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Abstract

This paper proposes a model of decision under ambiguity deemed vector expected util-

ity, or VEU. In this model, an uncertain prospect, or Savage act, is assessed according to (a)

a baseline expected-utility evaluation, and (b) an adjustment that reflects the individual’s

perception of ambiguity and her attitudes toward it. The adjustment is itself a function of

the act’s exposure to distinct sources of ambiguity, as well as its variability. The key elements

of the VEU model are a baseline probability and a collection of random variables, or adjust-

ment factors, which represent acts exposed to distinct ambiguity sources and also reflect

complementarities among ambiguous events. The adjustment to the baseline expected-

utility evaluation of an act is a function of the covariance of its utility profile with each ad-

justment factor, which reflects exposure to the corresponding ambiguity source.

A behavioral characterization of the VEU model is provided. Furthermore, an updat-

ing rule for VEU preferences is proposed and characterized. The suggested updating rule

facilitates the analysis of sophisticated dynamic choice with VEU preferences.
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1 Introduction

The issue of ambiguity in decision-making has received considerable attention in recent years,

both from a theoretical perspective and in applications to contract theory, information eco-

nomics, finance, and macroeconomics. As Daniel Ellsberg first observed (Ellsberg, 1961), in-

dividuals may find it difficult to assign probabilities to events when available information is

scarce or unreliable. In these circumstances, agents may avoid taking actions whose ultimate

outcomes depend crucially upon the realization of such ambiguous events, and instead opt

for “safer” alternatives. Several decision models have been developed to accommodate these

patterns of behavior: these models represent ambiguity via multiple priors (Gilboa and Schmei-

dler, 1989; Ghirardato et al., 2004), non-additive beliefs (Schmeidler, 1989), second-order prob-

abilities (Klibanoff et al., 2005; Nau, 2006; Ergin and Gul, 2004), relative entropy (Hansen and

Sargent, 2001; Hansen et al., 1999), or variational methods (Maccheroni et al., 2006).

This paper proposes a decision model that incorporates key insights from Ellsberg’s original

analysis, as well as from cognitive psychology and recent theoretical contributions on the be-

havioral implications of ambiguity. According to the proposed model, the individual evaluates

uncertain prospects, or acts, by a process suggestive of anchoring and adjustment (Tversky and

Kahneman, 1974). The “anchor” is the expected utility of the prospect under consideration,

computed with respect to a baseline probability; the “adjustment” depends upon its exposure

to distinct sources of ambiguity, as well as its variation away from the anchor at states that the

individual deems ambiguous. Formally, an act f , mapping each state ω ∈ Ω to a consequence

x ∈X , is evaluated via the functional

V ( f ) = Ep [u ◦ f ]+A
�

�

Ep [ζi ·u ◦ f ]
�

0≤i<n

�

. (1)

In Eq. (1), u : X →R is a von Neumann-Morgenstern utility function; p is a baseline probability

onΩ, and Ep is the corresponding expectation operator; n ≤∞ and, for 0≤ i < n , ζi is a random

variable, or adjustment factor, that satisfies Ep [ζi ] = 0; and the function A : Rn → R satisfies
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A(0) = 0 and A(−φ) = A(φ) for every vector φ ∈ Rn . I call the proposed model vector expected

utility, or VEU. This paper provides a behavioral characterization of preferences that conform

to the VEU model; it also illustrates how tractable specifications of VEU preferences can reflect

a variety of attitudes toward ambiguity, and also facilitate the analysis of dynamic choice.

The remainder of this Introduction elaborates upon key features of the proposed model.

Anchoring and Adjustment. Hillel Einhorn and Robin Hogarth (Einhorn and Hogarth, 1985,

1986; Hogarth and Einhorn, 1990) were the first to propose that evaluating prospects by means

of a baseline prior, adjusted to account for ambiguity, was a plausible approach to decisions

under ambiguity. The cited papers explore the implications of this strategy in a series of ex-

periments, dealing primarily with choice among binary lotteries. Ellsberg’s seminal paper also

suggests that, when faced with an ambiguous choice situation, “by compounding various prob-

ability judgments of various degrees of reliability, [the individual] can eliminate certain proba-

bility distributions over states of nature as ‘unreasonable,’ assign weights to others and arrive at

a composite ‘estimated’ distribution” (Ellsberg, 1961, p. 661; italics added for emphasis). Other

authors have emphasized reference priors: see §5.1.

Adjustment factors ζi and eventwise complementarity. Decomposing the adjustment term

in Eq. (1) into a suitable function A(·) and a collection (ζi )0≤i<n of adjustment factors provides

a direct, explicit representation of eventwise complementarity—a key behavioral feature of am-

biguous events highlighted in the analysis of Epstein and Zhang (2001). To illustrate this notion

and provide a simple application of the decision model of Eq. (1), consider Ellsberg’s three-

color urn experiment. A ball is to be drawn from an urn containing 30 red balls, and 60 blue and

green balls; the proportion of blue vs. green balls is unknown. Denote by f R , f B , f RG, f BG the acts

that yield $10 if a red (resp. blue, red or green, blue or green) ball is drawn, and $0 otherwise.

As reported by Ellsberg, the modal preferences are f R � f B and f RG ≺ f BG . Epstein and Zhang

suggest that “[t]he intuition for this reversal is the complementarity between G and B—there

is imprecision regarding the likelihood of B , whereas {B ,G } has precise probability 2
3

” (Epstein
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and Zhang, 2001, p. 271). The proposed model enables a representation of the modal prefer-

ences in this example that closely matches this interpretation: let p be uniform on the state

space Ω= {R ,G , B}, assume w.l.o.g. that u is linear, and let ζ0 be the random variable given by

ζ0(R) = 0, ζ0(B ) = 1, ζ0(G ) =−1.

Finally, let A(φ) = −|φ| for every φ ∈ R. Thus, in this example, n = 1: one-dimensional ad-

justment factors suffice. The interpretation of the adjustment factor ζ0 is as follows: since

A
�

p ({G })ζ0(G )
�

= A
�

p ({B})ζ0(B )
�

, G and B are “equally ambiguous”; however, ζ0(G ) =−ζ0(B ),

i.e. their ambiguities “cancel out.” This algebraic cancellation corresponds to Epstein and

Zhang’s notion of complementarity. It is then easily verified that V ( f R ) = 10
3

, V ( f B ) = 0, V ( f RG) =
10
3

and V ( f BG) = 20
3

, consistently with the preferences indicated above.1

Adjustment factors ζi and sources of ambiguity. Each factor ζi encodes a particular pattern

of complementarity, and thus reflects a specific aspect of ambiguity. Different considerations

lead to a similar intuition. Since Ep [ζi ] = 0 for all i , Eq. (1) can be rewritten in the form

V ( f ) = Ep [u ◦ f ]+A
�

�

Covp (ζi , u ◦ f )
�

0≤i<n

�

, (2)

where Covp denotes covariance with respect to the baseline probability p . This suggests the

following interpretation: each adjustment factor ζi is a “model” of ambiguous utility profile,

whose evaluation is affected by a distinct2 source of ambiguity; the adjustment applied to the

baseline evaluation of an act f depends upon the similarity (as measured by covariance) of its

utility profile u ◦ f with each factor ζi , and hence upon its exposure to the corresponding source

of ambiguity. It may be useful to draw a parallel with factor-pricing models in finance: for

instance, in the capital-asset pricing model (cf. Cochrane, 2001, §9.1), the expected return on

an asset is a function of the covariance of its returns with the returns on the “wealth portfolio.”3

1For instance, V ( f RG) = 10 · 2
3
−
�

�0 ·10 · 1
3
+1 ·0 · 1

3
+(−1) ·10 · 1

3

�

�= 20
3
−
�

�− 10
3

�

�= 10
3

.

2In a “sharp” VEU representation, the factors ζi are orthonormal; this emphasizes the interpretation as distinct

(uncorrelated) sources of ambiguity. See Defs. 1 and 2 for details.

3I thank Adam Szeidl for suggesting this analogy and the term “factor” to indicate the random variables ζi .

4



The construction of the adjustment factors in the proof of the characterization theorem

(Theorem 1) supports this interpretation: as illustrated in Sec. 4.1, (ζi )0≤i<n is an orthonormal

basis for a subspace of “purely ambiguous” acts, and the expectations Ep [ζi ·u ◦ f ] =Covp [ζi , u ◦

f ] are the Fourier coefficients of the projection of u ◦ f onto this subspace.

Adjustments and variability. As noted above, adjustments to the baseline EU evaluation of

an act are also related to the variability, or dispersion, of its utility profile. This can be attractive,

as many economic applications of ambiguity-sensitive decision models show that interesting

patterns of behavior can arise when agents wish to reduce outcome or utility variability.4 In-

deed, Schmeidler (1989) suggests that “ambiguity aversion” can be defined as a preference for

“smoothing or averaging utility distributions” (Schmeidler, 1989, p. 582); see also Chateauneuf

and Tallon (2002).

The VEU representation relates adjustments to utility variability via two complementary

channels. One is immediate from Eq. (2): the covariance of ζi and u ◦ f clearly depends upon

the standard deviation of u ◦ f with respect to the baseline prior p .

The second channel deserves further discussion. Call two acts f and f̄ complementary if

their utility profiles u ◦ f , u ◦ f̄ satisfy u ◦ f̄ = c − u ◦ f for some real constant c : Definition 3

provides a simple behavioral characterization. Notice that the utility profiles of f and f̄ have

the same standard deviation; indeed, virtually all classical measures of variability or dispersion

for random variables5 consider u ◦ f and u ◦ f̄ = c − u ◦ f to be just as dispersed, because

such measures are invariant to translation and sign changes. To relate adjustments to utility

variability, the VEU representation incorporates the same invariance property: complementary

acts receive the same adjustment. This follows from the symmetry property of the adjustment

functional A: for every vector φ, A(φ) = A(−φ).6 Behaviorally, this property corresponds to the

4See e.g. Bose et al. (2006), Epstein and Schneider (2007), Ghirardato and Katz (2006), or Mukerji (1998).

5For instance the mean absolute deviation, the range and (for continuous random variables) the interquantile

range, Gini’s mean difference (cf. e.g. Yitzhaki, 1982), or the peakedness ordering (Bickel and Lehmann, 1976).

6Notice that, if f and f̄ are complementary, then Cov(ζi , u ◦ f̄ ) =−Cov(ζi , u ◦ f ) for all ζi .
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main novel axiom in this paper, Complementary Independence.

Behavioral Identification of the baseline prior p . One additional consequence of this prop-

erty, and indeed of the Complementary Independence axiom, deserves special emphasis. Sym-

metry implies that adjustment terms cancel out when comparing two complementary acts us-

ing the VEU representation in Eq. (1); thus, the ranking of complementary acts is effectively

determined by their baseline EU evaluation. Conversely, preferences over complementary acts

uniquely identify the baseline prior: there is a unique probability p and a cardinally unique

utility function u such that, for all complementary acts f and f̄ , f ¼ f̄ iff Ep [u ◦ f ]≥ Ep [u ◦ f̄ ].

Thus, baseline priors have a simple behavioral interpretation in the present setting: they provide

a representation of the individual’s preferences over complementary acts. This implies that, un-

der Complementary Independence, the baseline prior is behaviorally identified independently

of other elements of the VEU representation.

Flexibility and Dynamics. Finally, the functional representation in Eq. (1) is flexible enough

to accommodate a broad range of attitudes towards ambiguity, while at the same time allow-

ing for numerical and analytical tractability. The preferences in the three-color-urn example

display ambiguity aversion as defined by Schmeidler (1989); correspondingly, the adjustment

function A is non-positive and concave. VEU preferences featuring a non-positive and con-

cave adjustment function A are variational (Maccheroni et al., 2006): see Corollary 2 and §5.1.

But VEU preferences allow for considerably more general ambiguity attitudes. For instance, as

shown in Sec. 4.3, a non-positive, but not necessarily concave adjustment function character-

izes “comparative ambiguity aversion” in the sense of Ghirardato and Marinacci (2002); a parsi-

monious VEU representation with this property can, for instance, accommodate the interesting

preference patterns highlighted by Machina (in press) (such patterns are inconsistent with de-

cision models such as maxmin expected utility, variational preferences, or smooth-ambiguity

averse preferences: cf. Baillon et al., 2008). Indeed, the VEU model can accommodate even

more complex attitudes towards ambiguity—for instance, stake-dependent attitudes: the pre-

vious version of this paper (Siniscalchi, 2007) provides an example.
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This paper also proposes a possible updating rule for VEU preferences, and provides a be-

havioral characterization. In the covariance formulation of the VEU model in Eq. (2), the pro-

posed rule amounts to replacing expectations and covariances Ep , Covp with their conditional

counterparts Ep [·|E ], Covp (·, ·|E ).7 Section 4.4 provides a behavioral characterization of this up-

dating rule; it also illustrates how this rule enables a recursive analysis of sophisticated choice

in dynamic problems.

The paper is organized as follows. Section 2 is devoted to preliminaries. Section 3 presents

the main characterization result. Section 4 analyzes the components of the VEU representation

(§4.1–4.3), and discusses updating and dynamic choice (§4.4, 4.5). Section 5 discusses the re-

lated literature (§5.1), as well as additional features and extensions of the VEU representation

(§5.2). All proofs, as well as additional technical results, are in the Appendix. Supplementary

Material is also available online.

2 Notation and Definitions

The following notation is standard. Consider a set Ω (the state space) and a sigma-algebra Σ of

subsets ofΩ (events). It will be useful to assume that the sigma-algebraΣ is countably generated:

that is, there is a countable collection S = (Si )i≥0 such that Σ is the smallest sigma-algebra

containing S . All finite and countably infinite sets, as well as all Borel subsets of Euclidean

n-space, and more generally all standard Borel spaces (Kechris, 1995) satisfy this assumption.

Denote by B0(Σ) the set of Σ-measurable real functions with finite range, and by B (Σ) its

sup-norm closure. The set of countably additive probability measures onΣ is denoted by ca1(Σ).

For any probability measure π ∈ ca1(Σ) and function a ∈ B (Σ), let Eπ[a ] =
∫

Ω
a dπ, the standard

Lebesgue integral of a with respect to π. Finally, a ◦b :X →Z denotes the composition of the

functions b :X →Y and a :Y →Z .

