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Abstract

The analysis of extensive-form games involves assumptions concerning players’ beliefs

at histories off the predicted path of play. However, the revealed-preference interpretation

of such assumptions is unclear: how does one elicit probabilities conditional upon events

that have zero ex-ante probability? This paper addresses this issue by proposing and ax-

iomatizing a novel choice criterion for an individual who faces a general dynamic decision

problem. The individual’s preferences are characterized by a Bernoulli utility function and

a conditional probability system Myerson (1986a). At any decision point, preferences are de-

termined by conditional expected payoffs at the current node, as well as at all subsequent

nodes. Thus, prior preferences contain enough information to identify all conditional be-

liefs. Furthermore, preferences are dynamically consistent, so prior preferences also deter-

mine behavior at subsequent decision nodes, including those that have zero ex-ante prob-

ability. In particular, the proposed criterion is consistent with, and indeed inspired by the

game-theoretic notion of sequential rationality.
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1 Introduction

The analysis of extensive-form games often hinges on specific assumptions concerning the be-

liefs about the future actions of opponents that a player holds after one or more deviations from

the predicted path of play. For a simple example, consider the four-legged centipede game in

Fig. 1. In the usual, textbook analysis of backward induction in this game, Ann expects Bob

to choose d at the second and fourth nodes, and Bob expects Ann to choose D at the first and

third nodes. Thus, each player chooses rationally at each node, given his or her belief about

the opponent’s future play. In particular, when Ann contemplates a deviation from her initial

choice of A, her beliefs at the third node are crucial to the backward-induction argument: if

she thought that Bob was going to choose a at the fourth node (with high enough probability),

it would be rational for her to choose A at the third node; anticipating this, Bob might want

to play a at his second node, and the backward-induction prediction would unravel. Thus, for

backward induction to “work” as intended, it is essential that Ann believe that Bob will choose

d at the second node, but also that, were he to choose a instead, he would nonetheless choose

d at the fourth node. In other words, it is essential to specify Ann’s beliefs conditional upon an

event (Bob’s choice of a ) to which she initially assigns zero probability.

rAnn A

D

2,1

rBob a

d

1,4

rAnn A

D

4,3

rBob a

d

3,6

6,5

Figure 1: A centipede game

The literature on solution concepts for dynamic games has considered a variety of belief
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representations that allow the modeler to specify players’ beliefs both on the path of play and

following “surprise” moves: (consistent) assessments, as in Kreps and Wilson (1982), (reason-

able) belief systems, as in Fudenberg and Tirole (1991), conditional probability systems, as in

Myerson (1986a), and consistent conjectures, as in Pearce (1984). Extended representations of

beliefs also play a fundamental role in the more recent literature on the epistemic foundations

of solution concepts for dynamic games (see e.g. Ben-Porath, 1997; Stalnaker, 1998; Battigalli

and Siniscalchi, 1999, 2002; Battigalli and Friedenberg, 2010, among others). In order to ad-

dress central notions such as backward and forward induction, these contributions emphasize

the importance of assumptions about players’ interactive beliefs at different points in the game,

including histories and information sets that the players do not expect to be reached.

All of the above representations of beliefs constitute a significant departure from the stan-

dard, subjective expected-utility paradigm. According to the latter, probabilities are a numeri-

cal representation of the individual’s betting preferences. The events of interest—for instance,

“Bob chooses a at the second node”—are precisely those that are not supposed to obtain.

Hence, preferences conditional upon such events simply cannot be observed directly; this pre-

cludes a straightforward revealed-preference interpretation of the corresponding conditional

probabilities. Furthermore, since the Bayesian updating formula does not apply when the con-

ditioning event has zero prior probability, there is also no way to infer the value of such condi-

tional probabilities indirectly, by first eliciting her ex-ante beliefs. To sum up, statements about

probabilities conditional upon such counterfactual events cannot have a revealed-preference

basis in the expected utility framework.

This paper proposes a way to address this issue. I consider a dynamic decision problem un-

der uncertainty, and an individual characterized by preferences over Anscombe and Aumann

(1963)-style acts at each decision point. In a game-theoretic application of the model, acts

correspond to reduced-form strategies, or extensive-form plans of actions (that is, equivalence

classes of strategies inducing the same outcomes for every choice profile of the opponents),

and decision points correspond to histories where the player has a non-trivial choice to make.
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I develop and axiomatize a model in which the individual’s preferences are represented by a

Bernoulli utility function on consequences, as usual, and a conditional probability system, or

CPS for short. The representation entails a novel decision criterion that reduces to expected-

utility maximization if the choice problem is one-shot, but otherwise takes into account the

individual’s conditional beliefs both at the current decision point, and at all subsequent ones.

This makes it possible to uniquely and fully identify the individual’s CPS from her ex-ante pref-

erences alone. Furthermore, the individual is dynamically consistent, so ex-ante preferences

fully characterize behavior throughout the decision tree.

As noted above, the use of CPSs in game theory was pioneered by Myerson (1986a); subse-

quent contributions show that deep connections exist between CPSs and more common rep-

resentations of beliefs in extensive games, such as Kreps-Wilson assessments and Fudenberg-

Tirole belief systems (Battigalli, 1996b; Fudenberg and Tirole, 1991). Furthermore, representa-

tions of beliefs via CPS have found several applications in the literature on dynamic interactive

epistemology. Thus, the results in this paper provide a fully behavioral foundation for a decision

model that underlies much of extensive-form game theory.

This paper is organized as follows. Section 2 provides a heuristic discussion of the proposed

approach; Section 3 then discusses the connections with the existing literature; in particular,

the analysis of CPS due to Myerson (1986b), and the notion of lexicographic expected utility

maximization studied by Blume, Brandenburger, and Dekel (1991). Section 4 introduces the

decision-theoretic setup. Section 5 provides the main characterization result. All proofs are in

the Appendix.

[Note: an additional section is planned, focusing on the formal relationship between se-

quential rationality and sequential EU maximization.]
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2 Heuristics

Return to the game of Fig. 1. Bob’s strategy set is Sb = {dd, da, ad, aa}, in obvious notation. How-

ever, since the strategies dd and da are realization-equivalent, they are decision-theoretically

indistinguishable from the point of view of Ann; for this reason, following e.g. Rubinstein (1991),

we shall take Ann’s domain of uncertainty to be Bob’s plans of action, i.e. Ωb = {d , ad, aa}, in ob-

vious notation. A CPS µ for Ann is then a pair (µ1,µ3) of probabilities over Ωb (subscripts refer

to nodes) that satisfies two constraints. First, at node 3, Ann must believe that Bob played a

strategy choosing a at the second node:

µ3({ad, aa}) = 1.

Second, µ3 should be derived from µ1 via Bayesian updating whenever possible:

∀s b ∈ {ad, aa}, µ1({s b}) =µ1({ad, aa}) ·µ3({s b});

note that the above formula is written in such a way as to be valid even when µ1({ad, aa}) = 0.

For simplicity, assume throughout this section that Ann is risk-neutral (or that numbers at

terminal nodes represent “utils”.)

The objective of this section is to describe howµ= (µ1,µ3) can be elicited, or experimentally

determined by observing Ann’s choice behavior. In particular, the main issue of interest here

will be eliciting µ3 when µ1({ad, aa}) = 0, as in the backward-induction analysis discussed in

the Introduction. I begin by sketching the main idea in Subsec. 2.1; key conceptual issues are

discussed in Subsecs. 2.2, 2.3, and 2.4.

2.1 Eliciting beliefs at counterfactual histories

As usual in axiomatic decision theory, eliciting beliefs requires assuming that the individual

is able to compare a sufficiently rich set of alternatives, not just those that are relevant to a

particular decision problem. Here, Ann will be required to rank uncertain prospects that do
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not necessarily correspond to strategies in the game of Fig. 1. Specifically, Ann must be able

to compare degenerate games in which (i) she can only move Across, so none of Bob’s decision

points are precluded by Ann’s own actions, and (ii) the payoffs at remaining terminal nodes are

not necessarily as in Fig. 1. One such comparison is illustrated in Fig. 2.1; note that Bob’s payoffs

are omitted, and that the degenerate games in question are identified by the corresponding

payoff vectors, namely (x , y , z ) and (x ′, y ′, z ′). Thus, degenerate games can be mapped to to

Savage-style acts; I shall use the two terms interchangeably in this section.

Ann A Bob

d

x ,*

a Ann A Bob

d

y ,*

a
z ,* vs.

Ann A Bob

d

x ′,*

a Ann A Bob

d

y ′,*

a
z ′,*

Figure 2: The game (x , y , z ) vs. the game (x ′, y ′, z ′)

One crucial assumption is that Ann must be able to compare the degenerate games in Fig.

2.1 under the assumption that Bob is going to behave exactly as in the original game of Fig. 1. It

is essential to note that it is possible to design an experiment that ensures that this is the case:

Sec. 2.2 below indicates how to do so.

It will be sufficient to consider Ann’s ex-ante preferences over such degenerate games. The

decision rule proposed and axiomatized in this paper stipulates that, for every pair of degener-

ate games (acts) f = (x , y , z ) and g = (x ′, y ′, z ′), Ann weakly prefers f to g if:

1. either Eµ1[ f ]> Eµ1[g ], or

2. Eµ1[ f ] = Eµ1[g ] and, if µ1({ad, aa}) = 0, then Eµ3[ f ]≥ Eµ3[g ].

As usual, Ann strictly prefers f to g if she weakly prefers f to g , but does not weakly prefer g

to f . I defer further discussion to Sec. 2.3; the key feature of this rule is that Ann’s preferences

at the first node are also influenced, in an essential way, by her conditional beliefs at the third

node.
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This feature is essential to elicit Ann’s conditional beliefs, as can finally be illustrated. Sup-

pose that Ann’s CPS is given by

µ1({da, dd}) = 1 and µ3({ad}) = 1; (1)

in other words, Ann’s beliefs are consistent with backward induction. To elicit the probability

that Ann initially assigns to Bob choosing d at the second node, an experimenter may first ask

Ann to rank the acts (x , 0, 0) and (0, 1, 1) for x ≥ 0. If Ann was an expected-utility maximizer, it

would be possible to identify a unique value x ∗ such that she is just indifferent between (x ∗, 0, 0)

and (0, 1, 1); such value would identify the required probability. However, given the decision

rule described above, and the CPS in Eq. (1), Ann strictly prefers (x , 0, 0) to (0, 1, 1) for any x > 0,

but strictly prefer (0, 1, 1) to (0, 0, 0). This discontinuous behavior is clearly inconsistent with EU

maximization. However, the fact that (x , 0, 0) is strictly preferred, no matter how small x > 0

is, is enough to conclude (both intuitively and in light of the postulated decision criterion) that

µ1({dd, da}) = 1.

The experimenter can then ask Ann to rank the degenerate games (z ,x , 0) and (z , 0, 1), for

arbitrary z and x ≥ 0. Under the maintained assumptions, Ann strictly prefers (z ,x , 0) regard-

less of the value of z , and for all x > 0; if x = 0, Ann is just indifferent. While this behavior

is continuous, it could not arise if Ann were an EU maximizer who assigns probability zero to

Bob’s choice of a at the second node. However, (again, both intuitively and formally), this pref-

erence pattern reveals that Ann deems d at the fourth node more likely than a —indeed, that

µ3({ad}) = 1.

The above discussion shows how, if Ann’s preferences conform to the postulated decision

criterion, one can provide a consistent revealed-preference interpretation of her entire CPS. As

noted above, the main formal contribution of this paper is to provide behavioral axioms that

characterize the proposed criterion.
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2.2 Strategic preferences: an experiment

As noted above, eliciting Ann’s beliefs requires a preference ranking over a richer domain than

just the strategies that Ann can choose in the game of Fig. 1. Furthermore, comparisons such

as those illustrated in Fig. 2.1 are obviously only relevant to the elicitation of Ann’s beliefs in the

original game if Ann actually expects Bob to behave the same way in Fig. 1 and in the degenerate

games of Fig. 2.1.

