[I ], SBob.[J ], [I ].[J ] and [J ].[I ]. It is not the case that [I ].SBob
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or [I ] .SBob. Thus, SBob is strictly more plausible than [I ] and [J ], which are equally plausible.

The distribution p on SBob with p ({t }) = p ({m}) = p ({b } = 1
3 is the unique probability that (i)

generates Ann’s beliefs given [I ] and [J ] by conditioning, and (ii) assigns probability one to

[I ]∪ [J ], a union of equally plausible events.

This suggests that Ann’s CPS µ conveys the following information. Ann entertains two al-

ternative prior hypotheses about Bob’s play. One is that Bob will choose o for sure; the other

is that Bob is equally likely to choose t , m , b , but does not choose o . Furthermore, the first

hypothesis is the more plausible one. At any information set K , Ann’s beliefs are obtained by

updating the most plausible belief that assigns positive probability to K . This interpetation

is in the spirit of structural consistency (Kreps and Wilson, 1982; Kreps and Ramey, 1987); see

Section 8 for further discussion. The following definition formalizes it.

Definition 3 Fix a CPS µ on (Σi ,Fi ). A basis for µ is a collection (pC )C ∈Fi
⊂ pr(Σi ) such that

(1) for every C , D ∈Fi , pC = pD if and only if both C .D and D .C ;

(2) for every C ∈Fi , pC (∪{D ∈Fi : C .D , D .C }) = 1;

(3) for every C ∈Fi , pC (C )> 0 and, for every E ∈Σ, µ(E ∩C |C ) = pC (E∩C )
pC (C )

.

As was just argued, the basis of the CPS µ in Eq. (4) comprises of the prior belief µ(·|SBob)

and another probability that is not also an element ofµ. For other CPSs, all basis elements are

also elements of the CPS: for instance, consider the CPS ν for Ann defined by

ν({o}|SBob) = ν({t }|[I ]) = ν({b }|J ]) = 1. (5)

For the CPS ν, SBob is strictly more plausible than [I ] and [J ], and the latter two events are not

comparable for the plausibility relation. Definition 3 implies that the basis for ν consists of

the measures ν(·|SBob), ν(·|[I ]), and ν(·|[J ]).

Not all CPSs admit a basis. However, I show in Section 7 that those that do not have the

“pathological” feature that a player can, essentially, choose her own future beliefs. Formally, I

identify a property of CPSs, consistency, that ensures the existence and uniqueness of a basis.
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Structural preferences over acts. It is finally possible to formalize the notion of structural

preferences. For the purposes of establishing the connection with sequential rationality, it

would be enough to define a preference ranking over strategies. However, the elicitation of

beliefs requires comparisons of bets, as well as conditional bets, over arbitrary events. For

this reason, I define preferences over the collection of acts à la Savage (1954), i.e., simple Σi -

measurable functions f : Ωi → X . The set of all acts for player i is denoted Ai . Given the

dynamic game (Γ , X ,Θ, (ξi )i∈N ), every strategy si ∈ Si , together with the outcome function ξi ,

determines an act f si , defined by f si (s−i ,θ ) = ξi (ζ(si , s−i ),θ ) for all (s−i ,θ ) ∈Ωi . Thus, a prefer-

ence over acts induces a preference over strategies; however, there are acts that do not corre-

spond to strategies.

Definition 4 Fix a dynamic game (Γ , X ,Θ, (ξi )i∈N ), a player i ∈N , a utility function ui : X →R,

and a CPS µ for i that admits a basis p= (pF )F ∈Fi
. For any pair of acts f , g ∈Ai , f is (weakly)

structurally preferred to g given ui and p, written f ¼ui ,µ g , iff for every F ∈ Fi such that

EpF
ui ◦ f < EpF

ui ◦ g , there is G ∈Fi such that G . F and EpG
ui ◦ f > EpG

ui ◦ g .

Strict preference (�ui ,µ) is defined as usual: f �ui ,µ g iff f ¼ui ,µ g and not g ¼ui ,µ f . Structural

preferences are reflexive and transitive: see Siniscalchi (2016a), Appendix B.

Structural preferences reduce to EU in simultaneous-move games: in this case,Fi = {Ω},

so a CPS and, therefore, its basis, is a single probability measure. Hence, as stated in the Intro-

duction, in general structural preferences predict different behavior in a dynamic game and in

its associated matrix form. Furthermore, for any player i , structural preferences also reduce

to EU if every conditioning event has positive prior probability (that is, µ(E |Ω) > 0 for every

E ∈ Fi ). This is because, in this case, E .Ω and Ω . E both hold, so if (pE )E ∈Fi
is a basis for

player i ’s CPS µ, then pE = pΩ for all E ∈Fi . Thus, structural preferences only differ from EU

if one or more information sets is not expected to be reached.

The definition of structural preferences is reminiscent of that of lexicographic preferences

(Blume, Brandenburger, and Dekel, 1991a). The crucial difference is that both the probabili-
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ties involved in the definition (the basis), and their ordering (the plausibility ranking) are not

exogenously given, but rather derived from the player’s CPS, as per Definitions 2 and 3. I elab-

orate on this point in Section 8.

Examples. Definition 4 characterizes an ex-ante ranking, before the player has observed any

moves made by others.8 However, as noted in the Introduction, its definition utilizes the entire

CPS of the player, via its basis. To see how the definition is applied in a non-trivial example,

consider the game of Figure 2; here and throughout all examples in this paper, interpret the

numbers attached to terminal nodes as monetary payoffs, and assume utilty is linear.9 Table I

below summarizes the expected payoffs given the two basis probabilities for the CPS µ in Eq.

(4): the prior, µ(·|SBob), and the probability p that assigns equal weight to t , m , b .10

si f si EU for µ(·|SBob) EU for p

RTT ′, RTB′ (6, 3, 0, 1) 1 3

RBT ′, RBB′ (3, 5, 0, 1) 1 8
3

LTT ′, LBT ′ (0, 2, 1, 1) 1 1
3

LTB′, LBB′ (0, 0, 0, 1) 1 0

Table I: Expected payoffs for the strategies in Fig. 2 and the CPS µ

Applying Definition 4, the strategies RTT ′, RTB′ are structurally strictly preferred to any

other strategy: while all strategies yield the same ex-ante expected payoff of 1, choosing R

followed by T secures the highest expected payoff for the basis probability p . Observe that

any two realization-equivalent strategies induce the same act, and so a player with structural

8The companion paper Siniscalchi (2016a) shows that Savage’s usual update rule for preferences (Savage,

1954) defines dynamically consistent conditional structural preferences.

9Equivalent, assume they represent utility levels: this is immaterial to the discussion.

10The second column indicates the act f si associated with strategy si , listing the states in the order t , m , b , o :

that is, it displays the vector
�

f si (t ), f si (m ), f si (b ), f si (o )
�

.
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preferences will be indifferent between them.11 I return to this point in the next Section, where

sequential rationality is defined.

Now consider the CPS ν in Equation (5). Table II repeats the calculations for the corre-

sponding basis, which—as noted above–consists of the elements of ν.

si f si EU for ν(·|SBob) EU for ν(·|[I ]) EU for ν(·|[J ])

RTT ′, RTB′ (6, 3, 0, 1) 1 6 0

RBT ′, RBB′ (3, 5, 0, 1) 1 3 0

LTT ′, LBT ′ (0, 2, 1, 1) 1 0 1

LTB′, LBB′ (0, 0, 0, 1) 1 0 0

Table II: Expected payoffs for the strategies in Fig. 2 and the CPS ν

With these beliefs, strategy RTT ′ delivers the highest expected payoff givenν(·|[I ]), but LTT ′

yields a strictly higher expected payoff given ν(·|[J ]). These strategies are thus not ranked by

the structural preferences induced by ν. Thus, structural preferences can be incomplete. This

is a consequence of the fact that the CPS ν does not rank [I ] and [J ] in terms of their plausibil-

ity: one cannot say that one is “infinitely more likely” than the other. Yet, strategies RTT ′ and

LTT ′ are maximal—no other strategy is structurally preferred to either of them. They are also

sequentially rational. By way of contrast, for instance, RBT ′ is strictly worse than RTT ′.

A caveat: basis probabilities and conditional probabilities. Structural preferences are de-

fined using the basis of a CPS, rather than the CPS itself. This is essential to ensure that struc-

tural rationality implies sequential rationality. Suppose one instead defines a binary relation

¼† as follows: given acts f , g ∈Ai and a CPS µ̄,

f ¼† g if, for every F ∈Fi such that Eµ̄(·|F )ui ◦ f < Eµ̄(·|F )ui ◦ g , there is G ∈Fi such

that G . F and Eµ̄(·|F )ui ◦ f > Eµ̄(·|F )ui ◦ g .

11The same is true for any other ranking of preferences in terms of induced acts—including expected-payoff

maximization and lexicographic preferences.
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Now consider Ann’s strategy RBT ′ and the CPSµ in Eq. (4). The conditional expected payoff of

RBT ′ givenµ(·|[J ]) is 2.5, which is strictly higher than that of any other strategy, including RTT ′.

The only conditioning event that is more plausible than [J ] is Sb , and ex-ante all strategies yield

1. Hence, RBT ′ is maximal for the relation ¼†. However, it is not sequentially rational for µ.

The reason for this undesirable conclusion is that the definition of ¼† leads one to com-

pare the expected payoff of strategies RTT ′ and RBT ′ conditional upon the event, [J ] = {m , b },

even though the information set J is not allowed by either strategy. By using basis probabil-

ities, Definition 4 avoids this. The fact that RTT ′ and RBT ′ allow I but not J imply that these

strategies yield the same payoff on {b } (cf. Mailath, Samuelson, and Swinkels, 1990). The basis

probabiility associated with both I and J has support [I ]∪[J ] = {t , m , b }; since both strategies

yield 0 in state b , relative to this probability RTT ′ and RBT ′ are effectively ranked as a function

of their expected payoff given [I ] = {t , m}. Since all strategies yield 1 given Ann’s prior belief,

this ensures that a maximal strategy must make an optimal choice at I ; this rules out RBT ′.

5 Sequential Rationality

This section relates structural and sequential rationality. Throughout, fix a dynamic game

(Γ , X ,Θ, (ξi )i∈N . For each player i , fix a CPS µi that admits a basis pi = (pi ,F )F ∈Fi
, and a utility

function ui : X → R. Also, for every i ∈ N , let .i be the plausibility relation induced by µi .

In this section and the following, to streamline notation, and if no confusion can arise, I will

denote the act f si induced by strategy si simply by “si ”.

It is also convenient to derive a strategic-form payoff function for every player in the dy-

namic game under consideration, as follows: for every si ∈ Si , s−i ∈ S−i , and θ ∈Θ, let

Ui (si , s−i ,θ )≡ ui (ξi (ζ(si , s−i ),θ )) = ui ( f
s

i (s−i ,θ )), (6)

where the equality follows from the definition of the i -act f si associated with strategy si . De-

note by Ui (si , ·) the map (s−i ,θ ) 7→Ui (si , s−i ,θ ). With these definitions, structural preferences
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over strategies can be represented in terms of strategic-form payoff functions, as follows.

Observation 1 For every player i ∈ N and strategies si , ti ∈ Si , si ¼ui ,µi ti if and only if, for

every event F ∈ Fi such that Epi ,F
Ui (si , ·) < Epi ,F

Ui (ti , ·), there is G ∈ Fi such that G .i F and

Epi ,G
Ui (si , ·)> Epi ,G

Ui (ti , ·).

Since structural preferences are not complete in general, an optimal strategy may fail to

exist. However, since they are transitive, maximal strategies always exist:

Definition 5 A strategy si ∈ Si is structurally rational (for Ui ,µi ) if there is no ti ∈ Si such that

ti �ui ,µi si .

The notion of maximality in Definition 5 is “ex-ante,” like the structural preference defined

in Definition 4. The analysis in the preceding section implies that, in the game of Figure 2, if

Ann’s beliefs are given by µ then RTT ′ and RTB′ are the only structurally rational strategies; if

instead they are given by ν, then RTT ′, RTB′, LTT ′ and LBT ′ are structurally rational.

I now formally state the definition of sequential rationality. Following e.g. Rubinstein

(1991); Reny (1992); Battigalli (1996); Battigalli and Siniscalchi (1999), I only require optimal-

ity of a strategy at information sets that it allows. Consequently, sequential rationality, thus

defined, does not distinguish between realization-equivalent strategies. As noted in the pre-

ceding section, neither does structural rationality.

Definition 6 A strategy si is sequentially rational (for (Ui ,µi ) if, for every I ∈ I (si ) and ti ∈

Si (I ), Eµ(·|[I ])Ui (si , ·)≥ Eµ(·|[I ])Ui (ti , ·).

By standard arguments, in any finite game Γ ,12 a sequentially rational strategy exists.

The main result of this section can now be stated:

Theorem 1 If a strategy is structurally rational for (Ui ,µi ), then it is sequentially rational for

(Ui ,µi ).

12The extensive game itself is assumed to be finite; the sets Θ can have arbitrary cardinality.
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A converse to this result does not hold: even in perfect-information games, structural pref-

erences can refine sequential rationality.

Example 1 Consider the game in Fig. 3. Bob’s strategies are Sb = {d1d2, d1a2, a1d2, a1a2}; there

is no additional uncertainty. Assume that Ann’s initial and conditional beliefs correspond to

Bob’s backward-induction strategy d1a2. Then, D1∗ (the realization-equivalent strategies D1D2

and D1A2) and A1A2 are sequentially rational for Ann. Indeed, at the third node, A2 is condi-

tionally strictly dominant (it yields 0 or −1, while D2 yields −2). At the first node, given that

Bob is expected to choose D1 at node 2, both A1 and D1 are rational for Ann.

Ann

D1

2,*

A1 Bob

d1

2,2

a1 Ann

D2

-2,-1

A2 Bob

d2

-1,0

a2
0,1

Figure 3: Sequential preferences refine sequential rationality

However, for any CPSµa for Ann that admits a basis, D1∗ is strictly structurally preferred to

A1A2, so A1A2 is not structurally rational. To see this, let pa = (pa ,Sb
, pa ,[I ]) be Ann’s basis, where

I denotes the third node, and it may be the case that pa ,Sb
= pa ,[I ].