7A slight modification is required to ensure monotonicity: see Sec. 4.4 for details.
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Additional notation is useful to streamline the definition and analysis of the VEU represen-

tation. Given m ∈Z+∪{∞} and a finite or countably infinite collection z = (z i )0≤i<m of elements

of B (Σ), let Eπ[z · a ] = (Eπ[z i ·a ])0≤i<m if m > 0, and Eπ[z · a ] = 0 if m = 0. For any collection

F ⊂ B (Σ), let E (F ;π, z ) = {Eπ[z ·a ]∈Rm : a ∈ F }. Finally, let 0m denote the zero vector in Rm .

Turn now to the decision setting. Consider a convex set X of consequences (outcomes,

prizes). As in Anscombe and Aumann (1963), X could be the set of finite-support lotteries

over some underlying collection of (deterministic) prizes, endowed with the usual mixture op-

eration. Alternatively, the set X might be endowed with a subjective mixture operation, as in

Casadesus-Masanell et al. (2000) or Ghirardato et al. (2003).

An act is a Σ-measurable function from Ω to X . Let F0 be the set of simple acts, i.e. acts

with finite range. With the usual abuse of notation, denote by x the constant act assigning the

consequence x ∈ X to eachω ∈Ω. The main object of interest is a preference relation ¼ onF0;

its symmetric and asymmetric parts are denoted ∼ and � respectively.

As is the case for other decision models, VEU preferences on F0 have a unique extension

to a class of non-simple, bounded acts. This extension is of particular interest in this paper:

Proposition 1 uses it to characterize the minimum number of adjustment factors required to

provide a VEU representation of a given preference relation. Thus, following Schmeidler (1989),

denote byFb the set of acts f for which there exist x ,x ′ ∈X such that x ¼ f (ω)¼ x ′ for allω∈Ω.

Finally, given a function u : X → R and a set F of acts, let u ◦F = {u ◦ f ∈ B (Σ) : f ∈ F}.

The formal definition of the VEU representation can now be provided. For the reasons just

mentioned, the definition accommodates preferences on eitherF0 orFb .

Definition 1 Let F denote either F0 or Fb . A tuple (u , p , n ,ζ, A) is a VEU representation of a

preference relation¼ onF if

1. u : X →R is non-constant and affine, p ∈ ca1(Σ), n ∈Z+ ∪{∞} and ζ= (ζi )0≤i<n ;

2. for every 0≤ i < n , ζi ∈ B (Σ) and Ep [ζi ] = 0.

3. A : E (u ◦F ; p ,ζ)→R satisfies A(0n ) = 0 and A(ϕ) = A(−ϕ) for all ϕ ∈ E (u ◦F ; p ,ζ);
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4. for all a ,b ∈ u ◦F , a (ω)≥b (ω) for allω∈Ω implies Ep [a ]+A(Ep [ζ·a ])≥ Ep [b ]+A(Ep [ζ·b ]);

5. for every pair of acts f , g ∈F ,

f ¼ g ⇔ Ep [u ◦ f ]+A
�

Ep [ζ ·u ◦ f ]
�

≥ Ep [u ◦ g ]+A
�

Ep [ζ ·u ◦ g ]
�

. (3)

Conditions 1 and 5 are self-explanatory. Condition 2 ensures that the “adjustment factors”

ζi are bounded and reflect the fact that constant acts are not subject to ambiguity. The general

representation allows for at most countably infinitely many adjustment factors; moreover, by

Theorem 1, if the state space Ω is finite, then a finite n suffices.

In addition to the normalization A(0n ) = 0, Condition 3 formalizes the central symmetry

assumption discussed in the Introduction (cf. in particular Footnote 6). Condition 4 ensures

monotonicity of the VEU representation. Simple examples show that monotonicity necessarily

involves a joint restriction on p , ζ and A.8 In many cases of interest, easy-to-check necessary

and sufficient conditions can be provided: see Appendix A for details.

The functional A can be extended to all of Rn consistently with the symmetry requirement

of Condition 3: for instance, let A(φ) = 0 for all φ ∈ Rn \ E (u ◦F ; p ,ζ).9 The values assumed

by A at such points are obviously irrelevant to the representation of preferences. Restricting the

domain of A to E (u ◦F ; p ,ζ) as in Def. 1 simplifies the statement of some results.

It is useful to point out that the functional A, and hence the entire VEU representation, is not

required to be positively homogeneous. This makes it possible to accommodate, for instance,

members of the “variational preferences” family studied by Maccheroni et al. (2006) that satisfy

the key symmetry requirement of this paper; furthermore, it enables differentiable specifica-

tions of the adjustment functional A, which would otherwise be precluded.

8Refer to the three-color-urn example in the Introduction, and let f ′B be a bet that yields 20 dollars if B obtains;

since A(ϕ) =−|ϕ|, A(Ep [ζ0 · f ′B ])< A(Ep [ζ0 · f B ]), even though Ep [ζ0 · f ′B ] =
20
3
> 10

3
= Ep [ζ0 · f B ]. Taking A(ϕ) = |ϕ|

instead shows that no general assumption may be made regarding the direction of monotonicity for A alone.

9Note that a ∈ u ◦F implies [infΩa + supΩa ]−a ∈ u ◦F , soφ ∈ E (u ◦F ; p ,ζ) implies −φ ∈ E (u ◦F ; p ,ζ).
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Observation: equivalent formulations. One can view the collectionζ= (ζi )0≤i<n as a vector-

valued function, and the corresponding n-vector
�

Ep [ζi ·u ◦ f ]
�

0≤i<n
as its vector expectation

(where integration is in the Bochner sense: cf. Aliprantis and Border, 1994, §11.8).10

Each adjustment factor ζi can also be interpreted as a Radon-Nikodym derivative: that is,

one can define a corresponding signed measure m i : Σ → R by letting m i (E ) = Ep [ζi · 1E ] for

each E ∈Σ. An earlier version of this paper (Siniscalchi, 2007) employed this formulation.

Finally, it is convenient to define a notion of “parsimonious” VEU representation; the objec-

tive is to remove two types of redundancy. First, one or more of the functions (ζi )0≤i<n in Def.

1 may be linear combinatiors of other adjustment factors. In the proposed parsimonious VEU

representation, the collection (ζi )0≤i<n is instead required to be orthonormal (hence a fortiori

linearly independent) relative to the inner product defined by the baseline prior p : that is, for

all i , j such that 0 ≤ i < n and 0 ≤ j < n , Ep [ζiζj ] = 1 if i = j and Ep [ζiζj ] = 0 otherwise. This

also suggests that the adjustment factors ζi reflect distinct, mutually uncorrelated “sources of

ambiguity.” The normalization Ep [ζ2
i ] = 0 is mainly for convenience.

The second type of redundancy is motivated by the decision-theoretic notion of “crisp acts”

due to Ghirardato et al. (2004). Again, let F denote either F0 or Fb . Say that an act f ∈ F is

crisp if, for every x ∈X that satisfies f ∼ x , and for every g ∈F0
11 and λ∈ (0, 1],

λg +(1−λ)x ∼λg +(1−λ) f . (4)

That is, a crisp act “behaves like its certainty equivalent”: in particular, as discussed in Ghi-

rardato et al. (2004), it does not provide a “hedge” against the ambiguity that influences any

other act g .12 Constant acts are obviously crisp; correspondingly, any VEU representation of

10If n =∞, one must normalize the factors ζi so that they are uniformly bounded; one then views ζ= (ζi )0≤i<∞

as a function with values in the Banach space `∞.

11Under the axioms in the next section, restricting attention to g ∈F0 is without loss even for f ∈F =Fb .

12The present definition is weaker than its counterpart in Ghirardato et al. (2004): in particular, it allows for pref-

erences that do not have a positively homogeneous representation. The two definitions are equivalent if positive
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the preference¼ assigns them the zero adjustment vector. Since crisp acts behave like constant

acts, it seems desirable to ensure that their associated adjustment vector also be zero.

Definition 2 LetF denote eitherF0 orFb . A VEU representation (u , p , n ,ζ, A) of a preference

relation¼ onF is sharp if (ζi )0≤i<n is orthonormal and, for any crisp act f ∈F , Ep [ζ·u ◦ f ] = 0n .

As an immediate implication, note that, for an EU preference, all acts are crisp; thus, the unique

sharp VEU representation of an EU preference features n = 0, i.e. an empty adjustment tuple.

It is sometimes convenient to employ VEU representations that are not sharp: see, for in-

stance, the analysis of updating in Sec. 4.4. However, adjustment factors in a sharp representa-

tion can be interpreted as independent sources of ambiguity: see Sec. 4 for details.

3 Axiomatic Characterization of VEU preferences

Mixtures of acts are taken pointwise: for every pair of acts f , g and any α ∈ [0, 1], α f + (1−α)g

is the act assigning the consequence α f (ω)+ (1−α)g (ω) to each stateω∈Ω.

As in the preceding section, letF denote eitherF0 orFb . Axioms 1–4 are standard:

Axiom 1 (Weak Order) ¼ is transitive and complete onF .

Axiom 2 (Monotonicity) For all acts f , g ∈F , f (ω)¼ g (ω) for allω∈Ω implies f ¼ g .

Axiom 3 (Continuity) For all acts f , g , h ∈ F , the sets {α ∈ [0, 1] : α f + (1−α)g ¼ h} and {α ∈

[0, 1] : h ¼α f +(1−α)g } are closed.

Axiom 4 (Non-Degeneracy) Not for all f , g ∈F , f ¼ g .

Next, a weak form of the Anscombe and Aumann (1963) Independence axiom, due to Mac-

cheroni et al. (2006), is assumed.

homogeneity holds.

11



Axiom 5 (Weak Certainty Independence) For all acts f , g ∈F , x , y ∈X and α∈ (0, 1): α f +(1−

α)x ¼αg +(1−α)x implies α f +(1−α)y ¼αg +(1−α)y .

Loosely speaking, preferences are required to be invariant to translations of utility profiles, but

not to rescaling (note that the same weight α is employed when mixing with x and with y ).

As discussed in Maccheroni et al. (2006), this axiom weakens Gilboa and Schmeidler (1989)’s

Certainty Independence, which requires invariance to both translation and rescaling. Since Cer-

tainty Independence will be referenced below, it is reproduced here, even though it is not as-

sumed in Theorem 1.

Axiom 5∗ (Certainty Independence) For all acts f , g ∈ F , x ∈ X and α ∈ (0, 1): f ¼ g implies

α f +(1−α)x ¼αg +(1−α)x .

To ensure that the baseline prior is countably additive, adopt the following axiom, which

is in the spirit of Arrow (1974).13 A similar representation could be obtained without it, but it

would not be possible to restrict attention to finite or countably-infinite collections of adjust-

ment factors. To state the axiom, for every pair x , y ∈ X and E ∈ Σ, denote by x E y the act that

yields x at every stateω∈ E and y elsewhere.

Axiom 6 (Monotone Continuity) For all sequences (Ak )k≥1 ⊂Σ such that Ak ⊃ Ak+1 and
⋂

k Ak =

;, and all x , y , z ∈X such that x � y � z , there is k ≥ 1 such that z Ak x � y � x Ak z .

In order to state the novel axioms in this paper, a preliminary definition is required. Intu-

itively, it identifies pairs of acts whose utility profiles are “mirror images.”

Definition 3 Two acts f , f̄ ∈F are complementary if and only if, for any two statesω,ω′ ∈Ω,

1

2
f (ω)+

1

2
f̄ (ω)∼

1

2
f (ω′)+

1

2
f̄ (ω′).

If two acts f , f̄ ∈F are complementary, then ( f , f̄ ) is referred to as a complementary pair.

13See also Chateauneuf et al. (2005) and Ghirardato et al. (2004).
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If preferences over X can be represented by a von Neumann-Morgenstern utility function u (·)—

which is the case under Axioms 1 through 5—then the utility profiles of the acts f and f̄ , de-

noted u ◦ f and u ◦ f̄ respectively, satisfy u ◦ f̄ = k − u ◦ f for some constant k ∈ R. Thus,

complementarity is the preference counterpart of algebraic negation.

Notice that, if ( f , f̄ ) and (g , ḡ ) are complementary pairs of acts, then, for any weight α ∈

[0, 1], the mixtures α f +(1−α)g and α f̄ +(1−α)ḡ are themselves complementary.

The Complementary Independence axiom may now be formulated.

Axiom 7 (Complementary Independence) For any two complementary pairs ( f , f̄ ) and (g , ḡ )

inF , and all α∈ [0, 1]: f ¼ f̄ and g ¼ ḡ imply α f +(1−α)g ¼α f̄ +(1−α)ḡ .

Axiom 7 formalizes the behavioral implications of the key cognitive assumption underly-

ing VEU preferences: the decision-maker’s assessment of an act takes into account (i) a base-

line evaluation, consistent with EU, as well as (ii) its utility variability around this baseline.14

To elaborate, for EU preferences, the property “ f ¼ f̄ and g ¼ ḡ imply that α f + (1− α)g ¼

α f̄ + (1− α)ḡ ” holds regardless of whether or not f , f̄ and g , ḡ are pairwise complementary;

indeed, under Axioms 1—4, this property is equivalent to the standard Independence axiom,

and characterizes EU preferences. Next, recall that complementary acts are “mirror images” of

each other; hence, as noted in the Introduction, virtually all classical measures of dispersion

attribute them the same utility variability. Under the cognitive assumptions considered here,

this implies that complementary acts are effectively ranked according to their baseline evalua-

tion, which is assumed consistent with EU. In Axiom 7, this applies to the ranking of f vs. f̄ , g

vs. ḡ and, because complementarity is preserved by mixtures, α f + (1−α)g vs. α f̄ + (1−α)ḡ .

These rankings must be consistent with EU, which leads to the requirement in Axiom 7.

A final assumption is needed:

14Equivalently, its outcome variability, but taking prefereces over prizes into account.
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Axiom 8 (Complementary Translation Invariance) For all complementary pairs ( f , f̄ ) inF and

all x , x̄ ∈X with f ∼ x and f̄ ∼ x̄ : 1
2

f + 1
2

x̄ ∼ 1
2

f̄ + 1
2

x .