It is equally obvious that, under reasonable assumptions, Bob will not in general behave in

the same way across these situations. Suppose for instance that Bob’s payoffs in the degenerate

games of Fig. 2.1 are exactly as in Fig. 1. Since Ann is explicitly precluded from ever going

Down, Bob will clearly find it advantageous to go Across at the second node, and then Down

at the fourth. If Ann anticipates this, her beliefs are clearly not the ones described in Eq. (1).

In other words, the intended elicitation exercise will fail—it identifies Ann’s CPS in the “wrong”

game(s).

A similar issue was first noted by Mariotti (1995), who concluded that, even in one-shot

games, eliciting players’ beliefs in an incentive-compatible way may pose difficulties. I shall

now suggest an experiment that can potentially overcome them.

The proposed experiment consists of a game with imperfect information that augments the

game of interest in Fig. 1. Suppose one is interested in Ann’s ranking of the acts (x , y , z ) and

(x ′, y ′, z ′),1 in addition, of course, to her behavior in the original game.

A coin is then flipped; Ann is informed of the outcome of the toss, but Bob is not. If the

coin lands heads, then (loosely speaking) the original game is played, except that Bob ignores

the outcome of the toss. If it lands tails, then Ann can choose one of two actions, say T or B .

In both cases, following Ann’s choice, Ann and Bob play a “truncated” version of the original

game in which Ann cannot choose D (Bob’s actions are unchanged). Payoffs are as follows:

1The procedure extends naturally to the ranking of any finite number of pairs of acts, and may be further gen-

eralized to elicit Ann’s choices from larger sets of acts.
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regardless of the outcome of the game, Bob receives a constant payoff, say 0; if Ann chooses

T , then her payoffs are given by the vector (x , y , z ); otherwise, they correspond to the vector

(x ′, y ′, z ′). Again, whenever he moves, Bob ignores the outcome of the coin toss. The game is

depicted in Fig. 3.

Ann

D

2,1

A Bob

d

1,4

a Ann

D

4,3

A Bob

d

3,6

a
6,5

Ann A Bob

d

x , 0

a Ann A Bob

d

y , 0

a
z , 0

Ann A Bob

d

x ′, 0

a Ann A Bob

d

y ′, 0

a
z ′, 0

H

T Ann

U

D

Figure 3: Eliciting Ann’s ex-ante preferences: (x , y , z ) vs. (x ′, y ′, z ′)

Notice that Bob’s strategies in the expanded game are isomorphic to his strategies in the

original one: he must choose whether to go d own or a cross the first time he gets to move, and

then again in case Ann follows his choice of a with A. Furthermore, under mild assumptions

on Bob’s preferences,2 his ranking of the plans d , ad and aa is the same in the original and in

the expanded game. Ann, on the other hand, must specify her choices in the original game, but

also effectively choose between the acts (x , y , z ) and (x ′, y ′, z ′). Crucially, the augmented game

is set up so that both of Ann’s choices are subject to the same strategic uncertainty.

2Independence with respect to mixtures with constants, as in Gilboa and Schmeidler (1989), suffices.
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Assuming that Ann and Bob are indifferent to the timing of the resolution of non-strategic

uncertainty, the experiment can also be described as follows. First, Bob is asked to describe his

preferred plan of action in the original game; his answer is recorded, but not revealed to Ann.

Then, Ann is asked to report her chosen plan of action int he original game, but also her ranking

of the acts (x , y , z ) and (x ′, y ′, z ′). Finally, a coin is tossed; if it lands heads up, the original game

is played according to the plans specified by Ann and Bob, and the corresponding payoffs are

delivered. If instead it lands tails up, then Bob receives a payoff of 0, and Ann receives a payoff

determind by which of the two acts (x , y , z ) and (x ′, y ′, z ′) she chose, and Bob’s recorded plan of

action.

I emphasize that, regardless of which version of the experiment one implements, the pref-

erence ranking of (x , y , z ) vs. (x ′, y ′, z ′) is the one Ann holds before any strategic uncertainty (i.e.

any uncertainty about Bob’s moves) is resolved. In other words, the experiments elicit Ann’s

ex-ante preferences. As will be clear from the analysis in Sec. 5, this is sufficient for the present

purposes. Indeed, as was argued in the Introduction, the fact that it is not necessary to observe

Ann’s conditional preferences is a key desideratum of the present approach.

2.3 Sequential rationality and the sequential EU decision rule:

The proposed decision rule is related to the game-theoretic notion of (weak) sequential ratio-

nality (Kreps and Wilson, 1982; Reny, 1992; Battigalli, 1996a). Recall a strategy or plan s a for Ann

is sequentially rational given a CPS µ= (µ1,µ2) on Bob’s strategies or plans if it is conditionally

optimal at every node where Ann moves, and that is not ruled out by prior moves specified by

s a .3 Thus, for any given CPS µ = (µ1,µ2), a strategy for Ann that specifies D at the first node

3Kreps and Wilson’s notion of sequential rationality requires optimality at all nodes, and applies to strategies

rather than plans; but choices at nodes that cannot be reached due to prior moves of Ann have no payoff implica-

tions, and hence no decision-theoretic significance. For these reasons, beginning with the cited papers by Reny,

the literature on non-equilibrium solution concepts, as well as the epistemic foundations literature, have focused

on the notion described in the text.
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must be unconditionally optimal given µ1; on the other hand, any strategy that specifies A at

the first node must be optimal at the initial node given µ1, and at the third node given µ3.

In the example of Fig. 1, Ann can choose one of three plans, denoted D, AD, and AA (obvious

notation). These correspond to the Savage-style acts (2, 2, 2), (1, 4, 4), and (1, 4, 3) respectively. If

Ann’s beliefs are as in Eq. (1), the proposed sequential EU decision rule ranks these acts as

follows: (2, 2, 2) is strictly preferred to (1, 4, 4), which is itself strictly preferred to (1, 4, 3).

Thus, in the game of Fig. 1, the unique sequentially rational strategy corresponds to the

unique best act according to the proposed decision rule. A bit more formally, if sequential

rationality is viewed as defining, for every CPS, a choice correspondence defined over sets of

strategies, then the sequential EU decision rule rationalizes it in the sense of choice theory.

The connection between sequential rationality and the sequential EU criterion is actually

deeper. In the game obtained from Fig. 1 by removing Ann’s initial choice of D (but changing

nothing else), strategy AD is the unique sequentially rational choice for Ann; as noted above, the

corresponding act (1, 4, 4) is the unique best act in the set {(1, 4, 4), (1, 4, 3)}. Thus, the sequential

EU ordering of the acts (2, 2, 2), (1, 4, 4), (1, 4, 3)mirrors the implications of sequential rationality

in suitably “nested” games.

[Note: formal results generalizing the above discussion can be provided, and will be in-

cluded in a subsequent draft.]

Finally, notice that, in this simple example, the ranking of acts just described is “almost”

lexicographic.4 While there is a connection with lexicographic utility maximization, there are

important differences for general games; see Sec. 3 for additional discussion, and Sec. B.2 for

the formal details.

4If Eµ1 [ f ] = Eµ1 [g ], µ1({ad, aa}) > 0, and Eµ3 [ f ] < Eµ3 [g ], the lexicographic EU ranking strictly prefers g to f ,

whereas the ranking in the text deems f and g indifferent.
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2.4 Null vs. negligible events

According to Ann’s CPS in Eq. (1), the event E = {ad, aa}, i.e. “Bob chooses a at the second

node,” has zero prior probability.

With expected-utility preferences, a zero-probability event is irrelevant for decisions: for-

mally, the decision-maker is indifferent between any two acts that deliver the same outcomes

at states outside the event under consideration. Savage (1954) calls such an event null. In

the present setting, for the event E to be Savage-null, it must be the case that the generic acts

(x , y , z ) and (x ′, y ′, z ′) are deemed indifferent whenever x = x ′. However, it was shown in Sub-

sec. 2.1 that, if Ann’s prior preferences conform to the sequential EU criterion, then she strictly

prefers the act (z , 1, 0) to the act (z , 0, 1), regardless of the value of z .

Therefore, the event E = {ad, aa} is not null, despite having zero prior probability. As was

shown in Subsec. 2.1, the fact that E does matter for Ann’s decisions at the first node is pre-

cisely what makes it possible to elicit Ann’s beliefs conditional upon reaching the third node, by

observing her prior preferences alone.

That said, the event {ad, aa} satisfies a weaker irrelevance condition: given two acts (x , y , z )

and (x ′, y ′, z ′), x > x ′ always implies that the former is strictly preferred, regardless of the value

of the payoffs y , z , y ′, z ′. Loosely speaking, {ad, aa} is decision-theoretically irrelevant insofar

as strict preferences are concerned, but does matter if x = x ′. I call such an event negligible; as

will be clear in Sec. 5, negligible events play a key role in the axiomatization of the decision rule

proposed here.

Finally, assume that Ann’s conditional preferences at the third node (that is, her preferences

conditional upon observing that Bob chose a at the second node) are consistent with EU max-

imization, and represented by the conditional probability µ3. Then, together with her ex-ante

preferences defined above, Ann’s conditional preferences satisfy the Dynamic Consistency prop-

erty (i.e. Savage’s Sure-Thing Principle). Specifically. her ex-ante ranking of the acts (x , y , z )

and (x , y , z ′) is exactly the same as her conditional ranking. This is true even though the event
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{ad, aa}has zero ex-ante probability. One implication of Dynamic Consistency is that the exper-

imenter can infer Ann’s conditional preferences by observing her prior ones; this is also possible

with standard EU preferences, but only when the conditioning event is not Savage-null.5

Dynamic Consistency will be a key axiom in the behavioral characterization of the proposed

decision rule.

3 Related Literature

3.1 Conditional EU maximization: Myerson (1986b)

Myerson (1986b) (see also Myerson (1997), Chapter 1), considers a collection of conditional

preferences, indexed by non-empty events in a (finite) state space. He provides axioms under

which each conditional preference is consistent with EU maximization, and furthermore the

corresponding collection of (conditional) probabilities constitute a CPS (i.e. satisfy Bayes’ rule

whenever possible).

There are two main differences with the present paper. First, because (conditional) prefer-

ences in Myerson (1986b) are consistent with EU, they do not actually reflect any consideration

of sequential rationality. For instance, given the CPS defined in Eq. (1) for the game in Fig. 1, the

strategies AD and AA yield the same ex-ante expected utility of 1, and hence are deemed indif-

ferent at the initial node. By way of contrast, gien the CPS under consideration, the sequential

ordering proposed in this paper deems AD strictly superior at the initial node.

Second, in Myerson’s approach, it is not always possible to elicit conditional beliefs (and

preferences) by observing prior preferences alone. The reason is that his axioms allow for the

possibility that the conditioning events be Savage-null for the ex-ante preference (or for a pref-

erence conditional upon a superset of the event in question). Again, in the game of Fig. 1,

5There is a well-known duality between Bayesian updating and dynamic consistency: see e.g. Ghirardato (2002)

and Epstein and Le Breton (1993).
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with the CPS in Eq. (1), AD and AA are deemed indifferent at the initial node, even though Ann

strictly prefers the former at the third node. Indeed, the event {ad, aa} is Savage-null in Myer-

son’s setting. By way of contrast, the proposed approach ensures that all conditioning events—

even those that are negligible, and hence have zero ex-ante probability—are not Savage-null.

Furthermore, Dynamic Consistency is explicitly assumed. Consequently, a foundation for se-

quential EU maximization can be provided on the sole basis of prior preferences, which—unlike

conditional preferences—are directly observable.

3.2 Lexicographic EU maximization: Blume et al. (1991)

As noted above, in the game of Fig. 1, the decision rule described in Sec. 2.3 is “almost” the same

as lexicographic EU maximization. Recall that a lexicographic EU maximizer is characterized by

a utility function u and a vector (π1, . . . ,πn ) of probabilities over the relevant state space; such

an individual then weakly prefers an act f to another act g if the vector
�

Eπ1 u ( f ), . . . , Eπn u ( f )
�

is lexicographically greater than the vector
�

Eπ1 u (g ), . . . , Eπn u (g )
�

. Blume et al. (1991) provide

an axiomatic foundation for lexicographic EU maximization on a finite state space.

