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Abstract

A characterization of “generalized Bayesian updating” in a maxmin expected utility setting
is provided. The key axioms are consequentialism and constant-act dynamic consistency. The
latter requires that, if an arbitrary act f is preferred (inferior) to a constant act y conditional
upon E, and if f dominates (is dominated by) y pointwise on the complementary event Ec, then
f is unconditionally preferred (inferior) to y.

The result provides a basis for a model of dynamic choice that accommodates arbitrary
unconditional maxmin EU preferences, and allows for deviations from full dynamic consistency
related to ambiguity.

Standard Expected Utility (EU) preferences are separable across events. In a static setting, the
notion of separability is formalized by Savage’s Postulate P2 (the “Sure-Thing Principle”). In a
dynamic framework, separability corresponds to dynamic consistency : if the decision maker would
prefer some course of action to another if she learned that some event has obtained, and also if
she learned that the same event has not obtained, then she should prefer it even prior to learning
whether or not the event in question has obtained. As is well-known, P2 and dynamic consistency
are closely related (see e.g. Ghirardato, 2001).

In a static setting, Ellsberg (1961) demonstrates that separability may fail if the decision maker
perceives some ambiguity in the relative likelihood of events. Thus, in a dynamic setting, it is
at least plausible to expect some tension between ambiguity and dynamic consistency. Recent
experimental evidence (Cohen et al., 2000) based on a dynamic version of the single-urn Ellsberg
example seems to indicate that ambiguity may indeed lead to violations of dynamic consistency.
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This note takes as primitive an arbitrary, unconditional preference relation belonging to the
maxmin-expected utility (MEU) family (Gilboa and Schmeidler, 1989), and characterizes condi-
tional preferences derived from it via generalized Bayesian updating. This provides the axiomatic
basis for a model of dynamic choice that allows for deviations from dynamic consistency related to
the decision maker’s perception of ambiguity.

In the MEU framework, beliefs are represented by a set of (prior) probability measures; ac-
cording to generalized Bayesian updating, conditional beliefs are represented by the collection of
Bayesian updates of all elements of the set of priors.

The characterizing axioms are:

• Consequentialism. When evaluating an act f conditional upon the realization of the event E,
outcomes assigned by f at states outside of E do not matter.

• Constant-Act Dynamic Consistency. If an arbitrary act f is preferred (inferior) to a con-
stant act y conditional upon E, and if f dominates (is dominated by) y pointwise on the
complementary event Ec, then f is unconditionally preferred (inferior) to y.

I show that the decision maker’s preferences conditional upon an event E satisfy the above axioms
if and only if they are derived from her unconditional MEU preferences via generalized Bayesian
updating.

The setup and result are presented in Section 1. Further discussion and comparison with related
literature can be found in Section 2.

1 Setup and Results

1.1 Basic Framework and Definitions

The Anscombe-Aumann (1963) setup is adopted here for simplicity; see the discussion section for
details on how to extend the analysis to a Savage-style framework.

Consider a set S of states, endowed with an algebra Σ, a set X of prizes, the set Y of finite
lotteries over X, and the set L of all acts, i.e. all bounded, Σ-measurable Y -valued functions on S.

The main objects of interest are binary relations {<E}E∈Σ on L, to be interpreted as conditional
or unconditional preferences among acts. That is, for any event E ∈ Σ, the relation <E represents
the decision maker’s preference ordering of acts, conditional upon learning that the event E has
occurred. It is convenient to denote <S simply by <.

Interpretation. The collection {<E}E∈Σ provides a standard (Gilboa and Schmeidler, 1993;
Myerson, 1986) ‘reduced-form’ representation of the decision maker’s preferences in dynamic choice
problems for which the state space is (isomorphic to) S, and outcomes are drawn from the set Y .
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Some readers may may find it helpful to briefly relate this representation to decision trees. In
that setting, a strategy is a specification of actions at each decision node; an act encodes the payoff
consequences of a strategy. Moreover, every specification of moves at each chance node defines
a state; thus, it is natural to associate with each decision node an event that corresponds to a
specification of moves only at preceding chance nodes. Then, the relation <E reflects the decision
maker’s preferences among strategies at the decision node associated with E. The mapping from
decision trees to systems of conditional preferences is further illustrated in the leading example of
the next Section.