Axiom 8 ensures that complementary acts are subject to the same adjustment to their re-

spective baseline evaluations. Observe first that, since f and f̄ in the Axiom are complemen-

tary, so are the mixtures 1
2

f + 1
2

x̄ and 1
2

f̄ + 1
2

x ; hence, these acts are evaluated according to their

baseline EU evaluation. Consequently, the indifference between these mixtures has a “trade-

off” interpretation: the difference between the baseline EU evaluation of f and f̄ is equal to the

utility difference between x and x̄ ; since f ∼ x and f̄ ∼ x̄ , it also equals the difference between

the overall VEU evaluations of f and f̄ . Hence, f and f̄ are subject to the same adjustment.

Complementary Translation Invariance is much less central to the characterization of VEU

preferences than Complementary Independence (Axiom 7). Indeed, Axiom 8 is actually redun-

dant in two important cases. First, Axiom 8 is implied by Axioms 1–5 and 7 if the utility function

representing preferences over X is unbounded either above or below,15 as is the case for the ma-

jority of monetary utility functions employed in applications. Second, regardless of the utility

function, if preferences satisfy Axioms 1–4 and 5∗ (instead of Axiom 5), then it is trivial to verify

that the indifference required by Axiom 8 holds regardless of whether or not f and f̄ are com-

plementary; in other words, Axiom 8 is automatically satisfied by all “invariant biseparable”

preferences (Ghirardato et al., 2004).16 Thus, Axiom 8 is only required to allow for preferences

that simultaneously violate Axiom 5∗ and are represented by a bounded utility function on X .

The main result of this paper can now be stated.

Theorem 1 Consider a preference relation¼ onF0. The following statements are equivalent:

(1) The preference relation¼ satisfies Axioms 1–8 on L =F0.

15A proof is available upon request. Well-known axioms ensure that utility is unbounded: see e.g. Maccheroni

et al. (2006).

16This class includes for instance all multiple-priors, α-maximin, and Choquet-Expected Utility preferences.
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(2)¼ admits a sharp VEU representation (u , p , n ,ζ, A).

(3)¼ admits a VEU representation (u , p , n ,ζ, A).

In (2), if (u ′, p ′, n ′,ζ′, A ′) is another VEU representation of ¼, then p ′ = p , u ′ = αu +β for some

α,β ∈Rwith α> 0, and there is a linear surjection T : E (u ′ ◦F0; p ,ζ′)→E (u ◦F0; p ,ζ) such that

∀a ′ ∈ u ′ ◦F0, T
�

Ep [ζ′ ·a ′]
�

=
1

α
Ep [ζ ·a ′] and A ′

�

Ep [ζ′ ·a ′]
�

=αA
�

T
�

Ep [ζ′ ·a ′]
��

. (5)

If (p , u ′, n ′,ζ′, A ′) is also sharp, then T is a bijection. Finally, if Ω is finite, then n ≤ |Ω| −1.

Corollary 1 If a preference relation on F0 satisfies satisfies Axioms 1–8, then it has a unique

extension toFb that satisfies the same axioms and admits a sharp VEU representation onFb .

The primary message of Theorem 1 is the equivalence of (1) and (2): Axioms 1–8 are equiva-

lent to the existence of a sharp VEU representation. However, as noted in Sec. 2, it is sometimes

convenient to employ VEU representations that are not sharp. Theorem 1 ensures that the re-

sulting preferences will still satisfy Axioms 1–8. To put it differently, if a preference admits a VEU

representation, then it also admits a sharp VEU representation.

The second part of Theorem 1 indicates the uniqueness properties of the VEU representa-

tion. The baseline probability measure p is unique, and the adjustment factors ζ and function A

are unique up to transformations that preserve both the affine structure of the set E (u ◦F0; p ,ζ)

of adjustment vectors, as well as the actual adjustment associated with each element in that set.

To elaborate, recall that the role of the adjustment factors ζ is to capture the patterns of

“complementarity” among different events; for instance, if ambiguity about two events E and

F cancels out, then Ep [ζ ·1E∪F ] = 0. In order for another tuple of random variables ζ′ to capture

the same complementarities as ζ, it must be the case that also Ep [ζ′ ·1E∪F ] = 0. Similarly, com-

plementarities among adjustment vectors associated with different acts must be preserved. The

existence of a functional T with the properties listed in Theorem 1 ensures this. As Example 1

illustrates, this imposes considerable restrictions on transformations of a given adjustment that

can be deemed inessential.
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Example 1 Refer to the ambiguity-averse VEU preferences described in the Introduction in the

context of the Ellsberg Paradox; note that E (u ◦F0; p ,ζ) is the entire real line.

Now consider a two-element tuple ζ′ = (ζ′0,ζ′1) and let A ′(ϕ) = −
p

ϕ2
1 +ϕ

2
2 for all ϕ ∈ E (u ◦

F0; p ,ζ′). Suppose T is as in Theorem 1. Then A ′ = A ◦T implies that, in particular, A ′( 1
3
ζ′(R)) =

A(T ( 1
3
ζ′(R))) = A( 1

3
ζ(R)) = 0, so ζ′(R) = 0∈R2. Similarly, T ( 1

3
ζ′(B )+ 1

3
ζ′(G )) = 1

3
ζ(B )+ 1

3
ζ(G ) = 0,

so A ′ = A ◦ T implies A ′( 1
3
ζ′(B ) + 1

3
ζ′(G )) = 0, and so ζ′(B ) = −ζ′(G ). Finally, A ′( 1

3
ζ′(B )) = 1

3
=

A ′( 1
3
ζ′(G )). In other words, ζ′ encodes exactly the same information about B and G as ζ: the

two events are equally ambiguous, but their ambiguities “cancel out”. Of course, ζ does so in

a more parsimonious way. Thus, intuitively, ambiguity in the Ellsberg Paradox is really “one-

dimensional”, regardless of the particular vector representation one chooses. The analysis in

§4.1 expands upon this observation.

4 Analysis of the Representation and Additional Results

4.1 Heuristic construction of the representation

The VEU representation is constructed in three key steps. First, a preliminary numerical rep-

resentation is obtained invoking results from Maccheroni et al. (2006): see 6 in Proposition 6.

Second, the baseline prior p is identified: Lemma 1 (cf. also Observation 1) implies that, if Ax-

ioms 7 and 8 hold,17 there exists a unique probability p such that, for every complementary pair

( f , f̄ ), f ¼ f̄ iff Ep [u ◦ f ]≥ Ep [u ◦ f̄ ], as was claimed in the Introduction. By Axiom 6, p is count-

ably additive (Lemma 5). The third key step is the construction of the adjustment factors ζi and

the function A. To provide some intuition, it is useful to focus once again on the three-color-urn

problem of the Introduction and Example 1.

Recall that the prior p on the state space Ω = {R ,G , B} is assumed to be uniform. Figure 1

depicts the set F0 of acts in the problem under consideration; assuming linear utility for sim-

17As noted above, Axiom 8 need not be imposed explicitly in most cases of interest for applications.
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Figure 1: Crisp and Non-Crisp acts in the Ellsberg Paradox

plicity, this is identified with Euclidean space R3. The upward-sloping plane in the picture cor-

responds to the set of crisp acts; in this example, ambiguity concerns the relative likelihood of

G vs. B , so intuitively an act h is crisp if and only if h(G ) = h(B ). Denote this set by C , and by

NC the orthogonal complement of C relative to the inner product defined by the baseline prior

p : that is, g ∈ NC if and only if Ep [g ·h] = 0 for all h ∈ C . In Fig. 1, this set corresponds to the

line perpendicular to C and going through the origin.18 By definition, elements of NC are un-

correlated with any crisp act, and thus may be thought of as “purely ambiguous”; the acronym

NC stands for the more neutral term non-crisp. In this example, both C and NC are easily seen

to be closed subsets of R3. For the general case, see Lemma 6 in the Appendix.

It is now possible to define the collection ζ = (ζi )0≤i<n as an orthonormal basis for the set

NC. In this example, NC is one-dimensional (recall Ex. 1), so ζ consists of a single vector;

Fig. 1 depicts one of only two possible choices for ζ (the other is the negative of the vector

indicated in the picture). Also observe that, because it must lie on NC, ζ= (ζ0)must necessarily

18Since p is uniform, in this example the elements of NC are also orthogonal to C in the usual Euclidean sense.
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satisfy ζ0(G ) = −ζ0(B ). Thus, the key feature of the adjustment factor used to rationalize the

modal preferences in the Ellsberg paradox actually arises endogenously from this construction,

once the set of crisp acts has been specified. The existence of an orthonormal basis in the

general case is a standard property of Hilbert spaces; furthermore, under the assumption that

the sigma-algebra Σ is countably generated, such a basis is countable.

Finally, consider an act f ; its projections g and h onto NC and C respectively are uniquely

defined; this is immediate in the example, and follows from the Orthogonal Decomposition

Theorem (cf. e.g. Dudley, 1989), p. 125 in the general case. One can thus think as g and h

as the “purely ambiguous” and “crisp” parts of the act f . This decomposition has two useful

consequences.

First, it can be shown that the difference between the individual’s evaluation (equivalently,

due to the assumption of linear utility, the certainty equivalent) of the act f and its baseline ex-

pectation Ep [ f ] depends solely upon the projection g of f on NC—that is, solely on its “ambigu-

ous part.” Second, the projection of f on NC has a representation in terms of the adjustment

factor ζ0: in particular, g = Ep [ζ0· f ]·ζ0. In the general case, the expectations Ep [ζi ·u ◦ f ], viewed

as inner products, are the Fourier coefficients of f relative to the orthonormal basis ζ= (ζi )0≤i<n

of the Hilbert space NC. Taken together, these facts lead to the VEU representation in Eq. (3).

4.2 Characterization of the number n of adjustment factors

The cardinality n of the orthonormal basis ζ has a direct behavioral characterization. A notion

of “linear combination” of acts, i.e. a “mixture” that allows for negative weights, is required.

Complementarity (Def. 3) enables a straightforward formulation of this notion: a combination

of a collection of acts f 1, . . . , f m ∈ Fb is a mixture act α1 g 1+ . . .+αm g m ∈ Fb , where
∑

i αi = 1

and, for every i = 1, . . . , m , αi ∈ [0, 1] and either g i = f i or g i is complementary to f i .

Proposition 1 Consider a preference relation¼onF0 that satisfies Axioms 1–4, and let (u , p , n ,ζ, A)

be a VEU representation of its unique extension toFb .
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1. for every finite m > n , every tuple f 1, . . . , f m ∈Fb admits a crisp combination.

If, additionally, (u , p , n ,ζ, A) is sharp, then

2. for every finite m ≤ n , there is a tuple f 1, . . . , f m ∈Fb that admits no crisp combination;

3. for every other VEU representation (u ′, p ′, n ′,ζ′, A ′) of the extension of¼ toFb , n ′ ≥ n .

4. n = 1 if and only if ¼ is not consistent with EU and, for all f , g , ḡ ∈Fb such that g , ḡ are

complementary and not constant, and all α∈ [0, 1], either α f +(1−α)g or α f +(1−α)ḡ is crisp.

This result complements the analysis in the preceding subsection, and reinforces the in-

terpretation of the number n as reflecting the multiplicity and complexity of the “sources of

ambiguity” in a given decision situation. Part 1 of Proposition 1 states that, given any collection

of more than n acts, it is possible to construct a crisp combination, i.e. a perfect hedge against

ambiguity. Intuitively, this means that there cannot be more than n distinct sources or forms

of ambiguity; for instance, in the three-color urn example, given any two non-crisp acts, it is

always possible to construct a combination act that delivers the same outcome in states G and

B , and is therefore not subject to ambiguity. Conversely, Part 2 of the Proposition asserts the

existence of a tuple of up to n acts that cannot be combined in any way to construct a perfect

hedge. Intuitively, this suggests that each act in such a tuple is subject to a different source

or form of ambiguity. It is also instructive to note that the tuple f 1, . . . , f m in the statement is

constructed by rescaling the adjustment factors (ζi )0≤i<n .19

Part 3 of Proposition 1 complements the uniqueness statement of Theorem 1. Consider a

sharp VEU representation (u , p , n ,ζ, A) of the extension of ¼ to Fb . A fortiori, this20 is a sharp

VEU representation of ¼ onF0, and Theorem 1 states that (u , p , n ,ζ, A) employs the “smallest”

set of adjustment vectors E (u ◦F0; p ,ζ), up to embedding. Proposition 1 additionally ensures

that the sharp representation (u , p , n ,ζ, A) employs the minimal number of adjustment factors.

19This is the reason why the extension of¼ toFb is required. To the best of my knowledge, one cannot guarantee

that the adjustment factors are simple functions, although they can be shown to be bounded.

20Strictly speaking, consider (u , p , n ,ζ, A0), where A0 is the restriction of A to E (u ◦F0; p ,ζ).
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4.3 The adjustment function A and ambiguity attitudes

This section analyzes ambiguity aversion for VEU preferences. Two established definitions of

this concept are considered, due to Schmeidler (1989) and Ghirardato and Marinacci (2002)

respectively. Both have natural characterizations in terms of properties of the adjustment func-

tion A. Ghirardato and Marinacci’s notion also allows for comparisons of ambiguity attitudes

across individuals: again, a characterization in terms of the adjustment function A is provided.

Begin with Schmeidler’s classical axiom. Intuitively, an individual who is ambiguity-averse

according to the proposed definition values mixtures because they “smooth” utility profiles (cf.

Schmeidler Schmeidler, 1989, p. 582; Klibanoff Klibanoff, 2001, p. 290). This has an straightfor-

ward characterization for VEU preferences, stated below as a Corollary to Theorem 1.

Axiom 9 (Ambiguity Aversion) For all f , g ∈F0 and α∈ (0, 1): f ∼ g implies α f +(1−α)g ¼ g .

Corollary 2 Consider a preference relation ¼ onF0 for which Axioms 1–8 hold, and let A be as

in (2). Then¼ satisfies Axiom 9 if and only if A is non-positive and concave.

A VEU preference that satisfies Axiom 9 is variational (Maccheroni et al., 2006); if it addition-

ally satisfies Certainty Independence (Axiom 5∗) rather than the weaker Axiom 5, then it is a

maxmin EU preference (Gilboa and Schmeidler, 1989). For completeness, a VEU preference

is ambiguity-loving in the sense of Schmeidler (i.e. f ∼ g implies α f + (1− α)g ´ g for all

f , g ∈F0 and α ∈ (0, 1)) if and only if A is non-negative and convex; it is ambiguity-neutral (i.e.

both ambiguity-averse and ambiguity-loving) if and only if A = 0.