The differences between sequential and lexicographic EU maximization are stark in other

games, even relatively simple ones. Consider the following extensive game form: Ann moves

first, and chooses between Out and In. If she chooses Out, the game ends; otherwise, Bob

chooses among the actions t , m ,b . If Bob chooses b , the game ends; otherwise, Ann observes

Bob’s choice, and a simultaneous-moves game ensues, in which Ann’s actions are denoted by

U , D and Bob’s actions by l , r . Fig. 4 depicts the game and indicates Ann’s payoffs at each

terminal node (Bob’s payoffs are immaterial to the argument, and hence omitted).

Bob’s strategy set consists of 12 tuples of the form a 1a t a m , where a 1 ∈ {t , m ,b} and a t , a m ∈

{l , r }; however, as in the previous example, it is enough to identify realization-equivalent strate-

gies and focus on the set of plans Sb = {a 1a 2 : a 1 ∈ {t , m ,b}, a 2 ∈ {l , r }}. Ann’s CPS now

comprises three probability distributions over Sb : µ = (µ1,µt ,µb ), where µ1 is Ann’s belief at
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AnnOut
1
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0

t
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U 2 -2

D -2 2
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l r

U -2 2

D 2 -2

Figure 4: Lexicographic vs. sequential maximization

the initial node, and µt and µb represent Ann’s beliefs after observing Bob’s choice of t and b

respectively. Assume in particular that

µ1

�¦

a 1a 2 ∈Sb : a 1 =b
©�

= 1, µt ({ tl }) =µm ({mr }) = 1. (2)

Given these beliefs, Ann chooses Out in any sequentially rational strategy.6.

In the interest of conciseness, I shall not define here the sequential EU ordering for an arbi-

trary CPS, but simply indicate what it entails for the specific one defined in Eq. (2): the strategy

s is weakly preferred to s ′ if either it yields a strictly higher expected payoff at the initial node

(which is computed with respect to µ1), or else the two strategies yield the same ex-ante ex-

pected payoff, but s yields a weakly higher expected payoff conditional upon reaching each of

the two simultaneous-moves subgames (which payoffs are computed using µt and µm respec-

tively). The reader is referred to Sec. 4 and Def. 2 for details.

As a consequence of this definition, a strategy s for Ann that chooses Out at the initial node

is indeed strictly preferred to any strategy s ′ that chooses In there, because it yields a strictly

higher expected payoff ex-ante.7. Once again, the proposed decision rule is consistent with

6There are four such strategies, which differ in the choices made in the two simultaneous-moves subgames;

however, such choices are irrelevant as far as (weak) sequential rationality is concerned, because choosing Out

prevents the subgames from being reached.

7Any two strategies that initially choose Out correspond to the constant act that yields 1 regardless of Bob’s
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sequential rationality.

The key observation is now that sequential EU maximization may be unable to rank certain

inferior strategies. For instance, consider InUD and InDU : given µ1, both yield an expected

payoff of 0, but InUD yields an expected payoff of 2 given µt and −2 given µm , whereas the

opposite is true for InDU . One strategy is better in case Bob unexpectedly chooses t , and the

other is better in case Bob unexpectedly chooses m . Intuitively, in order to rank these strategies,

one needs to decide which of these unexpected choices is “more likely”; however, a CPS for the

game in Fig. 4 cannot provide this information.

Lexicographic expected utility instead yields a complete ordering, precisely because it can

convey not just Ann’s assessment that Bob is virtually certain not to choose t or m , but also her

assessment of the “relative likelihood” of t vs. m in case Bob decides not to choose b after all.

For instance, take n = 3, π1 = µ1, π2 = µt and π3 = µm : since µt ({a 1a 2 : a 1 = t }) = 1, intuitively

Bob’s choice of t is deemed “infinitely more likely” than his choice of m (strategies that choose

t are assigned positive probability by a lower-indexed element of the lexicographic system), and

this implies that InUD will be strictly preferred to InDU .

One way to interpret this fact is to note that the sequential EU criterion is defined here

with reference to a specific game under consideration: the conditioning events are precisely

those events that a player can actually observe in the game of interest. In Fig. 4, Ann is never

confronted with the information that b was not chosen; correspondingly, the sequential EU

criterion disregards whatever beliefs Ann may hold conditional upon observing the event “Bob

chose either t or m .” Indeed, if the game in Fig. 4 is the one of interest, Ann’s CPS need not even

indicate a belief conditional upon this event.

However, it is worth digging a little deeper. Suppose that the game of 4 is modified by in-

troducing a (dummy) information set for Ann, following Bob’s choice of t or m , but before

choices in the game; hence, such strategies all have expected payoff equal to 1 with respect to all three measures

µ1,µt ,µm , and hence are equally good for Ann
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the simultaneous-moves subgames; at such information set, Ann has a single action available.

A CPS for Ann in this modified game would have to include her beliefs conditional upon the

event {a 1a 2 : a 1 ∈ {t , m }}; even though no actual choice is made at the new information set,

this would be sufficient to determine the ranking of InUD vs. InDU according to the proposed

sequential ordering.

Even so, it is important to observe that this ranking is immaterial as far as sequential ra-

tionality is concerned. First, the choice of Out at the initial node remains strictly preferable if

the intermediate dummy information set is added. Second, and perhaps more interestingly,

suppose one further modifies the game by removing the choice of Out at the initial node. Re-

gardless of the ranking of InUD vs. InDU , it is obvious that neither of them is optimal for Ann:

the strategy InUU is clearly superior if Ann expects Bob to follow t with l and m with r ; it is also

sequentially rational in the game with Out removed, regardless of whether or not the interme-

diate information set is present.

To summarize, from a conceptual standpoint, while the proposed ordering can be incom-

plete (and the axiomatics will need to work around this difficulty), it provides enough infor-

mation to pin down conditional beliefs (and utilities), and also to identify sequentially rational

strategies. The additional information provided by lexicographic systems is not required for the

purposes of characterizing sequential rationality.

I conclude with a more technical, but nonetheless important observation. The literature on

the epistemic foundations of solution concepts indicates that, even if the game one is inter-

ested in is finite, it is often necessary, or at least convenient, to embed it in a structure featuring

uncountable sets of states that describe players’ interactive beliefs: see e.g. Brandenburger and

Dekel (1993), Battigalli and Siniscalchi (1999). This is the case, for instance, if one is inter-

ested in the analysis of forward induction, unadulterated by exogenous assumptions on hier-

archical beliefs: for an elaboration of this point, see Battigalli and Siniscalchi (2002). Defining

and axiomatizing sequential EU maximization when acts are defined over an uncountable state
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space does not pose any problem. On the other hand, to the best of my knowledge the exist-

ing axiomatizations of lexicographic probability systems requires a finite state space.8 Indeed,

merely defining lexicographic systems on an uncountable state space requires some care: see

e.g. Brandenburger, Friedenberg, and Keisler (2008).

4 Setup

4.1 Basics

The following notation is standard. Consider a set Ω (the state space) and a sigma-algebra Σ of

subsets of Ω (events). Information is described via an event tree. Formally, fix a finite collection

F = (F0, . . . ,FT ) of progressively finer, measurable partitions of Ω, with F0 = {Ω}. For every

ω∈Ω and t = 0, . . . , T , denote byFt (ω) the cell of the partition that containsω. It is convenient

to refer to a pair (t ,ω) as a node, which evokes the underlying event tree.

As suggested in Sec. 2, if one is interested in modeling a player’s beliefs about her oppo-

nents’ play in a finite extensive game, Ω can be taken to be the set of all profiles of plans of

actions, endowed with the discrete sigma-algebra; equivalently, Ωmay be defined as the set of

strategy profiles S−i played by i ’s opponents, with Σ being the algebra generated by the equiva-

lence classes of realization-equivalent strategy profiles. Payoff uncertainty for a can be modeled

by assuming that Ω = Θ×S−i , with Θ a measurable set of parameters. Finally, with an eye to-

ward interactive epistemology, Player i ’s hierarchical conditional beliefs may be captured by

taking Ω=S−i ×T−i , where each t−i represents a profile of hierarchical conditional beliefs for i ’s

opponents.9

8Fishburn and LaValle (1998) axiomatize a theory of “subjective expected lexicographic utility” for arbitrary

state spaces, which is related to, but different from lexicographic EU maximization. Its basic ingredients are a

vector of Bernoulli utilities and a “matrix probability” (not an LPS).

9To elaborate, one can envision a conditional version of the Epstein and Wang (1996) construction of
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Denote by B0(Σ) the set of Σ-measurable real functions with finite range, and by B (Σ) its

sup-norm closure. The set of bounded, (finitely) additive probability measures on Σ is denoted

by pr(Σ). For any probability measure π ∈ pr(Σ) and function a ∈ B (Σ), let Eπ[a ] =
∫

Ω
a dπ, the

standard Dunford integral of a with respect toπ. When no confusion can arise, I will sometimes

omit the square brackets. Finally, a ◦ b : X → Z denotes the composition of the functions

b :X →Y and a :Y →Z .

I adapt Renyi’s classic definition (Rényi, 1955) to the setting at hand.

Definition 1 A conditional probability system (CPS) is a collection (µt ,ω)t=0,...,T ;ω∈Ω such that,

for every node (t ,ω),

(0) ifω′ ∈Ft (ω), then µt ,ω′ =µt ,ω;

(1) µt ,ω ∈ pr(Σ and µt ,ω(Ft (ω)) = 1;

(2) for every E ∈Σwith E ⊂Ft+1(ω),

µt ,ω(E ) =µt+1,ω(E ) ·µt ,ω(Ft+1(ω)). (3)

The collection of CPS on (Ω,F ) is denoted by pr(Σ,F ). Given a ∈ B (Σ), write Et ,ωa = Eµt ,ωa .

Eq. (3) is the usual Bayesian updating formula, except that it is required to hold even if

Ft (ω) has zero ex-ante probability. Also note that, if µt ,ω(Ft+1(ω)) = 0, then also µt ,ω(E ) = 0, so

in this case Eq. (3) holds trivially.

4.2 Sequential dominance

Turn now to a key ordering of random variables that is an essential ingredient of this paper.

preference-based type structures. The intuition is that, once players’ first-order beliefs have been elicited, with

Ω = S−i for each player i , one can define players’ preferences over their opponents’ strategies and first-order be-

liefs (or preferences), and then proceed iteratively. At each step, the characterization result of Theorem 1 applies

verbatim.
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Definition 2 Fix a node (t ,ω) and a CPS µ ∈ pr(Σ,F ). A node (τ,ω∗) is critical given µ at (t ,ω)

if τ≥ t ,ω∗ ∈Ft (ω), and τ> t implies µτ−1,ω∗(Fτ(ω∗)) = 0.

Given a ,b ∈ B (Σ), a is sequentially greater than b given µ at (t ,ω), written a ≥µt ,ω b , if, for

every node (τ,ω∗) that is critical given µ at (t ,ω), and such that Eτ,ω∗a < Eτ,ω∗b , there exists

another critical node (σ,ω∗) for (t ,ω) given µ, withσ ∈ {t , . . . ,τ−1}, such that Eσ,ω∗a > Eσ,ω∗b .

Furthermore, a is sequentially strictly greater than b given µ at (t ,ω), written a >µt ,ω b , if

a ≥µt ,ω b and not b ≥µt ,ω a .

In words, a node (τ,ω∗) is critical at (t ,ω) if it is either (t ,ω) itself (in which case the re-

strictions on conditional probabilities hold trivially), or else it can be reached from (t ,ω), but is

“surprising,” or “unexpected,” at time τ−1.

To “unpack” this definition, note first that a ≥µt ,ω b requires that Et ,ωa ≥ E0,ωb : this follows

by taking (t ,ω) itself as the critical node. If in particular Et ,ωa > Et ,ωb , then Def. 2 imposes no

further requirement. That is, Et ,ωa > Et ,ωb is sufficient to conclude that a ≥µt ,ω b .

