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1 Introduction

Lexicographic beliefs (henceforth `-beliefs) have become a relatively standard tool, both for

studying refinements and for providing epistemic characterizations of solution concepts.1

The appeal of `-beliefs is that they can be used to address a tension between being certain

that an opponent is rational and having full-support beliefs about opponents’ actions. To

clarify, suppose that, if Bob is rational, he will not play specific actions. Can Ann be certain

that Bob is rational, and at the same time be cautious and assign non-zero probability to

all of Bob’s actions? The answer is no if Ann has standard probabilistic beliefs. Suppose

instead that Ann has `-beliefs. That is, she has a vector (µ0, ..., µn−1) of probabilities over

the relevant space of uncertainty, Sb (Bob’s strategy space) and uses them lexicographically

to determine her preferences over her own strategies: Ann first ranks her strategies using

µ0; if that leads to more than one best reply for Ann, she uses µ1 to rank them, and so on.

If the union of the the supports of the probabilities µi is all of Sb, then Ann’s beliefs have,

in a sense, full support. At the same time, Ann can still be confident in Bob’s rationality,

for example in the sense that the primary hypothesis µ0 assigns positive probability only to

strategies of Bob that are rational.

There are two notions of `-beliefs that have been studied and used in the literature:

lexicographic conditional probability systems (henceforth LCPSs) in which, loosely speaking,

the supports of the different beliefs (i.e., the µi’s) are disjoint, and the more general class
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1See, for example, Blume, Brandenburger and Dekel (1991b), Brandenburger (1992), Stahl (1995),
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Brandenburger, Friedenberg and Keisler (2008), Keisler and Lee (2010), Lee (2013b), Yang (2013), and
Catonini and De Vito (2014) amongst many others.
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of lexicographic probability systems (LPSs) in which this disjointedness condition is not

imposed. In particular, LCPSs are used by Brandenburger, Friedenberg and Keisler (2008,

henceforth, BFK) to provide an epistemic characterization of iterated admissibility—thereby

answering a long-standing open question.

However, there are reasons not to find the restriction to LCPSs appealing. First, while

Blume, Brandenburger and Dekel (1991a) provide an axiom that characterizes LCPS’s within

the class of LPS’s, their axiom has a flavor of reverse-engineering: it says no more than the

probabilities in the LPS have disjoint support; it offers no further normative or other appeal.

Indeed, the interpretation of LPSs is quite natural and intuitive. The probability µ0 is the

player’s primary hypothesis, in the sense that she is (almost fully) confident in it. The

probability µ1 is her secondary hypothesis: she is willing to entertain it as an alternative

assumption, but considers it “infinitely” less plausible than µ0; and so on. There is no

reason that primary and secondary hypotheses must have disjoint supports. For instance,

one may be confident that a coin is fair, but entertain the secondary hypothesis that it is

biased towards falling on heads.2 Second, the marginal of an LCPS need not be an LPS. For

example, assume two players are playing the game in Figure 1.1, where the pairs of actions

A,B for each constitute a zero-sum matching pennies game, (A,C) and (C,A) give (−2, 3)

and (3,−2) respectively and anything else gives (−4,−4). Consider the `-belief over this

game where µ0 is that the players are playing the equilibrium of the matching pennies game

while µ1 is that they are playing the Pareto superior outcome that requires correlation of

(A,C) and (C,A) with probability one half each. The marginal of the LCPS on one player’s

actions has the first belief being that A and B are equally likely while the second belief is that

A and C are equally likely, which is clearly not an LCPS. Thus, if one takes a small-worlds

approach in which the beliefs we use to study a particular game are the marginals of some

belief on a larger space, then the beliefs in the game need not be an LCPS (even if one were

to assume that the overall belief is an LCPS). For these reasons we find LPSs more suitable

for the study of refinements than LCPSs.

A B C
A -1,1 1,-1 -2,3
B 1,-1 -1,1 -4,-4
C 3,-2 -4,-4 -4,-4

Figure 1.1: The marginal of an LCPS may not be an LCPS

The question then arises whether BFK’s characterization of iterated admissibility requires

2Of course one may instead have the secondary hypothesis that the coin will fall on an edge, which would
have disjoint support, but that does not seem like the only story one could tell.
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the use of LCPSs. This paper shows that their result does hold when using the more general

notion of LPSs. This involves two steps.

First, BFK define what it means for one player to “be certain” that another is rational

using what they call assumption. On a finite space, an event E is assumed if it is “infinitely

more likely” than its complement. This can be formalized in terms of preferences as follows:

(*) whenever a player prefers an act x to an act y conditional on E (loosely

speaking, if she were to be informed of E), she also prefers x to y unconditionally

(i.e., without this information).3

In the usual case where the player has one level of beliefs, this corresponds exactly to

probability-1 belief. (See Section 3 for precise statements.) BFK show that, with LCPS

beliefs, condition (*) is (essentially) equivalent to the following:

there is a belief level j such that:

(BFK-i) for all i ≤ j we have µi (E) = 1 and

(BFK-ii) for all i > j we have µi (E) = 0.

However, the equivalence between the preference-based condition (*) and its `-belief coun-

terpart, conditions (BFK-i) and (BFK-ii), only holds if the player’s beliefs are represented

by an LCPS. We illustrate this in Examples 3.1-3.3, which also show that the problem lies

with condition (BFK-ii) above.

Our main result, Theorem 4.1, characterizes condition (*) in terms of (unrestricted)

LPSs. In particular, it provides a precise weakening of condition (BFK-ii) required for the

equivalence. Intuitively, condition (BFK-ii) implies:

(†) the payoffs at states in E “do not matter” as far as the probabilities of level

greater than j are concerned.

With LCPSs, (†) implies that the probability of E is zero at such levels. But, when we allow

for unrestricted LPSs, (†) is also satisfied whenever, for all i > j, the restriction of µi to E

is a linear combination of the lower-level probabilities µ0, . . . , µj (restricted to E). That is,

this linear combination property is the modification of (BFK-ii) required to characterize (*)

with LPSs.

Second, BFK provide an epistemic characterization of iterated admissibility (and self-

admissible sets, or SASs; see Definition 5.4) in terms of mutual assumption of `-rationality,

3We emphasize that, as in Savage, there is no real “information” in our static setting; this is just
suggestive language.
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using the LCPS formulation of “assumption,” i.e., conditions (BFK-i) and (BFK-ii). We

show that, when players’ beliefs are represented by unrestricted LPSs, the very same epis-

temic conditions continue to characterize iterated admissibility (and SASs), provided we use

our LPS formulation of assumption.4

Sections 2-3 introduce the framework and basic definitions. Section 4 provides the be-

havioral characterization of assumption for LPSs. Section 5 applies this characterization to

the epistemic characterizations of iterated admissibility and SASs. Section 6 discusses the

closely related work of Lee (2013a,b). The Appendix provides proofs not included in the

body.

2 Preliminaries

Let (Ω,S) be a Polish space, where S is the Borel σ-algebra on Ω. Write P(Ω) for the set of

probability measures on Ω and endow P(Ω) with the topology of weak convergence, so that

it is also a Polish space.