In the VEU representation, it also seems plausible to associate non-positive, but not neces-

sarily concave adjustment functions with a (different) form of ambiguity aversion. This prop-

erty turns out to be characterized by weaker forms of Axiom 9 for VEU preferences.

Axiom 10 (Complementary Ambiguity Aversion) For all complementary pairs ( f , f̄ ) and prizes

x , x̄ ∈X such that f ∼ x and f̄ ∼ x̄ : 1
2

f + 1
2

f̄ ¼ 1
2

x + 1
2

x̄ .
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Axiom 11 (Simple Diversification) For all complementary pairs ( f , f̄ )with f ∼ f̄ , 1
2

f + 1
2

f̄ ¼ f .

Both axioms have the standard hedging interpretation, but are restricted to complementary

acts. Axiom 11 is related to the “diversification” property of Chateauneuf and Tallon (2002).

Finally, Ghirardato and Marinacci (2002) propose a way to compare ambiguity attitudes

across decision makers, mirroring analogous definitions for risk attitudes. This leads to a “com-

parative” notion of ambiguity aversion. For VEU preferences, this notion, too characterizes a

negative adjustment function. The details are as follows.

Definition 4 Given two preference relations ¼1 and ¼2 on F0, ¼1 is more ambiguity-averse

than ¼2 iff, for all f ∈ F0 and x ∈ X , f ¼1 x ⇒ f ¼2 x . Also, ¼1 is comparatively ambiguity

averse if it is more ambiguity-averse than a preference relation¼2 that is consistent with EU.

Proposition 2 Let ¼ be a preference relation with VEU representation (u , p , n ,ζ, A). Then the

following statements are equivalent:

(1)¼ is comparatively ambiguity-averse.

(2)¼ satisfies Axiom 10.

(3) For all ϕ ∈ E (u ◦F0; p ,ζ), A(ϕ)≤ 0.

If u (X ) is unbounded above or below, or if¼ satisfies Axiom 5∗, then (1)–(3) are equivalent to

(4)¼ satisfies Axiom 11.

A VEU preference that satisfies the equivalent conditions (1)–(4) is not necessarily variational

or, a fortiori, consistent with maxmin EU. (For completeness, such a VEU preference is also not

ambiguity-loving in the sense of Schmeidler, except in the trivial case, i.e. if it is ambiguity-

neutral). The following example shows that this additional flexibility can be advantageous.

Example 2 Machina (in press) considers the following situation. Let Ω = {ω1, . . . ,ω4} and as-

sume that {ω1,ω2} and {ω3,ω4} are known to be equally likely (and not ambiguous); the rela-
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ω1 ω2 ω3 ω4

f 1 $4,000 $8,000 $4,000 $0

f 2 $4,000 $4,000 $8,000 $0

f 3 $0 $8,000 $4,000 $4,000

f 4 $0 $4,000 $8,000 $4,000

Table I: Machina’s reflection example. Reasonable preferences: f 1 ≺ f 2 and f 3 � f 4

tive likelihood ofω1 vs. ω2, and ofω3 vs. ω4, are not known. Assume further that X =R and u

is linear (this is inconsequential for the example). Consider the monetary bets (acts) in Table I.

Notice that f 1 and f 4 only differ by a “reflection,” i.e. by exchanging prizes on states that are

informationally symmetric. The same is true of f 2 and f 3. Hence, it is plausible to expect that

f 1 ∼ f 4 and f 2 ∼ f 3. In particular, Machina (in press) conjectures, and L’Haridon and Placido

(forthcoming) verify experimentally, that a plausible pattern of “ambiguity-averse” preferences

is f 1 ≺ f 2 and f 3 � f 4. Machina shows that this pattern is inconsistent with Choquet EU, if

informational symmetries are respected. Baillon et al. (2008) show that the same is true for

maxmin EU and variational preferences. Recall that the latter two preference models satisfy

Schmeidler’s notion of Ambiguity Aversion.21

However, it is possible to rationalize this pattern with VEU preferences that satisfy com-

parative ambiguity aversion and respect informational symmetries. Let p be uniform and de-

fine two adjustment factors by ζ0(ω1) = 1 = −ζ0(ω2), ζ1(ω3) = 1 = −ζ1(ω4), and ζ0(ω3) =

ζ0(ω4) = ζ1(ω1) = ζ1(ω2) = 0. Finally, consider the adjustment function A : R2 → R given by

A(φ0,φ1) = − 1
2

p

1+ |φ0| − 1
2

p

1+ |φ1|+ 1. Monotonicity may be verified by applying Remark

2; straightforward calculations show that the pattern f 1 ≺ f 2 and f 3 � f 4 is obtained; finally,

A(φ0,φ1)≤ 0 for all (φ0,φ1), and so these VEU preferences are comparatively ambiguity-averse

21Smooth-ambiguity preferences (Klibanoff et al., 2005) also rule out this pattern, under the appropriate

ambiguity-aversion assumption (concavity of the second-order utility).
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by Proposition 2. Since the adjustment function A is not concave onR2, these VEU preferences

do not satisfy Axiom 9, and hence are not variational; and since A(φ)< 0 unless φ = 0, and A is

not convex, these VEU preferences are also not ambiguity-loving.

For additional discussion of Machina’s reflection example, see Siniscalchi (2008).

Turn now to the comparison of ambiguity attitudes across individuals. The Ghirardato and

Marinacci “more ambiguity averse than” ordering also has a simple characterization for VEU

preferences. To obtain a meaningful comparison of ambiguity attitudes, it is necessary to en-

sure that the preferences being compared are represented by the same utility function and

baseline prior.22 Furthermore, a comparison solely in terms of the adjustment functions can be

obtained if the preferences under consideration also share the same adjustment factors. Propo-

sition 3 provides behavioral characterizations of these conditions, and Proposition 4 character-

izes the “more ambiguity averse than” relation for the VEU representation.

Proposition 3 Consider two VEU preferences¼1,¼2 with representations (u 1, p 1, n 1,ζ1, A1) and

(u 2, p 2, n 2,ζ2, A2). Then the following are equivalent:

(1) for all complementary pairs ( f , f̄ ) inF0, f ¼1 f̄ if and only if f ¼2 f̄ ;

(2) p 1 = p 2 and u 1, u 2 differ by a positive linear transformation.

Furthermore, if (1) holds, then ¼1 and ¼2 admit a sharp VEU representation with the same

vector of adjustment factors if and only if they admit the same set of crisp acts.23

Proposition 4 Consider two VEU preferences¼1,¼2 onF0 with representations (u , p , n 1,ζ1, A1)

and (u , p , n 2,ζ2, A2). Then ¼1 is more ambiguity-averse than ¼2 if and only if, for all f ∈ F0,

A1(Ep [ζ1 ·u ◦ f ]) ≤ A2(Ep [ζ2 ·u ◦ f ]). In particular, if n 1 = n 2 and ζ1 = ζ2 = ζ, then ¼1 is more

ambiguity-averse than¼2 if and only if A1(ϕ)≤ A2(ϕ) for all ϕ ∈ E (u ◦F0; p ,ζ).

22Note that the ranking in Def. 4 already implies that the utility functions coincide: see the proof of Prop. 2.

23The final statement is not true for VEU representations that are not sharp: examples are readily obtained.
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To conclude, Epstein (1999) proposes an alternative definition of ambiguity aversion in

which the benchmark is probabilistic sophistication (Machina and Schmeidler, 1992) rather

than EU. The implications of this definition for VEU preferences are left to future work.

4.4 Updating

This section proposes an updating rule for VEU preferences. Throughout this subsection, two

binary relations onF0 will be considered: ¼denotes the individual’s ex-ante preferences, whereas

¼E denotes her preferences conditional upon the event E ∈ Σ. To keep notation to a minimum,

the event E will be fixed throughout.

To provide some heuristics for the proposed updating rule, recall that the VEU preference

functional V : F0 → R can be rewritten in “covariance” form: cf. Eq. (2) in the Introduction.

One possible way the individual might update her preferences upon learning that the event

E has occurred is to update her baseline prior p and use the same functional representation:

that is, replace Ep [·], Covp (·, ·) in Eq. (2) with Ep [·|E ], Covp (·, ·|E ), where Covp (a ,b |E ) = Ep
�

(a −

Ep [a |E ])(b −Ep [b |E ])
�

�E
�

.24 However, the resulting preferences may violate monotonicity, and

in fact the functional A may not even be defined for all vectors
�

Covp (ζi , u ◦ f |E )
�

0≤i<n . Now

consider rescaling conditional covariances by the factor p (E ), which leads to

VE ( f ) = Ep [u ◦ f |E ]+A
�

�

p (E ) ·Covp (ζi , u ◦ f |E )
�

0≤i<n

�

; (6)

note that, for E = Ω, the above equation reduces to Eq. (2) in the Introduction. Proposition 5

below shows that Eq. (6) does define a well-posed VEU, hence monotonic, representation, and

admits a straightforward behavioral characterization. Observe that Eq. (6) may be equivalently

rewritten similarly to Eq. (3), by defining suitable conditional adjustment factors:

VE ( f ) = Ep [u ◦ f |E ]+A
�

�

Ep (ζi ,E ·u ◦ f |E )
�

0≤i<n

�

, where ζi ,E = p (E ) ·
�

ζi −Ep [ζi |E ]
�

. (7)

24In the covariance formulation, the fact that in general Ep [ζi |E ] 6= 0 is inconsequential.
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Turn now to the axiomatic analysis. The following standard requirement ensures that the

conditioning event E “matters” for the individual, so that updating is well-defined:

Axiom 12 (E is not null) There exist f , g ∈F0 such that f (ω) = g (ω) for allω 6∈ E and f � g .

Remark 1 Let¼ be a VEU preference, with baseline prior p . Then Axiom 12 holds iff p (E )> 0.

As is the case for conditional EU preferences, it will be assumed throughout that the eval-

uation of acts upon learning that the event E has occurred does not depend upon the conse-

quences that might have been obtained if, counterfactually, E had not obtained:

Axiom 13 (Null Complement) For all f , g ∈F0: if f (ω) = g (ω) for allω∈ E , then f ∼E g .

The main axiom of this section can be informally stated as follows: if two acts have the same

baseline EU evaluation both ex-ante and conditional upon E , and the utility of the outcomes

they deliver differ from this baseline evaluation only on the event E , then their ex-ante and con-

ditional ranking should be the same. This is consistent with the proposed interpretation of VEU

preferences. Consider an individual whose preferences are VEU both ex-ante and conditional

on E . Upon learning that E has occurred, her evaluation of an act f may change for two rea-

sons: the baseline EU evaluation of f may change, and utility variability in states outside E

no longer matters. However, for acts such that the baseline evaluation does not change upon

conditioning on E , and which exhibit no variation away from the baseline evalution at states

outside E to begin with, it seems plausible to assume that the individual’s evaluation of such

acts will not change.

These special acts can be characterized by a behavioral condition that, once again, involves

complementarity. Consider two complementary acts h, h̄ ∈ F0 that are constant on Ω \ E : that

is, h(ω) = h(ω′) and h̄(ω) = h̄(ω′) for allω,ω′ ∈Ω\E . Suppose that, for any (hence all)ω∈Ω\E ,

1

2
h +

1

2
h̄(ω)∼

1

2
h̄ +

1

2
h(ω). (8)
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If the preference relation ¼ happens to be consistent with EU, then Eq. (8), together with com-

plementarity, readily imply that h ∼ h(ω) for any (hence all) ω ∈ Ω \ E .25 This indicates that

h(ω) is a certainty equivalent of h ex-ante. However, intuitively, h(ω) can also be viewed as a

“conditional certainty equivalent” of h given E : since h(ω′) = h(ω) for allω′ ∈Ω\E , the ranking

h ∼ h(ω) suggests that receiving h(ω) for sure at states in E is just as good for the individual as

allowing the act h to determine the ultimate prize she will receive conditional upon E .26 Thus,

for an EU preference, Eq. (8) implies that the act h has the same certainty equivalent both

ex-ante and conditional upon E .

For general VEU preferences, the above intuition obviously does not apply: it may well be

the case that h 6∼ h(ω) for ω ∈ Ω \ E . However, recall that Complementary Independence (Ax-

iom 7) implies that VEU preferences always rank complementary acts in accordance with their

baseline EU evaluation. Since the mixture acts in Eq. (8) are complementary, the above intu-

ition does apply to the EU preference determined by the individual’s baseline prior. One then

concludes that, if Eq. (8) holds, then h(ω) is a baseline certainty equivalent of h, both ex-ante

and conditional upon E ; this is formally verified in the proof of Proposition 5. Furthermore, it

is clear that h deviates from this baseline only at states in E . Thus, Eq. (8) identifies the class of

acts that should be ranked consistently by prior and conditional VEU preferences.

Axiom 14 (Baseline-Variation Consistency) For all complementary pairs ( f , f̄ ) and (g , ḡ ) such

that f , f̄ , g , ḡ are constant on Ω \ E and, for every ω ∈ Ω \ E , 1
2

f + 1
2

f̄ (ω) ∼ 1
2

f̄ + 1
2

f (ω) and

1
2

g + 1
2

ḡ (ω)∼ 1
2

ḡ + 1
2

g (ω): f ¼E g if and only if f ¼ g .

Proposition 5 Consider a preference relation¼onF0 having a VEU representation (u , p , n ,ζ, A),

an event E ∈ Σ, and another binary relation ¼E onF0. Assume that ¼E is complete and transi-

25By complementarity, 1
2

h + 1
2

h̄ ∼ 1
2

h(ω) + 1
2

h̄(ω); by Independence, combining this relation with Eq. (8) yields

1
2

h + 1
2

k ∼ 1
2

h(ω)+ 1
2

k , with k = 1
2

h̄ + 1
2

h̄(ω). Invoking Independence once more yields h(ω)∼ h.

26Indeed, this condition may be used to characterize Bayesian updating for EU preferences, as well as prior-by-

prior Bayesian updating for MEU preferences: see Pires (2002).
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tive, and that Axiom 12 holds. Then the following are equivalent.

(1) Axioms 13 and 14 hold;

(2)¼E has a VEU representation
�

u , p (·|E ), n ,ζE , A
�

, where ζE = (ζi ,E )0≤i<n is as in Eq. (7).