If instead Et ,ωa = Et ,ωb , then comparisons at subsequent critical nodes can break this tie.

Loosely speaking, consider the path from the node (t ,ω) to some terminal node (T,ω∗) that can

be reached from it [so T ≥ t and ω∗ ∈ Ft (ω)]. Then, for a to be deemed sequentially greater

than b , it must be the case that the first strict ranking of the conditional expectations of a and

b at a node (τ,ω∗) that is critical for (t ,ω) is in favor of a : that is, Eτ,ω∗a > Eτ,ω∗b . Furthermore,

this must be true along every path from (t ,ω) to a consistent terminal node.

It is worth noting that the sequential ordering just defined can also be described as a product

of lexicographic orders; the details are in Sec. B.2.

It is intuitively clear that the relation ≥µt ,ω is an incomplete ordering. For a very simple ex-

ample, let Ω = {s1, s2, s3, s4} and represent probability distributions and functions on Ω as tu-

ples (α,β ,γ,δ) ∈ R4. Consider the partitions F0 = {Ω} and F1 = {{s1},{s2},{s3},{s4}}, and the

(unique) CPS µ such that µ0,ω = ( 1
2

, 1
2

, 0, 0). Then a = (0, 0, 1, 0) and b = (0, 0, 0, 1) are not ranked

by ≥µ0,ω. The intuition is clear: interpreting values as payoffs or utilities, a is better conditional
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on {s3}, but b is better conditional on {s4}. The notion of sequential comparison in Def. 2 does

not require the individual to rank the relative likelihood of surprise events, so it does not imply

a clear ranking of a vs. b .

Moreover, a function may have strictly smaller conditional expectations at certain nodes

relative to another function, and still be sequentially greater. Continuing the example above,

consider a ′ = (1, 0, 0, 0), b ′ = (0, 1
2

, 0, 0) and c ′ = (0, 0, 1, 0): then a ′ ≥µ0,ω b ′ ≥µ0,ω c ′, even though b ′

has higher conditional expectation given {s2} and c ′ beats a ′ conditional on {s3}. Again, the in-

tuition is straightforward: according to logic of Def. 2, comparisons of conditional expectations

at later nodes are only used to break ties at earlier ones; in particular, if the ranking is clear on

the basis of ex-ante expectations, no further analysis is required.

This last property should not be surprising: even with full-support beliefs, an individual

may choose a course of action that turns out to be inferior to another in certain contingencies,

provided the probability of such contingencies is small enough. Of course, if “courses of ac-

tion” correspond to strategies in a game (or decision problem), then neither strategy would be

sequentially rational in this case. But, one could still say which of the two is less bad!

5 Behavioral analysis

I adopt the decision setting popularized by Anscombe and Aumann (1963): acts are simple

measurable maps from Ω to a convex set X of prizes. The set of all acts is denoted by F ; for t =

0, . . . , T −1, the set ofFt -measurable acts is instead denoted by Ft . For reasons that will become

clear in the following, it is also convenient to let FT = F . With the usual abuse of notation, I do

not distinguish between the constant act f that delivers the prize x in every state, and x itself.

The main object of interest is a preference system, i.e. a collection (¼t ,ω)t=0,...,T ;ω∈Ω of prefer-

ences onF adapted toF :

∀ω,ω′ ∈Ω, t = 0, . . . , T : ω′ ∈Ft (ω) =⇒ ¼t ,ω′=¼t ,ω . (4)
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The axioms follow. I divide them into three groups: axioms that are imposed at each node

on all acts, axioms imposed at each node subsets of acts, and axioms relating preferences at

nodes.

Axiom 1 (Preorder) For all nodes (t ,ω),¼t ,ω is transitive and reflexive.

Axiom 2 (Non-Degeneracy) For all nodes (t ,ω), not for all f , g ∈ F , f ¼t ,ω g .

Axiom 3 (Monotonicity) For all nodes (t ,ω) and acts f , g ∈ F : if f (ω′)¼t ,ω g (ω′) for allω′ ∈Ω,

then f ¼t ,ω g .

Axiom 4 (Independence) For all nodes (t ,ω), acts f , g , h ∈ F and α∈ [0, 1]: f ¼t ,ω g if and only

if α f +(1−α)h ¼t ,ω αg +(1−α)h.

The next group of axioms consists of versions of completeness and continuity, restricted to

suitable subclasses of acts. First, preferences over constant acts satisfy the standard conditions:

Axiom 5 (Prize Completeness) For all nodes (t ,ω), the restriction of¼t ,ω to X is complete.

Axiom 6 (Prize Archimedean) For all nodes (t ,ω) and prizes x , y , z ∈ X : if x �t ,ω y �t ,ω z , then

there exist α,β ∈ [0, 1] such that αx +(1−α)z �t ,ω y and y �t ,ω βx +(1−β )z .

Second, I impose completeness and continuity at a node (t ,ω)whenever acts are allowed to

differ only outside of cells inFt+1 that are suitably “null” for the preference ¼t ,ω. The intuition

is that, when comparing acts that agree on “null” sets, the logic of sequential dominance cannot

help break ties, so the ranking of such acts is wholly determined by their conditional evaluation

givenFt (ω). Therefore, such rankings should satisfy completeness and continuity.

It is necessary to define a suitable notion of null events:

Definition 3 Fix t < T and a node (t ,ω). An event N ∈Σ is¼t ,ω-negligible if:

1. there are acts f , g ∈ F such that f (ω′) = g (ω′) for allω′ ∈N and f �t ,ω g , and
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2. if f , g ∈ F satisfy the conditions in (1), and f ′, g ′ ∈ F are such that f (ω′) = f ′(ω′) and

g (ω′) = g ′(ω′) for allω′ 6∈N , then f ′ �t ,ω g ′.

To interpret, recall that an event N ∈ Σ is Savage-null for a preference relation ¼ on F if,

whenever f , g ∈ F satisfy f (ω) = g (ω) for all ω ∈ Ω \N , f ∼ g . Thus, Part 1 of Def. 3 requires

that the complement of a negligible event N not be Savage-null for ¼t ,ω. In other words, the

prizes that two acts f , g deliver on the complement of N should matter for the individual.

Part 2 of the definition then adds that prizes delivered on the complement of N should actu-

ally matter overwhelmingly: if two acts f and g coincide on N and are strictly ranked, then, no

matter how f and g are modified at states in N , the same ranking results. In other words, there

is no trade-off: if f is better than g at states outside N , it does not matter how much better g is

than f at states in N .

The definition implies that ; is always ¼t ,ω-negligible, whereas Ω never is. Moreover, un-

der Axiom 9 below, any union of elements of Ft+1 that do not refine Ft (ω) is ¼t ,ω-negligible,

whereas the eventFt (ω) itself is not.

It is easy to see that a Savage-null event N is negligible.10 However, the converse is false,

as the example in Sec. 2.4 demonstrates. This “wedge” between Savage-null and negligible

events is what enables one to elicit preferences at future nodes that are currently assigned zero

probability.

Now restrict attention to specific negligible events. Let Nt ,ω be the (possibly empty) col-

lection of non-empty ¼t ,ω-negligible events that are unions of future conditioning events, and

follow node (t ,ω). SinceFT is the finest partition under consideration, this is the same as the

collection of negligible events that are unions of elements inFT . Formally, for t < T , let

Nt ,ω =

(

N ∈Σ \ {;} : N =Ft (ω)∩
⋃

ω0∈N

FT (ω0) and N is ¼t ,ω -negligible

)

. (5)

10By Non-degeneracy and Transitivity, the complement of a Savage-null event cannot be Savage-null. Then, if

f , g , f ′, g ′ are as in Part 2 of Def. 3, if N is negligible, then f ′ ∼t ,ω f �t ,ω g ∼t ,ω g ′.
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Also, let NT,ω = {;}: this ensures that, by imposing the two axioms below, all conditional

preferences at the terminal date T conform to expected utility.

Under Axioms 9 and 10, it turns out that the elements ofNt ,ω are ordered by set inclusion,

so their union is also a negligible event. Formally, however, for Axioms 7 and 8 to be well-posed,

it is enough that said union be measurable; this follows from the finiteness ofFT . Henceforth,

for all nodes (t ,ω), let

Nt ,ω =
⋃

Nt ,ω∈Nt ,ω

N , (6)

with the understanding that Nt ,ω = ; ifNt ,ω = ;.

The next two axioms state that preferences at a node (t ,ω) are complete and continuous

when ranking acts that are constant on every negligible event. Intuitively, this means that the

only deviations from standard, EU behavior that arise have to do with the evaluation of prizes

delivered in negligible events.

Axiom 7 (Non-Negligible Completeness) For all nodes (t ,ω) and acts f , g ∈ F such that f (ω0) =

g (ω0) for allω0 ∈Nt ,ω: either f ¼t ,ω g or g ¼t ,ω f (or both).

Axiom 8 (Non-Negligible Archimedean) For all nodes (t ,ω) and acts f , g , h ∈ F with f (ω0) =

g (ω0) = h(ω0) for allω0 ∈Nt ,ω: if f �t ,ω g �t ,ω h, then there exist α,β ∈ [0, 1] such that α f +(1−

α)h �t ,ω g and g �t ,ω β f +(1−β )h.

Finally, turn to the axioms pertaining to dynamic choice. The terminology is borrowed from

Epstein and Schneider (2003). The first axiom ensures that, when conditioning on an event,

only prizes delivered at states in that event matter. The second, key axiom is the standard con-

sistency requirement, applied to decision trees based upon the filtration F . However, unlike

standard treatments, I do not restrict it to conditioning events that are not Savage-null, even

when strict preferences are involved.11

11Similarly, Blume et al. (1991) impose State-Independence at all states, rather than at non-null states only.
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Axiom 9 (Conditional Preference—CP) For all nodes (t ,ω) and f , f ′ ∈ F : if f (ω′) = f ′(ω′) for

allω′ ∈Ft (ω), then f ∼t ,ω f ′.

Axiom 10 (Dynamic Consistency—DC) For every node (t ,ω) and f , f ′ ∈ F such that f (ω′) =

f ′(ω′) forω′ 6∈ Ft+1(ω): f ¼t+1,ω f ′ if and only if f ¼t ,ω f ′.

Note that, as a consequence of Axiom 10 and Non-degeneracy, no conditioning eventFt+1(ω)

is Savage-null for the relation ¼t ,ω at the preceding time-t node. As noted above, this enables

the elicitation of conditional preferences at all relevant nodes—even those that, in the CPS rep-

resentation, will receive zero probability.

The main result follows.

Theorem 1 If Axioms 1–10 hold, then there exists a non-constant, affine function u : X → R

and a CPS µ∈ pr(Σ,F ) such that, for every pair of acts f , g ∈ F , and every node (t ,ω),

u ◦ f ≥µt ,ω u ◦ g =⇒ f ¼t ,ω g and u ◦ f >µt ,ω u ◦ g =⇒ f �t ,ω g . (7)

Furthermore, u is unique up to positive affine transformations, and µ is unique.

Conversely, fix a non-constant, affine function u : X → R and a CPS µ ∈ pr(Σ,F ), and for

every node (t ,ω), let ¼t ,ω be the (setwise) minimal relation that satisfies Eq. (7). Then the

preference system (¼t ,ω) satisfies Axioms 1–10.

In either case, for any node (t ,ω), Nt ,ω =
�

ω0 ∈Ft : µt ,ω(FT (ω0)) = 0
	

, and Nt ,ω ∈Nt ,ω.

Notice the form of the first statement (sufficiency of the axioms): if a preference system

satisfies the axioms, then a unique CPS µ and a cardinally unique utility function u can be

identified so that, for any two acts f , g , if u ◦ f is sequentially (strictly) greater than u ◦ g at

(t ,ω) given µ, then f is (strictly) preferred to g at that node. This allows for the possibility that

the individual’s preference ranking may be richer than is implied by Eq. (7).