First, suppose that pa ,Sb
assigns positive probability to a1d2 and/or a1a2. In this case,

µa ([I ]|Sb ) > 0, so Sb .a [I ] and [I ] .a Sb , and therefore pa ,Sb
= pa ,[I ]. Moreover, the expected

payoff to A1A2 with respect to pa ,Sb
is strictly less than 2, so D ∗

1 is strictly better than A1A2 ex-

ante; thus, D1∗ �ua ,µa A1A2.

Next, suppose that pa ,Sb
(d1∗) = 1. This implies that µa ([I ]|Sb ) = 0, and since µa (Sb |[I ]) = 1>

0, Sb .a [I ] but the converse does not hold. Then pa ,Sb
6= pa ,[I ], and the expectation of D1∗ and

A1A2 with respect to pa ,Sb
is the same, i.e., 2. Furthermore, the expectation of D1∗with respect

to pa ,[I ] is 2, and that of A1A2 is at most 0. Since Sb .a [I ], again D1∗ �ua ,µ A1A2. �
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6 Elicitation

This section investigates how players’ structural preferences, and hence their conditional be-

liefs, can be elicited. Given a dynamic game of interest, I describe an associated “elicita-

tion game.” The main result of this section then shows that, if players’ beliefs in the elicita-

tion game are consistent with those they hold in the original game, then their initial—hence,

observable—choices in the former reveal her strategies and preferences in the former.

The elicitation game builds upon the strategy-method procedure (Selten, 1967). As de-

scribed in the Introduction, the strategy method requires players to simultaneously commit

to extensive-form strategies; the experimenter then implements the resulting strategy profile.

The elicitation game is defined so that, during the implementation phase, the players receive

the same information they would receive if they were playing the original game. For instance,

if the original game is an ascending-clock auction, players choose proxy bids, and are then

required to observe the auction play out: as the price increases, they see which bidders drop

out, until the winner is determined—but they cannot change their bid.13 The key insight is

that, if players make the same observations in the original game and in the elicitation game,

but cannot change their actions once they have committed, then the set of strategies, condi-

tioning events, and conditional beliefs in the two games are the same up to relabeling. Hence,

every structural preference in the original game induces a unique structural preference in the

elicitation game that ranks strategies the same way, again up to relabeling. In particular, any

strategy a player commits to in the elicitation game is also a strategy she would follow in the

original game, and conversely. Thus, structural rationality implies that the strategy method

successfully elicits players’ intended choices.

To elicit players’ conditional beliefs as well, the elicitation game also requires players to

rank pairs of acts. To keep the notation simple, I fix one distinguished player, denoted i , and

ask her to rank two acts, f and g ; the costruction (and Theorem 2) can be easily adapted to

13I thank Larry Ausubel for suggesting this example.
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handle the elicitation of multiple comparisons from multiple players. In the commitment

phase of the elicitation game, player i must commit to a strategy, but also choose one of the

acts f or g ; the other players only commit to a strategy. I then introduce a randomizing device,

with outcomes denoted “o ” and “a ,” whose realization is not observed by the players. If the

outcome is o , upon reaching a terminal history the players receive the same payoffs as in the

original game. If it is a , then players j 6= i again receive the same payoffs as in the original

game, but player i ’s payoff is determined by the act she has chosen. The resulting construction

is in the spirit of random lottery incentive schemes (e.g. Grether and Plott, 1979).

The elicitation game is formally defined as follows.

Definition 7 The elicitation game associated with (Γ , X ,Θ,T , (ξi )i∈N ) and acts f , g ∈ Ai of

player i ∈N is the dynamic game (Γ ∗, X ,Θ∗,T ∗, (ξ∗j ) j∈N ) such that

• Γ ∗ = (N , H ∗, P ∗, (I ∗j ) j∈N ), where, writing Γ = (N , H , P, (I j ) j∈N ),

– h ∗ ∈ H ∗ if and only if h ∗ = (s1, . . . , si−1, (si , k ), si+1, . . . , sN , h ) for some k ∈ { f , g } and

h ∈ H with (s j ) j∈N ∈ S (h ); in this case, say that h ∗ extends h , and that j plays s j ,

and i plays (si , k ) in h ∗.

– P ∗(h ∗) = j if and only if h ∗ has length j −1, or if it extends some h ∈H with P (h ) = j

– for j 6= i , I j = {I 1
j }∪ {〈s j , I 〉 : s j ∈ Sj (I ), I ∈ I j }, where I 1

j = {h
∗ : h ∗ has length j −1}

and 〈s j , I 〉= {h ∗ : h ∗ extends some h ∈ I and j plays s j in h ∗};

– for player i , Ii = {I 1
i } ∪

�

〈si , k , I 〉 : si ∈ Si (I ), I ∈ Ii , k ∈ { f , g },
	

, where I 1
i = {h

∗ :

h ∗ has length i−1}and 〈si , k , I 〉= {h ∗ : h ∗ extends some h ∈ I and i plays (si , k ) in h ∗};

• Θ∗ =Θ×{o , a } and T ∗ =T ×2{o ,a };

• ξ j

�

(s1, . . . , sN , k , z ), (θ , r )
�

equals ξ(z ,θ ) if j 6= i or r = o , and k
�

(s−i ,θ )
�

if j = i and r = a .

For every history h ∗ = (s1, . . . , si−1, (si , k ), si+1, . . . , sN , h ), the initial moves (s1, . . . , si−1, (si , k ), si+1, . . . , sN , h )

represent players’ choices during the commitment phase of the elicitation game. Each player
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has a single information set in this pahse, so these choices may as well be thought of as be-

ing simultaneous. Then, histories continue with a path of play h generated by the profile

(s1, . . . , sN ) during the implementaiton phase of the elicitation game. Each information set I

of j in the original game maps to one or more information sets 〈s j , I 〉 in the elicitation game,

one for each of j ’s strategies that allow I . This ensures that the elicitation game has perfect re-

call: players remember all their past choices, including the choice of a commitment strategy.

Player i also remembers her choice of an act k ∈ { f , g }.

Definition 7 implies that there is a tight connection between strategies in the original game

and in the elicitation game. For every player j , the only information set where a non-trivial

choice is available is I 1
j ; at that information set, the action set is Sj if j 6= i , ad Si × { f , g } for

player i . At all other information sets, players have a single available action (cf. Remark 1 in

Appendix B.2). Thus, players are indeed committed to the choice of strategy they make in the

first phase of the elicitation game. In addition, this property makes it possible to define, for

players j 6= i , a bijectionσ j : Sj → S ∗j such thatσ j (s j ) is the unique strategy in S ∗j that chooses

s j at I 1
j . Similarly, for player j = i , and for every k ∈ { f , g }, there is a bijection σi ,k : Si → S ∗i ,

such thatσi ,k (si ) is the unique strategy in S ∗i that chooses si and k at I 1
i .

There is an equally tight connection between the conditioning events in the original game

and in the elicitation game. Consider a player j 6= i and an information set of the form 〈s j , I 〉.

By Definition 7, this comprises histories h ∗ that extend some history h ∈ I . By the same Def-

inition, in the commitment phase of each such history h ∗, the choices s1, . . . , sN must be such

that s reaches h , and hence I , in the original game. Hence, at 〈s j , I 〉, player j learns that, in the

commitment phase of the game, her coplayers must have chosen a profile s− j that allows I in

the original game. This is, of course, precisely what she would learn in the original game upon

reaching I . Thus, the conditioning event [〈s j , I 〉] in the elicitation game provides exactly the

same information about coplayers as [I ] in the original game. (For a precise formal statement,

which makes use of the bijectionsσ j (·) andσi ,k (·), see Lemma 4 in Appendix B.2).

Since the conditioning information in the original and elicitation games is, in a suitable
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sense, “the same,” if beliefs in the two games are also “the same,” structural preferences should

intuitively yield the same behavior. The following definition characterizes what it means for a

CPS in the elicitation game to correspond to a CPS in the original game; for each player j , Σ∗j

andF ∗j refer to the sigma-algebra on the state space Ω∗j =Ω j ×{o , a }, and, respectively, to the

set of conditioning events, in the elicitation game.

Definition 8 A CPS µ∗j ∈ cpr(Σ∗j ,F ∗j ) is an extension of a CPS µ j ∈ cpr(Σ j ,F j ) if, for every

s− j ∈ S− j , U ∈T and r ∈ {o , a }, the following conditions hold: if j = i ,

µ∗i

�

{(σ`(s`))` 6=i }×U ×{r }
�

�

�Ωi ×{o , a }
�

=
1

2
µi

�

{s−i }×U
�

�Ωi

�

(7)

µ∗i

�

{(σ`(s`))` 6=i }×U ×{r }
�

�

�[〈si , I 〉]
�

=
1

2
µi

�

{s−i }×U
�

�[I ]
�

; (8)

and if j 6= i ,

µ∗j

�

{(σ`(s`))` 6∈{i , j }}× {σi , f (si )),σi ,g (si )}}×U ×{r }
�

�

�Ω j ×{o , a }
�

=
1

2
µ j

�

{s− j }×U
�

�Ω j

�

, (9)

µ∗j

�

{(σ`(s`))` 6∈{i , j }}× {σi , f (si )),σi ,g (si )}}×U ×{r }
�

�

�[〈s j , I 〉]
�

=
1

2
µ j

�

{s− j }×U
�

�[I ]
�

. (10)

The equations in Definition 8 state that, conditional upon any event inF ∗j , each player j be-

lieves that the realizations of the randomizing device are independent of coplayers’ strategies,

and equally likely. Furthermore, j ’s beliefs about coplayers’ strategies and exogenous uncer-

tainty are the same as in the original game Γ . If j 6= i , the definition does not restrict the

relative likelihood that j assigns to i choosing f or g , provided the probability she assigns to

i choosing si is the same as in the original game.

I can finally state the main result of this section.

Theorem 2 Fix a dynamic game (Γ , X ,Θ,T , (ξi )i∈N ) and acts f , g ∈ Ai of player i ∈ N . For

every j ∈ N , fix a CPS µ j ∈ cpr(Ωi ,Fi ) that admits a basis. Then every µ j has an extension

µ∗j ,14 which also admits a basis. For any choice of extensions (µ∗j ) j∈N and utilities (u j ) j∈N :

14For player i , this extension is unique. For players j 6= i , there may be different extensions, which differ in the

probabilities assigned to i ’s choice of f vs. g . However, these differences are inconsequential to the analysis.
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1. For all j 6= i and s j , t j ∈ Sj ,σ j (s j )¼u j ,µ∗j σ j (t j ) if and only if s j ¼u j ,µ j t j ;

2. for all si , ti ∈ Si and k ∈ { f , g },σi ,k (si )¼ui ,µ∗i σi ,k (ti ) if and only if si ¼ui ,µi ti ;

3. for every si ∈ Si ,σi , f (si )¼ui ,µ∗i σi ,g (si ) if and only if f ¼ui ,µi g .

Parts 1 and 2 of Theorem 2 state that, if every player has “the same” beliefs in the original

game Γ and in the elicitation game Γ ∗, then every player’s preferences over strategies are effec-

tively unchanged. This in turn suggests a reason why players might hold the same beliefs in Γ

and Γ ∗—if player j expects every coplayer ` 6= j not to change his beliefs, then j can conclude

from Theorem 2 that they will behave similarly in the two games.

Furthermore, parts 1 and 2 provide a justification for the strategy method: setting aside

i ’s choice of f vs. g , the game Γ ∗ provides a way to elicit every player’s behavior in Γ from the

observation of her choices in the initial commitment stage of Γ ∗.

Part 3 is the elicitation result. By observing player i ’s preferences in the elicitation game,

one can infer her preferences over arbitrary acts in the original game.

Since preferences in the original and elicitation games may be incomplete, and there may

be ties, one has to be careful to interpret a single observed choice in the commitment phase

of the elicitation game. Suppose for instance that player i chooses (si , f ). Then, by part 2 of

Theorem 2, si is maximal in Γ : otherwise, for some strategy ti , the pair (ti , f )would be strictly

preferred, and thus not chosen in Γ ∗. Similarly, by part 3 of the Theorem, it cannot be the

case that g �ui ,µi f , for otherwise (si , g ) would be strictly preferred. However, on the basis of

the single observation (si , f ), one cannot rule out the possibility that there may be multiple

maximal strategies for i in Γ , or that f and g might be incomparable in Γ .

Fortunately, by exploiting specific features of structural preferences, it is nevertheless pos-

sible to elicit the utility function ui and the CPS µi of any designated player i by restricting

attention to specific collections of acts that player i surely can rank. Therefore, player i ’s pref-

erences can be fully elicited.
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The details are as follows. Assume, as in Anscombe and Aumann (1963) and in the com-

panion paper Siniscalchi (2016a), that X is the set of simple lotteries over a given collection

of prizes. Then, structural preferences over constant acts (i.e., effectively, over X ) are consis-

tent with von Neumann-Morgenstern expected utility under risk, and hence can be elicited by

standard arguments. This pins down the utility function ui . Thus, the key issue is how to elicit

the CPS µi . The following result provides the main step. For outcomes x , y ∈ X and events

E ∈Σ, let x E y denote the act that yields x at statesω ∈ E , and y at statesω 6∈ E .

Proposition 1 Fix prizes x , x , x0, x ∈ X such that ui (x ) > ui (x ) > ui (x0) > ui (x ) and assume

without loss of generality that ui (x ) = 1 and ui (x0) = 0. For any information set I ∈ Ii and

event G ∈Σwith G ⊆ [I ], there is a unique number α ∈ [0, 1] such that

∀y ∈ X , ui (y )>α ⇒ y [I ]x0 �ui ,µi x G x0, ui (y )<α ⇒ y [I ]x0 ≺ui ,µi x G x0.

Furthermore, α=µi (G |[I ]).