Since other formulations of dynamic decision problems are possible (and may be more convenient
in specific settings), I prefer to adopt the more encompassing, if more abstract, ‘reduced-form’
specification above.

Throughout this note, < will be assumed to be non-trivial.

Assumption 1.1 (NT) There exist f, g ∈ L such that f Â g.

For any event E ∈ Σ and pair of acts f, g ∈ L,

fEg(s) =

{
f(s) s ∈ E

g(s) s ∈ Ec

The non-trivial, unconditional preference relation < will be assumed to admit a maxmin EU
representation.

Assumption 1.2 (MP) There exists a weak*-closed, convex set of probability measures C ⊂
∆(S, Σ) and an affine function u : Y → R such that

∀f, g ∈ L, f < g ⇔ min
q∈C

∫

S
u(f(s))q(ds) ≥ min

q∈C

∫

S
u(g(s))q(ds).

Note that, by Assumption NT and the results of Gilboa and Schmeidler (1989), the utility
function u is unique up to a positive affine transformation, and the set C of measures is unique.

An event E ∈ Σ is <-null iff, for all y, y′ ∈ Y such that y Â y′, yEy′ ∼ y′. Note that, under
MP, an event E is <-null iff minq∈C q(E) = 0. Thus, in particular, ∅ is null.

1.2 Axioms and Main Results

Consider the following three behavioral restrictions, stated as assumptions regarding an arbitrary
conditional preference <E ; the event E will be assumed to be non-null in the theorems below.

First, each conditional preference of interest is a weak order:
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Axiom 1.1 (WO) The conditional preference <E is complete and transitive.

Second, preferences conditional upon the event E are not affected by outcomes at states outside
E. This is a version of consequentialism.

Axiom 1.2 (Cons) For every pair of acts f, h ∈ L: f ∼E fEh.

Third, a weakening of the standard dynamic consistency axiom is imposed. Its motivation is
discussed in the next section.

Axiom 1.3 (c-DC) For every act f ∈ L and outcome y ∈ Y :

f <E y, f(s) < y ∀s ∈ Ec ⇒ f < y;
f 4E y, f(s) 4 y ∀s ∈ Ec ⇒ f 4 y.

Moreover, if the preference conditional upon E is strict, then so is the unconditional preference.

Observe that the dominance conditions f(s) < y and f(s) 4 y are stated in terms of the
unconditional preference. It is clear that one could separately assume that conditional and uncon-
ditional preferences agree on Y , and state the dominance conditions in terms of the conditional
preference <Ec . Note also that strict preference conditional on the event E is required to imply
strict unconditional preference.

The main result follows; see the Appendix for the proof.

Theorem 1 Assume that < satisfies MP and NT. Then, for any non-null event E ∈ Σ, the

following are equivalent:

(1) < satisfies WO, Cons and c-DC;

(2) For all acts f, g ∈ L,

f <E g ⇔ min
q∈C

∫

E
u ◦ f q(ds|E) ≥ min

q∈C

∫

E
u ◦ g q(ds|E).

2 Discussion

While not entirely uncontroversial, Consequentialism is assumed here in order to focus on the issue
of dynamic consistency. This section is thus devoted to the analysis of Axiom c-DC, its implications,
and extensions. It also discusses alternative updating rules, and related literature.
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2.1 Weakening Dynamic Consistency

As a starting point, full dynamic consistency may be defined as follows in the present setting.

Axiom 2.1 (DC) For every pair of acts f, g ∈ L and non-null event E ∈ Σ:

f <E (ÂE) g, f <Ec g ⇒ f < (Â) g

Thus, c-DC weakens DC in two ways:

• It only involves comparisons of acts with constants.

• It involves dominance, not just conditional preference, on one subevent.

To clarify the rationale for the above weakenings, it is helpful to focus on a concrete example. I
adopt an explicitly dynamic formulation and illustrate how it relates to the ‘reduced-form’ analysis
of the previous section.