The necessity statement may instead be rephrased as follows. Fix a CPS µ and a non-
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constant Bernoulli utility function u , and define each preference relation ¼t ,ω by

u ◦ f ≥µt ,ω u ◦ g ⇐⇒ f ¼t ,ω g and u ◦ f >µt ,ω u ◦ g ⇐⇒ f �t ,ω g . (8)

Clearly,¼t ,ω is then the minimal (by set inclusion) binary relation that satisfies Eq. (7), and The-

orem 1 states that this preference satisfies the axioms described above. In general, one cannot

ensure that preferences may be further extended in a manner consistent with the axioms. How-

ever, as suggested in Sec. 2, the sequential EU ordering characterized in Theorem 1 is sufficient

for the purposes of identifying sequential best replies.

Finally, Theorem 1 also states that the union of all negligible events inNt ,ω is itself negligible,

and characterizes it in terms of the CPS µ.

A Preliminaries

I first establish a simple but useful property of critical nodes. Note: here and in the following, I

will say “critical for (t ,ω)” and omit “given µ” when the CPS µ is clear from the context.

Remark 1 Fix a CPS µ∈ pr(Ω,F ) and a node (t ,ω). If a node (τ,ω0) is critical for (t ,ω) given µ,

then µσ,ω0(Fτ(ω0)) = 0 forσ= t , . . . ,τ−1.

Conversely, if τ > t , ω0 ∈ Ft (ω), and µt ,ω(Fτ(ω0)) = 0, then there is σ ∈ {t , . . . ,τ− 1} such

that (σ+1,ω0) is critical for (t ,ω) given µ.

Thus, for τ > t and ω0 ∈ Ft (ω), µt ,ω(Fτ(ω0)) = 0 if and only if one of the nodes on the

path from (t ,ω) to (τ,ω0) is critical for (t ,ω): equivalently, if and only if the individual will be

surprised at least once along this path.

Proof: If τ = t , then there is nothing to prove; thus, assume that τ > t . The statement is true

by definition forσ=τ−1; thus, assume it is true forσ+1∈ {t +1, . . . ,τ−1}. Then, by Bayesian

updating, i.e. Part (2) of Def. 1, sinceFτ(ω0)⊂Fσ+1(ω0),

µσ,ω0(Fτ(ω0)) =µσ,ω0(Fσ+1(ω0)) ·µσ+1,ω0(Fτ(ω0)) = 0.
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For the converse, apply Part (2) of Def 1 iteratively to get,

0=µt ,ω(Fτ(ω0)) =µt ,ω0(Fτ(ω0)) =µt ,ω0(Ft+1(ω0)) ·µt+1,ω0(Fτ(ω0)) = . . .=
τ−1
∏

σ=t

µσ,ω0(Fσ+1(ω0));

it then follows that at least one of the factors µσ,ω0(Fσ+1(ω0)) in the rightmost term must be

zero, so the corresponding node (σ+1,ω0) is critical for (t ,ω).

Next, I characterize the “sequentially greater than” order in Def. 2 inductively.

Proposition 1 Fix any CPS µ ∈ pr(Σ,F ), node (t ,ω), and functions a ,b ∈ B (Σ). For t = T ,

a ≥µT,ω b if and only if ET,ωa ≥ ET,ωb . For t < T , a ≥µt ,ω b if and only if either

(1) Et ,ωa > Et ,ωb , or

(2) Et ,ωa = Et ,ωb and, for all nodes (τ,ω0) that are critical for (t ,ω), with τ > t , a ≥µ
t+1,ω0 b ;

moreover, if Eτ,ω0 a < Eτ,ω0b and Eσ,ω0 a ≤ Eσ,ω0b for all σ ∈ {t + 2, . . . ,τ− 1} such that

(σ,ω0) is critical for (t +1,ω0), then (t +1,ω0) is critical for (t ,ω).

Proof: The equivalence is clear for t = T . For t < T , assume a ≥µt ,ω b . As noted in the main text,

this implies Et ,ωa ≥ Et ,ωb . Case (1) in the Proposition corresponds to a strict inequality. If we

have an equality instead, we must check the remaining conditions in Case (2) of the Proposition;

thus, consider a critical node (τ,ω0) for (t ,ω) with τ> t . Furthermore, consider a critical node

(τ∗,ω∗) for (t + 1,ω0). Such a node is also critical for (t ,ω); therefore, if Eτ∗,ω∗a < Eτ∗,ω∗b , there

is σ ∈ {t , . . . ,τ∗− 1} such that (σ,ω∗) is critical for (t ,ω) and Eσ,ω∗a > Eσ,ω∗b ; but since Et ,ωa =

Et ,ωb , it must be the case that σ ≥ t + 1. Since (τ∗,ω∗) was arbitrary, conclude that a ≥µ
t+1,ω0 b ,

i.e. Case (2) holds. In particular, note that, ifσ= t+1 is the largestσ that satisfies this condition,

then a ≥µt ,ω b requires that (t +1,ω0) be critical for (t ,ω).

For the converse, fix a node (t ,ω) with t < T , and consider a critical node (τ,ω∗) for which

Eτ,ω∗a < Eτ,ω∗b . If Case (1) in the Proposition applies, then clearly τ > t , and furthermore, as

27



noted in the main text, Eσ,ω∗a > Eσ,ω∗b for σ = t . If Case (2) holds, then again τ > t ; further-

more, since (τ,ω∗) is also critical for (t+1,ω∗), the assumption that a ≥µt+1,ω∗ b implies that there

isσ ∈ {t+1, . . . ,τ−1} ⊂ {t , . . . ,τ−1} such that (σ,ω∗) is critical for (t+1,ω∗), and Eσ,ω∗a > Eσ,ω∗b .

If σ > t + 1, then automatically (σ,ω∗) is critical for (t ,ω) as well; if instead the largest σ that

satisfies these conditions is σ = t + 1, then Case (2) explicitly indicates that (t + 1,ω∗)must be

critical for (t ,ω). Repeating the argument for all critical nodes for (t ,ω) shows that a ≥µt ,ω, as

claimed.

The following characterization of “sequentially strictly greater than” is convenient.

Remark 2 Fix a node (t ,ω), a CPS µ ∈ pr(Σ,F ) and functions a ,b ∈ B (Σ). Then a >µt ,ω b if and

only if a ≥µt ,ω b and there is a node (τ,ω∗) that is critical for (t ,ω) and such that Eτ,ω∗a > Eτ,ω∗b .

Proof: If a >µt ,ω b , then in particular it is not the case that b ≥µt ,ω a , so by definition there must

be a critical node (τ,ω∗)with the properties in the claim.

Conversely, suppose that a ≥µt ,ω b and there is a critical node (τ1,ω∗) for (t ,ω)with Eτ1,ω∗a >

Eτ1,ω∗b . Suppose by contradiction that also b ≥µt ,ω a ; then there is τ2 ∈ {t , . . . ,τ1− 1} such that

(τ2,ω∗) is also critical for (t ,ω) and Eτ1,ω∗a < Eτ1,ω∗b . But then, a ≥µt ,ω b requires that there be

τ3 ∈ {t , . . . ,τ2− 1} such that Eτ3,ω∗a > Eτ3,ω∗b . Inductively, there is an infinite sequence (τ`)`≥1

such that each (τ`,ω∗) is critical for (t ,ω) and, for ` > 1, τ` < τ`−1 and Eτ`,ω∗a > Eτ`,ω∗b (resp.

<) if Eτ`−1,ω∗a < Eτ`−1,ω∗b (resp. >). Since there are finitely many time periods between τ1 and t ,

this is a contradiction. Thus, not b ≥µt ,ω a , and so a >µt ,ω b as claimed.

B Proof of Theorem 1

Terminology: two acts f , g agree on E ∈Σ if f (ω) = g (ω) for allω∈ E .
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Notation: f t ,ωg denotes the act that agrees with f on Ft (ω), and with g elsewhere. More

generally, f E g is the act that agrees with f on E ∈Σ and with g elsewhere. 1

B.1 Sufficiency of the axioms

Begin by noting three consequences of Axiom 10 (Dynamic Consistency), along with the other

axioms.

Remark 3 Fix two nodes (t ,ω), (τ,ω∗)withω∗ ∈Ft (ω) and τ> t ; also fix f , g ∈ F .

(1) if f �τ,ω∗ g and f (ω′) = g (ω′) forω′ 6∈ Fτ(ω∗), then f �t ,ω g .

(2) if f ¼t+1,ω′ g for all ω′ ∈ Ω, then f ¼t ,ω g ; and if f �t+1,ω∗ g for some ω∗ ∈ Ft (ω), then

f �t ,ω g .

(3) if f ¼τ,ω′ g for allω′ ∈Ω, then f ¼t ,ω g ; and if f �τ,ω∗ g for someω∗ ∈Ft (ω), then f �t ,ω g .

Notice that (2) is equivalent to Axiom 10 in case preferences are complete.

Proof: (1) For t = τ − 1, the assertion follows directly from Axiom 10 (recall that f �t ,ω g

means “ f ¼t ,ω g and not g ¼t ,ω f ”). Thus, assume the statement holds for some t ≤ τ− 1. Fix

ω∗ ∈ Ft−1(ω). Then f �τ,ω∗ g implies f �t ,ω∗ g . Applying Axiom 10 at time t − 1 then yields

f �t−1,ω g , as required.

(2) By Axiom 9, we may as well assume that f , g agree outsideFt (ω). Fixω1, . . . ,ωn ∈Ft (ω)

such that ωi 6∈ Ft+1(ωj ) for i 6= j , and
⋃

iFt+1(ωi ) = Ft (ω). Let f 0 = f and, for i = 1, . . . , n ,

f i = g t+1,ωi f i−1. Note that f n = g . Furthermore, for i = 1, . . . , n , f i−1 ∼t+1,ωi f ¼t+1,ωi g ∼t+1,ωi

f i , where the indifferences follow from Axiom 9 and the weak preference holds by assumption.

Since f i and f i−1 only differ on Ft+1(ωi ), Axiom 10 implies that f i−1 ¼t ,ω f i . Hence, by Tran-

sitivity, f ¼t ,w g . Furthermore, if one of the time-(t + 1) preferences is strict, so is the time-t

preference.
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(3) Combine (1) and (2). If τ= t +1, then (3) is just (2). By induction, suppose the statement

is true for t ≤ τ− 1. Choose ω1, . . . ,ωn ∈ Ft−1(ω) as in (2). The induction hypothesis implies

that f ¼t ,ωi g for all i = 1, . . . , n , and again, we may as well assume that f , g agree outside

Ft−1(ω). Then (2) applies and yields f ¼t−1,ω g , as required. Furthermore, if f �τ,ω∗ g for some

ω∗ ∈ Ft−1(ω), then, letting i be such that ω∗ ∈ Ft (ωi ), f �t ,ωi g , so again (2) yields f �t−1,ω g .

Bernoulli utility. At any (t ,ω), the standard assumptions hold on X , so we obtain a non-

constant Bernoulli utility u t ,ω that represents preferences over X at that node. Now suppose

that x ¼0,ω y at some (0,ω), but x ≺1,ω y : then, by Reflexivity and Axiom 10 (Dynamic Con-

sistency), x1,ωy ≺0,ω y , which contradicts Axiom 3 (Monotonicity) as applied to ¼0,ω. Thus,

x ¼0,ω y implies x ¼1,ω y . By Corollary B.3 in Ghirardato, Maccheroni, and Marinacci (2004),

u 0,ω coincides with u 1,ω up to a positive affine transformation; since u 0,ω is independent ofω,

denote it by u : one can then take u 1,ω = u for allω ∈Ω. Repeating the argument, take u t ,ω = u

for all nodes (t ,ω).

Henceforth, unless otherwise noted, I focus on preferences at a node (t ,ω) with t < T . The

delicate case is of course that of a node (t ,ω)withNt ,ω 6= ;. Consider this case first.

Claim: the elements ofNt ,ω are nested. Fix two distinct N , M ∈Nt ,ω (ifNt ,ω = ;, or there is a

single Nt ,ω ∈Nt ,ω, there is nothing to show), and introduce the following notation: ( f , g , h ′, h ′′)

is the act that agrees with f on Nt ,ω \M , with g on M \N , with h ′ on M ∩N , and with h ′′

elsewhere. Notice that all events involved are unions of elements of FT . Also, some of these

events may be empty.