A lexicographic probability system (LPS) on Ω will be some σ = (µ0, . . . , µn−1)

where each µi ∈ P(Ω). An LPS σ = (µ0, . . . , µn) has full support if
⋃n
i=0 suppµi = Ω.

Let A be the set of all measurable functions from Ω to [0, 1]. A particular function x ∈ A
is an act. For c ∈ [0, 1], write −→c for the constant act associated with c, i.e. −→c (Ω) = {c}.
Given acts x, y ∈ A and a Borel subset E in Ω, write (xE, yΩ\E) for the act z with

z(ω) =

x(ω) if ω ∈ E

y(ω) if ω ∈ Ω\E.

When Ω = {ω0, ω1, . . . , ωK}, write (x0, x1, . . . , xK) for an act x with x(ωk) = xk. In this

case, we also write µ = (µ(ω1), . . . , µ(ωK)) for some µ ∈ P(Ω).

Given an LPS σ = (µ0, . . . , µn−1) on Ω, define a preference relation %σ on A where x %σ y

if and only if (∫
Ω

x(ω)dµi(ω)

)n−1

i=0

≥L
(∫

Ω

y(ω)dµi(ω)

)n−1

i=0

.

Write �σ for the associated strict preference relation. Given a Borel set E, define the

conditional preference given E in the usual way, i.e., x %σ
E y if for some z ∈ A, (xE, zΩ\E) %σ

(yE, zΩ\E). (The choice of z does not affect the conditional preference relation.5) Write �σE
for the associated strict preference relation and ∼σE for the associated indifference relation.

4The proofs of these epistemic results follow BFK closely; the only significant modification is in estab-
lishing measurability. See the Appendix.

5This follows from the fact that %σ satisfies independence.
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3 Assumption

Assumption is defined in terms of the preference relation %σ associated with the LPS σ. The

informal idea is that an event E is assumed if states in E “determine” strict preferences.

Definition 3.1 (BFK, Definition A.3) Say a set E is assumed under %σ if E is Borel

and the following hold:

Non-Triviality: for each open set U with E ∩ U 6= ∅, there are x, y ∈ A with x �σE∩U y,

Strict Determination: for all x, y ∈ A, x �σE y implies x �σ y.

Non-Triviality states that every “part” of E can potentially determine strict preferences.

Strict Determination states that, if x is strictly preferred to y conditional on E, then x is

also unconditionally strictly preferred to y, regardless of the outcomes x and y may deliver

outside of E.

BFK restrict attention to LPSs that, loosely speaking, consist of measures having disjoint

supports (cf. their Definition 4.1). Refer to these as lexicographic conditional probability

systems (LCPS’s); this terminology is due to Blume, Brandenburger and Dekel (1991a).

Proposition A.2 and Lemma B.1 of BFK show that, given a full-support LCPS σ =

(µ0, . . . , µn−1), the preference %σ assumes an event E if and only if there exists some j ∈
{0, . . . , n− 1} such that the following three BFK conditions hold:

(BFK-i) µi(E) = 1 for all i ≤ j,

(BFK-ii) µi(E) = 0 for all i > j, and

(BFK-iii) E ⊆
⋃
i≤j suppµi.

One direction of this equivalence result holds for all full-support LPSs: If there is some j that

satisfies Conditions (BFK-i)–(BFK-iii), then %σ assumes E, even if σ does not have disjoint

supports. However, the converse need not hold for all full-support LPSs. In particular, we

will argue that the problem arises from Condition (BFK-ii).

Notice that Condition (BFK-ii) holds trivially for j = n−1, whether or not E is assumed

under %σ. But, if Ω is finite and E ( Ω is assumed by a full-support LPS, then Conditions

(BFK-i) and (BFK-iii) can only hold for some j < n − 1.6 So, if all three conditions hold

for some j, it must be the case that j < n− 1. We now provide examples where Condition

(BFK-ii) can hold only for j = n− 1. So, to obtain a general characterization of assumption

for all full-support LPSs, we relax Condition (BFK-ii).

6Suppose that j = n−1. Then, by (BFK-i), suppµi ⊆ E for all i, so Ω =
⋃
i suppµi ⊆ E, contradiction.
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Example 3.1 Take Ω = {ω0, ω1} and consider an LPS σ = (µ0, µ1) with µ0 = (1, 0) and

µ1 = (1
2
, 1

2
). Let E = {ω0}. If x �σ{ω0} y, then x(ω0) > y(ω0). It follows that x �σ y, so E is

assumed under %σ. Note that Conditions (BFK-i) and (BFK-iii) hold only for j = 0, while

Condition (BFK-ii) holds only for j = 1. Thus, one direction of BFKs characterization fails.

We now establish a more general fact, which also illustrates the first step in the proof

of Theorem 4.1: for any full-support LPS σ = (µ0, . . . , µn−1) on Ω = {ω0, ω1}, if the event

E = {ω0} is assumed under %σ, then µ0(E) = 1. Hence, if E is assumed, Conditions (BFK-

i) and (BFK-iii) hold for j = 0, but in general Condition (BFK-ii) may hold only (trivially)

for j = n− 1.

To prove this fact, suppose that E is assumed under %σ, but µ0(E) < 1. Let x be an act

with x = (x0, 0) and x0 > 0; let y = (0, 1). Since µi({ω0}) > 0 for some i = 0, . . . , n − 1,

x �σ{ω0} y. But, since µ0({ω1}) > 0, for x(ω0) sufficiently small, y �σ x; this yields a

contradiction.

In Example 3.1, the definition of assumption implies that Conditions (BFK-i) and (BFK-

iii) hold for j = 0. The next example illustrates that, with more than two states, Conditions

(BFK-i) and (BFK-iii) may not hold for j = 0, but rather for some j = 1, . . . , n− 2.

Example 3.2 Let Ω = {ω0, ω1, ω2} and E = {ω0, ω1}. Consider the LPS σ = (µ0, µ1, µ2)

such that µ0 = (1, 0, 0), µ1 = (1
2
, 1

2
, 0) and µ2 = (0, 1

2
, 1

2
). We claim that %σ assumes E.

Non-Triviality is immediate. (For any open set U with E ∩ U 6= ∅, −→1 �σE∩U
−→
0 .) For

Strict Determination, suppose x �σE y. It must be the case that x(ω0) ≥ y(ω0); if not,

y �σE x. Hence there are two possibilities: either (i) x(ω0) > y(ω0), or (ii) x(ω0) = y(ω0)

and x(ω1) > y(ω1); if not, y %σ
E x. In either case, x �σ y, so %σ assumes E. Notice that

Conditions (BFK-i) and (BFK-iii) do not hold for j = 0, but do hold for j = 1. On the

other hand, Condition (BFK-ii) holds only for j = 2.