The following dynamic decision problem is adapted from Seidenfeld and Wasserman (1993).
An urn contains an unspecified, but equal number n of black and white balls. Two balls will be
drawn without replacement; note that the prior probability of drawing a black (or white) ball on
the i-th draw is 1

2 independently of i = 1, 2 and n. However, given the outcome of the first draw,
the posterior probability of drawing a black ball in the second extraction is n−1

2n−1 if the first ball
drawn was black, and n

2n−1 if it was white.
A risk-neutral decision maker is offered a bet on the outcome of the second draw, according to

the following protocol. At time 0, the decision maker can choose to opt out (o1) of the gamble,
which yields a payoff of 0, or accept it (b2). If she accepts it, then, at time 1, she learns the outcome
of the first draw (B1 or W1). She can then decide to opt out (o2), this time with a payoff of −1,
or continue with the bet (c). Finally, at time 2, all uncertainty is resolved; the decision maker
receives a payoff of 3 if the second ball drawn is black (B2), and −2 otherwise (W2). The situation
is depicted in Figure 1.

Let the state space be S = {B1B2, B1W2,W1B2,W1W2}. To reflect the assumption that the
number of balls is left unspecified, consider the set of probability measures

C =
{

q ∈ ∆(S) : q(B1B2) = q(W1W2) =
1
2
p, q(B1W2) = q(W1B2) =

1
2
(1− p); p ∈

[
0,

1
2

]}
,

where p = 0 corresponds to the case of an urn containing exactly 2 balls, and p = 1
2 corresponds to

the limiting case of an urn containing infinitely many balls.
A strategy for the decision maker is a list of choices the decision maker plans to make at each

decision node: e.g. σ = (b2, c, o2) indicates an initial choice of b2, followed by c upon learning

5



o1

b2

0

B1

W1

c

o2 −1

c

o2 −1

B2

W2

3

−2

B2

W2

3

−2

Figure 1: A dynamic decision problem.

σ fσ(B1B2) fσ(B1W2) fσ(W1B2) fσ(W1W2) min EU min EUB1 min EUW1

(b2, c, c) 3 −2 3 −2 0.5 −2 0.5
(b2, o2, c) −1 −1 3 −2 −0.25 −1 0.5
(b2, c, o2) 3 −2 −1 −1 −1.5 −2 −1
(b2, o2, o2) −1 −1 −1 −1 −1 −1 −1

(o1) 0 0 0 0 0 0 0

Table 1: Strategies and Acts

B1, and o2 upon learning W1; σ = (o1) denotes the strategy whereby the decision maker opts
out immediately. Thus, a strategy is a function from decision nodes to choices. To each strategy
σ corresponds a (‘reduced-form’) act fσ, i.e. a function from states to outcomes. Table 1 maps
strategies to acts, and indicates the corresponding minimum expected payoffs at each decision node.
For the nodes following B1 and W1, the set of posteriors is constructed via Generalized Bayesian
updating.

I begin with two remarks on the formal properties of generalized Bayesian updating. The
example demonstrates that this updating procedure may violate DC, and that its characterization
via c-DC is “tight”.

To see that DC may fail, consider the non-null event B1; note that (b2, o2, c) ÂB1 (b2, c, c) and
(b2, o2, c) ∼W1 (b2, c, c), yet (b2, o2, c) ≺ (b2, c, c).
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To see that c-DC is tight, begin by reinterpreting the rankings above. One has (b2, o2, c) ÂB1

(b2, c, c) and (b2, o2, c)(s) ∼W1 (b2, c, c)(s) for all s ∈ W1, yet (b2, o2, c) ≺ (b2, c, c). Thus, it is
not possible to allow for comparisons between arbitrary pairs of acts, even if dominance on Ec is
retained. Next, consider the alternative set of priors

C ′ =
{

q :∈ ∆(S) : q(B1B2) = q(W1W2) =
1
2
p, q(B1W2) = q(W1B2) =

1
2
(1− p); p ∈ [0, 1]

}
.

Let <′
E denote the generic MEU preference determined by these beliefs. It is easy to see that

(b2, c, c) ≺′B1
(o1) and (b2, c, c) ≺′W1

(o1) (the left-hand strategy has a minimum conditional expected
payoff of −2), but (b2, c, c) Â′ (o1). Thus, c-DC cannot be strengthened by allowing for conditional
preference on Ec, even if the conditionally preferred act is constant.1

Turn now to the interpretation of the above preferences. As noted above, the number of balls
in the urn affects the conditional probability of drawing a black ball in the second extraction. In
particular, if the first ball drawn is black (resp. white), the probability of drawing another black
ball is increasing (resp. decreasing) in the total number of balls in the urn.