Leveraging Proposition 1, player i ’s CPS can be elicited (up to some predetermined pre-

cision) as follows. Start with a prize y that is strictly better than x , so that, under the utility

normalization in Proposition 1, surely ui (y ) > 1 ≥ µ(G |[I ]). Then, in the elicitation game Γ ∗

where the acts of interest are f = y [I ]x0 and g = x G x0, the individual will choose y [I ]x0. Now

repeat the elicitation procedure, considering successively worse prizes y . By Proposition 1

and Theorem 2, player i will consistently choose y [I ]x0 up to some “switching” prize y ∗, and

then consistently choose x G x0 thereafter. The (normalized) utility of the switching prize y ∗

equals or approximates µ(G |[I ]). Finally, as noted above, it is straightforward to modify the

procedure analyzed in this section so as to elicit more than one preference ranking; in partic-

ular, one can ask player i to rank M pairs of acts fm = ym [I ]x0 vs. gm = x G x0, where y1, . . . , yM

is a grid of prizes chosen so as to identify µ(G |[I ]) up to a predetermined precision.
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7 Consistency and bases

This section provides several characterizations of CPSs that admit a basis. The main idea can

be gleaned from the game in Fig. 4.

Ann R

a

b

c

d

0

o

1

T 0

B 0

T 5

B 3

T 3

B 5
L

a

0

b

c

d
o

1

T0

B0

T3

B5

T5

B3

Bob

Ann IAnnJ

Figure 4: Newcomb’s paradox?

Suppose that Ann’s CPS µ is as in Eq. (11):

µ({o}|Sb ) =µ({b }|[I ]) =µ({c }|[J ]) = 1. (11)

Observe that, for this CPS, [I ] . [J ] and [J ] . [I ]. Since both [I ] and [J ] are strictly less plausi-

ble than Sb , a basis for µ must consist of two measures, pφ and pI J , where pφ = µ(·|Sb ) and

pI J generates both µ(·|[I ]) and µ(·|[J ]) by conditioning. However, there is no such probability

pI J . To see this, suppose that a suitable pI J could be found. Then in particular it must sat-

isfy pI J ([I ]) > 0 and pI J ([J ]), or µ(·|[I ]) and µ(·|[J ]) could not be updates of pI J . Furthermore,

sinceµ({a , c }|[I ]) = 0, one must have pI J ({a , c }) = 0; and sinceµ({b , d }|[J ]) = 0, one must have

pI J ({b , d }) = 0. But then pI J ([I ]∪ [J ]) = pI J ({a , b , c , d }) = 0, contradiction. Therefore, the CPS

µ in Eq. (11) does not admit a basis.

A peculiar feature of this CPS µ is that Ann’s own initial choice of R vs. L determines her

conditional beliefs on the relative likelihood of b and c , despite the fact that Bob does not ob-
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serve Ann’s initial choice. (In fact, Ann’s first action and Bob’s move may well be simultaneous.)

This phenomenon is reminiscent of Newcomb’s paradox (Weirich, 2016).

Observe that, if [I ] and [J ] both had positive prior probability, the definition of conditional

probability would imply that the relative likelihood of b and c must be the same at both infor-

mation sets. A closely related argument implies that, in a consistent assessment in the sense

of Kreps and Wilson (1982), Ann cannot believe that Bob played b at I , and that he played c

at J .15 Moreover, modify the game in Figure 4 so that, if Bob does not choose o , a new infor-

mation K of Ann is reached; at K , Ann has a single available action, which leads to I if Bob

played a , b or c , and to J if he played b , c or d . In such a game, [K ] = {a , b , c , d } = [I ]∪ [J ].

Then, the argument given above implies that the CPS µ cannot be extended to a new CPS µ′

for the new game. A fortiori, the CPS µ cannot be extended to a complete CPS in the sense of

Myerson (1986)—a CPS in which every non-empty subset is a conditioning event.

To sum up, CPSs that do not admit a basis fail consistency requirements that are both in-

tuitive and have well-understood counterparts in the received literature. The following defi-

nition identifies an intrinsic property of CPSs that captures this consistency requirement.

Definition 9 Fix an extensive game form Γ = (N , H , P, (Ii )i∈N ) and a CPS µ ∈ cpr(Σi ,Fi ) for

player i ∈N . An ordered list F1, . . . , FL ∈Fi is aµ-sequence ifµ(F`+1|F`)> 0 for all `= 1, . . . , L−1.

The CPS µ is consistent if, for every µ-sequence F1, . . . , FL , and all E ⊆ F1 ∩ FL ,

µ(E |F1) ·
L−1
∏

`=1

µ(F` ∩ F`+1|F`+1)
µ(F` ∩ F`+1|F`)

=µ(E |FL )

The preorder . in Definition 2 can be characterized in terms of µ-sequences: F .G iff there is

a µ-sequence F1, . . . , FL such that F1 =G and FL = F .

Consistency can be viewed as a strengthening of the chain rule of conditioning. Consider

15In the language of Kreps and Wilson (1982), fix a convergent sequence of strictly positive behavioral strategy

profiles πk . If m k is the system of beliefs derived from πk , m k (I ) and m k (J ) assign the same relative likelihood

to the nodes corresponding to Bob’s choice of b vs. c . Hence, the same holds for the limit system of beliefs.
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F,G ∈Fi and E ∈ Σ, and assume that E ⊆ F ⊆G . Then the ordered list F,G is a µ-sequence,

because µ(G |F )≥µ(F, F ) = 1, and E ⊆ F ∩G = F . Therefore, consistency implies that

µ(E |F ) ·
µ(F ∩G |G )
µ(F ∩G |F )

=µ(E |G );

but since µ(F ∩G |G ) = µ(F |G ) and µ(F ∩G |F ) = µ(F |F ) = 1, this reduces to µ(E |F )µ(F |G ) =

µ(E |G ), which is precisely what the chain rule requires.

To see why consistency rules out pathological beliefs such as those in Eq. (11), consider

first a µ-sequence F1, F2 of length 2, and assume that µ(F1∩F2|F2)> 0. Rearrange the equation

in Definition 9 as follows:
µ(E |F1)

µ(F1 ∩ F2|F1)
=

µ(E |F2)
µ(F1 ∩ F2|F2)

.

Suppose that F1 = [I1] and F2 = [I2] for two information sets I1, I2 of i . Since E ⊆ F1 ∩ F2, this

condition requires that the probability assigned to E conditional on F1∩F2 must be the same

at I1 and at I2. In particular, if I1 and I2 are reached via different actions of i , this means that

the conditional probability of E given F1 ∩ F2 is independent of i ’s own choices—that is, no

Newcomb-like paradox can arise. Definition 9 generalizes this intuition by allowing for µ-

sequences of length greater than 2.

The following theorem shows that a CPS is consistent if and only if it admits a (unique)

basis. Furthermore, it provides two additional equivalent characterizations of consistency

that reflect the preceding discussion.

Theorem 3 Letµ ∈ cpr(Σi ,Fi )be a CPS for player i ∈N . DefineFµ = {∪L
`=1F` : F1, . . . , FL is a µ-sequence}.

The following are equivalent:

1. µ is consistent;

2. µ admits a unique basis;

3. there is a uniqe CPS ν ∈ cpr(Σi ,Fµ) such that ν(·|F ) =µ(·|F ) for all F ∈F ;
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4. there is a sequence (p n ) ∈ pr(Σi ) such that p m (F ) > 0 for all m and F ∈ Fi , and p m (E ∩

F )/p k (F )→µ(E ∩ F |F ) for all F ∈F and E ∈Σi .16

If p = (pF )F ∈Fi
is a basis for µ, and ν ∈ cpr(Σi ,Fµ) satisfies ν(·|F ) = µ(·|F ) for all F ∈ F , then,

for every F ∈F , pF = ν(·| ∪ {G : F .G ,G . F }).

8 Discussion, Related Literature, and Conclusions

Incomplete-information games In the textbook model of games with incomplete informa-

tion, there is a set Θi of “types” for each player i , and possibly a set Θ0 that describes resid-

ual uncertainty that is not captured by the realization of each player’s type. Player types may

affect both utilities and conditional beliefs—that is, types determine preferences. The analy-

sis of this paper may be seen as providing a foundation for the preferences of a given player

type; in other words, it concerns the interim stage of an incomplete-information game. To

see this, fix a player i , and a type θ ∗i ∈ Θi . The exogenous uncertainty faced by this player is

Θ = Θ0 ×Θ−i . The utility function ui and the conditional beliefs µi introduced in Definition

1 are now interpreted as the ones characterizing the preferences of i ’s type θ ∗i . The results in

Sections 5 and 6 then state that, if the selected type θ ∗i of player i is structurally rational, then

she is sequentially rational, and her preferences can be elicited (at the interim stage). One

can in principle apply the analysis to each possible tuple of types (θi )i∈N ∈
∏

i∈N Θi . Thus, the

results in this paper provide behavioral foundations for sequential rationality in the overall

incomplete-information game.

Alternative representations of beliefs In this paper, the primary representation of condi-

tional beliefs are consistent CPSs. To define structural preferences, I “extract” from a CPS a

plausibility ordering . over conditioning eventsF , and a basis (pF )F ∈F . The advantage is that

16Even though the state space may be infinite, convergence here is pointwise. See the proof for details.
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this emphasizes the primacy of conditional beliefs. However, one can alternatively represent

beliefs in a format that can be used to define structural preferences directly. One way to do so

is to modify the definition of a basis: see Appendix A.1 for a sketch of the approach. Theorem 3

provides another alternative: one can assume that player’s beliefs are extended CPSs, defined

for a larger collection of conditioning events as indicated in Section 7.

Lexicographic expected utility. A lexicographic probability system (LPS) on the state space

Ωi = S−i × Θ is a linearly ordered collection of probabilities (p0, . . . , pn−1) on Ωi . Given acts

f , g ∈Ai , f is lexicographically (weakly) preferred to g if Epm
ui ◦ f < Epm

ui ◦g implies Ep`ui ◦

f > Ep`ui ◦ g for some ` < m . This is clearly reminiscent of Definition 4. However, the LPS

(p0, . . . , pn−1) is defined without any reference to the underlying dynamic game. This has an

important consequence: an LPS can generate a CPS by conditioning,17 but the same CPS may

be generated by multiple LPSs. For instance, the CPS ν in Eq. (5) can be generated by the LPS

λ1 = (δo ,δt ,δm ), but also by the LPS λ2 = (δo ,δm ,δt ), where δω denootes the Dirac measure

concentrated on {ω}. Intuitively, λ1 assigns higher plausibility to t than to m , whereas the

opposite is true of λ2. However, this plausibility assessment is not derived from Ann’s CPS ν.

By way of contrast, by design, structural preferences are defined solely in terms of informa-

tion that can be derived from the player’s conditional beliefs. For this reason, they are close

in spirit to sequential rationality, and explicitly motivated by extensive-form analysis. Lexico-

graphic expected-utility maximization is instead a strategic-form concept; it was introduced

into game theory to analyze refinements for games with simultaneous moves (Blume, Bran-

denburger, and Dekel, 1991b), and moreover, when coupled with a full-support assumption,

it incorporates an invariance requirement; see Brandenburger (2007), §12. Finally, as noted

in Section 4.2, structural preferences reduce to EU in simultaneous-move games; on the other

hand, lexicographic preferences may of course differ from EU in such games.

17For every I ∈ Ii , let µ(·|[I ]) = pm (I )(·|[I ]), where m (I ) is the lowest index m for which pm ([I ]) > 0—assuming

one such index can be found.
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Conditional expected-utility maximization Myerson (1986) axiomatizes conditional expected

utility maximization with respect to a CPS. The analysis assumes that a family of conditional

preferences is taken as given. Preferences conditional upon nested events are related by sub-

jective substitution, which is shown to characterize the chain rule of conditioning for CPSs.

Just like prior beliefs do not fully determine the player’s CPS due to the presence of ex-ante

zero-probability events, prior preferences do not fully determine the entire system of condi-

tional preferences. Thus, in Myerson’s analysis, it is necessary to assume that all conditional

preferences are observable. As shown in Section 2, this may be problematic in many dynamic

games. By way of contrast, the present paper defines an ex-ante preference relation; Theorem

2 shows that it is elicitable by observing initial choices in suitably-designed experiments.18

Structural and lexicographic consistency As noted in the Introduction, bases incorporate

a version of structural consistency (Kreps and Wilson, 1982; Kreps and Ramey, 1987): condi-

tional beliefs should be derived from a collection of alternative prior probabilistic hypotheses

about the play of opponents. CPSs also reflect structural consistency, though in a somewhat

trivial sense: every conditional belief in a CPS can be interpreted as an alternative “prior” hy-

pothesis that is adopted once an unexpected information set is reached. By way of contrast, a

basis incorporates a notion of parsimony: it identifies the minimal set of alternative hypothe-

ses that generate the CPS. Furthermore, as Theorem 3 shows, an arbitrary CPS may assign

relative likelihoods in inconsistent ways, and thus represent alternative hypotheses that are

not just trivial, but contradictory. The existence of a basis ensures consistency.

Kreps and Wilson (1982) also consider a notion of lexicographic consistency. Their defini-

tion is stated in the setting of equilibrium, rather than individual maximization; furthermore,

conditional beliefs are represented by consistent assessments. Translated to the present set-

ting and notation, lexicographic consistency requires that the player’s CPS can be generated

by an LPS, as described above. Hence, the above comparison with LPSs applies: in the present

18The same observability issue applies to Asheim and Perea (2005), who generalize Myerson’s analysis.
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analysis, the basis and its ordering is entirely derived from the CPS. Thus, CPSs are the starting

point of the analysis. Lexicographic consistency, on the other hand, gives priority to an LPS,

which adds information not present in the player’s CPS.

Preferences for the timing of uncertainty resolution The fact that structural preferences

depend upon the extensive form of the dynamic game can be seen as loosely analogous to the

issue of sensitivity to the timing of uncertainty resoluution: see e.g. Kreps and Porteus (1978);

Epstein and Zin (1989), and in particular Dillenberger (2010). In the latter paper, preferences

are allowed to depend upon whether information is revealed gradually rather than in a single

period, even if no action can be taken upon the arrival of partial information. This is close

in spirit to the observation that subjects behave differently in the strategic form of a dynamic

game (where all uncertainty is resolved in one shot), and when the game is played with com-

mitment as in the strategy method (where information arrives gradually). The key difference

is that, for structural preference, this dependence only affects preferences when some piece

of partial information has zero prior probability—that is, when there is unexpected partial in-

formation. If all conditioning events have positive probability, structural preference reduce to

standard expected-utility preferences. (Of course, the same is true for sequential rationality,

when all information set have positive prior probability.)