We now establish a more general fact, which illustrates the second step in the proof

of Theorem 4.1: if an event is assumed, then Conditions (BFK-i) and (BFK-iii) hold for

some j. Consider an arbitrary full-support LPS σ = (µ0, . . . , µn−1) on Ω = {ω0, ω1, ω2}, and

suppose that %σ assumes E = {ω0, ω1}. The argument given in Example 3.1 still implies that

µ0(E) = 1. We now argue that, if the support of µ0 does not contain E, i.e., Condition (BFK-

iii) fails for j = 0, then µ1(E) = 1. For simplicity, continue to assume that µ0(ω0) = 1. Now

suppose that µ1(ω0) + µ1(ω1) < 1. Consider acts x, y such that x(ω0) = y(ω0) = 0, x(ω1) >

0 = y(ω1), and x(ω2) = 0 < 1 = y(ω2). By full support of the LPS, x �σE y. However,∫
Ω
xdµ0 = x(ω0) = y(ω0) =

∫
Ω
ydµ0 but, for x(ω1) sufficiently small,

∫
Ω
xdµ1 <

∫
Ω
ydµ1.

Hence, µ1(E) = 1. We can repeat this argument if µ2(E) < 1, etc.; due to full support, we
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will eventually reach a j such that E is contained in
⋃j
i=0 suppµi. For this j, Conditions

(BFK-i) and (BFK-iii) both hold.

To sum up, the examples suggest that the definition of assumption implies that Con-

ditions (BFK-i) and (BFK-iii) hold for some j. In Example 3.1, where Ω = {ω0, ω1}, the

condition that µ0(E) = 1 was not just necessary, but also sufficent for E = {ω0} to be

assumed.7 This may suggest that Conditions (BFK-i) and (BFK-iii) may be sufficient. The

next example shows that this is not the case.8

Example 3.3 Let Ω = {ω0, ω1, ω2} and E = {ω0, ω1}. Consider the LPS σ = (µ0, µ1, µ2)

such that µ0 = (1
2
, 1

2
, 0), µ1 = (0, 0, 1), and µ2 = (1, 0, 0). Conditions (BFK-i) and (BFK-iii)

hold (only) for j = 0. But, E is not assumed under %σ. Consider acts x, y with x(ω0) = 1,

x(ω1) = x(ω2) = 0, and y = 1 − x. Then x �σE y and y �σ x, contradicting Strict

Determination.

In light of Examples 3.1-3.3, we amend Condition (BFK-ii). To understand how this is

done, suppose that, for some j, BFKs Conditions (BFK-i), (BFK-ii), and (BFK-iii) hold.

Observe an immediate implication of Condition (BFK-ii): if two acts x, y agree on the

complement of E (that is, they assign the same outcomes at states ω 6∈ E), and their

expected utilities are the same for all i = 0, . . . , j, then their expected utilities are the same

for all j = 0, . . . , n − 1. Now notice that, in the first paragraphs of Examples 3.1 and 3.2,

the property just stated also holds, even though Condition (BFK-ii) does not hold. On the

other hand, in Example 3.3 the property just stated fails. This suggests that, if attention is

restricted to the event E, the additional measures µj+1, . . . , µn−1 must be “redundant.”

The main methodological contribution of this paper is to show that indeed this is the

appropriate formulation of condition (BFK-ii) for general LPS’s. To formalize the notion of

redundancy, we draw insight from Theorem 3.1 in Blume, Brandenburger and Dekel (1991a)

and require that the measures µj+1, . . . , µn−1 be linear combinations of µ0, . . . , µj, when

restricted to events in E.

4 Characterization

We provide our main result: a characterization of assumption in terms of an LPS.

7Consider a full-support LPS σ. Non-Triviality is immediate. For Strict Determination, consider acts
x, y. If x �σE y, then x(ω0) > y(ω0) because E = {ω0}, so also x �σ y because µ0(E) = 1. Hence, E is
assumed under %σ.

8This point is implicit in the work of BFK; for completeness, we provide an example that uses an LPS
that does not have disjoint supports.

7



Definition 4.1 Fix a full support LPS σ = (µ0, . . . , µn−1). Say a set E ⊆ Ω is assumed

under σ at level j if E is Borel and

(i) µi(E) = 1 for all i ≤ j,

(ii) for each k > j, there exists (αk0, . . . , α
k
j ) ∈ Rj+1 so that, for each Borel F ⊆ E,

µk(F ) =
∑j

i=0 α
k
i µi(F ), and

(iii) E ⊆
⋃
i≤j suppµi.

Say a set E ⊆ Ω is assumed under σ if it is assumed under σ at some level j.

Conditions (BFK-i)-(BFK-iii), imply Conditions (i)-(iii). When σ is an LCPS, the above

conditions are equivalent to the conditions in BFK. This will be a consequence of our char-

acterization result below plus BFK’s characterization.

Notice that condition (ii) of Definition 4.1 requires linear—not convex—combinations.

This is necessary. For instance, in Example 3.2, µ2(F ) = −1
2
µ0(F ) + µ1(F ) for all F ⊆

{ω0, ω1}. There is no α2
0, α

2
1 ≥ 0, so that µ2(F ) = α2

0µ0(F ) + α2
1µ1(F ) for all F ⊆ {ω0, ω1}.

Theorem 4.1 Fix some full-support LPS σ. A set E ⊆ Ω is assumed under %σ if and only

it is assumed under σ.

We first prove that Definition 4.1 is sufficent, i.e., if E is assumed under σ, then it is

assumed under %σ. We need two preliminary results.

Remark 4.1 Fix some σ = (µ0, . . . , µn−1) and a Borel set E. There is some i with µi(E) >

0 if and only if there are x, y ∈ A with x �σE y.

Proof. If µi(E) = 0 for each i, then x ∼σE y. Conversely, if µi(E) > 0 for some i, then
−→
1 �σE

−→
0 .

Remark 4.2 Fix some full-support LPS σ = (µ0, . . . , µn−1) with E ⊆ Ω assumed under σ

at level j. Then, for each open set U with E∩U 6= ∅, µi(U) = µi(E∩U) > 0 for some i ≤ j.

Proof. Fix some open set U with E ∩ U 6= ∅. By Condition (iii) of Definition 4.1, for each

ω ∈ E ∩ U , there is some i ≤ j with ω ∈ suppµi. Since U is an open neighborhood of ω,

µi(U) > 0. By Condition (i) of Definition 4.1, µi(E ∩ U) = µi(U) > 0.

Proof of Theorem 4.1, sufficiency. Suppose E is assumed under σ at level j. Non-

triviality follows from Remark 4.2 and Remark 4.1. We focus on Strict Determination.

Assume x �σE y. Then, there exists some k = 0, . . . , n− 1 so that
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(a)
∫
E

(x− y)dµi = 0 for all i ≤ k − 1 and

(b)
∫
E

(x− y)dµk > 0.

It suffices to show that k ≤ j; if so, then by part (i) of Definition 4.1, it follows that x �σ y.

Suppose, contra hypothesis, k > j. Then, by part (ii) of Definition 4.1, there exists

(αk0, . . . , α
k
j ) ∈ Rj+1 so that∫

E

(x− y)dµk =
∑j

i=0
αki

∫
E

(x− y)dµi = 0,

where the second equality follows from (a). But this contradicts (b).