Fix x , y ∈X with u (x )> u (y ) and an arbitrary k ∈ F . Suppose that both N \M and Nt ,ω\M are

non-empty. Then inductively invoking Axiom 10 (cf. Part (3) of Remark 3) yields (x , k , k , k )�t ,ω

(y , k , k , k ); since M is negligible, it follows that also (x , y , k , k )�t ,ω (y ,x , k , k ), because the union

of the second and third events is M , and we can modify acts arbitrarily on M without affecting
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preferences. But by a similar argument, one obtains (k ,x , k , k ) �t ,ω (k , y , k , k ), and now the

assumption that N is negligible yields (y ,x , k , k )�t ,ω (x , y , k , k ): contradiction. Notice that the

events M ∩N and Ω \ (M ∪N )may be empty without invalidating this argument. Therefore, M

and N are nested, as claimed.

Note that, as a consequence, Nt ,ω ∈Nt ,ω.

EU representation off Nt ,ω: u t ,ω;k ,πt ,ω;k . For every k ∈ F , consider the class Ft ,ω(k ) of acts

f ∈ F such that f (ω) = k (ω) for allω∈Nt ,ω. By assumption, Nt ,ω 6= ;; furthermore, consider two

acts f , g ∈ F that agree onFt (ω): then Axiom 9 (Conditional Preferences) implies that f ∼t ,ω g ,

soFt (ω) is not¼t ,ω-negligible. SinceNt ,ω consists of negligible events that are at the same time

subsets ofFt (ω) and unions of cells ofFT , there is someω1 ∈Ft (ω) such thatFT (ω)∩Nt ,ω = ;.

By Non-degeneracy and Monotonicity, there are x , y ∈ X with x �T,ω1 y ; then for any k ∈ F ,

invoking Axiom 10 (Dynamic Consistency) inductively (cf. Part (1) of Remark 3), xT,ω1 k �t ,ω

yT,ω1 k . Furthermore, xT,ω1 k , yT,ω1 k ∈ Ft ,ω(k ).

It follows that, for fixed k ∈ F , the preference ¼̂ on F defined by f ¼̂g iff k Nt ,ω f ¼t ,ω k Nt ,ωg

satisfies the Anscombe-Aumann axioms: in addition to Transitivity, Monotonicity and Indepen-

dence, which follow from Axioms 1, 3 and 4 respectively, Completeness and the Archimedean

property follow from Axioms 7 and 8, whereas Non-Degeneracy follows by taking f = xT,ω1 k

and g = yT,ω1 k , where x , y ∈ X and ω1 ∈ Ft (ω) are as described above. Hence, we obtain a

non-constant, cardinally unique utility u t ,ω;k and a unique measure πt ,ω;k ∈ pr(Σ) such that,

for all f , g ∈ F , f ¼̂g iff k Nt ,ω f ¼t ,ω k Nt ,ωg iff Eπt ,ω;k u t ,ω;k ◦ f ≥ Eπt ,ω;k u t ,ω;k ◦ g . In particular,

there must exist (by Non-degeneracy) x̂ , ŷ ∈ X with x̂ �̂ŷ ;12 by construction of ¼̂, x̂ Nt ,ωŷ ¼̂ŷ iff

k Nt ,ωŷ = k Nt ,ω(x̂ Nt ,ωŷ ) ¼t ,ω k Nt ,ωŷ , so x̂ Nt ,ωŷ ∼̂ŷ , and therefore πt ,ω;k (Nt ,ω) = 0. Note also

that, for f , g ∈ Ft ,ω(k ), f ¼̂g iff f ¼t ,ω g ; thus the map f 7→ Eπt ,ω;k u t ,ω;k ◦ f also provides a repre-

sentation of ¼t ,ω on Ft ,ω(k ).

12We are not yet able to say that the restriction of ¼̂ to X coincides with that of ¼t ,ω, but we shall do so shortly.
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Furthermore, recall that, by construction, Nt ,ω ⊂Ft (ω). With x̂ , ŷ as in the preceding para-

graph, let f be the act that agrees with k on Nt ,ω, and equals ŷ on Ft (ω) \Nt ,ω and with x̂

elsewhere; then Axiom 9 implies that f ∼t ,ω k Nt ,ωŷ , so that ŷFt (ω)x̂ ∼̂ŷ , so πt ,ω;k (Ft (ω)) = 1.

Claim: u t ,ω;k = u . To see this, fix x , y with u (x ) ≥ u (y ), so that in particular x ¼t ,ω y for

all ω′. Then Axiom 3 (Monotonicity) implies that k Nt ,ωx ¼t ,ω k Nt ,ωy , so x ¼̂y and therefore

u t ,ω;k (x )≥ u t ,ω;k (y ). Arguing as in the “Bernoulli utility” part of this proof, the claim follows.

Claim: πt ,ω;k is independent of k . That is, for k , k ′ ∈ F , πt ,ω;k = πt ,ω;k ′ . This follows by not-

ing that Savage’s Postulate P2 (Savage, 1972) holds for ¼t ,ω. Suppose that k Nt ,ω f ¼t ,ω k Nt ,ωg

for some k ∈ F . Apply Axiom 4 mixing with k ′Nt ,ω f and weights 1
2

: 1
2

to obtain k ′′Nt ,ω f ¼t ,ω

k ′′Nt ,ω( 1
2

f + 1
2

g ), where k ′′ = 1
2

k + 1
2

k ′. But k ′′Nt ,ω f = 1
2

k ′Nt ,ω f + 1
2

k Nt ,ω f and k ′′Nt ,ω( 1
2

f +
1
2

g ) = 1
2

k ′Nt ,ωg + 1
2

k Nt ,ω f , so Axiom 4 again implies that k ′Nt ,ω f ¼t ,ω k ′Nt ,ωg . Conclude that,

k Nt ,ω f ¼t ,ω k Nt ,ωg if and only if k ′Nt ,ω f ¼t ,ω k ′Nt ,ωg . In particular, if u (x ) = Eπt ,ω;k u ◦ f

for some x ∈ X , so that k Nt ,ω f ∼t ,ω k Nt ,ωx (because πt ,ω;k (Nt ,ω) = 0), it is also the case that

k ′Nt ,ω f ∼t ,ω k ′Nt ,ωx and therefore u (x ) = Eπt ,ω;k ′
u ◦ f (again because πt ,ω;k ′(Nt ,ω) = 0 as well).

This implies the claim.

Henceforth, write µt ,ω = πt ,ω;k for an arbitrary k ∈ F . Note that, for every k ∈ F , acts in

Ft ,ω(k ) are ranked according to EU, with utility u and probability measure µt ,ω; furthermore,

µt ,ω(Nt ,ω) = 0 and µt ,ω(Ft (ω)) = 1.

Characterization of Nt ,ω Suppose there isω∗ ∈Ft (ω)\Nt ,ω with µt ,ω(FT (ω∗)) = 0. Again, fix

x , y ∈ X with u (x )> u (y ). Then, since xT,ω∗y , y ∈ Ft ,ω(y ), again these acts are ranked according

to u ,µt ,ω, and so xT,ω∗y ∼t ,ω y , which again contradicts Axiom 10 (cf. Remark 3). Therefore,

µt ,ω(FT (ω∗))> 0 for allω∗ ∈Ft (ω) \Nt ,ω, or

Nt ,ω = {ω0 ∈Ft (ω) : µt ,ω(FT (ω0)) = 0}. (9)

Construction of the CPS. Finally, since each preference ¼T,ω at a time-T node is complete

and Archimedean, and so is every preference ¼t ,ω for which Nt ,ω = ;, in such cases standard
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arguments yield a corresponding measure µt ,ω that represents it together with u ; by Axiom 9,

again µt ,ω(Ft (ω)) = 1.

We thus obtain a collection (µt ,ω) of measures that are adapted toF and satisfy Conditions

0 and 1 in Def. 1. Turn now to Condition 2, Bayes’ Rule; thus, fix t < T ,ω∈Ω.

The case t = T − 1 requires separate treatment. Fix E ⊂ FT (ω). If µT−1,ω(FT (ω)) = 0, then

also µT−1,ω(E ) = 0 and Bayes’ Rule holds. Otherwise, fix x , y ∈ X with u (x )> u (y ); indeed, wlog

assume u (x ) = 1 and u (y ) = 0. Since ¼T,ω is a EU preference represented by u ,µT,ω, there is

z ∈ X s.t. x E y ∼T,ω z ∼T,ω z T,ωy , where the second indifference follows from Axiom 9. Thus,

u (z ) = µT,ω(E ). Furthermore, by Axiom 10, also x E y ∼T−1,ω z T,ωy . Since FT (ω) has positive

probability, it does not belong to NT−1,ω. Hence the ranking of these acts at (T −1,ω) is EU and

represented by u ,µT−1,ω, so µT−1,ω(E ) =µT−1,ω(FT (ω))µT,ω(E ), as required.

Now consider t < T −1. I first claim that

µt ,ω(Ft+1(ω))> 0 ⇒ Nt+1,ω =Nt ,ω ∩Ft+1(ω). (10)

To see this, note first that, since µt ,ω(Ft+1(ω))> 0, there isω∗ ∈ΩwithFT (ω∗)⊂Ft+1(ω∗)\Nt ,ω.

As usual, for x , y ∈ X with u (x )> u (y ), xT,ω∗y �t ,ω y ; these acts agree on Nt ,ω ∩Ft+1(ω), and by

Axioms 9 and 10, xT,ω∗y �t+1,ω y as well. Furthermore, suppose f , g ∈ F agree on Nt ,ω∩Ft+1(ω)

and satisfy f �t+1,ω g . By Axioms 9 and 10, for k ∈ F , also f t+1,ωk �t ,ω g t+1,ωk . But the acts

f t+1,ωk , g t+1,ωk agree on Nt ,ω, and so, in particular, if f ′, g ′ agree with f , g on Ft+1(ω) \Nt ,ω,

also f ′t+1,ωk �t ,ω g ′t+1,ωk . Axioms 9 and 10 then imply that f ′ �t+1,ω g ′, and by Axiom 9 we may

as well assume that f ′, g ′ agree with f , g outsideFt+1(ω). Therefore, Nt ,ω∩Ft+1(ω) is negligible

for ¼t+1,ω.

Furthermore, suppose that Nt+1,ω ) Nt ,ω ∩Ft+1(ω), so by Eq. (9) there is ω0 ∈ Ft+1(ω) \

Nt ,ω with µt+1,ω(FT (ω0)) = 0. Then, with x , y as above, xT,ω0 y ∼t+1,ω y , because again both

acts belong to Ft+1,ω(y ) and their ranking at (t + 1,ω) is represented by u ,µt+1,ω. By Axiom

10, xT,ω0 y ∼t ,ω y as well. But µt ,ω(FT (ω0))> 0 becauseω0 6∈Nt ,ω, and xT,ω0 y , y ∈ Ft ,ω(y ) as well;

thus, since the ranking of these acts at (t ,ω) is represented by u ,µt ,ω, we obtain a contradiction.
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Therefore, Eq. (10) holds.

Now take E ⊂ Ft+1(ω). If µt ,ω(Ft+1(ω)) = 0, then µt ,ω(E ) = 0 as well, so Bayes’ Rule holds.

Otherwise, suppose first that E ⊂Ft+1(ω) \Nt+1,ω; then, for x , y as above, and z ∈ X such that

u (z ) =µt+1,ω(E )u (x )+[1−µt+1,ω(E )]u (y ), we have x E y , z [Ft+1(ω)\Nt+1,ω]y ∈ Ft+1,ω(Nt+1, y ), so

their ranking is represented by u ,µt+1,ω and therefore x E y ∼t+1,ω y Nt+1,ωz , becauseµt+1,ω(Nt+1,ω) =

0. By Axiom 10, x E y ∼t ,ω z [Ft+1(ω) \Nt+1,ω]y , and since, as was just shown, Nt ,ω = Nt+1,ω ∪

[Nt ,ω∩Ft+1(ω)c ], both acts are in Ft ,ω(y ). Therefore, their ranking is represented by u ,µt ,ω, and

so µt ,ω(E )u (x )+[1−µt ,ω(E )]u (y ) =µt ,ω(Ft+1(ω)\Nt+1,ω)u (z )+[1−µt ,ω(Ft+1(ω)\Nt+1,ω)u (y ).