A Bases

Throughout, fix an extensive game form Γ = (N , H , P, (Ii )i∈N ).

Lemma 1 Let µ be a CPS for player i ∈ N that admits a basis p = (pF )F ∈Fi
. Denote by . the

plausibility relation induced by µ.

1. For all E , F ∈Fi , pF (E )> 0 implies E . F .

2. For all E , F ∈Fi , if E . F and pF 6= pE , then pE (F ) = 0.
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Proof: Begin with a preliminary Claim: for all F ∈ Fi and E ∈ Σ, if pF (E ) > 0, then there is

G ∈F such that G . F , F .G , and pF (E ∩G )> 0. This follows because, by part (2) in Def. 3,

pF (E ) = pF

�

E ∩
⋃

{G ∈Fi : F .G ,G . F }
�

≤
∑

G∈Fi :F .G ,G .F

pF (E ∩G ).

1: by the Preliminary Claim, there is G ∈ Fi with G . F , F .G , and pF (G ∩ E ) > 0. By

condition (1), pG (E ∩G )> 0, and by condition (3), pG (G )> 0 and µi (E ∩G |G )pi ,G (G ) = pG (E ∩

G )> 0. Thus, by Def. 2, E .G ; since the relation . is transitive, E . F .

2: by contradiction, if pE (F )> 0 then part 1 implies that F .E . Since also E . F , condition

(1) in Def. 3 implies pF = pE , contradiction. Thus, pE (F ) = 0.

The following is the central result in the analysis of consistency and bases.

Proposition 2 Fix a CPS µ ∈ cpr(Σi ,Fi ) for player i ∈N . The following are equivalent:

1. µ is consistent;

2. for every µ-sequence F1, . . . , FK ∈ F , there exists p ∈ pr(Σi ) with p (∪k Fk ) = 1, such that,

for every `= 1, . . . , K and E ∈Σ such that E ⊆ F`,

p (E ) =µ(E |F`)p (F`). (12)

If a probability p that satisfies the property in (2) exists, it is unique; furthermore, p (FK ) > 0,

and for all `= 1, . . . , K −1, p (F`)> 0 iff µ(Fk |Fk+1)> 0 for all k = `+1, . . . , K .

Proof: (1)⇒(2): assume that µ is consistent. Let F1, . . . , FK ∈Fi be a µ-sequence.

Define G1 = F1 and, inductively, Gk = Fk\(F1∪. . .∪Fk−1) for k = 2, . . . , K . Note that F1∪. . .∪Fk =

G1 ∪ . . .Gk for all k = 1, . . . , K , [for k = 1 this is by definition. By induction, G1 ∪ . . . ∪Gk+1 =

(G1 ∪ . . .Gk )∪Gk+1 = (F1 ∪ . . .∪ Fk )∪Gk+1 = (F1 ∪ . . .∪ Fk )∪ [Fk+1 \ (F1 ∪ . . .∪ Fk )] = F1 ∪ . . .∪ Fk+1]

and Gk ∩G` = ; for all k 6= `. [Let ` > k : then G` = F` \ (F1 ∪ . . . F`−1) = F` \ (G1 ∪ . . .G`−1), and

k ∈ {1, . . . ,`−1}.] Also, Gk ⊆ Fk for all k = 1, . . . , K .
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I now define a set function ρ :Σi →R. For every `= 1, . . . , K and E ∈Σi with E ⊆G`, let

ρ(E )≡µ(E |F`) ·
K −1
∏

k=`

µ(Fk ∩ Fk+1|Fk+1)
µ(Fk ∩ Fk+1|Fk )

,

with the usual convention that the product over an empty set of indices equals 1. By as-

sumption, the denominators of the above fractions are all strictly positive. Also, since the sets

G1, . . . ,Gk are disjoint by construction, if ; 6= E ⊆G` for some ` then E 6⊆Gk for k 6= `, so ρ(E )

is uniquely defined; furthermore, ; ⊆Gk for all k , but ρ(;) is stil well-defined and equal to 0.

To complete the definition of ρ(·), for all events E ∈ Σi such that E 6⊆ Gk for k = 1, . . . , K

[i.e., E intersects two or more events Gk , or none], let

ρ(E ) =
K
∑

k=1

ρ(E ∩Gk ).

The function ρ(·) thus defined takes non-negative values. I claim that ρ(·) is countably

additive. Consider an ordered list E1, E2, . . . ∈ Σ such that Em ∩ Em̄ = ; for m 6= m̄ . If there is

` ∈ {1, . . . , K } such that Em ⊆G` for all m , then by countable additivity of µ(·|F`),

ρ

�

⋃

m

Em

�

=µ

�

⋃

m

Em

�

�

�Fk

�

·
K −1
∏

k=`

µ(Fk ∩ Fk+1|Fk+1)
µ(Fk ∩ Fk+1|Fk )

=

�

∑

m

µ(Em |Fk )

�

·
K −1
∏

k=`

µ(Fk ∩ Fk+1|Fk+1)
µ(Fk ∩ Fk+1|Fk )

=

=
∑

m

�

µ(Em |F`) ·
K −1
∏

k=`

µ(Fk ∩ Fk+1|Fk+1)
µ(Fk ∩ Fk+1|Fk )

�

=
∑

m

ρ(Em ).

Thus, for a general ordered list E1, E2, . . . ∈Σ of pairwise disjoint events,

ρ

�

⋃

m

Em

�

=
∑

k

ρ

��

⋃

m

Em

�

∩Gk

�

=
∑

k

ρ

�

⋃

m

[Em ∩Gk ]

�

=

=
∑

k

∑

m

ρ(Em ∩Gk ) =
∑

m

∑

k

ρ(Em ∩Gk ) =
∑

m

ρ(Em );

interchanging the order of the summation in the second line is allowed because all summands

are non-negative and the derivation shows that
∑

k

∑

m ρ(Em∩Gk ) =
∑

k ρ([∪m Em ]∩Gk ), a sum

of finitely many finite terms.
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Now consider E ∈ Σ with E ⊆ Fm and E ⊆ G` for some `, m ∈ {1, . . . , K } with ` 6=m . Since

Fm ⊆ F1 ∪ . . . ∪ Fm = G1 ∪ . . . ∪Gm , it must be the case that ` < m . Consider the ordered list

F`, . . . , Fm ∈ Fi : since F1, . . . , FK is a µ-sequence, so is F`, . . . , Fm , so by Consistency, since by

assumption E ⊆ Fm ∩G` ⊆ Fm ∩ F`,

µ(E |F`)
m−1
∏

k=`

µ(Fk ∩ Fk+1|Fk+1)
µ(Fk ∩ Fk+1|Fk )

=µ(E |Fm ).

Multiply both sides by the positive quantity
∏K −1

k=m
µ(Fk∩Fk+1|Fk+1)
µ(Fk∩Fk+1|Fn )

to get

ρ(E ) =µ(E |F`)
K −1
∏

k=`

µ(Fk ∩ Fk+1|Fk+1)
µ(Fk ∩ Fk+1|Fk )

=µ(E |Fm )
K −1
∏

k=m

µ(Fk ∩ Fk+1|Fk+1)
µ(Fk ∩ Fk+1|Fk )

.

Therefore, for all E ∈Σwith E ⊆ Fm for some m ∈ {1, . . . , K },

µ(E |Fm )
K −1
∏

k=m

µ(Fk ∩ Fk+1|Fk+1)
µ(Fk ∩ Fk+1|Fk )

=
K
∑

`=1

µ(E ∩G`|Fm )
K −1
∏

k=m

µ(Fk ∩ Fk+1|Fk+1)
µ(Fk ∩ Fk+1|Fk )

=

=
K
∑

`=1

ρ(E ∩G`) =ρ(E ).

It follows that, for all m ∈ {1, . . . , K } and E ∈Σwith E ⊆ Fm ,

ρ(Fm ) =µ(Fm |Fm )
K −1
∏

k=m

µ(Fk ∩ Fk+1|Fk+1)
µ(Fk ∩ Fk+1|Fk )

=
K −1
∏

k=m

µ(Fk ∩ Fk+1|Fk+1)
µ(Fk ∩ Fk+1|Fk )

, (13)

and therefore

ρ(E ) =µ(E |Fm )ρ(Fm ). (14)

Finally, notice thatρ(∪k Gk ) =ρ(∪k Fk )≥ρ(FK ) = 1; thus, one can define a probability mea-

sure p ∈ pr(Σi ) by letting

∀E ∈Σ, p (E ) =
ρ(E )
ρ(∪k Gk )

=
ρ(E )
ρ(∪k Fk )

.

For every ` ∈ {1, . . . , K } and every event E ⊆ F`, p satisfies Eq. (12), as asserted.

To show that p is uniquely defined, let q ∈ pr(Σi ) be a measure that satisfies Eq.(12). I first

claim that, for every m = 1, . . . , K ,

q (Fm ) =
K −1
∏

k=m

µ(Fk ∩ Fk+1|Fk+1)
µ(Fk ∩ Fk+1|Fk )

·q (FN ) =ρ(Fm )q (FK ).
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The claim is trivially true for m = K , so consider m ∈ {1, . . . , K −1} and assume that the claim

holds for m +1. By Eq.(12),

µ(Fm ∩ Fm+1|Fm+1)q (Fm+1) = q (Fm ∩ Fm+1) =µ(Fm ∩ Fm+1|Fm )q (Fm );

sinceµ(Fm∩Fm+1|Fm )> 0 by assumption, solving for q (Fm ) and invoking the inductive hypoth-

esis yields

q (Fm ) =
µ(Fm ∩ Fm+1|Fm+1)
µ(Fm ∩ Fm+1|Fm )

q (Fm+1) =
µ(Fm ∩ Fm+1|Fm+1)
µ(Fm ∩ Fm+1|Fm )

·
K −1
∏

k=m+1

µ(Fk ∩ Fk+1|Fk+1)
µ(Fk ∩ Fk+1|Fk )

·q (FK ) =
K −1
∏

k=m

µ(Fk ∩ Fk+1|Fk+1)
µ(Fk ∩ Fk+1|Fk )

·q (FK ).

Since Gm ⊆ Fm , Eq. (12) implies that

q (Gm ) =µ(Gm |Fm )q (Fm ) =µ(Gm |Fm ) ·ρ(Fm ) ·q (FK ) =ρ(Gm ) ·q (FK ),

where the last equality follows from Eq.(14). Since
∑

k q (Gk ) = q (∪k Gk ) = q (∪k Fk ), if in addition

q satisfies q (∪k Fk ) = 1, then

1=
∑

m

ρ(Gm ) ·q (FK ) = q (FK )ρ(∪mGm )

which immediately implies that q (FK )> 0, and indeed that

q (FK ) =
1

ρ(∪mGm )
=

ρ(FK )
ρ(∪mGm )

= p (FK ).

so also p (FK )> 0, as claimed. Furthermore, for m = 1, . . . , K −1,

q (Fm ) =ρ(Fm )q (FN ) =ρ(Fm )
1

ρ(∪mGm )
= p (Fm ).

Furthermore, let k0 ∈ {1, . . . , K − 1} be such that µ(Fk ∩ Fk+1|Fk+1) > 0 for all k > k0, and

µ(Fk0
∩ Fk0+1|Fk0+1) = 0. By inspecting Eq. (13), it is clear that ρ(Fk ) = 0 for k = 1, . . . , k0, and

ρ(Fk )> 0 for k = k0+1, . . . , K . Then, p (Fk ) = 0 for k = 1, . . . , k0, and p (Fk )> 0 for k = k0+1, . . . , K .

From the above argument, it follows that the same is true for any q ∈ pr(Σi ) that satisfies Eq.

(12) and q (∪k Fk ) = 1. Thus, the last claim of the Proposition follows.
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Finally, if q ∈ pr(Σi ) satisfies Eq.(12) and q (∪k Fk ) = 1, for every k = k0+1, . . . , K and E ∈Σi

such that E ⊂ Fk ,

q (E ) =µ(E |Fk )q (Fk ) =µ(E |Fk )p (Fk ) = p (E )

and therefore, for every E ∈Σi ,

q (E ) =
∑

k

q (E ∩Gk ) =
K
∑

k=k0+1

q (E ∩Gk ) =
K
∑

k=k0+1

p (E ∩Gk ) =
∑

k

p (E ∩Gk ) = p (E ).

In other words, p is the unique probability measure that satisfies Eq. (12) and p (∪k Fk ) = 1.

(2)⇒ (1): assume that (2) holds. Consider a µ-sequence F1, . . . , FK . Fix an event E ⊆ F1∩FK .

By assumption, there exists p ∈ pr(Σi ) that satisfies Eq. (12) for k = 1, . . . , K , with p (∪K
k=1Fk ) = 1.

Since p (FK )> 0, µ(E |FK ) =
p (E )

p (FK )
. If p (F1) = 0, then a fortiori p (E ) = 0, so µ(E |FK ) = 0; on the

other hand, p (F1) = 0 implies that there is k = 1, . . . , K −1 such that µ(Fk ∩ Fk+1|Fk+1) = 0, so

µ(E |F1) ·
K −1
∏

k=1

µ(Fk ∩ Fk+1|Fk+1)
µ(Fk ∩ Fk+1|Fk )

=µ(E |F1) ·0= 0=µ(E |FK ).

If instead p (F1) > 0, then µ(E |F1) =
p (E )
p (F1)

; furthermore, by the above argument p (Fk ) > 0 for

all k = 2, . . . , K −1 as well, so

µ(E |F1)·
K −1
∏

k=1

µ(Fk ∩ Fk+1|Fk+1)
µ(Fk ∩ Fk+1|Fk )

=
p (E )
p (F1)

·
K −1
∏

k=1

p (Fk ∩ Fk+1)
p (Fk+1)

·
p (Fk )

p (Fk ∩ Fk+1)
=

p (E )
p (F1)

·
p (F1)
p (FK )

=
p (E )
p (FK )

=µ(E |FK ).