We now turn to the proof of necessity: if E is assumed under %σ, then it is assumed

under σ. The proof consists of four main steps. Suppose that E is assumed under %σ. First,

we show that condition (i) must hold for j = 0, as in Example 3.1. Second, we show that

there exists j such that conditions (i) and (iii) hold, as in Example 3.2. Third, we show

that there exists j such that, in addition, the measures µj+1, . . . , µn−1 are ‘redundant’ in the

sense discussed on page 7. Fourth, and finally, we show that condition (ii) characterizes this

notion of redundance. The four Lemmata to come correspond to these four steps.

Lemma 4.1 Fix an LPS σ = (µ0, . . . , µn−1). If E is assumed under %σ, then µ0(E) = 1.

Proof. Suppose that E is assumed under %σ. We break the proof into two steps. First, we

show that µ0(E) > 0. Then, we use this fact to show that µ0(E) = 1.

Step 1: Construct acts x, y so that x = (
−→
1 E,
−→
0 Ω\E) and y(ω) = 1 − x(ω). By Non-

Triviality (Remark 4.1), there exists some i so that µi(E) > 0. Thus, x �σE y. By Strict

Determination, x �σ y, from which it follows that µ0(E) > 0: If µ0(E) = 0, then y �σ x.

Step 2: Suppose µ0(E) ∈ (0, 1) and fix some number Y ∈ (µ0(E), 1]. Construct acts x, y

with

x(ω) =

µ0(Ω\E) if ω ∈ suppµ0 ∩ E

0 otherwise
and y(ω) =

Y if ω ∈ suppµ0\E

0 otherwise.

By Step 1, µ0(E) = µ0(suppµ0 ∩ E) > 0 and, by hypothesis, µ0(Ω\E) > 0. Thus, x �σE y.

But, since µ0(Ω\E) > 0,

µ0(Ω\E)µ0(suppµ0 ∩ E) = µ0(Ω\E)µ0(E) < µ0(Ω\E)Y = µ0(suppµ0\E)Y

9



and so y �σ x. This contradicts the fact that E is assumed under %σ.

Lemma 4.2 Fix a full-support LPS σ = (µ0, . . . , µn−1). If E ⊆ Ω is assumed under %σ,

then there is some j = 0, . . . , n− 1 so that

(1) µi(E) = 1 for all i ≤ j, and

(2) E ⊆
⋃
i≤j suppµi.

Proof. Fix some E ⊆ Ω that is assumed under %σ. By Lemma 4.1, µ0(E) = 1. We will

show that, if (a) µi(E) = 1 for all i ≤ k and (b) E\
⋃
i≤k suppµi 6= ∅, then µk+1(E) = 1. By

full-support of the LPS, this gives that there exists some j satisfying conditions (1)-(2) in

the statement of the Lemma.

Throughout, suppose that there exists k satisfying (a)-(b), but µk+1(Ω\E) > 0. It will

be convenient to define F = E\
⋃
i≤k suppµi. Note that U = (Ω\

⋃
i≤k suppµi) is an open

set and F = E ∩ (Ω\
⋃
i≤k suppµi) = E ∩ U . By (b), F = E ∩ U 6= ∅. Thus, it follows from

Non-Triviality (Remark 4.1) that there exists some l ≥ k + 1 so that µl(F ) > 0. We make

use of this fact below.

First we show that µk+1(F ) > 0. Then we use this fact to show that µk+1(E) cannot be

strictly less than 1.

F E\F Ω\E
x 1 1 0
y 0 1 1

Table 1: Illustration of Acts

Step 1: Construct acts x, y so that x = (
−→
1 E,
−→
0 Ω\E) and y = (

−→
0 F ,
−→
1 Ω\F ); these are

illustrated in Table 1. Since µl(F ) > 0 for some l and F ⊆ E, it follows that x �σE y. From

Strict Determination then, x �σ y.

For each i ≤ k, µi(E\F ) = 1 and so, for each i ≤ k,
∫
xdµi =

∫
ydµi. If µk+1(F ) = 0,

then using the hypothesis that µk+1(Ω\E) > 0, it would follow that
∫

Ω
ydµk+1 >

∫
Ω
xdµk+1

and so y �σ x. This contradicts the earlier claim that x �σ y and so µk+1(F ) > 0.

Step 2: Since µk+1(F ) ≤ µk+1(E) < 1, there exists Y ∈ (µk+1(F ), 1]. Define acts x, y so

that

x(ω) =

µk+1(suppµk+1\E) if ω ∈ suppµk+1 ∩ F

0 otherwise
and y(ω) =

Y if ω ∈ suppµk+1\E

0 otherwise.

10



Note that µk+1(suppµk+1\E) = µk+1(Ω\E) > 0 and, by Step 1, µk+1(suppµk+1 ∩ F ) =

µj+1(F ) > 0. This gives that x �σE y and, so, by strict determination, x �σ y.

But, y �σ x: For i ≤ k, µi(E\F ) = 1 and so
∫

Ω
xdµi =

∫
Ω
ydµi = 0. Moreover,∫

Ω

ydµk+1 = Y µk+1(suppµk+1\E) > µk+1(F )µk+1(suppµk+1\E) =

∫
Ω

xdµk+1,

since µk+1(suppµk+1\E) > 0. This contradicts x �σ y.

Lemma 4.3 Fix a full-support LPS σ = (µ0, . . . , µn−1). If E ⊆ Ω is assumed under %σ,

then there is some j = 0, . . . , n− 1 so that

(1) µi(E) = 1 for all i ≤ j,

(2) E ⊆
⋃
i≤j suppµi, and

(3) if
∫
E

(x− y)dµi = 0 for all i ≤ j, then
∫
E

(x− y)dµi = 0 for all i = 0, . . . , n− 1.

Proof. Fix a full-support LPS σ = (µ0, . . . , µn−1) on Ω, so that E is assumed under %σ. By

Lemma 4.2, there exists some k so that:

(k.a) µi(E) = 1 for i ≤ k, and

(k.b) E ⊆
⋃
i≤k suppµi.

We will suppose further that

(k.c) there exists some x, y so that

•
∫
E

(x− y)dµi = 0 for all i ≤ k, and

•
∫
E

(x− y)dµi > 0 for some i > k.

We will show that µk+1(E) = 1, so that (k + 1).a-(k + 1).b also hold. Repeatedly applying

this argument gives that there exists some j satisfying conditions (1)-(3) of the Lemma.

Note that throughout we fix x, y satisfying (k.c). We can and do take this choice of x, y

to satisfy x �σE y. In this case, we can choose l − 1 ≥ k so that

•
∫
E

(x− y)dµi = 0 for all i ≤ l − 1, and

•
∫
E

(x− y)dµl > 0.

11



We will show that, if µk+1(E) < 1, then we can use x, y to construct acts x̂ and ẑ so that

x̂ �σE ẑ and ẑ �σ x̂. This contradicts Strict Determination.