It should be noted that the resulting VEU representation is not necessarily sharp, even if the

ex-ante representation is. Also observe that the updating rule for adjustment factors in Eq. (7)

satisfies a version of the “law of iterated conditioning.” Fix two events E , F ∈Σ with E ⊂ F and,

for all 0≤ i < n , let ζi ,E ,F be the adjustment factor obtained from ζi ,E by applying Eq. (7), with

p (·|E ) and ζi ,E in lieu of p and ζi . Then ζi ,E ,F = ζi ,F for all indices i . Therefore conditioning on

E first, then conditioning the resulting adjustment factors on F yields the same tuple of adjust-

ment factors as conditioning on F directly. This property is shared by some, but not all updating

rules for known decision models under ambiguity: for instance, the “maximum-likelihood” rule

for maxmin EU preferences (Gilboa and Schmeidler, 1993) violates it.

4.5 Recursion: A Consumption-Savings Example

The conditional preferences derived in Proposition 5 only satisfy a weak form of dynamic con-

sistency. Thus, a criterion such as consistent planning (Strotz, 1955-1956) is required to re-

solve possible conflicts between the ex-ante and ex-post evaluation of future choices. However,

the updating rule axiomatized in Sec. 4.4 allows for a recursive formulation of the consistent-

planning problem. This section illustrates the basic idea by means of a simple example.

As a preliminary step, it is immediate to verify that, if Π⊂Σ is a finite partition of Ω, and for

every F ∈Π the tuple (ζi ,F )0≤i<n is defined as in Eq. (7), then

Ep [ζi a ] =
∑

F∈Π

Ep [ζi ,F a |F ]+
∑

F∈Π

p (F )Ep [ζi |F ]Ep [a |F ]. (9)

In other words, for every i , the coefficient Ep [ζi a ] can be obtained from the conditional baseline

expectations Ep [a |F ] and conditional coefficients Ep [ζi ,F a |F ] for all F ∈Π, just like the baseline

expectation Ep [a ] can be obtained from the conditional baseline expectations Ep [a |F ].
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Turn now to the consumption-savings example.

Setup and Notation. Consider an agent who has an initial endowment, or wealth, of w0

units of a single good and wishes to consume in periods t = 0, . . . , T . At each time t = 0, . . . , T−1,

she can choose how much of her current wealth w t to save (s t ) and consume (c t =w t − s t ). A

unit saved at time t yields rt units of the good at time t +1, where (rt )0≤i<T is an i.i.d. collection

of random variables and each rt equals either H > 1 or L < H with equal probability. This is

the only technology that allows the agent to transfer the good across periods. Informally, I shall

assume that the agent perceives ambiguity about the correlation between rt and rt+1; this is

inspired by Seidenfeld and Wasserman (1993).

Formally, let the state space Ω be the collection of all realizations of the process (rt )0≤t<T ,

and represent information by a filtration (Πt )0≤t≤T , where Πt is the partition of Ω generated by

r0, . . . , rt−1 (so Π0 = {Ω}). The element of Πt containing stateω ∈Ω is denoted Πt (ω). Also let Ht

denote the event “rt =,” and L t =Ω \Ht . Consequences are consumption streams: X =RT+1
+ .

A contingent consumption plan is a collection ( f t )0≤t≤T such that, for each t = 0, . . . , T , f t :

Ω → R+ is Πt –measurable. Each such collection defines an act f : Ω → X by letting f (ω) =

( f t (ω))0≤t≤T . Denote the set of such acts byFA , where the subscript “A” suggests that these acts

are “adapted” to the filtration Π0, . . . ,ΠT . To keep track of wealth given an act f ∈ FA , define

w f = (w f
t )0≤t≤T by w f

0 (ω) =w0 and, for t = 1, . . . , T , w f
t (ω) = [w

f
t−1(ω)− f t−1(ω)]rt−1(ω). Finally,

letFA(w0) denote the subset ofFA whose elements f satisfy f t (ω) ∈ [0, w f
t ] for all t = 0, . . . , T ;

these correspond to feasible consumption plans.

Preferences and Updating. Assume discounted CRRA utility on X : u (x ) =
∑T

t=0δ
t v (x t ),

with v (c ) = c 1−γ

1−γ . Let the baseline prior p be uniform on Ω, which reflects the distributional

assumptions on (rt )0≤t<T . Next, fix T −1 adjustment factors ζ= (ζt )0≤t<T−1, where

ζt (ω) = ε if rt (ω) = rt+1(ω) and ζt (ω) =−ε if rt (ω) 6= rt+1(ω),

and ε> 0 is “suitably small.” Observe that ζt isΠt+2–measurable; furthermore, it can be verified
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that Ep [ζt ] = 0 for all 0≤ t < T −1, as required by Def. 1. Finally, let the adjustment function be

defined by A(ϕ) =−
∑T−2

t=0 |ϕt | for all ϕ ∈RT−1.

The following facts are established in §C.4 of the Supplementary Material: first, for all f ∈

FA ,

V ( f ) =
T
∑

t=0

δt Ep
�

v ◦ f t
�

−
T−2
∑

t=0

�

�

�

�

�

Ep



ζt

T
∑

s=t+2

δs v ◦ f s





�

�

�

�

�

. (10)

Moreover, the updating rule in Eq. (7) yields, for each τ and F ∈ Πτ, a collection (ζt ,F )0≤t<T−1

such that, at time τ and conditional on F , acts in L A are ranked according to the functional27

Vτ( f |F ) = v ◦ fτ+
T
∑

t=τ+1

δt−τEp
�

v ◦ f t |F
�

−
T−2
∑

t=τ−1

�

�

�

�

�

Ep



ζt ,F

T
∑

s=t+2

δs−τv ◦ f s |F





�

�

�

�

�

. (11)

Eq. (9) is also simpler here: for all a :Ω→R and all t ,

Ep [ζt ,Πτ(ω)a |Πτ(ω)] =
∑

G∈Πτ+1:G⊂Πτ(ω)

Ep [ζt ,G a |G ]. (12)

Analysis of consumption-savings choices. The consistent-planning algorithm prescribes

that, at each time τ and for any possible cell f ∈ Πτ, the agent choose the level of savings that

maximizes her conditional VEU payoff as per Eq. (11), calculated assuming that consumption-

savings choices at all subsequent times t = τ+ 1, . . . , T − 1 and cells G ∈ Πt (with G ⊂ F ) are as

determined in prior iterations of the procedure.28

This is conceptually straightforward. However, naively computing the expectations in Eq.

(11) at time τ as just described is both analytically cumbersome and computationally intensive:

for each possible consumption level at time τ, it is necessary to explicitly calculate how this

choice would influence all subsequent consumption-savings decisions at times t >τ. In other

words, at any decision point, the entire continuation subtree following a consumption choice

must be taken into account.

27In the notation of Eq. (7), VF ( f ) =
∑τ−1

t=0 δ
t Ep

�

v ◦ f t |F
�

+δτVτ( f |F ); however, when evaluating continuation

plans at time τ only Vτ( f |F ) is relevant.

28A simplifying feature of this example is that ties do not arise.
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With EU preferences, this is avoided by assigning a continuation value to the subtree fol-

lowing each consumption choice; the decision faced at any time τ then effectively reduces to

a simple, two-period problem. It will now be shown that, by virtue of Eq. (12), a similar re-

cursive approach is also possible with VEU preferences and baseline-prior updating. The main

difference is that, together with a (baseline) continuation value, it is also necessary to iteratively

construct a continuation adjustment corresponding to each adjustment factor ζt .

To initialize the recursion, for every w ≥ 0, let VT+1(w ) = 0. Now assume that Vτ+1 and Φτ+1,t

have been defined for τ+ 1≤ T + 1 and τ− 1≤ t ≤ T − 2; fix F ∈ Πτ and w ≥ 0, and let s ∗τ,F (w )

be the (unique, as it turns out) solution to the problem

max
s∈[0,w ]

v (w − s )+δEp [Vτ+1(rτs )|F ]−δ
T−2
∑

t=τ−1

�

�Φτ+1,t (Hs |F ∩Hτ)+Φτ+1,t (Ls |F ∩ Lτ)
�

� (13)

where, as usual, a summation over an empty index set equals zero. As with EU preferences, it

turns out that s ∗τ,F (w ) =ατ,F w , where ατ,F does not itself depend upon w .

To complete the inductive step, define the “baseline continuation value”

Vτ(w ) = v (w − s ∗τ,F (w ))+δEp [Vτ+1(r̃ s ∗τ,F (w ))|F ]; (14)

then, define the “continuation adjustments”:

Φτ,t (w |F ) =







δ
¦

Φτ+1,t (Hs ∗τ,F (w )|F ∩Hτ)+Φτ+1,t (Ls ∗τ,F (w )|F ∩ Lτ)
©

τ−1≤ t ≤ T −2;

ζτ−2,F (ω)Vτ(w ) for anyω∈ F t =τ−2
(15)

(the cases t = τ− 1 and t = τ− 2 also require t ≥ 0). Observe that continuation adjustments

use the same state variable w as the continuation value; however, they also depend upon the

conditioning event F . This is required to keep track of the realization of adjustment factors.

The (unique) recursive solution to the problem is the act f ∗ ∈ FA for which consumption

f ∗τ(ω) at time τ in stateω ∈ F ∈ Πτ equals (1−ατ,F )w
f ∗
τ (ω). Sec. C.4 (Supplementary Material)

proves that this coincides with the solution obtained by direct application of the consistent-

planning algorithm. A key step of the argument uses Eq. (12) to show that Φτ,t (w
f ∗
τ (ω)|F ) =
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Ep [ζt ,F

∑T
s=t+2δ

s−τv ◦ f ∗s |F ] for ω ∈ F : that is, as claimed, the functions Φτ,t keep track of ad-

justments. As a result, the problem in Eq. (13) is analogous to a two-period decision situation:

it is not necessary to explicitly trace out the effects of the choice of s at time τ on subsequent

decisions, because the relevant payoff information is encoded in the functions defined in Eqs.

(14) and (15).

4.6 Complementary Independence for Other Decision Models

This section investigates the implications of the Complementary Independence axiom for four

well-known families of preferences: the maxmin-expected utility (MEU) model of Gilboa and

Schmeidler (1989), the variational preferences model of Maccheroni et al. (2006), Schmeidler

(1989)’s Choquet-expected utility (CEU) model, and the smooth-ambiguity model of Klibanoff

et al. (2005). In the interest of conciseness, the results are presented in tabular form (see Ta-

ble II); the reader is referred to the original papers for details on the representations and their

axiomatizations, and to §C.2 of the Supplementary Material for formal statements and proofs.

The second column in Table II indicates the functional I : u ◦F0→R that, along with a utility

function u : X → R, represents preferences in each of these models: that is, for all f , g ∈ F0,

f ¼ g if and only if I (u ◦ f )≥ I (u ◦g ). Notation: ba1(Σ) is the set of probability charges on (Ω,Σ).

The third column in Table II contains the main results of this subsection. Each entry should

be interpreted as follows: the model under consideration satisfies Complementary Indepen-

dence (Axiom 7) if and only if there exists a probability p ∈ ba1(Σ)with the properties indicated

in the table. For the smooth-ambiguity model, this condition is only sufficient for Axiom 7.29 It

is also important to notice that, for each of these models, under the stated condition, the base-

line probability p is fully characterized by preferences: it is the only probability charge such

that, for all complementary pairs of acts ( f , f̄ ), f ¼ f̄ if and only if Ep [u ◦ f ]≥ Ep [u ◦ f̄ ].

29In the setting of Klibanoff et al. (2005), it is easy to provide a condition on “second-order preferences” that is

equivalent to the property in Table II and hence implies Complementary Independence.
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Model Representation I (a ) Property of baseline prior p

MEU minq∈C Eq [a ] ∀q ∈C , 2p −q ∈C ,

C ⊂ ba1(Σ)

Variational minq∈ba1(Σ)

�

Eq [a ]+ c ∗(q )
�

∀q ∈ ba1(Σ):

u unbounded above or below, x f ∼ f and 2p −q ∈ ba1(Σ)⇒ c ∗(q ) = c ∗(2p −q ),

c ∗(q ) = sup f ∈F0

�

u (x f )−Eq [u ◦ f ]
�

, and 2p −q 6∈ ba1(Σ)⇒ c ∗(q ) =∞

CEU
∫

a dv, ∀E ∈Σ, 1−v (Ω \E ) = 2p (E )−v (E )
∫

·dv Choquet integral w.r.to capacity v

Smooth
∫

ba1(Σ)
φ
�

Eq [a ]
�

dµ(q ) (Only Sufficient) ∀q ∈ ba1(Σ):

µ has finite support 2p −q ∈ ba1(Σ)⇒µ(q ) =µ(2p −q ),

and 2p −q 6∈ ba1(Σ)⇒µ(q ) = 0

Table II: Necessary and Sufficient conditions for Complementary Independence

Table II emphasizes the formal analogy among the various conditions for Complementary

Independence (CI). This allows a unitary interpretation of these conditions.

Consider first the MEU, Variational, and Smooth models. Fix an act f and compute its

baseline EU evaluation Ep [u ◦ f ]. Suppose that a probability charge q provides a “more pes-

simistic” evaluation of f , in the sense that Ep [u ◦ f ] > Eq [u ◦ f ]. It is then immediate to verify

that E2p−q [u ◦ f ] > Ep [u ◦ f ], so the charge 2p −q provides a “more optimistic” evaluation of

f . Indeed, E2p−q [u ◦ f ] exceeds the baseline Ep [u ◦ f ] precisely by the amount by which the

latter exceeds Eq [u ◦ f ]. For CI to hold in the MEU, Variational and Smooth models, the prob-

ability charges q and 2p −q must receive the same “weight” in the representation of preferences,

where the precise meaning of “weight” is model-specific.30 Informally, under CI, the individual

must hold a balanced view of probabilistic assessments that are equally “pessimistic” and “op-

30For the MEU model, p must be the barycenter of the set of priors C ; for Variational preferences, q and 2p −q

must be equally “costly”; and in the Smooth model, q and 2p −q must receive the same second-order probability.
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timistic” relative to the baseline p . Thus, the latter serves as a cognitive “center of symmetry.”