Then, loosely speaking, if a black ball is drawn first, an ambiguity-averse decision maker will
evaluate the option of continuing with the bet assuming that the urn contains very few balls, and
will therefore choose to opt out—even if this entails a cost.

On the other hand, ex-ante, the probability of drawing a black ball in the second extraction is
1
2 regardless of the initial number of balls; differences in conditional probabilities exactly average
out. Thus, ambiguity does not play a role in the ex-ante evaluation of the bet.

The example also suggests a possible interpretation of deviation from dynamic consistency
(Axiom DC). Note first that, at time 0, a strategy comprises an immediate choice (i.e. b2 or o1)
and a continuation plan. Regardless of their strength, dynamic consistency axioms impose direct
restrictions on the latter only—although, of course, they do have implications for choice as well.

In this example, Axiom DC requires that the decision maker’s time-0 plan respect her time-
1 conditional ranking of choices. For instance, the conditional preference (b2, o2, c) ÂB1 (b2, c, c)
reveals (by Consequentialism) a conditional preference for choosing o2 over c; under DC, this would
imply the ex-ante preference (b2, o2, c) Â (b2, c, c).

Dynamic consistency is appealing if, in the decision maker’s perception, the time-0 optimiza-
tion problem is separable into sub-problems, which can be solved independently. Loosely speaking,

1 It is also possible to show that, for a maxmin EU decision maker, f <E y and f <Ec y does imply f < y. In

other words, dominance (vs. conditional preference) on Ec is only required if y is the dominating option. However,

for a maxmax decision maker, the opposite would be true. The weaker, symmetric form used in the text thus

accommodates both cases, and is sufficient to imply Generalized Bayesian updating.
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time-1 conditional preferences may help ‘construct’ time-0 preferences in a recursive fashion. How-
ever, it is a widely accepted view that ambiguity manifests itself precisely via non-separability of
preferences. Ellsberg (1961) relates ambiguity to violations of Savage’s Sure-Thing Principle; Ep-
stein and Zhang (2001) define it in terms of a specific form of non-separability. Thus, one can at
least expect some tension between dynamic consistency and ambiguity.

From a slightly different perspective, dynamic consistency is appealing if one can argue that the
motivations supporting future choices are also applicable and relevant at time 0, when the decision
maker evaluates her continuation plan. But, in the presence of ambiguity, this is not necessarily the
case. Consider for example the choice of o2 vs. c at the node following B1. The ambiguity-averse
decision maker under consideration is worried that the urn might have initially contained very few
balls (perhaps only one of each color), so that it is now unlikely (if not impossible) that another
black ball will be drawn. She is, of course, aware that the urn might contain a large number of
balls instead, but, since she is ambiguity-averse, this consideration is not relevant to her ex-post
comparison of o2 vs. c. On the other hand, when evaluating o2 vs. c following B1 as part of
the strategy (b2, o2, c), the decision maker is worried that the urn may contain a large number of
balls, which is ‘bad news’ if W1 obtains in the first draw. Again, she is aware of the possibility
that the urn might contain very few balls, but, again, ambiguity aversion renders this consideration
irrelevant.

To summarize, ambiguity may thus influence the decision maker’s evaluation of choices and
plans in different ways at different decision nodes. This may lead to both non-separabilities and
violations of dynamic consistency.

Of course, these observations are not meant to suggest that Axiom DC should be violated,
or will necessarily be violated, in the presence of ambiguity. They merely indicate that, if one
is willing to depart from separability in order to accommodate ambiguity, then one might also
entertain weakening dynamic consistency, for closely related considerations.

Finally, Axiom c-DC does impose some restrictions on the relationship between present plans
and future choices. I suggest that these restrictions involve comparisons that are robust to changes
in the decision maker’s perception of ambiguity upon the arrival of new information.