For each ρ ∈ (0, 1), let z[ρ] be the act with z[ρ](ω) = ρx(ω) + (1− ρ)y(ω) for all ω ∈ Ω.

Note that for any i = 0, . . . , n− 1,∫
E

(x− z[ρ])dµi = (1− ρ)

∫
E

(x− y)dµi.

So, for each ρ ∈ (0, 1), (i)
∫
E

(x− z[ρ])dµi = 0 for all i ≤ l − 1, and (ii)
∫
E

(x− z[ρ])dµl > 0.

It follows that, for each ρ ∈ (0, 1), x �σE z[ρ].

Construct acts x̂ = (xE,
−→
0 Ω\E) and ẑ[ρ] = (z[ρ]E,

−→
1 Ω\E). Certainly, for each ρ ∈ (0, 1),

x̂ �σE ẑ[ρ]. We will next show that, if µk+1(Ω\E) > 0, then there is some ρ ∈ (0, 1) so that

ẑ[ρ] �σ x̂. To do so, first note that, since µi(E) = 1 for all i ≤ k, it follows that, for each

ρ ∈ (0, 1) and each i ≤ k,
∫

Ω
(ẑ[ρ]− x̂)dµi = 0. Next note that, for each ρ ∈ (0, 1),∫

Ω

(ẑ[ρ]− x̂)dµk+1 = (1− ρ)

∫
E

(y − x)dµk+1 + µk+1(Ω\E).

If µk+1(Ω\E) > 0, there exists ρ∗ ∈ (0, 1) large enough so
∫

Ω
(ẑ[ρ∗] − x̂)dµj+1 > 0 and so

ẑ[ρ∗] �σ x̂.

We now provide the fourth and final part of the proof.

Lemma 4.4 Fix a full-support LPS σ = (µ0, . . . , µn−1). Suppose that E ⊆ Ω is Borel and,

for some j = 0, . . . , n− 1,

(1) µi(E) = 1 for all i ≤ j,

(2) if
∫
E

(x− y)dµi = 0 for all i ≤ j, then
∫
E

(x− y)dµi = 0 for all i = 0, . . . , n− 1.

(3) E ⊆
⋃
i≤j suppµi, and

Then E is assumed under σ.

Proof. Take j so that conditions (1)-(3) hold. This implies that, for j, conditions (i) and

(iii) in Definition 4.1 hold. We must show that condition (ii) in Definition 4.1 holds as well:

that is, for each k > j, there exists (αk0, . . . , α
k
j ) ∈ Rj+1 so that, for any Borel F ⊆ E,

µk(F ) =
∑j

i=0 α
k
i µi(F ).

Let B denote the vector space of bounded Borel-measurable functions b : Ω → R. For

each i = 1, . . . , j, k, define linear functionals T1, . . . , Tj, Tk on B by Ti(b) =
∫
E
bdµi. By

condition (2), if x, y ∈ A with Ti(x−y) = 0 for all i ≤ j, then Tk(x−y) = 0. Now, note that
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B is the set of all functions of the form γ(x−y) for γ ∈ R++ and x, y ∈ A. So, for each b ∈ B,

Ti(b) = 0 for all i ≤ j implies that Tk(b) = 0. Hence, by the Theorem of the Alternative

(see Aliprantis and Border, 2007, Corollary 5.92), there exists (αk0, . . . , α
k
j ) ∈ Rj+1 with

Tk =
∑j

i=0 α
k
i Ti.

For any F ⊆ E Borel, it follows that

µk(F ) =

∫
E

(
−→
1 F ,
−→
0 Ω\F )dµk =

∑j

i=0
αki

∫
E

(
−→
1 F ,
−→
0 Ω\F )dµi =

∑j

i=0
αki µk(F ),

as desired.

Proof of Theorem 4.1, necessity. Immediate from Lemmata 4.3 and 4.4.

5 Application: SAS and IA

This section applies the LPS-based characterization of assumption to BFK’s game-theoretic

analysis. We consider type structures where types map to arbitrary LPSs, rather than

LCPSs. We formalize (lexicographic) rationality and mutual or common assumption thereof.

We then show that self-admissible sets and iterated admissibility capture the behavioral im-

plications of these epistemic conditions in arbitrary and, respectively, complete type struc-

tures.

As in BFK, we restrict attention to two-player games. Fix a game 〈Sa, Sb, πa, πb〉 where

Sa (resp. Sb) is a finite strategy set for Ann (resp. Bob) and πa (resp. πb) is a payoff function.

5.1 Solution Concepts

The following definitions are standard.

Definition 5.1 Fix X × Y ⊆ Sa × Sb. A strategy sa ∈ X is weakly dominated with

respect to X × Y if there exists σa ∈ M(Sa), with σa(X) = 1, such that πa(σa, sb) ≥
πa(sa, sb) for every sb ∈ Y , and πa(σa, sb) > πa(sa, sb) for some sb ∈ Y . Otherwise, say sa

is admissible with respect to X × Y . If sa is admissible with respect to Sa × Sb, simply

say that sa is admissible.

Definition 5.2 Set S0
a = Sa and S0

b = Sb. Define inductively

Sm+1
a = {sa ∈ Sma : sais admissible with respect to Sma × Smb };

and, likewise, define Sm+1
b . A strategy sa ∈ Sma is called m-admissible. A strategy sa ∈⋂∞

m=0 S
m
a is called iteratively admissible (IA).
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The following definitions are due to BFK.

Definition 5.3 Say ra supports sa if there exists some σa ∈ P (Sa) with ra ∈ suppσa and

πa (σa, sb) = πa (sa, sb) for all sb ∈ Sb. Write su (sa) for the set of ra ∈ Sa that support sa.

Definition 5.4 Fix Qa×Qb ⊆ Sa× Sb. The set Qa×Qb is a self-admissible set (SAS)

if:

(a) each sa ∈ Qa is admissible,

(b) each sa ∈ Qa is admissible with respect to Sa ×Qb,

(c) for any sa ∈ Qa, if ra ∈ su (sa) then ra ∈ Qa,

and likewise for each sb ∈ Qb.

5.2 Epistemic Analysis

For each n ∈ N, write Nn(Ω) for the set of LPS’s of length n and write N (Ω) =
⋃
n∈NNn(Ω)

for the set of LPS. Write N+(Ω) for the set of σ ∈ N that have full support. Define a metric

on N (Ω) as follows: The distance between two sequences of measures (µ0, . . . , µn−1) and

(ν0, . . . , νn−1) of the same length is the maximum of the Prohorov distances between µi and

νi for all i < n. The distance between two sequences of measures of different lengths is 1.

With this, N (Ω) is a Polish space and, by Corollary C.1 in BFK, N+(Ω) is Borel.