In the CEU model, the set function defined by E 7→ 1− v (Ω \ E ) is usually called the “dual”

of the capacity v . Furthermore, if v is ambiguity-averse in the sense of Schmeidler (1989), its

dual is ambiguity-loving. According to Table II, under CI the dual of v is precisely 2p−v . Again,

this suggests that the baseline p acts as a center of symmetry between capacities representing

“pessimistic” and “optimistic” evaluations.31

This property is satisfied, for instance, in several well-known specifications of MEU pref-

erences. For finite state spaces, one important example is provided by mean–standard devia-

tion preferences, represented by the functional V ( f ) = Ep [u ◦ f ]− θσp (u ◦ f ) (Grant and Kajii,

2007); analogous representations for general state spaces can be obtained by replacing the stan-

dard deviation σp (·) with a different measure of dispersion, such as the Gini mean difference

(Yitzhaki, 1982) to ensure monotonicity. For a different, broad class of MEU examples, consider

a finite state spaceΩ and fix a baseline prior p and let C = {q ∈∆(Ω) : ‖p−q‖ ≤ ε}, where ‖·‖ de-

notes any `p norm (p ≥ 1) onR|Ω|; this suggests a concern for robustness to the misspecification

of the baseline prior p . Further details may be found in Siniscalchi (2007).

5 Discussion

5.1 Related Literature

In the context of choice under risk, Quiggin and Chambers (1998, 2004) analyze models fea-

turing an exogenously given, objective reference probability p . Under suitable assumptions, a

random variable y is evaluated according to the difference between its expectation Ep (y ) with

respect to p , and a “risk index” ρ(y ). See also Epstein (1985) and Safra and Segal (1998).

Similar functional forms also appear in the social-choice literature. A classic result due to

31I emphasize that ambiguity aversion is not required for the characterization in Table II; however, the interpre-

tation in the text may be more transparent for ambiguity-averse preferences.
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Roberts (1980) characterizes social-welfare functionals that evaluate a profile u 1, . . . , u I of utility

imputations according to the form ū −g (u 1− ū , . . . , u I − ū ), where ū = 1
I

∑

i u i . Ben-Porath and

Gilboa (1994) characterize orderings over income distributions that can be represented in what

is essentially a special case of the VEU functional, with the uniform distribution as reference

probability. These contributions suggest an alternative formulation of the VEU representation.

Assume for simplicity that the state space Ω is finite and write Ω = {ω0, . . . ,ωn−1}; also con-

sider a strictly positive probability p on Ω and a utility function u . For every 0≤ i < n , let

ζc
i (ωi ) =

1−p ({ωi })
p ({ωi })

and ζc
i (ωj ) =−1 ∀j 6= i . (16)

Then, for every f ∈ F0, Ep [ζc
i ·u ◦ f ] = u ( f ((ωi ))−Ep [u ◦ f ], so

�

Ep [ζc
i ·u ◦ f ]

�

0≤i<n
is the vec-

tor of statewise utility deviations from the baseline EU evaluation of f . The VEU representation

(u , p , n ,ζc , A) then takes the canonical32 form V ( f ) = Ep [u ◦ f ]+A
�

�

u ( f ((ωi ))−Ep [u ◦ f ]
�

0≤i<n

�

.

The canonical VEU representation is unique, and emphasizes the dependence upon the

outcomes delivered by an act in every states. Furthermore, it highlights the relationship with

the social-choice literature. However, canonical representations are not sharp; therefore, it is

not possible to identify canonical adjustment factors ζc
i with distinct sources of ambiguity.

The literature on model uncertainty, initiated by Lars Hansen, Thomas Sargent and coau-

thors (see e.g. Hansen and Sargent, 2001; Hansen et al., 1999), also prominently features a ref-

erence prior; the focus in this literature is largely on applications to macroeconomics and fi-

nance, rather than on behavioral foundations. An interesting axiomatization has recently been

provided by Strzalecki (2007); see also Wang (2003).

A recent paper by Grant and Polak (2007) provides a “primal representation” of Maccheroni

et al. (2006)’s variational preferences model in a finite-states setting, and generalizes it by re-

laxing translation invariance (monotonicity and ambiguity aversion are also weakened). The

representation Grant and Polak propose is related to the ones in Quiggin and Chambers (2004)

32I thank a referee for drawing attention to this particular representation, and suggesting the term “canonical.”
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and Roberts (1980): each act f is evaluated by aggregating a “reference expected utility” term

Ep [u ◦ f ], where p is a suitable probability, and an “ambiguity index” ρ(·) that depends upon

the statewise utility deviations u ( f (ωi ))− Ep [u ◦ f ]. These authors show that, for variational

preferences, the aggregator is additive; relaxing translation invariance leads to more general

aggregators.

The reference prior p in Grant and Polak (2007) is not unique in general. In the space of

utility profiles, p corresponds to a hyperplane supporting the individual’s indifference curves

at a point on the certainty line. Decision models featuring a kink at certainty (e.g. MEU, CEU or

invariant biseparable preferences) allow for multiple supporting hyperplanes, and hence, typ-

ically, multiple reference priors. One way to ensure uniqueness is to assume that indifference

curves are “flat” or smooth at certainty; but, in this case, the prior p only reflects (indeed, un-

der smoothness, approximates) local behavior around the certainty line. The baseline prior in

the VEU representation is instead uniquely identified by preferences over complementary acts.

Hence, every act contributes to the behavioral identification of the baseline prior.

Furthermore, Grant and Polak maintain a form of ambiguity aversion, which is required for

the existence of a supporting hyperplane at certainty; the VEU representation instead allows

for arbitrary ambiguity attitudes. Finally, the ambiguity index ρ in Grant and Polak (2007) is

not invariant to sign changes; the VEU adjustment functional A instead satisfies this invariance

property, which supports the intuition that adjustments to baseline evaluations reflect outcome

variability, or dispersion. On the other hand, the analysis of VEU preferences provided in this

paper does assume and rely upon translation invariance (cf. Axiom 5); however, see §5.2 below.

Decision models that incorporate a reference prior have also been analyzed in environ-

ments where the objects of choice either consist of, or include sets of probabilities. In Stinch-

combe (2003), Gajdos et al. (2004b) and Gajdos et al. (2008), the reference prior is characterized

as the Steiner point of the set of probabilities under consideration. In Gajdos et al. (2004a) and

Wang (2003), each object of choice explicitly indicates the reference prior. The present paper
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complements the analysis of these authors by characterizing a decision model that features a

baseline prior in a fully subjective environment.

Kopylov (2006) axiomatizes a special case of MEU preferences, where the characterizing set

of priors is generated by ε-contamination: that is, it takes the form {(1−ε)p+εq : q ∈∆}, where

p serves as a reference prior and∆ is a set of “contaminating” probability measures. While the

prior p is endogenously derived, the set ∆ must be specified exogenously. Chateauneuf et al.

(2007) characterize CEU with respect to a “neo-additive” capacity; this model can be viewed

as α–maxmin expected utility with a set of priors obtained by ε-contamination, in which the

reference prior and the “contaminating set” are both endogenously derived.

Finally, as was noted following Corollary 2 and elsewhere, VEU preferences that satisfy Schmei-

dler’s ambiguity-aversion assumption, i.e. Axiom 9, are also variational preferences. In this

case, the VEU representation can provide a convenient alternative to the variational specifica-

tion. To elaborate, recall that, in the canonical variational representation (cf. the second row

in Table II), the utility index V ( f ) assigned to an act f is the value of a minimization problem:

V ( f ) = minq∈ba1(Σ)Eq [u ◦ f ] + c ∗(q ). In general, there may be no closed-form solution to this

problem, and hence no explicit expression for the utility index V ( f ).33 On the other hand, the

VEU utility index V ( f ) is explicitly defined in Eq. (3); VEU representations with a concave func-

tion A can thus provide a family of richly parameterized, analytically convenient specifications

of variational preferences. Furthermore, Theorem 1 and Corollary 2 provide a full behavioral

characterization of preferences that are both VEU and variational. It is worth emphasizing,

however, that VEU preferences enable the modeler to capture more nuanced forms of aversion

to ambiguity than are allowed by maxmin EU or variational preferences: cf. §4.3.

33Hansen and Sargent (2001)’s multiplier preferences are variational preferences for which the minimization

problem does have a closed-form solution; their popularity in applications is probably due in part to this fact.
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5.2 Additional Features and Extensions

Probabilistic Sophistication. Non-EU VEU preferences can be probabilistically sophisticated in

the sense of Machina and Schmeidler (1992). A characterization of probabilistic sophistication

for VEU preferences is left for future work; Sec. C.3 in the Appendix provides a simple, related

result that sheds further light on the central role of baseline probabilities in the VEU model.

Given a preference relation ¼ onF0, define the induced likelihood ordering ¼`⊂Σ×Σ by

∀E , F ∈Σ, E ¼` F ⇔ x E y ¼ x F y for all x , y ∈X with x � y .

Proposition 10 (Supplementary Material) shows that the likelihood ordering induced by a VEU

preference is represented by a probability measure µ if and only if µ is its baseline prior.

Translation-invariance. Because they satisfy the Weak Certainty Independence axiom 5,

VEU preferences are invariant to “translation in utility space”; in the language of Grant and

Polak (2007), they display “constant absolute ambiguity aversion,” as do, for instance, MEU,

CEU, variational and invariant-biseparable preferences. However, this is solely a consequence

of Axiom 5: the key axiom in the characterization of the VEU representation, namely Comple-

mentary Independence (Axiom 7), does not imply or require translation invariance.

For instance, consider the smooth-ambiguity model of Klibanoff et al. (2005): Sec. 4.6 pro-

vides a sufficient condition for Complementary Independence that involves only the second-

order probability µ, but not the second-order utility φ: the latter is unrestricted. Smooth-

ambiguity preferences are translation-invariant if and only if φ is negative exponential or lin-

ear; it then follows that there exists a rich class of smooth-ambiguity preferences that are not

translation-invariant, but nevertheless satisfy Complementary Independence.

For a different perspective on this issue, consider an “aggregator” function W : R2 → R,

strictly increasing in both arguments. Also let u , p ,ζ and A be as in the VEU representation.

Then one may consider preferences defined by letting, for all f , g ∈F0,

f ¼ g ⇔ W
�

Ep [u ◦ f ], A
�

Ep [ζ ·u ◦ f ]
��

≥W
�

Ep [u ◦ g ], A
�

Ep [ζ ·u ◦ g ]
��

;
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the representation in this paper corresponds to the aggregator W (x , y ) = x + y . It is then easy

to verify that Axiom 7 holds for such preferences, even if they are not translation-invariant.

Therefore, it may be possible to characterize a version of the VEU representation that does

not impose “constant absolute ambiguity aversion.” The resulting model would still feature

sign- and translation-invariant adjustments A(Ep [ζ ·u ◦ f ]), and hence would be consistent with

the variability interpretation described in this paper.34 Such an extension is left to future work.

A Appendix: Conditions for Monotonicity

Remark 2 If a tuple (u , p , n ,ζ, A) satisfies parts 1 and 2 in Def. 1, n <∞, and A is continuous

on E (u ◦F0; p ,ζ) and differentiable on E (u ◦F0; p ,ζ) \A−1(0), then it satisfies part 3 if and only

if p (E )+
∑

0≤i<n
∂ A
∂ ϕi
(ϕ)Ep [ζ11E ]≥ 0 for all ϕ 6∈ A−1(0) and E ∈Σ.

Proof: Part 3 is easily seen to be equivalent to the following condition: for all a ∈ B0(Σ, u (X )),

E ∈Σ and ε> 0 such that a +ε1E ∈ B0(Σ, u (X )),

εp (E )+A(Ep [ζ ·a ]+εEp [ζ ·1E ])−A(Ep [ζ ·a ])≥ 0. (17)

For any ϕ ∈ E (u ◦F0; p ,ζ), if A(ϕ) = 0 or ϕ = Ep [ζ ·a ] and a + 1Eε ∈ u ◦F0 for some ε > 0, Eq.

(17) readily implies the condition in the Remark; if A(ϕ) 6= 0, ϕ = Ep [ζ ·a ], but a + 1Eε 6∈ u ◦F0

for any ε > 0, then let F = {ω : a (ω) =max u (X )}; since a is a simple function, F 6= ;. Consider

the sequence (a k ) given by a k = a − 1F
1
k

; for k large, a k ∈ u ◦F0, A(Ep [ζ ·a k ]) 6= 0, and there is

εk > 0 such that a k +1Eεk ∈ u ◦F0. Then p (E )+
∑

0≤i<n
∂ A
∂ ϕi
(Ep [ζ ·a k ])Ep [ζi ·1E ]≥ 0 for all large

k , and the claim follows by continuity of the partial derivatives ∂ A
∂ ϕi

.

Now suppose the condition in the Remark holds, and fix a , E ,ε > 0 such that a , a + 1Eε ∈

u ◦F0; to simplify the notation, write ϕη = Ep [ζ ·a ]+ηEp [ζ ·1E ] for all η∈ [0,ε].

34Axiom 8 would also have to be dropped: after all, its interpretation involves translation invariance. In any case,

recall that its role is limited even in the present setting.
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Consider first the case A(ϕ0) = 0. Let ε0 = sup{η ∈ [0,ε] : A(ϕη) = 0}. If ε0 = 0, then A(ϕη) is

differentiable for all η∈ (0,ε), and

εp (E )+A(ϕε)−A(ϕ0) = 0 ·p (E )+A(ϕ0)−A(ϕ0)+

∫ ε

0



p (E )+
∑

0≤i<n

∂

∂ ϕi
A(ϕη)Ep [ζi ·1E ]



 dη≥ 0,

(18)

as required. If ε0 > 0, then by continuity A(ϕε0) = 0= A(ϕ0), so

ε0p (E )+A(ϕε0)−A(ϕ0) = ε0p (E )≥ 0. (19)

Thus, in particular, if ε0 = ε, Eq. (17) holds. If instead ε0 < 1, then one can repeat the preceding

argument with a ′ = a+ε01E and ε′ = ε−ε0 in lieu of a and ε; by assumption A(Ep [ζ·a ′]+ηEp [ζ·

1E ]) 6= 0 for allη∈ (0,ε′), so the argument just given implies that (ε−ε0)p (E )+A(ϕε)−A(ϕε0)≥ 0;

together with Eq. (19), this implies that Eq. (17) holds in this case as well.