Corollary 1 If µ is consistent, then for every µ-sequence F1, . . . , FK such that µ(F1|FK ) > 0,

the reverse-ordered list FK , FK −1, . . . , F1 is also a µ-sequence: that is, µ(Fk |Fk+1) > 0 for all k =

1, . . . , K −1.

In particular, this Corollary applies if F1 = FK .

Proof: Let F1, . . . , FK be as in the statement, and consider the ordered list F1, . . . , FK , FK +1 with

Fk+1 = F1. Then F1, . . . , FK +1 is also a µ-sequence. Let p be the unique measure in (2) of Propo-

sition 2. Per the last claim of the Proposition shows that necessarily p (FK +1) > 0, but since
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FK +1 = F1, also p (F1)> 0. Again, the last claim in the Proposition implies that then p (Fk )> 0 for

all k = 1, . . . , K .

Then, for all k = 1, . . . , K −1, µ(Fk ∩ Fk+1|Fk )> 0 implies that p (Fk ∩ Fk+1)> 0, and so

µ(Fk |Fk+1) =µ(Fk ∩ Fk+1|Fk+1) =
p (Fk ∩ Fk+1)

p (Fk+1)
> 0.

Corollary 2 Let G1, . . . ,GN be aµ-sequence and p the measure in (2) of Proposition 2; consider

F ∈Fi such that F ⊂∪K
k=1Gk . Then, for every E ⊆ F , p (E ) =µ(E |F )p (F ).

Proof: It is enough to consider the case p (F )> 0.

Let k ∈ {1, . . . , K } be such that p (Gk )> 0 and µ(F |Gk ) =µ(F ∩Gk |Gk )> 0. One such k must

exist, because p (F ) > 0 implies p (F ∩Gm ) > 0 for some m ∈ {1, . . . , K }, and by construction

p (F ∩Gm ) = p (Gm )µ(F ∩Gm |Gm ).

I claim that, for any such k , µ(Gk |F ) > 0. Since F ⊆ ∪mGm and µ(F |F ) = 1, µ(Gm |F ) > 0

for at least one m ∈ {1, . . . , K }. If m = k , the claim is true. If m < k , then the ordered list

F,Gm ,Gm+1, . . . ,Gk , F is a µ-sequence that satisfies the conditions of Corollary 1, so that in

particular µ(Gk |F ) > 0, as claimed. Finally, suppose m > k . Since p (Gk ) > 0, by the last claim

of Proposition 2, µ(G`|G`+1) > 0 for ` = k , . . . , K − 1. Hence, since µ(Gm |F ) > 0, the ordered

list F,Gm ,Gm−1, . . . ,Gk+1,Gk , F is a µ-sequence that satisfies the conditions in Corollary 1, so

in particular µ(Gk |F )> 0, as claimed.

This implies that the ordered list G1, . . . ,Gk , F,Gk , . . . ,GK is aµ-sequence. Let p ′ be the mea-

sure delivered by Proposition 2 for this µ-sequence. Notice that p (F ∪
⋃

Gk ) = p ′(F ∪
⋃

k Gk ) =

1, and for all ` ∈ {1, . . . , K } and E ∈Σi with E ⊂G`, p ′(E ) = p ′(G`)µ(E |G`). Since p is the unique

probability with these properties, p = p ′. But then, for E ∈Σi with E ⊆ F ,

p (E ) = p ′(E ) = p ′(F )µ(E |F ) = p (F )µ(E |F ),
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as claimed.

Corollary 3 Let G1, . . . ,GK and F1, . . . , FM be µ-sequences with ∪m Fm ⊆ ∪k Gk . Let p and q be

the probabilities associated with G1, . . . ,GK and F1, . . . , FM respectively. Consider E ⊆ ∪m Fm .

Then p (E ) = p (∪m Fm )q (E ).

Proof: It is enough to consider the case p (∪m Fm )> 0.

Since, for every m , Fm ⊆∪k Gk , Corollary 2 implies that, for every E ′ ∈Σi with E ′ ⊆ Fm ,

p (E ′) =µ(E ′|Fm )p (Fm ).

Hence, the measure p ′ ∈ pr(Σi ) defined by p ′(E ) = p (E ∩∪m Fm )/p (∪m Fm ) satisfies

∀E ′ ∈Σ, E ′ ⊆ Fm , p (E ′) =µ(E ′|Fm )p
′(Fm ) and p ′(∪m Fm ) = 1.

Therefore, p ′ = q , or p (E ′) = p (∪m Fm )q (E ′) for every m and E ′ ∈Σi with E ′ ⊆ Fm . In particular,

let F̄1 = F1 and, for m = 2, . . . , M , let F̄m = Fm \ (F1 ∪ . . .∪ Fm−1). Then, for every m ,

p (E ∩ F̄m ) = p (∪`F`)q (E ∩ F̄m )

and so, since F̄1, . . . , F̄M is a partition of ∪m Fm and E ⊆ ∪m Fm , summing over all m yields

p (E ) = p (∪m Fm )q (E ), as required.

Finally, I prove Theorem 3.

Proof: I show (1)⇒ (3)⇒ (2)⇒ (4)⇒ (1).

(1)⇒ (3): by Corollary 3, if F1, . . . , FL and G1, . . . ,GM areµ-sequences such that∪`F` =∪mGm ,

and p and q are the measures in condition 2 of Propositon 2, then p = q . Therefore, one

can define an array (ν(·|F ))F ∈Fµ of probabilities on Σi by letting ν(·| ∪` Fl ) be the measure in

condition 2 of Proposition 2 associated with the µ-sequence F1, . . . , FL . In particular, if F ∈Fi ,
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then ν(·|F ) = µ(·|F ). Again by Corollary 3, if F1, . . . , FL and G1, . . . ,GM are µ-sequences with

∪mGm ⊂ ∪`F`, then for every measurable E ⊆ ∪mGm , ν(E | ∪m Gm ) = ν(E | ∪` F`)ν(∪m Fm | ∪`G`).

Thus, ν is a CPS on (Σi ,Fµ). Since the measure ν(·| ∪` F`) associated with each µ-sequence

F1, . . . , FL is unique, ν is unique.

(3)⇒ (2): let {F1, . . . , FL} be an enumeration of an equivalence class of (the symmetric part

of) .. Then in particular F1 . F2 . . . . . FL . By definition, for every `= L , L −1, . . . , 2, there is a µ-

sequence F `
1 , . . . , F `

M (`) such that F `
1 = F` and F `

M (`) = F`−1. Since in addition FL .F1, there is also a

µ-sequence F 1
1 , . . . , F 1

M (1) with F 1
1 = F1 and F 1

M (1) = FL . Since by construction F `
M (`)) = F`−1 = F `−1

1

for `= L , L −1, . . . , 2, the ordered list

F L
1 , . . . , F L

M (L ), F L−1
1 , . . . , F 2

M (2), F 1
1 , . . . , F 1

M (1)

is a µ-sequence. Since F L
1 = FL = F 1

M (1), Corollary 1 implies that the reverse-ordered list

F 1
M (1), . . . F 1

1 , F 2
M (2), . . . , F L−1

1 , F L
M (L ), . . . , F L

1

is also a µ-sequence. This has two implications. First, since any segment of the above µ-

sequences is also a µ-sequence, it follows that, for every `= 1, . . . , L and m = 1, . . . , M (L ), both

F1 = F 1
1 .F `

m and F `
m.F 1

1 = F1. Hence F m
` is an element of {F1, . . . , FL}; in particular,∪L

`=1∪
M (`)
m=1F `

m =

∪L
`=1F`. Second, for all `= 1, . . . , L and m = 1, . . . , M (`)−1, bothµ(F `

m+1|F
`

m )> 0 andµ(Fm |F `
m+1)>

0. Since ν is a CPS on Fµ which agrees with µ on F , ν(E | ∩` F`) = µ(E |F
¯̀

m̄ )ν(F
¯̀

m̄ | ∪` F`) for all

measurable E ⊆ F ¯̀
m̄ . Therefore, Proposition 2 implies that ν(F ¯̀

m̄ | ∪` F`)> 0 for all m̄ , ¯̀.

Now construct an array p= (pF )F ∈F of probabilities onΣi by letting pF¯̀ = ν(·|∪`F`) for every

equivalence class {F1, . . . , FL} of . and every ¯̀ = 1, . . . , L . Notice that this is the only candidate

basis forµ; this is because, if q= (qF )F ∈Fi
is a basis, then for every equivalence class {F1, . . . , FL}

for ., every `, and every E ⊆ F`, it must satisfy qF`(∪m Fm ) = 1 and µ(E |F`) = qF`(E )/qF`(F`); since,

as shown above, the events F1, . . . , FL can be arranged into a µ-sequence, by the last claim in

Proposition 2, there is at most one measure that satisfies these properties.

Thus, consider an equivalence class {F1, . . . , FL} for ., and every ¯̀ = 1, . . . , L , pF (F¯̀) = ν(F¯̀|∪`
F`)> 0 and µ(E |F¯̀) = ν(E |∪` F`)/ν(F¯̀|∪` F`) = pF¯̀ (E )/pF¯̀ (F¯̀): thus, Condition (3) in Def. 3 holds.
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Moreover, pF¯̀ )(∪{G : G .F¯̀, F¯̀ .G }) = pF¯̀ (∪`F`) = ν(∪`F`|∪`F`) = 1, so Condition (2) holds as well.

Finally, if F .G and G . F , then F,G belong to the same equivalence class {F1, . . . , FL} and so

by construction pF = ν(·| ∪` F`) = pG . Thus, to show that Condition (1) holds, it remains to be

shown that, if F,G ∈Fi are not in the same equivalence class, then pF 6= pG .

Suppose by contradiction that either F 6 .G or G 6 .F (or both), but pF = pG . Since pF (G ) =

pG (G )> 0, by the preliminary Claim in the proof of Lemma 1 (which only relies on Condition

(2) of Def. 3, which was just shown to hold) there must be D ∈Fi such that D . F , F .D and

pD (G ∩D )> 0. Then, since it was just shown that Condition (3) holds, µ(G |D ) =µ(G ∩D |D ) =

pD (G ∩D )/pD (D )> 0, so G .D . By the same argument, since pG (F ) = pF (F )> 0, there is E ∈Fi

such that E .G , G . E , and µ(F ∩ E |E > 0), so F . E . But then, since . is transitive, F . E .G

and G .D . F . Thus, F and G are in the same equivalence class: contradiction. Therefore, p

is a basis for µ, and as argued above, it is the only one.

The argument just given also establishes the last claim of Theorem 3.

(2)⇒ (4): let p be the (unique) basis of µ. The probabilities {pF : F ∈ F} can be partially

ordered as follows: pF ≥ pG iff F .G . [The ordering is clearly reflexive and transitive because so

is .. To see that it is antisymmetric, if pF ≥ pG and pG ≥ pF , then F .G and G .F ; by condition

(1), this implies pF = pG .]

Let p1, . . . , pL be an enumeration of {pF : F ∈F} such that, for all `, m , p` ≥ pm implies ` ≤

m . [This can be obtained by considering any completion of the partial order≥, and assigning

indices consistently with this completion, with ` = 1 being the greatest element.] For every

F ∈ Fi , let `(F ) denote the index ` such that p` = pF . Finally, define a sequence (p n ) ⊂ pr(Σi )

by letting

p n =
L
∑

`=1

1
n`−1

∑L
m=1

1
n m−1

p`.

For every n ≥ 1 and F ∈ Fi , p`(F )(F ) = pF (F ) > 0, and so p n (F ) > 0. Furthermore, consider

F ∈Fi and a measurable E ⊆ F . Suppose there is G ∈Fi such that pG (E )> 0; then pG (F )> 0,
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so by Lemma 1 part 1, F .G . Hence, pF ≥ pG , so either pG = pF , or `(F )< `(G ). Thus,

p n (E ) =
L
∑

`=`(F )

1
n`−1

∑L
m=1

1
n m−1

p`(E ).

This holds in particular for E = F . Hence,

p n (E )
p n (F )

=

∑L
`=`(F )

1
n`−1

∑L
m=1

1
nm−1

p`(E )

∑L
`=`(F )

1
n`−1

∑L
m=1

1
nm−1

p`(F )
=

∑L
`=`(F )

1
n`−1 p`(E )

∑L
`=`(F )

1
n`−1 p`(F )

=
n `(F )−1

n `(F )−1

∑L
`=`(F )

1
n`−`(F )p`(E )

∑L
`=`(F )

1
n`−`(F )p`(F )

=

=
p`(F )(E ) +

∑L
`=`(F )+1

1
n`−`(F )p`(E )

p`(F )(F ) +
∑L
`=`(F )+1

1
n`−`(F )p`(F )

→
p`(F )(E )
p`(F )(F )

=
pF (E )
pF (F )

=µ(E |F ).

(4) ⇒ (1): consider a µ-sequence F1, . . . , FL and an event E ⊆ F1 ∩ FL . Let (p n ) ⊆ pr(Σi )

generate µ in the sense of condition (4). Since µ(F`+1|F`) > 0 for all ` = 1, . . . , L − 1, there is n̄

such that n ≥ n̄ implies p n (F`+1∩F`)/p (F`)> 0. For every such n and measurable set E ⊆ F1∩FL ,

p n (E )
p n (F1)

·
L−1
∏

`=1

p n (F`∩F`+1)
p n (F`+1)

p n (F`∩F`+1)
p n (F`)

=
p n (E )
p n (F1)

·
L−1
∏

`=1

p n (F`)
p n (F`+1)

=
p n (E )
p n (FL )

Since p n (E )/p n (F1)→ µ(E |F1), p n (F` ∩ F`+1)/p n (F`+1)→ µ(F` ∩ F`+1|F`+1), p n (F` ∩ F`+1)/p n (F`)→

µ(F` ∩ F`+1|F`)> 0, and p n (E )/p n (FL )→µ(E |FL ), it follows that Consistency holds.