Definition 5.5 An (Sa, Sb)-based type structure is a structure

〈Sa, Sb, Ta, Tb, λa, λb〉,

where Ta and Tb are nonempty Polish type spaces, and λa : Ta → N (Sb × Tb) and λb :

Tb → N (Sa × Ta) are Borel measurable belief maps. A type structure is complete if

N+ (Sb × Tb) ( rangeλa and N+ (Sa × Ta) ( rangeλb.
9

Type structures are our basic representation of interactive LPS-based beliefs. This differs

from BFK’s Definition 7.1 in that it does not require that types be mapped to LCPSs (or

limits of LCPSs). A type structure induces a set of states, i.e., Sa × Ta × Sb × Tb.
In the remainder of this subsection, we fix a (Sa, Sb)-based type structure 〈Sa, Sb, Ta, Tb, λa, λb〉.

All definitions have counterparts with a and b reversed.

9We write rangeλa for the range of the function λa.

14



Definition 5.6 A strategy sa is optimal under σ = (µ0, . . . , µn−1) if σ ∈ N (Sb × Tb) and

(
πa(sa,marg Sb

µi(sb))
)n−1

i=0
≥L
(
πa(ra,marg Sb

µi(sb))
)n−1

i=0

for all ra ∈ Sa.10

Here, marg Sb
µi denotes the marginal on Sb of the measure µi. In words, Ann will

prefer strategy sa to strategy ra if the associated sequence of expected payoffs under sa is

lexicographically greater than the sequence under ra. (If σ is a length-one LPS (µ0), we will

sometimes say that sa is optimal under the measure µ0 if it is optimal under (µ0).)

We now formalize the epistemic assumptions of interest as restrictions on strategy-type

pairs.

Definition 5.7 A strategy-type pair (sa, ta) ∈ Sa×Ta is rational if λa (ta) is a full-support

LPS and sa is optimal under λa(ta).

Next, for E ⊆ Sb × Tb, set

Aa(E) = {ta ∈ Ta : E is assumed under λa(ta)}.

In words, Aa (E) is the set of types ta ∈ Ta with associated LPS’s λa (ta) that assume the

event E (in Sb × Tb). Note, if E ⊆ Sb × Tb is not Borel, then Aa(E) = ∅.
For finite m, define sets Rm

a as follows. Let R1
a be the set of all rational (sa, ta) ∈ Sa×Ta.

Inductively, set

Rm+1
a = Rm

a ∩ [Sa × Aa(Rm
b )].

Definition 5.8 If (sa, ta, sb, tb) ∈ Rm+1
a × Rm+1

b , say there is rationality and mth-order

assumption of rationality (RmAR) at this state. If (sa, ta, sb, tb) ∈
⋂∞
m=1R

m
a ×
⋂∞
m=1 R

m
b ,

say there is rationality and common assumption of rationality (RCAR) at this

state.

5.3 Results

We begin with the characterization of RCAR in terms of SAS’s.

Theorem 5.1

(1) For each type structure, proj Sa

⋂
mR

m
a × proj Sb

⋂
mR

m
b is an SAS.

10If x = (x0, . . . , xn−1) and y = (y0, . . . , yn−1), then x ≥L y if and only if yj > xj implies xk > yk for
some k < j.
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(2) For each SAS Qa × Qb, there exists some type structure so that proj Sa

⋂
mR

m
a ×

proj Sb

⋂
mR

m
b = Qa ×Qb.

Part (2) is Theorem 8.1(ii) in BFK. They show this by constructing an LCPS-based type

structure which is, a fortiori, an LPS-based type structure. Part (1) is an analogue of

Theorem 8.1(i) in BFK. In contrast to BFK, we allow for arbitrary LPS-based type structures

and employ our characterization of assumption.

Now turn to the analysis of RmAR in complete type structures.

Theorem 5.2 Fix a complete type structure. For each m, proj Sa
Rm
a ×proj Sb

Rm
b = Sma ×Smb .

Theorem 5.2 is an analogue of Theorem 9.1 in BFK. Again, we allow for an LPS-based notion

of a complete type structure and employ our characterization of assumption.

We do not provide self-contained proofs of these theorems. The structure of the arguments

follows the proofs of Theorems 8.1-9.1 in BFK. We discuss the required modifications in the

Appendix.

6 Discussion: Related Literature

Lee (2013a,b) also extends the results of BFK to LPSs. His elegant approach is different

from but complementary to ours. His starting point is that the same lexicographic preference

relation may be represented by more than one LPS. (See Blume, Brandenburger and Dekel

(1991a, page 66)). Lee (2013a) shows that a lexicographic preference relation % assumes an

event E if and only if Conditions (BFK-i)–(BFK-iii) hold for some LPS σ for which %σ=%.

That is, instead of providing conditions that a given LPS must satisfy for the corresponding

preference relation to assume an event E, he provides conditions that must be satisfied by

at least one of the many LPSs that represent the same preferences. The Corollary below

shows that such a result also follows from our Theorem 4.1. Lee (2013b) then uses this

characterization to analyze RCAR.

Corollary 6.1 Fix a full-support LPS σ. A set E ⊆ Ω is assumed under %σ if and only if

there is some LPS ρ satisfying Conditions (BFK-i)–(BFK-iii) such that %σ=%ρ.

Proof. Fix the LPS σ = (µ0, . . . , µn−1). Since Conditions (BFK-i)–(BFK-iii) imply the

conditions in Definition 4.1, the “if” direction is immediate from Theorem 4.1. Suppose %σ

assumes E. By Theorem 4.1, σ assumes E at some level j. For every k = j + 1, . . . , n − 1,
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define a measure µk by letting

νk(F ) =

µk(F ) if µk(E) = 1[
µk(F )−

∑j
i=0 α

k
i µi(F )

]
/[1− µk(E)] if µk(E) < 1.

for every Borel F ⊆ Ω, where (αki )
j
i=0 are the weights appearing in condition (ii) of Definition

4.1. Next, define the LPS ρ′ = (µ0, . . . , µj, νj+1, . . . , νn−1). Finally, define the LPS ρ by

deleting from ρ′ the measures νk for which k ≥ j + 1 and µk(E) = 1.

We claim that %ρ=%ρ′ . To see this, consider a Borel set F ⊆ Ω and an index k > j for

which µk(E) = 1. By condition (ii) of Definition 4.1, µk(F ) =
∑k

i=0 α
k
i µi(F ) for F ⊆ E.

Furthermore, for F 6⊆ E, µk(F ) = µk(F ∩E) =
∑k

i=0 α
k
i µi(F ∩E) =

∑k
i=0 α

k
i µi(F ), because

µi(E) = 1 for i = 0, . . . , j by condition (i) of Definition 4.1. Hence, µk is a linear combination

of µ0, . . . , µi, so it is redundant and can be dropped from ρ′ without changing preferences.

Moreover, %σ=%ρ′ . To see this, note that, for every k > j such that νk 6= µk, νk is a linear

combination of µk (with weight 1
1−µk(E)

) and µ0, . . . , µj (with weights − αk
i

1−µk(E)
, i = 0, . . . , j).

Hence, for every k = 0, . . . , n − 1, the k-th level measure in ρ′ is either equal to µk, or else

is a linear combination of measures in σ. The claim follows.