Consider now the case A(ϕ0)> 0. Let ε1 = sup{η∈ [0,ε] : A(ϕη) 6= 0}. By continuity of A, ε1 >

0; thus, integrating on (0,ε1) as in Eq. (18) yields ε1p (E )+A(ϕε1)−A(ϕ0)≥ 0. If ε1 = ε the proof

is complete. Otherwise, note that, by continuity of A, A(ϕε1) = 0. Applying the argument given

above to a ′ = a +ε11E and ε′ = ε−ε1 in lieu of a and ε yields (ε−ε1)p (E )+A(ϕε)−A(ϕε′)≥ 0;

together with ε1p (E )+A(ϕε1)−A(ϕ0)≥ 0, this implies that Eq. (17) holds.

Remark 3 If (u , p , n ,ζ, A) satisfies parts 1 and 2 in Def. 1 and A is concave and positively ho-

mogeneous, then (u , p , n ,ζ, A) satisfies part 3 if and only if p (E )+A(Ep [ζ ·1E ])≥ 0 ∀E ∈Σ.

Proof: Since A is positively homogeneous, it has a unique positively homogeneous extension

to E (B0(Σ); p ,ζ) given by A(Ep [ζ · αa ]) = αA(Ep [ζ · a ]) for all α > 0 and a ∈ u ◦ F0. Hence,

A(Ep [ζ · a ]) is well-defined for all a ∈ B0(Σ), and A is concave on this domain. Hence, for all

ϕ,ψ ∈ E (B0(Σ); p ,ζ), A(ϕ) = A(ψ+ (ϕ −ψ)) = 2A( 1
2
ψ+ 1

2
(ϕ −ψ)) ≥ 2 1

2
A(ψ) + 2 1

2
A(ϕ −ψ), so

A(ϕ−ψ)≤ A(ϕ)−A(ψ).

Now suppose that p (E )+A(Ep [ζ ·1E ])≥ 0 for all E ∈Σ, and consider a ,b ∈ B0(Σ)with a (ω)≥

b (ω) for allω. Then a−b ∈ B0(Σ), and since a (ω)−b (ω)≥ 0 for allω, concavity and homogene-

ity, together with linearity and monotonicity of
∫

·dp, imply that
∫

(a−b )dp+A(Ep [ζ ·(a−b )])≥
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0. But the argument given above implies that A(Ep [ζ · (a −b )]) ≤ A(Ep [ζ · a ])−A(Ep [ζ ·b ]), so
∫

a dp+A(Ep [ζ ·a ])≥
∫

b dp+A(Ep [ζ ·b ]). The other direction is immediate.

B Appendix: Proofs

B.1 Additional Notation and Preliminaries on Niveloids

The indicator function of an event E ∈ Σ will be denoted by 1E . Inequalities between two ele-

ments a ,b of B (Σ) are interpreted pointwise: a ≥b means that a (ω)≥b (ω) for allω∈Ω.

Let Φ ⊂ B (Σ) be convex. A functional I : Φ → R is a niveloid iff I (a )− I (b ) ≤ sup(a − b )

for all a ,b ∈ Φ; it is normalized if I (γ1Ω) = γ for all γ ∈ R such that γ1Ω ∈ Φ; monotonic iff, for

all a ,b ∈ Φ, a ≥ b implies I (a ) ≥ I (b ); constant-mixture invariant iff, for all a ∈ Φ, α ∈ (0, 1),

and γ ∈ R with γ1Ω ∈ Φ, I (αa + (1−α)γ) = I (αa ) + (1−α)γ; vertically invariant iff I (a + γ) =

I (a ) + γ for all a ∈ Φ and γ ∈ R such that a + γ ∈ Φ; and affine iff, for all a ,b ∈ Φ and α ∈ (0, 1),

I (αa+(1−α)b ) =αI (a )+(1−α)I (b ). Maccheroni et al. (2006) (MMR henceforth) demonstrated

the usefulness of niveloids in decision theory, and established useful results reviewed below.

If Φ = B0(Σ) or Φ = B (Σ), then a functional I : Φ → R is positively homogeneous iff, for all

a ∈Φ and α≥ 0, I (αa ) =αI (a ); c-additive iff I (a+α) = I (a )+α for all α∈R+ and a ∈Φ; additive

iff I (a +b ) = I (a )+ I (b ) for all a ,b ∈ Φ; c-linear iff it is c-additive and positively homogeneous;

and linear iff it is additive and positively homogeneous.

Let ba(Σ) and ba1(Σ) denote, respectively, the set of finitely additive measures and the set of

charges (finitely additive probabilities) on (Ω,Σ); recall that ba(Σ) is isometrically isomorphic to

the norm dual of B0(Σ) and B (Σ); also, theσ(ba(Σ, B (Σ)) andσ(ba(Σ), B0(Σ)) topologies coincide

on ba1(Σ); they are referred to as the weak∗ topology.

Furthermore, if Γ⊂R is a non-empty, non-singleton interval, denote by B0(Σ,Γ) and B (Σ,Γ)

the restrictions of B0(Σ) and B (Σ) to functions taking values in Γ. Then the weak∗ topology on
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ba1(Σ) also coincides with theσ(ba(Σ), B0(Σ,Γ)) andσ(ba(Σ), B (Σ,Γ)) topologies.

The following useful results on niveloids are due to or reviewed in MMR. In particular, item

6 provides a first representation for preferences satisfying Axioms 1–5.

Proposition 6 (MMR) Let Γ be an interval such that 0∈ int(Γ) and I : B0(Σ,Γ)→R.

1. If I is a niveloid, it is supnorm, hence Lipschitz continuous.

2. If I : B0(Σ, K )→R is a niveloid, then it has a (minimal) niveloidal extension to B (Σ).

3. I is a niveloid iff it is monotonic and constant-mixture invariant.

4. If I is constant-mixture invariant, then it is vertically invariant.

5. If I is vertically invariant, then it has a unique, vertically invariant extension Î to B0(Σ,Γ)+

R≡ {a +1Ωγ : a ∈ B0(Σ,Γ),γ∈ Γ}.

6. ¼ onF0 satisfies Axioms 1–5 if and only if there is a non-constant, affine function u : X →

R and a normalized niveloid I : B0(Σ, u (X ))→R such that f ¼ g iff I (u ◦ f )≥ I (u ◦ g ).

The following uniqueness and extension results are straightforward and useful:

Corollary 3 If I , u and I ′, u ′ provide two representations of ¼ as per the last point of Prop. 6,

then u ′ =αu +β (with α> 0) and I ′(αa +β ) =αI (a )+β for all a ∈ B0(Σ, u (X )).

Proof: Since I and I ′ are normalized, standard results imply that u ′ = αu +β for some α > 0

and β ∈R. Next, for every a ∈ B0(Σ,Γ), let f ∈F0 be such that u ◦ f = a and x ∼ f : thus, since

I and I ′ are normalized, u (x ) = I (u ◦ f ) = I (a ) and similarly u ′(x ) = I ′(u ′ ◦ f ), i.e. αu (x ) +β =

I ′(αu ◦ f +β ), and therefore αI (a ) +β = I ′(αa +β ). [Note that this is consistent with normal-

ization: αI (γ1Ω) =αγ and I ′(αγ1Ω) =αγ.]

Corollary 4 A niveloid I : B0(Σ,Γ)→R admits a unique niveloidal extension to B (Σ,Γ). There-

fore, if a preference¼ onF0 admits a niveloidal representation (I , u ) as in part 6 of Prop. 6, then
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it admits a unique extension toFb that satisfies Axioms 1—5. Together with u , the extension of

I to B (Σ,Γ) represents the extension of¼ toFb .

Proof: By Prop. 6, there is a minimal niveloidal extension of I to B (Σ); let Î be its restriction to

B (Σ,Γ). If there is another niveloidal extension Î ′ of I to B (Σ,Γ), fix a ∈ B (Σ,Γ) and a sequence

a k → a such that a k ∈ B0(Σ,Γ) for all k : then Î (a ) = limk Î (a k ) = limk I (a k ) = limk Î ′(a k ) = Î ′(a ).

Now define ¼̂ onFb by f ¼̂g iff Î (u ◦ f ) ≥ Î (u ◦ g ) for all f , g ∈Fb . One can verify that this

defines a preference relation that satisfies Axioms 1—5. Moreover, consider a preference ¼̂′ that

satisfies the same axioms and coincides with ¼ toFb . The proof of Lemma 28 in MMR applies

verbatim to a preference defined onFb and yields a representation (Î ′, u ′), where Î ′ is a niveloid

defined on u ′ ◦Fb . Since F0 ⊂ Fb , we can take u ′ = u , and Î ′ = I on u ◦F0. But then Î ′ = Î ,

which implies that ¼̂′ = ¼̂.

Note: for notational simplicity, the unique extension of a niveloid I : B0(Σ,Γ) to B (Σ,Γ) will

also be denoted by I .

B.2 Characterization of Complementary Independence and Crisp Acts

This subsection starts with the “niveloidal representation” of ¼ provided by Part 6. It will first

be shown that Axioms 8 and 7 hold if and only if a “baseline linear functional” J can be defined.

This identifies a baseline prior. Then, it will be shown that I coincides with J on all crisp acts.

Finally, further properties of the set of crisp acts are investigated.

To simplify the exposition, throughout this section we maintain the following assumption

and definitions: ¼ is represented by I , u as in Prop. 6, with 0 ∈ int(u (X )). The unique extension

of I to B (Σ, u (X )), and hence to u ◦Fb , is implicitly used wherever it is needed.

Define J : u ◦Fb →R by letting, for all a ∈ u ◦Fb and γ∈Rwith γ−a ∈ u ◦Fb ,

J (a ) =
1

2
γ+

1

2
I (a )−

1

2
I (γ−a ). (20)
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Lemma 1 J is a well-defined, normalized niveloid. If¼ satisfies Axioms 7 and 8 onF0, then J is

affine onF0 and has a unique, normalized and positive linear extension to B (Σ), also denoted

J . Conversely, if J is affine on u ◦F0 (resp. u ◦Fb ), then ¼ (resp. the extension of ¼ to Fb )

satisfies Axioms 7 and 8.

Proof: J as above is well-defined: first, for every a ∈ u ◦Fb , if γ= infΩa + supΩa , then γ−a =

supΩa − [a − infΩa ] ∈ u ◦Fb ; furthermore, if γ,γ′ ∈ R are such that γ− a ,γ− a ′ ∈ u ◦Fb , then

γ−a = (γ′−a )+ (γ−γ′), so vertical invariance of I implies that I (γ−a ) = I (γ′−a )+γ−γ′, and

so 1
2
γ− 1

2
I (γ−a ) = 1

2
γ− 1

2
I (γ′−a )− 1

2
(γ−γ′) = 1

2
γ′− 1

2
I (γ′−a ), as required. Next, J is normalized:

if γ ∈ u (X ), then γ−γ= 0 ∈ u (X ), so J (γ) = 1
2
γ+ 1

2
I (γ)− 1

2
I (γ−γ) = 1

2
γ+ 1

2
γ+0= γ, because I is

normalized and 0 · 1Ω ∈ u ◦Fb . Finally, J is a niveloid: for a ,b ∈ u ◦Fb , if α,β ∈ u (X ) are such

that α−a ,β −b ∈ u ◦Fb , then

2[J (a )− J (b )] = α+ I (a )− I (α−a )−β − I (b )+ I (β −b )≤

≤ (α−β )+ sup
Ω
(a −b )+ sup

Ω
(β −b −α+a ) = 2 sup

Ω
(a −b ).

Turn now to Axioms 8 and 7.

First, it will be shown that ¼ satisfies Axiom 8 if and only if J ( 1
2

a ) = 1
2

J (a ) for all a ∈ u ◦F .

Specifically, letF denote eitherF0 orFb . Fix f , f̄ ,x , x̄ as in Axiom 8 and let a ∈ u ◦F and γ∈R

be such that a = u ◦ f and γ−a = u ◦ f̄ ; then 1
2

f + 1
2

x̄ ∼ 1
2

f̄ + 1
2

x iff I ( 1
2

a + 1
2

u (x̄ )) = I ( 1
2

f̄ + 1
2

u (x ));

by vertical invariance [note that 1
2

a , 1
2
(γ−a )∈ u ◦F ] and the properties of x , x̄ , this equals

I (
1

2
a )+

1

2
I (γ−a ) = I (

1

2
(γ−a ))+

1

2
I (a ).

By the definition of J , rearranging terms, this holds iff J ( 1
2

a )− 1
4
γ = 1

2
[J (a )− 1

2
γ], i.e. J ( 1

2
a ) =

1
2

J (a ). Thus, if J has this property, then Axiom 8 holds. Conversely, for any a ∈ u ◦F , there is

f ∈ F such that u ◦ f = a , and as noted in the first part of this proof, one can find γ ∈ R with

γ− a ∈ u ◦F ; again, there will be f̄ ∈ F with u ◦ f̄ = γ− a , so that f , f̄ are complementary: if

Axiom 8 holds, the argument just given shows that J ( 1
2

a ) = 1
2

J (a ).
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Now assume that J is affine onFb ; then, in particular, for all a ∈Fb , J ( 1
2

a ) = J ( 1
2

a + 1
2
·0) =

1
2

J (a ) + 1
2

J (0) = 1
2

J (a ), and, as shown above, in this case Axiom 8 holds. Next, consider ( f , f̄ ),

(g , ḡ ) and α as in Axiom 7. Let a = u ◦ f , b = u ◦ g , and let z , z ′ ∈ R be such that 1
2

u ( f (ω)) +
1
2

u ( f̄ (ω)) = z , 1
2

u (g (ω)) + 1
2

u (ḡ (ω)) = z ′ for all ω; finally, let ā = 2z − a and b̄ = 2z ′ − b , so

ā = u ◦ f̄ and b̄ = u ◦ ḡ . Then f ¼ f̄ and g ¼ ḡ imply I (a ) ≥ I (ā ) = I (2z − a ), so J (a ) =

z + 1
2

I (a )− 1
2

I (2z −a )≥ z ; similarly, J (b )≥ z ′. If J is affine, then J (αa +(1−α)b ) =αJ (a )+ (1−

α)J (b )≥ [αz +(1−α)z ′], so

I (αa +(1−α)b )− I (αā +(1−α)b̄ ) = I (αa +(1−α)b )− I (α[2z −a ]+ (1−α)[2z ′−b ]) =

= I (αa +(1−α)b )− I (2[αz +(1−α)z ′]−αa − (1−α)b ) = 2J (αa +(1−α)b )−2[αz +(1−α)z ′]≥ 0.

where the last equality follows from the definition of J . Thus, α f +(1−α)g ¼α f̄ +(1−α)ḡ , i.e.