To clarify, recall that, as noted above, ambiguity manifests itself via non-separabilities; in partic-
ular, the decision maker’s preferences, and hence her beliefs, may reveal complementarities between
certain events (Epstein and Zhang, 2001, §3.1). For instance, in the example under consideration,
the events B1B2 and W1B2 are complementary at time 0: depending on the number of balls in the
urn, their probabilities can be as low as 0 and 1

4 , respectively; however, regardless of the number
of balls in the urn, the probability of B2 = {B1B2,W1B2} is 1

2 . Loosely speaking, the dependency
on the initial number of balls ‘averages out’.
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The first part of Axiom c-DC reflects the assumption that, for an ambiguity-averse decision
maker, complementarities are favorable. Consider for instance the strategy (b2, c, c). Conditional
upon B1, the choice c prescribed by this strategy is unattractive because it leads to a favorable
outcome only if B1B2 obtains; as noted above, an ambiguity-averse decision maker is worried
that B1B2 might be very unlikely, or perhaps impossible. However, ex-ante, the complementarity
between B1B2 and W1B2 (equivalently, the ‘averaging out’ of dependency on the number of balls)
eliminates this concern. Thus, it makes sense to require that, if (b2, c, c) is preferred to some
constant act y conditional upon W1 and pointwise2 on B1, then it should also be preferred to y

unconditionally.
The second part of Axiom c-DC reflects the fact that complementarities may lead to a more

favorable evaluation of an act only by increasing the weight assigned to ‘good’ outcomes. For
instance, conditional upon B1, the strategy (b2, c, c) is unattractive because it delivers the favorable
outcome 3 only if the event B1B2 obtains, and the latter receives zero weight as a consequence of
ambiguity aversion. Ex-ante, the complementarity between B1B2 and W1W2 induces the decision
maker to assign a higher weight to the favorable outcome 3, but this cannot lead to a preference
for (b2, c, c) over the certain outcome 3. Axiom c-DC encodes this requirement.

2.2 Alternative Updating Rules

Gilboa and Schmeidler (1993) consider a class of updating rules for (CEU and) MEU preferences.
Given an unconditional preference relation <, an act h ∈ L, and an event E ∈ Σ, the conditional
preference <E is the h-Bayesian update of < iff, for all acts f, g ∈ L, f <E g if and only if
fEh < gEh.

h-Bayesian updates satisfy Consequentialism, but not necessarily Axiom c-DC. This suggests
that the latter reflects dynamic consistency properties that are specific to generalized Bayesian
updating.

In fact, generalized Bayesian updating may not correspond (for arbitrary unconditional MEU
preferences) to any h-Bayesian update. However, generalized Bayesian updating is also character-
ized by a fixpoint condition that is somewhat reminiscent of h-Bayesian updating. Specifically, the
conditional preference relation <E is derived from < via generalized Bayesian updating if and only
if, for every non-null event E, act f and constant lottery y,

∀f ∈ L, y ∈ Y : f ∼E y ⇔ fEy ∼ y (1)

(cf. Claim 1 in the Appendix).

2Cf. Footnote 1.
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Finally, Gilboa and Schmeidler (1993) show that, for preferences that admit both a CEU and
a MEU representation, the h-Bayesian update rule whereby h = x∗ is the most preferred prize3 in
X characterizes “maximum-likelihood updating” in the MEU framework, and the Dempster-Shafer
rule in the CEU setting. Define the conditional preference <∗

E by postulating that f <∗
E g if and

only if fEx∗ < gEx∗; then, in the MEU representation,

f <∗
F g ⇔ min

q∈C:
q(F )=maxq′∈C q′(F )

∫

F
u(f(s))q(ds|F ) ≥ min

q∈C:
q(F )=maxq′∈C q′(F )

∫

F
u(g(s))q(ds|F ). (2)

In other words, one only considers Bayesian updates of those priors q ∈ C that maximize the
probability of the conditioning event F . Intuitively, while generalized Bayesian updating tends to
“preserve ambiguity”, maximum-likelihood updating tends to reduce it as much as possible. For
this reason, maximum-likelihood and generalized Bayesian updating may be regarded as “polar
opposites”.

2.3 Alternative Approaches to Generalized Bayesian Updating

In this note, DC is weakened essentially by restricting the set of acts, but not the collection of
events, to which it applies. Epstein and Schneider (2001) and Wang (2000) take the opposite route,
and obtain characterizations of recursive versions of the MEU model.

It should be noted that an explicit objective of both papers is to obtain a model of dynamically
consistent choice for MEU decision makers. By way of contrast, the model of dynamic choice
analyzed here is designed to allow for deviations from dynamic consistency.