It follows that %σ=%ρ. By construction, if µk(E) < 1, νk(E) = 0, because µk satisfies

Condition (ii). This implies that ρ satisfies Conditions (BFK-i)–(BFK-iii).

Appendix A Theorems 5.1-5.2

The proofs of Theorems 8.1 and 9.1 in BFK rely on three results concerning the properties

of assumption for LCPS-based type structures. (See Lemma D.1, Property 6.3, and Lemma

C.4 in BFK.) The statement and proofs of these results rely on BFK’s characterization of

assumption for LCPS’s. We have seen that the characterization does not apply to arbitrary

LPS’s. To address this, we state and prove analogous properties in our setting. (See Lemmata

A.1, A.2, and A.3.)

Lemma A.1 Let λa(ta) = (µ0, . . . , µn) be a full-support LPS. Suppose ta assumes E ⊆
Sb × Tb. Then, there exist some j so that⋃

i≤j
supp marg Sb

µi = proj Sb
E.

Note that if Sb × Tb is finite and λa(ta) = (µ0, . . . , µn−1) assumes E at level j, then E =⋃
i≤j suppµi. If Sb × Tb is infinite, the same may not hold. Lemma A.1 establishes an

analogue for the marginal LPS (marg ) on the finite set Sb and, correspondingly, the project
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of E on Sb. Lemma shows that, if Ω = Sb × Tb is infinite, a similar statement holds if we

consider the marginal LPS (marg Sb
µ0, . . . ,marg Sb

µn−1) and, correspondingly, the projection

of E on Sb.

Lemma A.2 If a full-support LPS σ ∈ N+(Sb × Tb) assumes R1
b , R

2
b , . . ., then it assumes⋂

mR
m
b .

Note that Lemma A.2 will be a consequence of a conjunction property of assumption.

Lemma A.3 The sets Rm
a and Rm

b are Borel.

To prove Theorem 5.1, it is enough to replace Lemma D.1 and Property 6.3 in BFK’s

proof with Lemma A.1 and Lemma A.2. To prove Theorem 5.2, two changes to BFK’s proof

are needed. First, replace Lemma D.1 and Lemma C.4 in BFK with Lemma A.1 and Lemma

A.3. Second, modify the proof of Lemma E.3 in BFK, for the case where m ≥ 2: Skip the

construction that ensures that µi(U) = 0 for all i. (That particular construction does not

work for arbitrary LPS’s. Fortunately, it is not needed in our setting.)

We now prove Lemmata A.1, A.2, and A.3.

Proof of Lemma A.1. Suppose ta assumes E ⊆ Sb × Tb at level j. If sb ∈ proj Sb
E,

then there exists i ≤ j such that µi({sb} × Tb) > 0. (See Remark 4.2.) It follows that, if

sb ∈ proj Sb
E, sb ∈ supp marg Sb

µi. Conversely, if sb 6∈ proj Sb
E, then E ∩ ({sb} × Tb) = ∅.

Since each µi(E) = 1 for i ≤ j, it follows that µi({sb} × Tb) = 0 for i ≤ j, i.e., sb 6∈⋃
i≤j supp marg Sb

µi.

Lemma A.4 Fix Borel sets E1, E2, . . ., with Em+1 ⊆ Em. If a full-support LPS σ =

(µ0, . . . , µn) assumes each of E1, E2, . . ., then it assumes
⋂
mEm.

Proof. For each m = 1, 2, . . ., there exists some j[m] ∈ {0, . . . , n} so that σ assumes Em at

level j[m]. Let j = min{j[m] : m ≥ 1}. Let M be some m with j = j[M ]. We show that⋂
mEm is assumed under σ at level j = j[M ].

For Condition (i) note that, for each i ≤ j, µi(Em) = 1 for all m. So, by continuity,

µi(
⋂
mEm) = 1. For Condition (iii) note that

⋂
mEm ⊆ EM [j] ⊆

⋃
i≤j suppµi. For Condition

(ii), note that each Borel F ⊆
⋂
mEm is also a subset of EM [j]. Thus, Condition (ii) applied

to
⋂
mEm follows from Condition (ii) applied to EM [j].

Proof of Lemma A.2. Immediate from Lemma A.4.

We now turn to the proof of Lemma A.3. This is more involved. We will break the proof

into several Lemmata. The first Lemma is standard (and so the proof is omitted).
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Lemma A.5 Fix some strategy sa ∈ Sa.

(1) The set of µ ∈ P(Sb) so that sa is optimal under µ is closed.

(2) The set of µ ∈ P(Sb) so that sa is strictly optimal under µ is open.

Lemma A.6 The sets R1
a and R1

b are Borel.

Proof. For each sa ∈ Sa, define O[sa, n] to be

O[sa, n] = {σ ∈ Nn(Sb × Tb) : sa is optimal under σ}.

Note, that

R1
a =

⋃
sa∈Sa

⋃
n∈N0

[
{sa} ×

(
(λa)

−1(O[sa, n]) ∩ (λa)
−1(N+

n (Sb × Tb))
)]
.

Since λa is measurable and N+
n (Sb × Tb) is Borel (insert cite), it suffices to show that each

O[sa, n] is measurable.

Write O[sa] for the set of µ ∈ P(Sb) under which sa is optimal, Os[sa] for the set of

µ ∈ P(Sb) under which sa is strictly optimal, and Ow[sa] = O[sa]\Os[sa]. By Lemma A.5,

Ow[sa], O
s[sa], and O[sa] are Borel. Note that

O[sa, n] = (Os[sa]×Nn−1(Sb×Tb))∪(Ow[sa]×Os[sa]×Nn−2(Sb×Tb))∪· · ·∪(Ow[sa]×Ow[sa]×· · ·×O[sa]),

so that O[sa, n] is Borel.

Given a Borel set E ⊆ Ω, write SE for the set of F ⊆ E that are Borel. Of course,

SE ⊆ S. Moreover, SE is the Borel σ-algebra on E. (See Aliprantis and Border, 2007,

Lemma 4.20.)

Lemma A.7 Fix some n ∈ N0 and some j = 0, . . . , n. If E ∈ S(Ω), then

{σ ∈ Nn(Ω) : E is assumed under σ at level j}

is Borel.

A Corollary of Lemma A.7 is:

Corollary A.1 If E ∈ S, then

{σ ∈ N (Ω) : E is assumed under σ}
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is Borel.

To prove Lemma A.7, we will make use of a number of auxiliary results.

Lemma A.8 Fix a Borel E ⊆ Ω. There exists a countable algebra FE on E that generates

SE.

Proof. Since E is a subset of a second countable space, it is second countable. Thus, there

exists a countable subbase {U1, U2, . . .} that generates SE. Let FE be the algebra generated

by {U1, U2, . . .}. By Rao and Rao (1983, Corollary 1.1.14), FE is countable. Moreover, it

generates SE.

In what follows, we write FE for a countable algebra on E that generates SE.

Lemma A.9 Fix an LPS σ = (µ0, . . . , µn). Fix also some j = 0, . . . , n − 1 and k > j.