A.1 An alternative definition of beliefs

A partially ordered probability system (POPS) for player i is a collection (qF )F ∈F of probabilities

on Ωi that satisfies

1. qF (F )> 0 for every F ∈Fi ;

2. qF (∪{G : pG = pF }) = 1;

3. for every F,G ∈ Fi with qF = qG , there exist F1, . . . , FL ∈ Fi with F1 = F , FL =G , and, for

every `= 1, . . . , L −1, qF` = qF and qF (F` ∩ F`+1)> 0;
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4. for every collection F1, . . . , FL ∈Fi such that qF`(F`+1)> 0 for all `= 1, . . . , L−1 and qF1
6= qFL

,

qFL
(F1) = 0.

It can be shown that, if µ is a CPS with basis p= (pF )F ∈Fi
, then p is a POPS; since a CPS ad-

mits at most one basis, every consistent CPS induces a unique POPS. Conversely, if q= (qF )F ∈Fi

is a POPS, then it induces a unique consistent CPS µ by letting µ(E ∩ F |F ) = pF (E ∩ F )/pF (F )

for every F ∈Fi and E ∈Σi ; in addition q is the unique basis forµ. Thus, there is a one-to-one

correspondence between POPS and consistent CPSs. Furthermore, given a POPS q= (qF )F ∈Fi
,

one can define a preorder . onFi by letting F .G iff there is a list F1, . . . , FL ∈Fi with F1 =G ,

FL = F and pF`(F`+1) > 0 for all ` = 1, . . . , L − 1. This coincides with the plausibility ordering

derived from the CPS µ associated with q. Thus, one can define structural preferences start-

ing from a POPS and the corresponding plausibility ordering. The resulting preference will be

identical to the one obtained by applying Def. 4. (Details available upon request.)

B Sequential rationality and elicitation

B.1 Theorem 1 (structural and sequential rationality)

Suppose that si ∈ Si is maximal for ¼ui ,µi , but not sequentially rational for (Ui ,µi ). Then there

is I ∈I (si ) and ti ∈ Si (I ) such that Eµi (·|[I ])Ui (si , ·)< Eµi (·|[I ])Ui (ti , ·).

Let ri ∈ Si be a strategy that agrees with si everywhere except at information sets that

weakly follow I : that is, for every J ∈ Ii , ri (J ) = ti (J ) if I ≤ J , and ri (J ) = si (J ) otherwise. I

claim that, for all (s−i ,θ ) ∈ [I ],

Ui (ri , s−i ,θ ) = ui (ζ(ri , s−i ),θ ) = ui (ζ(ti , s−i ),θ ) =Ui (ti , s−iθ ).

To see this, note that, by perfect recall, since si , ti ∈ Si (I ), si and ti take the same actions at

every J ∈ Ii with J < I , and hence (ti , s−i ) reaches the same history h ∈ I as (si , s−i ). Hence,

so does (ri , s−i ). At I and all subsequent information sets, ri takes the same actions as ti , so
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(ri , s−i ) reaches the same terminal history as (ti , s−i ). On the other hand, for (s−i ,θ ) 6∈ [I ],

Ui (ri , s−i ,θ ) = ui (ζ(ri , s−i ),θ ) = ui (ζ(si , s−i ),θ ) =Ui (si , s−i ,θ ).

To see this, note that, if s−i 6∈ S−i (I ), by perfect recall (si , s−i ) 6∈ S (I ), and hence also (si , s−i ) 6∈ S (J )

for any J ∈ Ii with I ≤ J . Therefore, ri agrees with si at all J ∈ Ii such that (si , s−i ) ∈ S (J ), and

hence (ri , s−i ) reaches the same terminal history as (si , s−i ).

By Definition 3, pi ,[I ]([I ]) > 0 and pi ,[I ](E ) = pi ,[I ]([I ])µi (E |[I ]) for all measurable E ⊆ [I ], so

Eµi (·|[I ])Ui (si , ·)< Eµi (·|[I ])Ui (ti , ·) implies
∫

[I ]

Ui (si , s−i ,θ )d pi ,[I ] = pi ,[I ]([I ])·Eµi (·|[I ])Ui (si , ·)< pi ,[I ]([I ])·Eµi (·|[I ])Ui (ti , ·) =
∫

[I ]

Ui (ti , s−i ,θ )d pi ,[I ].

Therefore,

Epi ,[I ]
Ui (si , ·) =

∫

S−i×Θ
Ui (si , s−i ,θ )d pi ,[I ] =

=

∫

[I ]

Ui (si , s−i ,θ )d pi ,[I ]+

∫

(S−i×Θ)\[I ]
Ui (si , s−i ,θ )d pi ,[I ] <

<

∫

[I ]

Ui (ti , s−i ,θ )d pi ,[I ]+

∫

(S−i×Θ)\[I ]
Ui (si , s−i ,θ )d pi ,[I ] =

=

∫

[I ]

Ui (ri , s−i ,θ )d pi ,[I ]+

∫

(S−i×Θ)\[I ]
Ui (ri , s−i ,θ )d pi ,[I ] = Epi ,[I ]

Ui (ri , ·).

Furthermore, consider F ∈Fi . Two cases must be considered.

Case 1: pi ,F ([I ]) = 0. For such F , trivially
∫

[I ]

Ui (si , s−i ,θ )pi ,F = 0=

∫

[I ]

Ui (ri , s−i ,θ )pi ,F

and so

Epi ,F
Ui (si , ·) =

∫

S−i×Θ
Ui (si , s−i ,θ )d pi ,F =

=

∫

[I ]

Ui (si , s−i ,θ )d pi ,F +

∫

(S−i×Θ)\[I ]
Ui (si , s−i ,θ )d pi ,F =

=

∫

[I ]

Ui (ri , s−i ,θ )d pi ,F +

∫

(S−i×Θ)\[I ]
Ui (ri , s−i ,θ )d pi ,F = Epi ,F

Ui (ri , ·).
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Case 2: pi ,F ([I ])> 0. In this case, Lemma 1 part 1 implies that [I ] . F .

To conclude the argument, consider first F ∈Fi with F .[I ] and F 6= [I ]. If pi ,F ([I ]) = 0, then

per Case 1, Epi ,F
Ui (ri , ·) = Epi ,F

Ui (si , ·); if instead pi ,F ([I ])> 0, per Case 2 [I ] . F , so by condition

(1) in Def. 3 pi ,F = pi ,[I ] and so Epi ,F
Ui (ri , ·) > Epi ,F

Ui (si , ·). Thus, Epi ,[I ]
Ui (ri , ·) > Epi ,[I ]

Ui (si , ·) and

Epi ,F
Ui (ri , ·)≥ Epi ,F

Ui (si , ·) for all F ∈Fi with F . [I ]: hence, si 6¼ui ,µi ri .

On the other hand, consider F ∈ Fi such that Epi ,F
Ui (ri , ·) < Epi ,F

Ui (si , ·). Then Case 2 ap-

plies to F , so [I ] . F . Since Epi ,[I ]
Ui (ri , ·)> Epi ,[I ]

Ui (si , ·) and F was chosen arbitrarily, ri ¼ui ,µi si .

Thus, ri �ui ,µi si , which contradicts the assumption that si was maximal for ¼ui ,µi .

B.2 Elicitation

B.2.1 Additional details on extensive game forms

Begin with additional definitions and observations related to extensive game forms. Fix Γ =

(N , H , P, (Ii )i∈N ).

Actions available at history h ∈ H are denoted A(h ). Histories in H are ordered by the

initial-segment relation: for h , h ′ ∈H , h < h ′means that h = (a1, . . . , an )and h ′ = (a1, . . . , an , an+1, . . . , an+k )

for a1, . . . , an+k ∈ A, n ≥ 0 (the case n = 0 corresponds to h = φ), and k ≥ 1; in this case, I will

also write h ′ = (h , an+1, . . . , an+k ). The notation h ≤ h ′ means that either h = h ′ (i.e. h and h ′

are the same) or h < h ′; note that φ ≤ h for all h ∈ H . The precedence relation < extends to

information sets as follows: I < I ′ iff for every h ′ ∈ I ′ there is h ∈ I with h < h ′. The notation

I ≤ I ′ means that either I = I ′ or I < I ′. Notice that s ∈ S (h ) if there exists z ∈ Z such that h ≤ z

and s ∈ S (z ); furthermore, for every player i ∈N and I ∈ Ii , S (I ) =
⋃

h∈I S (h ). Finally, perfect

recall implies that, if si , ti ∈ Si (I ), J ∈Ii and J < I , then si (J ) = ti (J ).

Next, I point out consequences of Def. 7 and introduce additional notation.

The set of actions is A∗ ≡ A∪
⋃

j 6=i Sj∪(Si×{ f , g }). Strategies in the original game are actions
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in the elicitation game, except that, for player i , an action specifies both a strategy si ∈ Si and

a pair in { f , g }.

Whenever it is convenient to do so, I use the more compact notation (s , k , h ) to denote the

(partial or terminal) history of length at least N , in which i chooses k ∈ { f , g }, the strategies

commited to are given by the profile s , and the (possibly partial) history of play h results.

Observation 2 For every (s , k , h ), (s ′, k ′, h ′) ∈ H ∗: (s , k , h ) < (s ′, k ′, h ′) iff s = s ′, k = k ′ and

h < h ′. Hence (s , k , h ) is terminal iff h is terminal.

The set of actions available at a history h ∗, denoted A∗(h ∗), is defined as usual from the set

of histories H ∗. It turns out that it is a singleton in the second stage of the game:

Remark 1 Let h ∗ = (s , k , h ) ∈ H ∗ be a history of length at least N . Let j = P (h ) = P ∗(h ∗), and

let I ∈Ii be the information set such that h ∈ I . Then A∗(h ∗) = {s j (I )}.

Proof: By definition, a ∈ A∗(h ∗) iff (h ∗, a ) ∈ H ∗. Since h ∗ = (s , k , h ), (h ∗, a ) ∈ H ∗ iff s j (I ) = a .

Therefore, A∗(h ∗) = {s j (I )}.

The family of information sets for player j ∈N is denoted by I ∗j , with generic element I ∗.

Remark 2 The game form Γ ∗ has perfect recall.

Proof: Denote the experience function for player j ∈ N in the elicitation game by X ∗j (·). It

must be shown that, for all j ∈N and I ∗ ∈I ∗j , h ∗, h̄ ∗ ∈ I ∗ implies X ∗j (h
∗) = X ∗j (h̄

∗).

For I ∗ = I 1
j , this is immediate, as X ∗j (h

∗) = ; for all h ∗ ∈ I 1
j . Thus, consider I ∗ ∈ I ∗j \ {I

1
j }.

I analyze in detail the case j ∈ N \ {i }: the case j = i is analogous. Write I ∗ = 〈s j , I 〉, where

s j ∈ Sj and I ∈I j (s j ).

Fix h ∗ ∈ I ∗, so by definition h ∗ = (s ′, k , h ) for some s ′ ∈ S with s ′j = s j , s ′ ∈ S (h ) and h ∈ I . Let

h ∗0 , . . . , h ∗n ∈H ∗ be the collection of all h̄ ∗ ∈ (P ∗)−1( j ) such that h̄ ∗ < h ∗, ordered by the subhistory

relation: that is, h ∗0 < h ∗1 < . . . h ∗n < h ∗, and h̄ ∗ < h ∗ for no other h̄ ∗ ∈ H ∗ with P (h̄ ∗) = j . Then
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h ∗0 = (s1, . . . , s j−1); furthermore, by Observation 2, for every m = 1, . . . , n , h ∗m = (s
′, k , hm ) for

some hm ∈ P −1( j ), and h1 < h2 < . . .< hn < h . Moreover, consider an arbitrary h̄ ∈ P −1( j ) such

that h̄ < h ; then, since h < ζ(s ′), also h̄ < ζ(s ′), i.e., s ′ ∈ S (h̄ ). It follows that (s ′, k , h̄ ) ∈ H ∗,

and since (s ′, k , h̄ ) < (s ′, k , h ) = h ∗ by Observation 2, h̄ = hm for some m = 1, . . . , n . Therefore,

{h1, . . . , hn} is the set of all subhistories of h where j moves.

For every m = 1, . . . , n , let I ∗m ∈ I
∗
j be such that h ∗m ∈ I ∗m . Since j chooses s j and Chance

chooses p in each history h ∗m , it must be the case that I ∗m = 〈s j , Im 〉 for some Im ∈ I j . By the

definition of information sets in Γ ∗, hm ∈ Im . By Remark 1, A(h ∗m ) = s j (Im ). Therefore,

X ∗j (h
∗) =

�

(I 1
j , s j ), (I

∗
1 , s j (I1)), . . . , (I ∗n , s j (In ))

�

, X j (h ) =
�

(I1, s j (I1)), . . . , (In , s j (In ))
�

.

Now repeat the argument for another history ĥ ∗ = (ŝ ′, k̂ , ĥ ) ∈ 〈s j , I 〉: then, there must be n̂ ,

ĥ ∗1 , . . . , ĥ ∗n̂ ∈ (P
∗)−1( j ) with ĥ ∗m = (ŝ

′, k̂ , ĥm ) for each m , and Î ∗1 , . . . , Î ∗n̂ ∈I
∗
j with ĥ ∗m ∈ Î ∗m = 〈s j , Îm 〉

and hm ∈ Im for each m , such that

X ∗j (ĥ
∗) =

�

(I 1
j , s j ), (Î

∗
1 , s j (Î1)), . . . , (Î ∗n , s j (În ))

�

, X j (ĥ ) =
�

(Î1, s j (Î1)), . . . , (În , s j (În ))
�

.

Since Γ has perfect recall and h , ĥ ∈ I by the definition of the information set 〈s j , I 〉 and the

histories h ∗, ĥ ∗, it must be the case that X j (h ) = X j (ĥ ). Thus, n = n̂ , and for every m = 1, . . . , n ,

Im = Îm , so that also s j (Im ) = s j (Îm ). But then, for every m = 1, . . . , n , I ∗m = 〈s j , Im 〉= 〈s j , Îm 〉= Î ∗m .

Therefore, X ∗j (h
∗) = X ∗j (ĥ

∗), as required.

The argument for player j = i is essentially identical, except that (i) at I 1
i , i also chooses a

fixed k ∈ { f , g }; and (ii) I ∗ is of the form 〈si , k , I 〉, and so are all information sets I ∗m .

B.2.2 Analysis of the elicitation game and proof of Theorem 2.