Here, I discuss only some aspects of their results, (substantially) simplifying and adapting their
definitions and notation to mine.

Fix a MEU preference < and a partition F = {F1, . . . , Fn} of S; and assume that each cell Fi is
non-null. Along with the appropriate form of consequentialism, both Epstein-Schneider and Wang
impose the following version of dynamic consistency:

Axiom 2.2 (F-DC) For all acts f, g ∈ L: if f <Fi g for all i = 1, . . . , n, then f < g. If,

additionally, f ÂFi∗ g for some i∗, then f Â g.

Axiom F-DC is necessary in order to obtain a recursive representation; conversely, recursivity
is necessary in order to ensure that choices are dynamically consistent. Furthermore, the axiom is
sufficiently weak to allow for a rich class of ambiguous beliefs.

However, Axiom F-DC does rule out certain preference patterns, including the modal pref-
erences in the dynamic Ellsberg-style experiment of Cohen et al. (2000). In the example of

3Gilboa and Schmeidler (1993) assume that the set of prizes is bounded for <.
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Subsection 2.1, F-DC is violated for F = {W1, B1}: for instance, (b2, o2, c) ÂW1 (b2, c, c) and
(b2, o2, c) ∼B1 (b2, c, c), but (b2, c, c) Â (b2, o2, c).

The comparison with the result of this note highlights the tension between ambiguity and
dynamic consistency. Epstein and Schneider (2001) and Wang (2000) essentially resolve this tension
by favoring dynamic consistency, at the expense of the ability to represent certain preference patters.
This note resolves it in favor of the latter, by relaxing dynamic consistency.

I conclude with two technical remarks. First, it can be shown that F-DC implies that all
h-Bayesian updating rules discussed in Gilboa and Schmeidler (1993) yield the same conditional
preferences as generalized Bayesian updating. Thus, unlike c-DC, this axiom does not reflect
consistency properties that are unique to generalized Bayesian updating. Also, observe that Wang
(2000) characterizes preferences that admit both a CEU and a MEU representation. This note
deals with general MEU preferences.

Finally, Halpern (1998) provides an alternative, non-decision-theoretic approach to generalized
Bayesian updating. The author defines an update function as a map from sets of prior probability
measures to sets of conditional probability measures; he then exhibits a list of postulates on update
functions that uniquely characterize generalized Bayesian updating.

2.4 CEU preferences

Theorem 1 clearly implies that, given any unconditional MEU preference relation, conditional
preferences that satisfy WO, Cons and c-DC are also MEU preferences. In other words, the class
of MEU preferences is closed under conditioning, if the latter conforms to these axioms.

It turns out that this is not the case for unconditional CEU preferences. More precisely, given an
unconditional CEU preference < and an event E, the conditional preference relation <E identified4

by Axioms WO, Cons and c-DC admits a CEU representation only if the capacity representing
prior beliefs satisfies certain ‘separability’ restrictions. The Appendix provides an example and
further discussion.

Clearly, since axioms in the spirit of F-DC imply5 c-DC, the same considerations hold for
stronger notions of dynamic consistency.

2.5 Independence

Klibanoff (2001) introduces a behavioral definition of “stochastically independent randomizing de-

4By Claim 1, these axioms do uniquely identify a conditional preference relation.
5This is the case under the natural assumptions that all conditional preferences satisfy monotonicity and agree

with the unconditional preference on the set of constant acts.
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vice,” or SIRD, in a setting à la Savage. The proposed notion of stochastic independence is easy
to interpret in view of the axioms adopted here.

Assume that S = S1 × S2, and denote by L1 the subset of acts f ∈ L such that f(s) = f(s′)
whenever s = (s1, s2) and s′ = (s1, s

′
2) for some s1 ∈ S1 and s2, s

′
2 ∈ S2. That is, acts in L1 only

depend on the realization of the first component of the Cartesian state space.
In Klibanoff (2001), S1 is deemed stochastically independent of S2 if, for any act f ∈ L1 and

outcome x, f ∼ x implies that f(S1 × {s2})x ∼ x for all s2 ∈ S2.
If conditional preferences satisfy WO, Cons and c-DC, then Eq. (1) holds, so the condition

proposed by Klibanoff can be restated as follows:

∀s2 ∈ S2, f ∼ x ⇒ f ∼S1×{s2} x.