Then, the following are equivalent:

(1) There exists α ∈ Rj+1 with µk(F ) =
∑j

i=0 αiµi(F ) for all F ∈ SE.

(2) There exists an integer M ≥ 1 such that, for all integers m ≥ 1, there exists βm =

(βm0 , . . . , β
m
j ) ∈ Qj+1 ∩ [−M,M ]j+1 with |µk(F )−

∑j
i=0 β

m
i µi(F )| ≤ 1

m
for all F ∈ SE.

(3) There exists an integer M ≥ 1 such that, for all integers m ≥ 1, there exists βm =

(βm0 , . . . , β
m
j ) ∈ Qj+1 ∩ [−M,M ]j+1 with |µk(F )−

∑j
i=0 β

m
i µi(F )| ≤ 1

m
for all F ∈ FE.

Proof. Suppose part (1) holds. If
∑j

i=0 µi(E) = 0, then µk(F ) =
∑j

i=0 α
k
i µi(F ) = 0 for

every F ⊆ E Borel. In this case, take M = 1 and β = (0, . . . , 0) ∈ Qj+1 ∩ [−1, 1]j+1.

Thus, we focus on the case where
∑j

i=0 µi(E) > 0. In this case, for each m ≥ 1, we can

choose εm ∈ (0, 1

m
∑j

i=0 µi(E)
] and βm ∈ Qj+1 such that maxi |βmi −αi| ≤ εm. By construction,

βm → α, and so the sequence (βm)m is bounded. This implies that there exists M ≥ 0 such

that βm ∈ [−M,M ]j+1 for all m. Moreover, for each m ≥ 1 and each F ⊆ E Borel,∣∣∣µk(F )−
∑j

i=0
βmi µi(F )

∣∣∣ =
∣∣∣∑j

i=0
αiµi(F )−

∑j

i=0
βmi µi(F )

∣∣∣
=
∣∣∣∑j

i=0
(αi − βmi )µi(F )

∣∣∣
≤ |αi − βmi |

∑j

i=0
µi(F )

≤ εm
∑j

i=0
µi(E)

≤ 1

m
.

This establishes part (2), which in turn establishes part (3).
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Next, suppose part (3) holds, i.e., there exist an integer M ≥ 1 and a sequence (βm)m

such that, for every m ≥ 1, βm ∈ Qj+1 ∩ [−M,M ]j+1 and |µk(F )−
∑j

i=0 β
m
i µi(F )| ≤ 1

m
for

all F ∈ FE. Let M be the collection of all F ∈ BE for which |µk(F )−
∑j

i=0 β
m
i µi(F )| ≤ 1

m

holds for all m ≥ 1. We will show that SE ⊆M, thereby establishing part (2).

By Lemma A.8, SE is the σ-algebra generated by FE. So, by the Monotone Class Lemma

Aliprantis and Border (2007, Lemma 4.13), SE is the smallest monotone class containing FE.

As such, to show SE ⊆M, it suffices to show that M is a monotone class containing FE.

The fact thatM contains FE follows from part (3). To see thatM is a monotone class,

consider a monotonically increasing (resp. decreasing) sequence (F n) of elements ofM. Then

F ≡
⋃
n F

n (resp. F ≡
⋂
n F

n) are Borel and, by continuity of the measures µ0, . . . , µj, µk,

limn→∞ µi(F
n) = µi(F ) for i = 0, . . . , j, k. Therefore, limn→∞ |µk(F n) −

∑j
i=0 β

m
i µi(F

n)| =

|µk(F )−
∑j

i=0 β
m
i µi(F )|, and so |µk(F )−

∑j
i=0 β

m
i µi(F )| ≤ 1

m
. Thus,M is a monotone class

containing FE.

Finally, suppose part (2) holds. Since βm ∈ Qj+1∩ [−M,M ]j+1, there exists a convergent

subsequence (βm(`))`; let β = (β0, . . . , βj) be its limit. By assumption, for each m(`) ≥ 1

and each F ∈ BE |µk(F ) −
∑j

i=0 β
m(`)
i µi(F )| ≤ 1

m(`)
. It follows that, for each F ∈ BE,

|µk(F )−
∑j

i=0 βiµi(F )| = 0. This establishes (1).

Lemma A.10 Fix some n ∈ N0 and some j = 0, . . . , n− 1. If E ∈ S, then⋂
k=j+1,...,n

⋃
αk∈Rj+1

⋂
F∈SE

{σ ∈ Nn(Ω) : µk(F ) =
∑j

i=0
αki µi(F )}

is Borel.

Proof. It suffices to show that the set

Ak[2] :=
⋃

αk∈Rj+1

⋂
F∈SE

{σ ∈ Nn(Ω) : µk(F ) =
∑j

i=0
αki µi(F )}

is Borel. Note, by Lemma A.9, Ak[2] = Xk where

Xk :=
⋃

M∈N

⋂
m∈N

⋃
α∈Qj+1∩[−M,M ]j+1

⋂
F∈FE

{σ ∈ Nn(Ω) : |µk(F )−
∑j

i=0
αiµi(F )| ≤ 1

m
}.

Note that, in the definition of Xk, each of the unions and intersections are taken over

countable sets. (Use Lemma A.8 to conclude that FE is countable.) Thus, to show that the

set Ak[2] is Borel, it suffices to show that, for each M ≥ 1, α ∈ Qj+1 ∩ [−M,M ]j+1, m ∈ N,
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and F ∈ FE the set

{σ ∈ Nn(Ω) : |µk(F )−
∑j

i=0
αiµi(F )| ≤ 1

m
}

is Borel. To show this set is Borel, it suffices to show that the map F : Nn(Ω)→ R defined

by

F (µ0, . . . , µn) = |µk(F )−
∑j

i=0
αiµi(F )|

is measurable.

Note that F is measurable if and only if G is measurable, where

G(µ0, . . . , µn) = µk(F )−
∑j

i=0
αiµi(F ).

(See Aliprantis and Border, 2007, Theorem 4.27.) Define maps gi : Nn(Ω) → R where

gi(µ0, . . . , µn) = µi(F ). For each i, gi is measurable. (See Aliprantis and Border (2007,

Lemma 15.16)) With this G = gk −
∑j

i=0 αigi is measurable Aliprantis and Border (2007,

Theorem 4.27), as desired.

Proof of Lemma A.7. Write

A[1] =
⋂j

i=0
{σ ∈ Nn(Ω) : µi(E) = 1}

and

A[3] = {σ ∈ Nn(Ω) : E ⊆
⋃

i≤j
suppµi}.

Repeating the argument in the proof of Lemma C.3 in Brandenburger, Friedenberg and

Keisler (2008), each of the sets A[1] and A[3] are Borel.

Now define

A = {σ ∈ Nn(Ω) : E is assumed under σ at level j}.

If j = n, then A = A[1] ∩ A[3], so A is Borel. Otherwise A = A[1] ∩ A[3] ∩
⋂n
k=j+1A

k[2]; by

Lemma A.10, A is Borel.
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