The terminal history function ζ∗ : S ∗→ Z ∗ and, for given Bernoulli utilities u j : X →R, j ∈N ,

the reduced-form payoff functions U ∗
j : S ∗×Θ∗→R, are defined as usual.
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Remark 3 Fix a profile s ∗ ∈ S ∗ such that s ∗i (I
1

i ) = (si , k ) and s ∗j (I
1
j ) = s j for j 6= i . Then

ζ∗(s ∗) = (s , k ,ζ(s )).

Furthermore,

U ∗
j (s

∗, w ,θ ) =























Uj (s , w ) θ = o ;

Uj (s , w ) θ = a , j 6= i ;

u j (k (s−i , w )) θ = a , j = i ,

Proof: Recall that ζ∗(s ∗) is uniquely defined by induction on the histories h ∗ ∈H ∗ generated

by s ∗. In particular, the length-N history generated by s ∗ is (s1, . . . , si−1, (si , k ), si+1, . . . , sN ) by

assumption, denoted (s , k ). There is a unique terminal history z ∗ ∈ Z ∗ whose length-N initial

segment is (s , k ), namely z ∗ = (s , k ,ζ(s )). Therefore, ζ∗(s ∗) = z ∗, and the first claim follows.

Now recall that U ∗
j (s

∗, w ,θ ) = u j (ξ∗j (ζ
∗(s ∗), w ,θ )). As was just shown, ζ∗(s ∗) = (s , k ,ζ(s )).

From the definition ofξ∗j ,ξ∗j ((s , k ,ζ(s )), w , o ) = ξ j (ζ(s ), w ). Finally, by definition, u j (ξ j (ζ(s ), w )) =

Uj (s , w ). The other cases are similar.

Remark 1 implies that, for every j 6= i and s j ∈ Sj , there is a unique strategy s ∗j ∈ S ∗j such that

s ∗j (I
1
j ) = s j ; this is because, at every information set I ∗ ∈ I ∗j \ {I

1
j }, a single action is available.

Therefore, the mapσ j : Sj → S ∗j defined by lettingσ j (s j ) = s ∗j , where s ∗j (I
1
j ) = s j , is a bijection. A

similar construction applies to player i , except that i also chooses a pair k ∈ { f , g } at I 1
i . Thus,

for every k ∈ { f , g }, define a bijectionσi ,k : Si → S ∗i by lettingσi ,k (si ) = s ∗i , where s ∗i (I
1

i ) = (si , k ).

As usual,σ−i (s−i ) = (σ j (s j )) j 6=i for all s−i ∈ S−i . Similarly, for k ∈ { f , g },σk (s ∗) = (σ−i (s−i ),σi ,k (si ))

andσ− j ,k (s− j ) =
�

(σ`(s`))` 6=i , j ,σi ,k (si )
�

. It is also convenient to define the correspondenceσ− j :

S− j → 2S ∗− j by letting σ− j (s− j ) = {σ− j , f (s− j ),σ− j ,g (s− j )} for all s− j ∈ S− j . For any set T ⊆ S− j ,

σ− j ,k (T ) =
⋃

s− j∈T {σ− j ,k (s− j )} andσ− j (T ) =
⋃

s− j∈T σ− j (s− j ).

The following result shows that the mapsσ j (·) provide a convenient link between histories

or information sets in Γ and their counterparts in Γ ∗.
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Lemma 2

(i) For every s ∈ S and k ∈ { f , g }, ζ∗(σi ,k (si ),σ−i (s−i )) = (s , k ,ζ(s ));

(ii) for every h ∈ H , s ∈ S , and k ∈ { f , g }: s ∈ S (h ) iff (s , k , h ) ∈ H ∗ and (σi ,k (si ),σ−i (s−i )) ∈

S ∗
�

(s , k , h )
�

;

(iii) For every j ∈N \ {i } and s j ∈ Sj , I ∗j (σ j (s j )) = {I 1
j }∪ {〈s j , I 〉 : I ∈I j (s j )};

(iv) for every si ∈ Si and k ∈ { f , g }, I ∗i (σi ,k (si )) = {I 1
i }∪ {〈si , k , I 〉 : I ∈Ii (si )}.

Proof: Part (i) just restates Remark 3 in terms of the mapsσ j (·). For part (ii), the “if” direction is

immediate because (s , k , h ) ∈H ∗ implies that h <ζ(s ), i.e., s ∈ S (h ); for the “only if” direction,

s ∈ S (h ) implies that h < ζ(s ), so (s , k , h ) ∈ H ∗ and (s , k , h ) < (s , k ,ζ(s )) = ζ∗(σi ,k (si ),σ−i (s−i )),

where the equality follows from part (i): that is, (σi ,k (si ),σ−i (s−i )) ∈ S ∗((s , k , h )), as claimed.

For part (iii), fix j ∈ N \ {i } and s j ∈ Sj . Denote the rhs of the equality by J ∗. Consider

I ∗ ∈ I ∗j . If I ∗ = I 1
j , then I ∗ ∈ I ∗j (σ j (s j ))∩J ∗. Next, suppose I ∗ = 〈t j , I 〉 for some t j ∈ Sj and

I ∈I j (t j ). If t j 6= s j , then I ∗ 6∈ I ∗j (σ j (s j )): on one hand, since [σ j (s j )](I 1
j ) = s j , the j -th element

of any history h ∗ <ζ∗(σ j (s j ), s ∗− j ) is s j by part (i); on the other, the j -th element of every history

h ∗ ∈ I ∗ is by definition t j 6= s j . Furthermore, in this case also I ∗ 6∈ J ∗. Thus, consider t j = s j , so

〈s j , I 〉 ∈J ∗. Fix h ∗ ∈ I ∗; then by construction h ∗ = (s ′, k , h ) ∈H ∗ for some k ∈ { f , g } h ∈H , and

s ′ ∈ S (h ); moreover, h ∗ ∈ I ∗ implies s ′j = s j and h ∈ I . Then, by part (ii), (s j , s ′− j ) ∈ S (h ) implies

(σi ,k (s ′i ),σ j (s j ), (σ`(s ′`))`∈N \{i , j }) ∈ S ∗((s , k , h )) = S ∗(h ∗)⊆ S ∗(I ∗), and so I ∗ ∈I ∗j (σ j (s j )).

For part (iv), lettingJ ∗ denote the rhs of the equality in the claim, again I 1
i ∈I

∗
i (σi ,k (si ))∩

J ∗. Also, adapting the argument for part (iii), 〈ti , k ′, I 〉 ∈ I ∗i (σi ,k (si ))∩J ∗ if ti = si and k ′ = k ,

and 〈ti , k ′, I 〉 6∈ I ∗i (σi ,k (si ))∩J ∗ otherwise.

The following Lemma formalizes the intuition that information obtained during the im-

plementation phase of the elicitation game is “the same” as in the original game.

Lemma 3

1. For all j ∈N and subsets C , D ⊆ S− j , C ⊆D iffσ− j (C )⊆σ− j (D );
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2. for all j 6= i , if I ∗ = 〈s j , I 〉 ∈ I ∗j then S ∗− j (I
∗) =σ− j (S− j (I ));

3. if I ∗ = 〈si , k , I 〉 ∈ I ∗i , then S ∗−i (I
∗) =σ−i (S−i (I )).

Proof: 1: “⇒” is obvious; for “⇐,” suppose that C 6⊆ D , so there exists s− j ∈ C \D . If j 6= i ,

thenσ− j (s− j ) = {σ− j , f (s− j ),σ− j ,g (s− j )}, andσ− j ,k (·) : S− j → S ∗− j is a bijection for every k ∈ { f , g };

if j = i , then σ−i : S−i → S ∗−i is itself a bijection. In either case, there cannot be any t− j ∈ D ⊆

S− j \ {s− j } such thatσ− j (t− j ) =σ− j (s− j ); therefore,σ− j (s−i ) 6∈σ− j (D ), and soσ− j (C ) 6⊆σ− j (D ).

2: Fix s ∗− j ∈ S ∗− j (I
∗) arbitrarily; thus, there is s ∗j ∈ S ∗j with (s ∗j , s ∗− j ) ∈ S ∗(I ∗). In particular,

(s ∗j , s ∗− j ) ∈ S ∗(h ∗) for some h ∗ ≡ (s ′, k , h ) ∈ I ∗. This implies that s ′` = s ∗` (I
1
` ) for ` 6= i and (s ′i , k ) =

s ∗i (I
1

i ). Then, by the definition ofσ− j ,k (·), s ∗− j =σ− j ,k (s ′− j ). But by the definition of I ∗, h ∈ I and

s ′ ∈ S (h )⊆ S (I ). Therefore, s ∗− j =σ− j ,k (s ′− j ) ∈σ− j ,k (S− j (I ))⊂σ− j (S− j (I )).

Conversely, fix s ∗− j ∈σ− j (S− j (I )), and let s` =σ−1
` (s

∗
` ) = s ∗` (I

1
` ) for ` 6= j , i , and (si , k ) = s ∗i (I

1
i ).

Then s− j ∈ S− j (I ). Since the original game has perfect recall and by assumption s j ∈ Sj (I ), s ≡

(s j , s− j ) ∈ S (h ) for some h ∈ I . Furthermore, h ∗ ≡ (s , k , h ) ∈ H ∗, so indeed h ∗ ∈ I ∗. By Remark

3, ζ∗(s ∗) = (s , k ,ζ(s )); since s ∈ S (h ), h < ζ(s ), so h ∗ = (s , k , h ) < ζ∗(s ∗), i.e., s ∗ ∈ S ∗(h ∗) ⊆ S ∗(I ∗).

Therefore, s ∗− j ∈ S ∗− j (I
∗).

3: the proof requires only minor modifications to the argument for 2, so it is omitted.

Now turn to the set of conditioning events, defined as usual asF ∗j = {Ω
∗
j } ∪ {[I

∗] : I ∗ ∈ I ∗j }

for every j ∈N . For every player j ∈N , let ϕ j :F j → 2Ω
∗
j be defined by

ϕ j (F ) =σ− j (projS− j
F )×Θ∗. (15)

Lemma 4 For every player j ∈N :

1. F ∗j = {ϕ− j (F ) : F ∈F j };

2. for all F,G ∈F j , F ⊆G iff ϕ j (F )⊆ϕ j (G ).

Proof: 1: Denote by G ∗j the set on the r.h.s. Fix F ∗ ∈F ∗j , so F ∗ = S ∗− j (I
∗)×Θ∗ for some I ∗ ∈I ∗j .

If I ∗ = I 1
j , then F ∗ = Ω∗j ; since σ− j (proj− j (Ω j ))×Θ∗ = S ∗− j ×Θ

∗ = Ω∗j and Ω j ∈ F j , F ∗ ∈ G ∗j . If
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instead F ∗ = [I ∗] for some I ∗ ∈ I ∗j \ {I
1
j }, there are two cases. If j 6= i , then I ∗ = 〈s j , I 〉, with

s j ∈ Sj and I ∈I j , and by Lemma 3, S ∗− j (I
∗) =σ− j (S− j (I )). If instead j = i , then i ∗ = 〈si , k , I 〉 for

some si ∈ Si , k ∈ { f , g }, and I ∈ Ii ; again, Lemma 3 implies that S ∗−i (I
∗) = σ−i (S−i (I )). Hence,

in either case, F ∗ = S ∗− j (I
∗)×Θ∗ =σ− j (S− j (I ))×Θ∗ =ϕ− j ([I ])×Θ∗, so F ∗ ∈G ∗j .

Conversely, fix F ∈ F j . If F = Ω, then ϕ− j (Ω j ) = σ− j (projS− j
Ω j ) × Θ∗ = σ− j (S− j ) × Θ∗ =

S ∗− j ×Θ
∗ =Ω∗j ∈F

∗
j . If instead F = [I ] = S−i (I )×Θ, then by Lemma 3ϕ− j (F ) =σ− j (S− j (I ))×Θ∗ =

S ∗− j (I
∗)×Θ∗, where I ∗ = 〈s j , I 〉 for some s j ∈ Sj (I ) if j 6= i , and I ∗ = 〈si , k , I 〉 for some si ∈ Si (I )

and k ∈ { f , g } if j = i . In either case, ϕ− j (F ) ∈F ∗j .

2: immediate from the definition of ϕ−i (·) and Lemma 3 part 1.

Now consider conditional beliefs. For every j ∈N , consider the Sigma-algebra Σ∗j = 2S ∗− j ×

T ∗, whereT ∗ =Θ×2{o ,c }. Then a CPS for j in the elicitation game is an elementµ∗j ∈ cpr(Σ∗j ,F ∗j ).

Assume henceforth thatµ∗j is the extension of a CPSµ j ∈ cpr(Σ j ,F j ), in the sense of Definition

8. First, I verify that such an extension always exists, and is unique for player i .

Lemma 5 For every j ∈ N , there exists an extension µ∗j ∈ cpr(Σ∗j ,F ∗j ) of µ j ; furthermore, if

j = i , then such an extension is unique.

Proof: Observe first that, for j 6= i , since S− j and hence S ∗− j is finite, every event E ⊆ Ω∗j is a

union of disjoint sets of the form {σ− j ,k (s− j )×{r }×U , for s− j ∈ S− j , k ∈ { f , g }, r ∈ {o , a }, and

U ∈Θ [in particular, for given s− j , k , and r , U = {w : (σ− j ,k (s− j ), r, w ) ∈ E }]. Similarly, for j = i ,

every E ⊆Ω∗i is a union of disjoint sets of the form {σ−i ,k (s−i )×{r }×U , for s−i ∈ S−i , r ∈ {o , a },

and U ∈ T . Therefore, a probability measure on Ω∗j is fully determined by the probabilities it

assigns to sets of the form just described.

For j 6= i , and for all s− j ∈ S− j , by definition σ− j (s− j ) = {σ− j , f (s− j ),σ− j ,g (s− j )}. Thus, Equa-

tions 9 and 10 do not uniquely determine how the (marginal) probability of σ− j (s− j ) is split

between σ− j , f (s− j ) and σ− j ,g (s− j ). To remedy this, define probability measures on Ω∗i as fol-
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lows: for every s− j ∈ S− j , r ∈ {o , a }, and U ∈Θ,

µ∗j

�

{σ− j , f (s− j )}× {r }×U
�

�Ω∗j

�

=
1

2
µ j

�

{s− j }×U
�

�Ω j

�

and for every I ∈I j ,

µ∗j
�

{σ− j , f (s− j )}× {r }×U
�

�σ− j (S− j (I ))×{o , a }×Θ
�

=
1

2
µ j

�

{s− j }×U
�

�S− j (I )×Θ
�

.