In words, if the decision maker is unconditionally indifferent between f and x, then she must remain
so upon learning that s2 ∈ S2 has obtained. Hence, the axioms proposed here allow for a simple
and direct interpretation of Klibanoff’s definition.

2.6 Other Comments

The Anscombe-Aumann setup is adopted here merely as a matter of expositional convenience.
The proof of Theorem 1 only relies on the fact that the utility function u is convex-ranged: in
particular, this ensures that, for any act f and non-null event E, there exists a lottery yf such that
u(yf ) = minq∈C

∫
E u(f(s))q(ds|E).

Characterizations of MEU preferences in a Savage-like settings have been provided in Casadesus-
Masanell et al. (1998a,b) and Ghirardato et al (2001). In all three papers, the utility function u is
convex-ranged, so Theorem 1 holds verbatim in the setup adopted by these authors.

A Proof of Theorem 1

Recall that an event E is non-null iff minq∈C q(E) > 0; this implies that, for all q ∈ C, conditional
probabilities q(·|E) are well-defined whenever E is non-null.

Throughout the proof, the notation qf,E denotes the generic minimizer of
∫
E u(f(s))q(ds|E) on

C; if E = S, I simply write qf . Thus, in particular,
∫

u(f(s))qf (ds) ≤
∫

u(f(s))qf,E(ds) and
∫

E
u(f(s))qf (ds|E) ≥

∫

E
u(f(s))qf,E(ds|E). (3)

(2) ⇒ (1): Fix a non-null E ∈ Σ. WO and Cons are obvious, as is c-DC in the trivial cases
with minq∈C q(E) = 1; to see that c-DC holds with E such that minq∈C q(E) ∈ (0, 1), consider first
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the case f <E y, f(s) < y for all s ∈ Ec. Then
∫

u(f(s))qf (ds) = qf (E)
∫

E
u(f(s))qf (ds|E) +

∫

Ec

u(f(s))qf (ds) ≥

≥ qf (E)
∫

E
u(f(s))qf,E(ds|E) +

∫

Ec

u(f(s))qf (ds) ≥
≥ qf (E)u(y) + qf (Ec)u(y) = u(y);

the first inequality follows from Eq. (3). Hence, f < y; moreover, if f ÂE y, the last inequality is
strict, and thus f Â y. Next, consider the case f 4E y, f(s) 4 y for all s ∈ Ec. Then

∫
u(f(s))qf (ds) ≤

∫
u(f(s))qf,E(ds) =

= qf,E(E)
∫

E
u(f(s))qf,E(ds|E) +

∫

Ec

u(f(s))qf,E(ds) ≤
≤ qf,E(E)u(y) + qf,E(Ec)u(y) = u(y),

where the first inequality follows from Eq. (3). Thus, f 4 y, again with strict preference if f ≺E y.

(1) ⇒ (2): fix a non-null E ∈ Σ. Begin with two preliminary claims.

Claim 1: For all acts f and outcomes y, f <E y ⇔ fEy < y and f 4E y ⇔ fEy 4 y.

To see this, suppose f <E y. By Cons, fEy ∼E f <E y. Clearly, fEy(s) ∼ y for all s ∈ Ec.
Thus, by c-DC, we get fEy < y. If instead f ≺E y, the same argument shows that fEy ≺ y, which
proves the first part of the claim. The second is proved similarly.

Claim 2: For all outcomes y, y′, y <E y′ ⇔ y < y.

The preceding claim implies that y <E y′ iff yEy′ < y′; by MP, this is equivalent to πu(y) +
(1 − π)u(y′) ≥ u(y′), where π equals either minq∈C q(E) or maxq∈C q(E). In either case, π > 0
because E is non-null, so the preceding expression reduces to u(y) ≥ u(y′). This implies the claim.

To complete the proof, by Claims 1 and 2 it is sufficient to show that

fEy ∼ y ⇔ u(y) = min
q∈C

∫

E
u(f(s))q(ds|E). (4)

To see that this is sufficient, assume Eq.(4) holds; then, it is always possible to find outcomes yf

and yg such that fEyf ∼ yf and gEyg ∼ yg, respectively. By Claim 1, f ∼E yf and g ∼E yg, so
f <E g iff yf <E yg; by Claim 2, this is equivalent to yf < yg, i.e. to minq∈C

∫
E u(f(s))q(ds|E) ≥

minq∈C

∫
E u(g(s))q(ds|E), as needed.