We can w.l.o.g. assume that u (x ) = 1 and u (y ) = 0, in which case u (z ) =µt+1,ω(E ) and µt ,ω(E ) =

µt ,ω(Ft+1(ω)\Nt+1,ω)µt+1,ω(E ); but since Nt+1,ω ⊂Nt ,ω, it follows thatµt ,ω(Nt+1,ω)≤µt ,ω(Nt ,ω) =

0, so we obtain µt ,ω(E ) =µt ,ω(Ft+1(ω))µt+1,ω(E ), as required.

Finally, suppose that E = F∪N , where E ⊂Ft+1(ω)\Nt+1,ω and N ⊂Nt+1,ω. Thenµt+1,ω(N ) =

0, so µt+1,ω(E ) = µt+1,ω(F ). Furthermore, since Nt+1,ω ⊂Nt ,ω, also N ⊂Nt ,ω and so µt ,ω(N ) = 0,

hence µt ,ω(E ) =µt ,ω(F ). But then, by the argument in the paragraph above, µt ,ω(E ) =µt ,ω(F ) =

µt ,ω(Ft+1(ω))µt+1,ω(F ) =µt ,ω(Ft+1(ω))µt+1,ω(E ), as required. Thus, Bayes’ Rule holds.

Representation: weak preferences For t = T , the representation in Eq. (7) holds because

each ¼T,ω is an EU preference represented by u ,µT,ω, and ≥µT,ω is simply the usual ordering ≥.

Argue by induction and assume that the representation holds for t +1≤ T , and fix a node (t ,ω)

and two acts f , g ∈ F . Consider a weak ordering first: that is, suppose that u ◦ f ≥µt ,ω u ◦ g . If

Nt ,ω = ;, preferences at (t ,ω) are EU and represented by µt ,ω, u ; since u ◦ f ≥µt ,ω u ◦ g implies

Et ,ωu ◦ f ≥ Et ,ωu ◦ g , it follows that f ¼t ,ω g . Thus, assume now that Nt ,ω 6= ;.

If Et ,ωu ◦ f > Et ,ωu ◦ g , then also Et ,ωu ◦ (k Nt ,ω f )> Et ,ωu ◦ (k Nt ,ωg ) for any k ∈ F , because

µt ,ω(Nt ,ω) = 0. Since u and µt ,ω represent preferences over Ft ,ω(k ), k Nt ,ω f �t ,ω k Nt ,ωg . Finally,

since Nt ,ω is negligible, f �t ,ω g , as required.

If instead Et ,ωu ◦ f = Et ,ωu ◦ g , then let x ∈ X be such that u (x ) = Et ,ωu ◦ f . Then f =

f Nt ,ω f ∼t ,ω f Nt ,ωx , because f Nt ,ω f , f Nt ,ωx ∈ Ft ,ω( f ), so the ranking of f and f Nt ,ωx is repre-
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sented by u ,µt ,ω, and Et ,ωu ◦ f = Et ,ω f Nt ,ωx . Similarly, g ∼t ,ω g Nt ,ωx . Hence, by Transitivity,

to show that f ¼t ,ω g it is enough to prove that f Nt ,ωx ¼t ,ω g Nt ,ωx . Thus, fixω∗ ∈Ft (ω). It will

be argued that f Nt ,ωx ¼t+1,ω∗ g Nt ,ωx for each suchω∗ (for all otherω∗, the same ranking holds

by Reflexivity); together with Remark 3, this implies the result.

If Ft+1(ω∗)∩Nt ,ω = ;, then Reflexivity implies that f Nt ,ωx ∼t+1,ω∗ g Nt ,ωx . Thus, suppose

thatFt+1(ω∗)∩Nt ,ω 6= ;. If in particularFt+1(ω∗)⊂Nt ,ω, then µt ,ω(Ft+1(ω∗)) = 0, so (t +1,ω∗) is

critical for (t ,ω). Since u ◦ f ≥µt ,ω u ◦g and Et ,ωu ◦ f = Et ,ωu ◦g , by Proposition 1 u ◦ f ≥µt+1,ω∗ u ◦g .

SinceFt+1(ω∗) ⊂ Nt ,ω, and henceFτ(ω′) ⊂ Nt ,ω for all τ ≥ t and ω′ ∈ Ft+1(ω∗), the acts f and

f Nt ,ωx , as well as g and g Nt ,ωx agree at all nodes following (t + 1,ω∗), so u ◦ f ≥µt+1,ω∗ u ◦ g

implies u ◦ ( f Nt ,ωx ) ≥µt+1,ω∗ u ◦ (g Nt ,ωx ). By the induction hypothesis, f Nt ,ωx ¼t+1,ω∗ g Nt ,ωx ,

as required.13

We are left with the caseFt+1(ω∗)∩Nt ,ω 6= {;,Ft+1(ω∗)}. Note that then µt ,ω(Ft+1(ω∗)) > 0.

Therefore, by Eq. (9), Nt+1,ω∗ =Nt ,ω∗ ∩Ft+1(ω∗) =Nt ,ω ∩Ft+1(ω∗).

To show that f Nt ,ωx ¼t+1,ω∗ g Nt ,ωx , I again argue that u ◦ ( f Nt ,ωx )≥µt+1,ω∗ u ◦ (g Nt ,ωx ) and

invoke the inductive hypothesis. Thus, suppose that there is a node (τ,ω0) that is critical for

(t +1,ω∗) and such that Eτ,ω0 u ◦( f Nt ,ωx )< Eτ,ω0 u ◦(g Nt ,ωx ). Since µt+1,ω∗(Nt ,ω) =µt+1,ω∗(Nt ,ω∩

Ft+1(ω∗)) = µt+1,ω∗(Nt+1,ω∗) = 0 and ω0 ∈ Ft+1(ω∗), Et+1,ω0 u ◦ ( f Nt ,ωx ) = Et+1,ω0 u ◦ (g Nt ,ωx );

thus, τ > t + 1, so node (τ,ω0) is also critical for (t ,ω); thus, by Remark 1, µt ,ω(Fτ(ω0)) = 0. By

Eq. (9),Fτ(ω0)⊂Nt ,ω: therefore, Eτ,ω0 u ◦ f = Eτ,ω0 u ◦ ( f Nt ,ωx )< Eτ,ω0 u ◦ (g Nt ,ωx ) = Eτ,ω0 u ◦ g .

But then, the assumption that u ◦ f ≥t ,ω u ◦g implies that there isσ ∈ {t , . . . ,τ−1} such that

Eσ,ω0 u ◦ f > Eσ,ω0 u ◦g and (σ,ω0) is critical for (t ,ω); since Et ,ωu ◦ f = Et ,ωu ◦g , it must actually

be the case thatσ≥ t +1. By the definition of critical node, (σ,ω0) is then critical for (t +1,ω∗)

as well, either becauseσ= t +1, or becauseσ> t +1 and µσ−1,ω0(Fσ(ω0)) = 0.

13From f ≥t+1,ω∗ g we could also invoke Axiom 9 and reach the same conclusion. However, the statement that

u ◦ ( f Nt ,ωx )≥µt+1,ω∗ u ◦ (g Nt ,ωx )will be used in the argument for strict preferences below.
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Moreover, since (σ,ω0) is critical for (t ,ω) and σ> t , by Remark 1 µt ,ω(Fσ(ω0)) = 0, so that

Fσ(ω0)⊂Nt ,ω. Therefore, Eσ,ω0 u ◦ ( f Nt ,ωx ) = Eσ,ω0 u ◦ f > Eσ,ω0 u ◦ g = Eσ,ω0 u ◦ (g Nt ,ωx ). Since

(τ,ω0) was arbitrary, u ◦ ( f Nt ,ωx ) ≥µ
t+1,ω0 u ◦ (g Nt ,ωx ), so f Nt ,ωx ¼t+1,ω0 g Nt ,ω0x again follows

from the inductive hypothesis.

Thus, for all ω∗ ∈ Ω, f Nt ,ωx ¼t+1,ω∗ g Nt ,ωx . Invoking Remark 3 and Transitivity then yields

f ∼t ,ω f Nt ,ωx ¼t ,ω g Nt ,ωx ∼t ,w g , as required. Note for future reference that the argument also

showed that u ◦ ( f Nt ,ωx )≥µt+1,ω∗ u ◦ (g Nt ,ωx ) for allω∗ ∈Ft (ω).

Representation: strict preferences. As above, the case t = T is immediate, so assume that

t < T , u ◦ f >µt ,ω u ◦ g , and by induction suppose that the representation result for strict prefer-

ences has been established for time t +1.

If Nt ,ω = ;, then by Eq. (9), µt ,ω(FT (ω∗))> 0 for allω∗ ∈Ft (ω), so alsoµt ,ω(Fτ(ω∗))> 0 for all

τ= t +1, . . . , T −1. Hence, by Remark 1, there are no critical nodes for (t ,ω) except itself. In this

case, u ◦ f >µt ,ω u ◦ g implies Et ,ωu ◦ f > Et ,ωu ◦ g , and since Nt ,ω = ; implies that preferences at

(t ,ω) are EU and represented by u ,µt ,ω, it follows that f �t ,ω g .

Thus, assume that Nt ,ω 6= ;. It was shown above that, in this case, too, Et ,ωu ◦ f > Et ,ωu ◦ g

actually implies f �t ,ω g . Thus, it remains to consider the case Et ,ωu ◦ f = Et ,ωu ◦ g .

Arguing as in the proof for weak preferences, let x ∈X satisfy u (x ) = Et ,ωu ◦ f . Then, as noted

above, f ∼t ,ω f Nt ,ωx and g ∼t ,ω g Nt ,ωx . Furthermore, it was shown that, for all ω∗ ∈ Ft (ω),

f Nt ,ωx ¼t+1,ω∗ g Nt ,ωx . I now claim that this preference is strict for at least one suchω∗.

Since u ◦ f >µt ,ω u ◦ g , by Remark 2 there is a critical node (τ,ω∗∗) for (t ,ω)with Eτ,ω∗∗u ◦ f >

Eτ,ω∗∗u ◦ g . By assumption, Et ,ωu ◦ f = Et ,ωu ◦ g , so τ ≥ t + 1. Since (τ,ω∗∗) is critical for

(t ,ω), Remark 1 shows that µt ,ω(Fτ(ω∗∗)) = 0; but then, by Eq. (9), Fτ(ω∗∗) ⊂ Nt ,ω. Hence,

Eτ,ω∗∗u ◦ ( f Nt ,ωx ) = Eτ,ω∗∗u ◦ f > Eτ,ω∗∗u ◦ g = Eτ,ω∗∗u ◦ (g Nt ,ωx ).

Now, it was already argued in the proof for weak preferences that u ◦ ( f Nt ,ω) ≥
µ
t+1,ω∗ u ◦

(g Nt+1,ω∗x ) for all ω∗ ∈ Ft (ω), so this holds for ω∗∗ as well. Furthermore, we have identified

a node (τ,ω∗∗) that is critical for (t ,ω) and such that τ≥ t + 1, where Eτ,ω∗∗u ◦ ( f Nt ,ωx Eτ,ω∗∗u ◦
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(g Nt ,ωx ). The node (τ,ω∗∗) is also critical for (t+1,ω∗∗), so Remark 2 implies that u ◦( f Nt ,ωx )>t+1,ω∗∗

u ◦ (g Nt ,ωx ). Then, by the inductive hypothesis, f Nt ,ωx �t+1,ω∗∗ g Nt ,ωx , as claimed.