Equations 9 and 10 then imply that

µ∗j

�

{σ− j ,g (s− j )}× {r }×U
�

�Ω∗j

�

=µ∗j
�

{σ− j ,g (s− j )}× {r }×U
�

�σ− j (S− j (I ))×{o , a }×Θ
�

= 0

for all s− j ∈ S− j , r ∈ {o , a }, U ∈ Θ, and I ∈ I j . This completes the assignment of probabil-

ities to sets of the form {σ− j ,k (s− j )} × {r } ×U ; as noted above, this implies that µ∗j (·|Ω
∗
j ) and

µ∗j (·|σ− j (S− j (I ))×{o , a }×Θ) are uniquely determined.

It is routine to verify that the set functions just defined are indeed probability measures on

Σ∗j . Furthermore,

µ∗j (Ω
∗
j |Ω
∗
j )≥µ

∗
j (σ− j , f (S− j )×{o}×Θ|Ω j )+µ

∗
j (σ− j , f (S− j )×{a }×Θ|Ω j ) =

1

2
µ j (S− j×Θ|Ω j )+

1

2
µ j (S− j×Θ|Ω j ) = 1

and similarly µ∗j (σ− j (S− j (I ))×{o , a }×Θ|σ− j (S− j (I ))×{o , a }×Θ) = 1 for any I ∈I j .

Finally, fix I ∈ I j , F ∈ F j , s− j ∈ S− j , k ∈ { f , g }, r ∈ {o , a }, and U ∈ Θ. By Lemma 3, s− j ∈

S− j (I ) iffσ− j ,k (s− j ) ∈σ− j (S− j (I )); and by Lemma 4, [I ]⊆ F iffϕ− j ([I ])⊆ϕ− j (F ). Finally, if F =Ω j

then ϕ− j (F ) = Ω∗j ; and if F = [J ] for some J ∈ I j , then ϕ− j (F ) =σ− j (S− j (J ))×{o , a }×Θ. Now

suppose that [I ]⊆ F and s− j ∈ S− j (I ); then

µ∗j ({σ− j , f (s− j }× {r }×U |ϕ− j (F )) =
1

2
µ j ({s− j }×U |F ) =

1

2
µ j ({s− j }×U |S− j (I )×Θ)µ j (S− j (I )×Θ|F ) =

=µ∗j ({σ− j , f (s− j )}× {r }×U |σ− j (S− j (I ))×{o , a }×Θ)µ∗j (σ− j (S− j (I ))×{o , a }×Θ|ϕ− j (F ));

furthermore,

0=µ∗j ({σ− j ,g }× {r }×U |ϕ− j (F )) = 0 ·µ∗j (σ− j (S− j (I ))×{o , a }×Θ|ϕ− j (F )) =

=µ∗j ({σ− j ,g (s− j )}× {r }×U |σ− j (S− j (I ))×{o , a }×Θ)µ∗j (σ− j (S− j (I ))×{o , a }×Θ|ϕ− j (F )).
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Thus, µ∗j is a CPS, per Definition 1.

Now consider player i . Sinceσ−i maps each s−i ∈ S−i to a profile s ∗−i ∈ S ∗−i , Equations 7 and

8 uniquely define probability measures on S ∗−i ×{o , a }×Θ = Ω∗i . To verify that the conditions

in Def. 1 are satisfied, one can proceed as in the case j 6= i .

Furthermore, assume that each µ j admits a basis p j . Finally, for every j ∈N , let . j and .∗j

denote the plausibility ordering induced by µ j and µ∗j respectively, as per Definition 2.

Lemma 6 For every j ∈N , and every F,G ∈F j :

1. µ∗j (ϕ− j (F )|ϕ− j (G )) =µ j (F |G );

2. ϕ− j (F ) .∗j ϕ− j (G ) iff F . j G .

Proof: 1: if F = [I ] for some I ∈I j , then

µ∗j (ϕ− j (F )|ϕ− j (G )) =µ
∗
j (σ− j (S− j (I ))×Θ×{o , a }|ϕ− j (G )) =

=µ∗j (σ− j (S− j (I ))×Θ×{o}|ϕ− j (G ))+µ
∗
j (σ− j (S− j (I ))×Θ×{a }|ϕ− j (G )) =

=
1

2
µ j (S− j (I )×Θ|G ) +

1

2
µ j (S− j (I )×Θ|G ) =µ j (F |G ).

If instead F = Ω, then µ(F |G ) = 1 and µ∗j (ϕ− j (F )|ϕ− j (G )) = µ∗j (Ω
∗
j |ϕ− j (G )) = 1, so the claim

holds in this case, too.

2: suppose F . j G , so there is a sequence F1, . . . , FN ∈ F j such that F1 = G , FN = F , and

µ j (Fn+1|Fn )> 0 for n = 1, . . . , N −1. Then the sequenceϕ− j (F1), . . . ,ϕ− j (FN ) lies inF ∗j by Lemma

1, satisfies ϕ− j (F1) = ϕ− j (G ) and ϕ− j (FN ) = ϕ− j (F ), and is such that µ∗j (ϕ− j (Fn+1)|ϕ− j (Fn )) =

µ j (Fn+1|Fn )> 0 by part 1 of this Lemma. Thus, ϕ− j (F ) .∗j ϕ− j (G ).

Conversely, suppose thatϕ− j (F ).∗jϕ− j (G ), so there is F ∗1 , . . . , F ∗N ∈F
∗
j such that F ∗1 =ϕ− j (G ),

F ∗N =ϕ− j (F ), andµ∗j (F
∗

n+1|F
∗

n )> 0 for all n = 1, . . . , N −1. By Lemma 4, for every n there is f ∈F j

such that F ∗n =σ− j (Fn ); furthermore, by part 2 of the same Lemma, F1 =G and FN = F . Finally,

by part 1 of this Lemma, µ j (Fn+1|Fn ) =µ∗j (F
∗

n+1|F
∗

n )> 0 for all n = 1, . . . , N −1; thus, F . j G .
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Lemma 7 For every j ∈ N , the CPS µ∗j admits a basis p∗j = (p
∗
j ,F ∗)F ∗∈F ∗j . In particular, for all

F ∈F j , C ⊆ S− j ,U ∈Θ,

p ∗j ,ϕ− j (F )
(σ− j (C )×U ×{o}) = p ∗j ,ϕ− j (F )

(σ− j (C )×U ×{a }) =
1

2
pj ,F (C ×U ). (16)

Proof: SinceF ∗j = {ϕ− j (F ) : F ∈F j }by Lemma 4, Eq. (16) defines a collection p∗j = (p
∗
j ,F ∗)F ∗∈F ∗j .

I now show that p∗j is a basis for µ∗j .

Fix F,G ∈F j . By Lemma 2, F . j G iff ϕ− j (F ) .∗j ϕ− j (G ). Hence, p ∗j ,ϕ− j (F )
= p ∗j ,ϕ− j (G )

iff pj ,F =

pj ,G iff F . j G iff ϕ− j (F ) .∗j ϕ
∗
− j (G ).

Similarly, for F ∈F j ,

p ∗j ,ϕ− j (F )

�⋃

{G ∗ : G ∗ ∈F ∗j ,G ∗ .∗j ϕ− j (F ),ϕ− j (F ) .
∗
j G ∗}

�

=

=p ∗j ,ϕ− j (F )

�⋃

{ϕ− j (G ) : G ∈F j ,ϕ− j (G ) .
∗
j ϕ− j (F ),ϕ− j (F ) .

∗
j ϕ− j (G )}

�

=

=p ∗j ,ϕ− j (F )

�
⋃

{ϕ− j (G ) : G ∈F j ,G . j F, F . j G }
�

=

=p ∗j ,ϕ− j (F )

�⋃

{σ− j (projS− j
G )×Θ×{o} : G ∈F j ,G . j F, F . j G }

�

+

+p ∗j ,ϕ− j (F )

�⋃

{σ− j (projS− j
G )×Θ×{a } : G ∈F j ,G . j F, F . j G }

�

=

=p ∗j ,ϕ− j (F )

�⋃

{σ− j (projS− j
G ) : G ∈F j ,G . j F, F . j G }×Θ×{o}

�

+

+p ∗j ,ϕ− j (F )

�⋃

{σ− j (projS− j
G ) : G ∈F j ,G . j F, F . j G }×Θ×{a }

�

=

=p ∗j ,ϕ− j (F )

�

σ− j

�⋃

{projS− j
G : G ∈F j ,G . j F, F . j G }

�

×Θ×{o}
�

+

+p ∗j ,ϕ− j (F )

�

σ− j

�⋃

{projS− j
G : G ∈F j ,G . j F, F . j G }

�

×Θ×{a }
�

=

=
1

2
pj ,F

�⋃

{projS− j
G } : G ∈F j ,G . j F, F . j G }×Θ

�

+
1

2
pj ,F

�⋃

{projS− j
G } : G ∈F j ,G . j F, F . j G }×Θ

�

=

=
1

2
pj ,F

�⋃

{projS− j
G }×Θ : G ∈F j ,G . j F, F . j G }

�

+
1

2
pj ,F

�⋃

{projS− j
G }×Θ : G ∈F j ,G . j F, F . j G }

�

=

=
1

2
pj ,F

�
⋃

{G : G ∈F j ,G . j F, F . j G }×Θ
�

+
1

2
pj ,F

�
⋃

{G : G ∈F j ,G . j F, F . j G }
�

= 1,

where the penultimate equality follows because G = projS− j
G ×Θ for all G ∈ F j , and the last

one from the fact that p j is a basis for µ j .
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Finally, fix F ∈F j ; then

p ∗j ,ϕ− j (F )
(ϕ− j (F )) = p ∗j ,ϕ− j (F )

(σ− j (projS− j
F )×Θ×{o , a }) =

=
∑

θ∈{o ,a }

pj ,ϕ− j (F )(projS− j
(F )×Θ×{θ }) =

1

2

∑

θ∈{o ,a }

pj ,F (projS− j
(F )×Θ) = pj ,F (F )> 0;

furthermore, for C ⊆ projS− j
(F ), U ∈Θ, and θ ∈ {o , a },

p ∗j ,ϕ− j (F )
(σ− j (C )×U ×{θ })

p ∗j ,ϕ− j (F )
(ϕ− j (F ))

=
1
2 pj ,F (C ×U )

pj ,F (F )
=

1

2
µ j (C ×U |F ) =µ∗j (σ− j (C )×U ×{θ }|ϕ− j (F )).

Thus, p∗j is a basis for µ∗j .

Proof of Theorem 2: Lemma 5 shows that, for every j ∈ N , every µ j ∈ cpr(Σ j ,F j ) admits

an extension. Lemma 7 shows that, ifµ j ∈ cpr(Ωi ,Fi ) admits a basis, so does any extensionµ∗j

of µ j . Eq. (16) in Lemma 7 and Remark 3 imply that, for all j 6= i , s j ∈ Sj , and F ∈F j ,

Ep ∗j ,ϕ− j (F )
U ∗

j (σ j (s j ), ·) = Epj ,F
Uj (s j , ·);

similarly, for all si ∈ Si , k ∈ { f , g }, and F ∈Fi ,

Ep ∗i ,ϕ−i (F )
U ∗

i (σi ,k (si ), ·) =
1

2
Epi ,F

Ui (si , ·) +
1

2
Epi ,F

ui ◦k .

Finally, Lemma 6 states that, for any j ∈ N and conditioning events F,G ∈ F j , F . j G iff

ϕ− j (F ) . j ϕ− j (G ). Statements 1–3 in the Theorem now follow immediately.

B.2.3 Proof of Proposition 1

To simplify the notation, denote ¼ui ,µi by ¼i . Let F = [I ]. That the number α, if it exists, is

unique, follows from the fact that y F x0 �i x G x0 and y F x0 ≺i x G x0 cannot both hold.

Thus, consider y such that ui (y )>µi (G |F ). Note that

Epi ,F
ui ◦ y F x0 =ui (y )pi ,F (F ) +ui (x0)[1−pi ,F (F )] = ui (y )pi ,F (F ) and

Epi ,F
ui ◦ x G x0 =ui (x )pi ,F (G ) +ui (x0)[1−pi ,F (G )] = pi ,F (G ) =µi (G |F )pi ,F (F ),
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where the last equality follows from the fact that pi is a basis for µi . The same assumption

implies that pi ,F (F )> 0. Therefore, it is immediate that

ui (y )>µi (G |F ) =⇒ Epi ,F
ui◦y F x0 > Epi ,F

ui◦x G x0 and ui (y )<µi (G |F ) =⇒ Epi ,F
ui◦y F x0 < Epi ,F

ui◦x G x0.

Now consider K ∈ Fi such that K .i F . If pF = pK , the above implications hold for K as

well. Otherwise, by Lemma 1 part 2, pK (F ) = 0, and so Epi ,K
ui ◦ y F x0 = ui (x0) = Epi ,K

ui ◦ x G x0,

because G ⊆ F . Therefore,

ui (y )>µi (G |F ) =⇒ y F x0 6´i x G x0 and ui (y )<µi (G |F ) =⇒ y F x0 6¼i x G x0.

Finally, suppose that ui (y ) > µi (G |F ) and K ∈ Fi is such that Epi ,K
ui ◦ y F x0 < Epi ,K

ui ◦

x G x0. Then pK (F )> 0, so by Lemma 1 part 1, F .i K . Since Epi ,F
ui ◦ y F x0 > Epi ,F

ui ◦ x G x0 and

K was arbitrary, y F x0 ¼i x G x0. Similarly, ui (y )<µi (G |F ) implies that y F x0 ´i x G x0. Thus,

ui (y )>µi (G |F ) =⇒ y F x0 �i x F x0 and ui (y )<µi (G |F ) =⇒ y F x0 ≺i x G x0,

so one can take α=µi (G |F ).
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