Now turn to the proof of Eq. (4). Assume fEy ∼ y; then

qfEy(Ec)u(y) + qfEy(E)
∫

E
u(f(s))qfEy(ds|E) =

∫
u(fEy(s))qfEy(ds) = u(y).
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Collecting terms involving u(y) in the r.h.s. and dividing both sides by 1− qfEy(Ec) = qfEy(E) >

0 yields u(y) =
∫
E u(f(s))qfEy(ds|E) ≥ ∫

E u(f(s))qf,E(ds|E); the inequality follows from the
definition of qf,E . On the other hand, by the definition of qfEy,

qf,E(Ec)u(y) + qf,E(E)
∫

E
u(f(s))qf,E(ds|E) =

∫
u(fEy(s))qf,E(ds) ≥

≥
∫

u(fEy(s))qfEy(ds) =

= u(y),

and hence, proceeding as above, u(y) ≤ ∫
E u(f(s))qf,E(ds|E). Thus, u(y) =

∫
E u(f(s))qf,E(ds|E) =

minq∈C

∫
E u(f(s))q(ds|E).

Conversely, assume u(y) = minq∈C

∫
E u(f(s))q(ds|E) =

∫
E u(f(s))qf,E(ds|E). Then

∫
u(fEy(s))qfEy(ds) = qfEy(Ec)u(y) + qfEy(E)

∫

E
u(f(s))qfEy(ds|E) ≥ u(y),

because
∫
E u(f(s))qfEy(ds|E) ≥ u(y) =

∫
E u(f(s))qf,E(ds|E) by the definition of qf,E . On the

other hand,
∫

u(fEy(s))qfEy(ds) ≤
∫

u(fEy(s))qf,E(ds) = qf,E(Ec)u(y)+qf,E(E)
∫

E
u(f(s))qf,E(ds|E) = u(y),

where the inequality follows from the definition of qfEy. Thus, fEy ∼ y.

B Remarks on CEU preferences

Let S = {s1, s2, s3, s4} and Σ = 2S . Also let X = R and u(x) = x for all x ∈ X. Let p be
the uniform probability distribution on S, and define a capacity ν by letting ν(E) = p2(E) for all
E ∈ Σ. Thus, ν and u jointly define a preference relation that lies in the intersection of the MEU
and CEU families.

Now let E = {s1, s2, s3}. I claim that, if <E satisfies WO, Cons and c-DC, then <E does not
admit a CEU representation.

Define two acts f and g by letting f = [22, 2, 1, 0] and g = [11, 5, 1, 0], where [h1, h2, h3, h4]
represents the act h such that h(si) = hi for i = 1, . . . , 4. It may be verified that

fE3 ∼ gE3 ∼ 3;

by Claim 1, this implies that f ∼E g ∼E 3: that is, 3 is the conditional certainty equivalent of
both f and g. Note also that f and g are comonotonic. Hence, if <E is a CEU preference relation,
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1
2f + 1

2g = [16.5, 3.5, 1, 0] ∼E g. But a simple calculation shows that
(

1
2
f +

1
2
g

)
E3 Â 3,

which, by Claim 1 and transitivity, yields 1
2f + 1

2g ÂE g. Thus, <E cannot be a CEU preference.

The example generalizes immediately; the following condition is clearly necessary for the exis-
tence of a CEU representation of <E :

∀f, g ∈ L, y ∈ Y : f, g comonotonic, fEy ∼ gEy ∼ y ⇒
(

1
2
f +

1
2
g

)
Ey ∼ y.

Note that, for the unconditional CEU preference <, comonotonicity implies that, since f and g

are comonotonic, f ∼ g ⇒ 1
2f + 1

2g ∼ g; however, as the example demonstrates, fEy and gEy

may fail to be comonotonic, even if f and g are. Thus, the above condition may be viewed as a
strengthening of comonotonicity that imposes a form of separability of preferences across the events
E, Ec. I conjecture that the condition may also be sufficient for the existence of a conditional CEU
preference.
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