To sum up, we have f Nt ,ωx ¼t+1,ω∗ g Nt ,ωx for all ω∗ ∈ Ω, and f Nt ,ωx �t+1,ω∗∗ g Nt ,ωx for at

least oneω∗∗ ∈Ft (ω). By Remark 3, f Nt ,ωx �t ,ω g Nt ,ωx , and so f �t ,ω g , as required.

B.2 Necessity of the axioms

Assume that preferences (¼t ,ω) are defined via Eq. (7).

Axioms 1–6. Recall that the lexicographic ordering on vectors inRn is defined as follows: for

r = (r1, . . . , rn ), s = (s1, . . . , sn ), r is lexicographically greater than s iff, for all i ∈ {1, . . . , n}, ri < s i

implies that there is j < i with ri > s i .

This order is complete and transitive. It is also monotonic: ri ≥ s i for all i = 1, . . . , n implies

(r1, . . . , rn ) ≥L (s1, . . . , sn ). Finally, it is positively homogeneous and affine, in the sense that, for

r, s , t ∈Rn , r ≥L s if and only if αr +β t ≥L αs +β t , for all α,β ∈Rn with α> 0.

Now fix a CPS µ. The ordering ≥µt ,ω on B (Σ) can be described as a product of lexicographic

orderings: a ≥µt ,ω b iff, for everyω∗ ∈Ft (ω), n ≥ 1, and τ1, . . . ,τn ∈ {t , . . . , T } such that

(i) t =τ1 <τ2 . . .<τn ,

(ii) each (τi ,ω∗) is critical for (t ,ω), and

(iii) no (σ,ω∗)withσ 6∈ {τ1, . . . ,τn} is critical for (t ,ω),

the vector
�

Eτi ,ω∗a
�

i=1,...,n is lexicographically greater than the vector
�

Eτi ,ω∗b
�

i=1,...,n .

Note that the collection of indices (τ1, . . . ,τn ) that satisfy (i)–(iii) is entirely determined by

the CPS µ, not the specific functions a and b being compared. Therefore,≥µt ,ω is the product of

the lexicographic orders of conditional expectations corresponding to each such collection.

It is then immediate to verify that ¼t ,ω satisfies Axioms 1, 3 and 4. Since u is non-constant,

¼t ,ω also satisfies 2; and since u is affine on X , Axioms 5 and 6 hold as well.

The set Nt ,ω. I now claim that, as per Theorem 1, for every node (t ,ω), either Nt ,ω = ;, so

Nt ,ω = ; as well, or Nt ,ω = {ω0 ∈Ft (ω) : µt ,ω(Ft+1(ω0)) = 0} ≡N µ
t ,ω; furthermore, Nt ,ω ∈Nt ,ω.
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To see this, I first show that, if N ∈N , then µt ,ω(N ) = 0. Thus, fix N ∈N and choose x , y ∈X

with u (x )> u (y ); also fix k ∈ F . Def. 3 implies that N (Ft (ω), so there isω∗ ∈Ft (ω) such that

FT (ω)⊂Ft (ω)\N . Then u ◦ (xT,ω∗y )>
µ
t ,ω u ◦y : applying Def. 2, there is no node (τ,ω0), critical

or not, where Eτ,ω0 u ◦ (xT,ω∗y )< u (y ), so u ◦ (xT,ω∗y )≥
µ
t ,ω u (y ); furthermore, if Eτ,ω0 u ◦ (xT,ω∗y )>

u (y ) at some critical node (τ,ω0), there can be noσ ∈ {t , . . . ,τ−1}with Eσ,ω0 u ◦ (xT,ω∗y )< u (y ),

so that it is not the case that u (y )≥µt ,ω u ◦ (xT,ω∗y ). Thus, xT,ω∗y �t ,ω y . But since N is negligible,

for any x ′, y ′ ∈X , it must also be the case that f ′ ≡ x ′N (xT,ω∗y )�t ,ω y ′N y ≡ g ′. But note that

Et ,ωu ◦ f ′ = u (x ′)µt ,ω(N )+u (x )µt ,ω(FT (ω∗))+u (y )[1−µt ,ω(N )−µt ,ω(FT (ω∗))],

whereas

Et ,ωu ◦ g ′ = u (y ′)µt ,ω(N )+u (y )[1−µt ,ω(N )].

It is then clear that, if µt ,ω(N )> 0, by choosing u (x )−u (y ) positive but small, and u (y ′)−u (x )

large, one can obtain Et ,ωu ◦ f ′ < Et ,ωu ◦g ′. This readily implies u ◦ f ′ <µt ,ω u ◦g ′, and so f ′ ≺t ,ω g ′:

contradiction. Thus, µt ,ω(N ) = 0 for every N ∈Nt ,ω.

It follows that N ⊂N µ
t ,ω for all N ∈Nt ,ω. Hence, in particular, if N µ

t ,ω = ;, thenNt ,ω = ;. Thus,

assume that N µ
t ,ω 6= ;: it will now be shown that N µ

t ,ω ∈Nt ,ω, so that Nt ,ω =N µ
t ,ω, as claimed.

Note first that N µ
t ,ω is a union of cells in FT , and by assumption it is non-empty. Fur-

thermore, it clearly cannot coincide with Ft (ω); hence, there is ω∗ ∈ Ft (ω) \N µ
t ,ω such that

µt ,ω(FT (ω∗))> 0. Then, with x , y as above, Et ,ωu ◦ (xT,ω∗y )> u (y ), so u ◦ (xT,ω∗y )>
µ
t ,ω u (y ) and

hence xT,ω∗y �t ,ω y . Next, suppose that f , g ∈ F agree on N µ
t ,ω and are such that f �t ,ω g , which

by assumption means that u ◦ f >µt ,ω u ◦ g . By Remark 1, if (τ,ω0) is critical for (t ,ω) and τ> t ,

then µt ,ω(Fτ(ω0)) = 0, so that Fτ(ω0) ⊂ N µ
t ,ω. Since f , g agree on N µ

t ,ω, Eτ,ω0 u ◦ f = Eτ,ω0 u ◦ g ;

hence, u ◦ f >µt ,ω u ◦ g implies that Et ,ωu ◦ f > Et ,ωu ◦ g . But then, if f ′, g ′ agree with f , g on

Ω \N µ
t ,ω, since µt ,ω(N

µ
t ,ω) = 0, also Et ,ωu ◦ f ′ > Et ,ωu ◦ g ′, so u ◦ f ′ >µt ,ω u ◦ g ′ and hence finally

f ′ �t ,ω g ′. This shows that N µ
t ,ω is negligible, so N µ

t ,ω ∈Nt ,ω and therefore Nt ,ω =N µ
t ,ω.

Axioms 7 and 8. If there is no negligible event for ¼t ,ω, the only critical node for (t ,ω) is

(t ,ω) itself (up to the specification of ω′ ∈ Ft (ω) as usual), so ¼t ,ω is represented by u ,µt ,ω,
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and hence it satisfies Axioms 7 and 8. If instead Nt ,ω 6= ;, then, as just noted, since any critical

node (τ,ω0) for (t ,ω) with τ > t is a subset of Nt ,ω, any two acts f , g agree on Nt ,ω satisfy

Eτ,ω0 u ◦ f = Eτ,ω0 u ◦ g . Therefore, u ◦ f ≥µt ,ω u ◦ g holds if and only if Et ,ωu ◦ f ≥ Et ,ωu ◦ g : if

Et ,ωu ◦ f > (<)Et ,ωu ◦g , then u ◦ f >µt ,ω (<
µ
t ,ω)u ◦g , whereas if Et ,ωu ◦ f = Et ,ωu ◦g , then there is

no critical node at which a strict preference holds so that both u ◦ f ≥µt ,ω u ◦g and u ◦ f ≤µt ,ω u ◦g .

Hence,¼t ,ω is represented by u ,µt ,ω when comparing acts that agree on Nt ,ω, so that Axioms

7 and 8 hold.

Axioms 9 and 10. To conclude, Axiom 9 holds because, in the definition of ≥µt ,ω, only expec-

tations conditional onFt (ω) and its subsets are considered.

As for Axiom 10, fix a node (t ,ω) and acts f , g ∈ F that agree on Ω \ Ft+1(ω). Assume that

u ◦ f ≥µt ,ω u ◦ g . Consider a critical node (τ,ω0) for (t +1,ω)with Eτ,ω0 u ◦ f < Eτ,ω0 u ◦ g .

If µt ,ω(Ft+1(ω)) > 0, then it must be the case that τ > t + 1, because f , g agree outside

of Ft+1(ω) and so the preceding inequality would imply that also Et ,ωu ◦ f < Et ,ωu ◦ g and so

u ◦ f <µt ,ω u ◦g , a contradiction. But then (τ,ω0) is also critical for (t ,ω), so there must be (σ,ω0)

critical for (t ,ω) with σ ∈ {t , . . . ,τ− 1} and Eσ,ω0 u ◦ f > Eσ,ω0 u ◦ g . If σ ≥ t + 1, then (σ,ω0) is

critical for (t + 1,ω) as well; if instead σ = t , then since µt ,ω(Ft+1(ω)) > 0, Bayesian updating

and the assumption that f , g agree outside Ft+1(ω) imply that also Et+1,ω0 u ◦ f > Et+1,ω0 u ◦ g ,

and of course (t +1,ω0) is critical for (t +1,ω).

If insteadµt ,ω(Ft+1(ω)) = 0, then (t +1,ω0) is critical for (t ,ω). Then the assumed inequality

for τ = t + 1 contradicts the assumption that u ◦ f ≥µt ,ω u ◦ g , because the fact that Ft+1(ω) =

Ft+1(ω0) has zero probability also implies that Et ,ωu ◦ f = Et ,ωu ◦ g , as f and g agree outside

Ft+1(ω). Hence, τ> t +1, so again (τ,ω0) is critical for (t ,ω) and there isσ ∈ {t , . . . ,τ−1} with

(σ,ω0) critical for (t ,ω) and such that Eσ,ω0 u ◦ f > Eσ,ω0 u ◦g . Sinceµt ,ω(Ft+1(ω0)) = 0 and f and

g agree outsideFt+1(ω), it must be the case thatσ≥ t +1, so (σ,ω0) is also critical for (t +1,ω)

(possibly becauseσ= t +1). This shows that u ◦ f ≥µt+1,ω u ◦ g , i.e. f ¼t+1,ω g .

Conversely, suppose that f ¼t+1,ω g , so u ◦ f ≥µt+1,ω g . Let (τ,ω0) be critical for (t ,ω) and
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such that Eτ,ω0 u ◦ f < Eτ,ω0 u ◦ g ; since f , g agree outsideFt+1(ω),ω0 ∈Ft+1(ω).

Suppose that τ = t : then it must be the case that µt ,ω(Ft+1(ω)) > 0, because f , g agree

outside Ft+1(ω), and so a strict inequality could not obtain otherwise. But then, by Bayesian

updating, Et+1,ωu ◦ f < Et+1,ωu ◦ g , which contradicts the assumption that u ◦ f ≥µt+1,ω u ◦ g .

Thus, τ> t .

Therefore, (τ,ω0) is also critical for (t + 1,ω). Since u ◦ f ≥µt+1,ω u ◦ g by assumption, there

must beσ ∈ {t+1, . . . ,τ−1}with (σ,ω0) critical for (t+1,ω0) and such that Eσ,ω0 u ◦ f > Eσ,ω0 u ◦g .

Ifσ> t +1, then (σ,ω0) is also critical for (t ,ω). If insteadσ= t +1, we must consider two cases.

If µt ,ω(Ft+1(ω)) = 0, then again (σ,ω0) = (t +1,ω) is critical for (t ,ω). If instead µt ,ω(Ft+1(ω))>

0, then Bayesian updating implies that also Et ,ωu ◦ f > Et ,ωu ◦ g , because f , g agree outside

Ft+1(ω). Thus, in any case, one can find a node (σ′,ω0) that is critical for (t ,ω) and such that

Eσ′,ω0 u ◦ f > Eσ′,ω0 u ◦ g . Therefore, u ◦ f ≥µt ,ω u ◦ g , so f ¼t ,ω g .
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