Axiom 7 holds.

Conversely, assume that Axioms 8 and 7 hold onF0. As shown above, J ( 1
2

a ) = 1
2

J (a ) for all

a ∈ u ◦F0; it will now be shown that J ( 1
2

a + 1
2
b ) = 1

2
J (a )+ 1

2
J (b ) for all a ,b ∈ u ◦F0.

Since 0 ∈ int(u (X )), there is δ > 0 such that [−δ,δ] ⊂ u (X ). Assume first that ‖a‖,‖b‖ ≤ 1
2
δ;

this implies that (a) a ,b ,−a ,−b ∈ B0(Σ, u (X )), and furthermore (b) a − J (a ),b − J (b ), J (a )−

a , J (b )− b ∈ B0(Σ, u (X )), because monotonicity of J implies that J (a ), J (b ) ∈ [− 1
2
δ, 1

2
δ]. Let

f , g , f̄ , ḡ ∈F0 be such that a− J (a ) = u ◦ f , b− J (b ) = u ◦g , J (a )−a = u ◦ f̄ and J (b )−b = u ◦ ḡ .

Clearly, ( f , f̄ ) and (g , ḡ ) are complementary pairs; furthermore, applying the definition of J with

γ= 0, J (a− J (a )) = 1
2

I (a− J (a )− 1
2

I (J (a )−a ) and similarly J (b− J (b )) = 1
2

I (b− J (b ))− 1
2

I (J (b )−b );

finally, by vertical invariance of J , J (a − J (a )) = J (a )− J (a ) = 0 and similarly J (b − J (b )) = 0.

Thus, f ∼ f̄ and g ∼ ḡ , so Axiom 7 implies that 1
2

f + 1
2

g ∼ 1
2

f̄ + 1
2

ḡ . It follows that I ( 1
2
[a − J (a )]+

1
2
[b − J (b )]) = I ( 1

2
[J (a )− a ] + 1

2
[J (b )− b ]), or J ( 1

2
[a − J (a )] + 1

2
[b − J (b )]) = 0; but by vertical

invariance of J , this is equivalent to J ( 1
2

a + 1
2
b ) = 1

2
J (a )+ 1

2
J (b ), as claimed.

Now, for arbitrary a ,b ∈ B0(Σ, u (X )), there is an integer K > 0 such that 2−K ‖a‖, 2−K ‖b‖ ≤ 1
2
δ.

Then the argument just given shows that J ( 1
2
(2−K a )+ 1

2
(2−K )b ) = 1

2
J (2−K a )+ 1

2
J (2−K b ); but it was
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shown above that, for all c ∈ B0(Σ, u (X )), J ( 1
2

c ) = 1
2

J (c ), and so it follows that

J

�

1

2
a +

1

2
b

�

= 2K J

�

2−K

�

1

2
a +

1

2
b

��

= 2K 1

2
J (2−K a )+2K 1

2
J (2−K b ) =

1

2
J (a )+

1

2
J (b ).

This implies that J (αa+(1−α)b ) =αJ (a )+(1−α)J (b ) for all dyadic rationals α= k 2−K , with

k ∈ {0, . . . , K } for some integer K > 0.35 But since these are dense in [0, 1] and J is supnorm-

continuous, J is affine. The extension of J to B (Σ) is now standard.

By standard results, if J is linear, there exists a unique p ∈ ba1(Σ) such that

∀a ∈ B (Σ), J (a ) =

∫

Ω

a dp. (21)

Observation 1 Note that, if f , f̄ are complementary acts, then f ¼ f̄ iff J (u ◦ f )≥ J (u ◦ f̄ ). Thus,

J is identified by preferences over complementary acts; Lemma 1 then shows that, if Axioms 7

and 8 hold, such preferences identify the baseline prior p .

In order to investigate further properties of the functional I , a short detour is needed. Begin

by defining and characterizing a binary relation, to be interpreted as “unambiguous prefer-

ence”. The following Lemma adapts notions and employs results from Ghirardato et al. (2004)

(GMM henceforth). Since its proof merely adapts arguments from GMM, it is relegated to the

Supplementary Material.

Lemma 2 There exists a unique, weak∗ compact and convex set C ⊂ ba1(Σ) such that, for all

a ,b ∈ B0(Σ, u (X )),

∀α∈ (0, 1], c ∈ B0(Σ, u (X )) : I (αa +(1−α)c )≥ I (αb+(1−α)c ) ⇐⇒ ∀q ∈C :

∫

a dq≥
∫

b dq.

(22)

Furthermore, for all a ,b ∈ B (Σ, u (X )),

∀α∈ (0, 1], c ∈ B (Σ, u (X )) : I (αa +(1−α)c )≥ I (αb +(1−α)c ) ⇐⇒ ∀q ∈C :

∫

a dq≥
∫

b dq.

(23)

35The claim is easily established by induction on K .
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Notation: let q (a ) =
∫

a dq for any q ∈ ba1(Σ) and q-integrable function a :Ω→R.

Next, some key consequences of linearity of J for the setC are now investigated.

Lemma 3 Assume that J is linear. Then:

1. p ∈C and, for all q ∈C , 2p −q ∈C .

2. For all a ∈ B (Σ) such that a ≥ 0, and for all q ∈ C , 2J (a ) ≥ q (a ). In particular, for all

a ,b ∈ B (Σ) and all q ∈C , 2J (|a −b |)≥q (|a −b |)≥ |q (a )−q (b )|.

Proof: Consider a ,b ∈ B0(Σ, u (X )) such that−a ,−b , 2J (a )−a , 2J (b )−b ∈ B0(Σ, u (X )), so J (a ) =
1
2

I (a )− 1
2

I (−a ) and similarly for b . Then, for all λ ∈ (0, 1] and d ∈ B0(Σ, u (X )), choose γ so that

γ− d ∈ B0(Σ, u (X )). Then (1−λ)γ−λa − (1−λ)d = λ(−a ) + (1−λ)(γ− d ) ∈ B0(Σ, u (X )) and

similarly (1−λ)γ−λb−(1−λ)d ∈ B0(Σ, u (X )), so the definition of J implies that I (λa+(1−λ)d ) =

2J (λa +(1−λ)d )+ I (λ(−a )+(1−λ)(γ−d ))− (1−λ)γ and I (λb +(1−λ)d ) = 2J (λb +(1−λ)d )+

I (λ(−b ) + (1−λ)(γ− d ))− (1−λ)γ. Therefore, by linearity of J and canceling common terms,

I (λa +(1−λ)d )≥ I (λb+(1−λ)d ) iff 2J (λa )+ I (λ(−a )+(1−λ)(γ−d ))≥ 2J (λb )+ I (λ(−b )+(1−

λ)(γ−d )); since a ,b were chosen so that 2J (a )−a , 2J (b )−b ∈ B0(Σ, u (X )), this is also equivalent

to I (λ(2J (a )−a )+(1−λ)(γ−d ))≥ I (λ(2J (b )−b )+(1−λ)(γ−d )) by vertical invariance. Finally,

since d ′ ∈ B0(Σ, u (X )) if and only if γ′−d ′ ∈ B0(Σ, u (X )) for some γ′, conclude that a � b if and

only if 2J (a )−a � 2J (b )−b . By Lemma 2, this is equivalent to the condition

∀q ∈C , q (a )≥q (b ) ⇐⇒ ∀q ∈C , 2J (a )−q (a )≥ 2J (b )−q (b ). (24)

For arbitrary a ,b ∈ B0(Σ), let α > 0 be such that αa ,αb ,−αa ,−αb , 2J (αa )−αa , 2J (αb )−αb ∈

B0(Σ, u (X )) [such an α exists because 0∈ u (X )]: then Eq. (24) must hold for αa ,αb , and positive

homogeneity of every q ∈C and J implies that it must hold for a ,b as well.

Now, for (1), define a �0 b for a ,b ∈ B0(Σ, u (X )) to mean that the left-hand side of Eq. (22)

holds, as in the proof of Lemma 2. For every q ∈ C , 2p (Ω)−q (Ω) = 1; furthermore, for every

E ∈ Σ, taking a = 1E and b = 0, q (E ) ≥ 0 and so, by Eq. (24), 2p (E )−q (E ) ≥ 0 as well. Thus,
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2p − q ∈ ba1(Σ). Thus, let D be the weak∗ convex closure of C ∪ {2p − q : q ∈ C }. It is clear

that, for all a ,b ∈ B0(Σ, u (X )), r (a ) ≥ r (b ) for all r ∈ D implies a �0 b ; conversely, if a �0 b ,

then q (a ) ≥ q (b ) for all q ∈ C , hence 2J (a )− q (a ) ≥ 2J (b )− q (b ) for all q ∈ C , and hence

r (a )≥ r (b ) for all r ∈D. Since Lemma 2 ensures thatC is the unique set of probability charges

that represents�0,C =D, and so for every q ∈C , 2p −q ∈C as well. This immediately implies

that p = 1
2
q + 1

2
(2p −q )∈C .

For (2), note first that, for any a ∈ B0(Σ)with a ≥ 0, q (a )≥ 0 for all q ∈C : hence, by Eq. (24),

2J (a )≥q (a ). The inequality now extends to B (Σ) by sup-norm continuity of J and q (·). Finally,

for any a ,b ∈ B (Σ), 2J (|a −b |)≥q (|a −b |)≥ |q (a )−q (b )|, where the second equality follows e.g.

from Dudley (1989, Theorem 5.1.1).

Conclude with a useful “vertical invariance” property.

Lemma 4 In the setting of Lemma 2, if a ,b ∈ B (Σ, u (X )) and, for some δ ∈ R, q (a ) = q (b ) +δ

for all q ∈C , then I (a ) = I (b )+δ.

Proof: Assume first that inf b (Ω), sup b (Ω) ∈ int(u (X )). Then there exists α ∈ (0, 1) such that

b +αδ ∈ B (Σ, u (X )). For all k ≥ 0, let a k = [1− (1−α)k ]a + (1−α)k b . Then a k ∈ B (Σ, u (X )) for

all k ≥ 0; furthermore,

(1−α)a k +αa = (1−α)[1− (1−α)k ]a +(1−α)k+1b +αa = [1− (1−α)k+1]a +(1−α)k+1b = a k+1.

Now write d ' d ′ to signify that I (αd + (1− α)c ) = I (αd ′ + (1− α)c ) for all α ∈ (0, 1] and

c ∈ B (Σ, u (X )). By Lemma 2, d ' d ′ iff q (d ) =q (d ′) for all q ∈C . In particular,' is conic: d ' d ′

implies that βd +(1−β )d ′′ 'βd ′+(1−β )d ′′. Note that' is the symmetric part of the relation

� defined in the proof of Lemma 2.

Claim: for all k , a k +α(1−α)kδ ∈ B (Σ, u (X )) and a k+1 ' a k +α(1−α)kδ.

Proof : For k = 0, a 0+α(1−α)0δ = b +αδ ∈ B (Σ, u (X )) by the choice of δ; furthermore, for

all q ∈C , q (a 1) =q
�

(1−α)b+αa
�

= (1−α)q (b )+αq (a ) = (1−α)q (b )+αq (b )+αδ=q (b )+αδ=
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q
�

a 0+α(1−α)0δ
�

, so a 1 ' a 0+α(1−α)0δ. By induction, for k > 0,

(1−α)[a k−1+α(1−α)k−1δ]+αa = (1−α)a k−1+αa +α(1−α)kδ= a k +α(1−α)kδ;

thus, a k +α(1−α)kδ ∈ B (Σ, u (X )) because a , a k−1+α(1−α)k−1δ ∈ B (Σ, u (X )); furthermore, if

a k ' a k−1+α(1−α)k−1δ, then also

a k+1 = (1−α)a k +αa ' (1−α)[a k−1+α(1−α)k−1δ]+αa = a k +α(1−α)kδ

because ' is conic.

The claim implies that, for all k ≥ 1, I (a k ) = I (a k−1+α(1−α)k−1δ) = I (a k−1)+α(1−α)k−1δ,

where the second equality follows from vertical invariance; thus,

I (a k ) = I (b )+αδ
k−1
∑

`=0

(1−α)` = I (b )+αδ
1− (1−α)k

α
= I (b )+δ[1− (1−α)k ].

Since a k → a and I is continuous, the result follows.

If b is arbitrary, for k ≥ 0, let a k = k
k+1

a and b k = k
k+1

b , so in particular b k (Ω) ⊂ int(u (X ));

furthermore, for every k ≥ 0 and q ∈ C , q (a k ) = k
k+1

q (a ) = k
k+1

q (b ) + k
k+1
δ = q (b k ) + k

k+1
δ, and

it has just been shown that then I (a k ) = I (b k ) + k
k+1
δ. Since a k → a and b k → b , continuity

implies that I (a ) = I (b )+δ.

B.3 Monotone Continuity

Assume that Γ is non-singleton. A functional H : B0(Σ,Γ)→R is monotonely continuous iff, for

every α,β ,γ ∈ Γ with α > β > γ and every sequence of events (Ak ) ⊂ Σ such that Ak ⊃ Ak+1 for

all n and ∩Ak = ;, there is k such that H (α− (α−γ)1Ak )>β >H (γ+(α−γ)1Ak )—or, abusing the

notation for binary acts, H (γAkα)>β >H (αAkγ).

Continue to focus on the representation I , u of ¼; assume wlog that 0 ∈ int(u (X )). Clearly,

¼ satisfies Axiom 6 iff I is monotonely continuous. This property will now be characterized in

terms of the functional J defined in Lemma 1.
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Lemma 5 The following statements are equivalent:

(1) I is monotonely continuous;

(2) For every decreasing sequence (Ak )⊂Σ such that
⋂

Ak = ;, J (1Ak )→ 0.

Thus, if I is monotonely continuous, the charge p representing J is actually a measure.

Proof: (1)⇒ (2): let α ∈ u (X ) be such that α > 0 and −α ∈ u (X ). For every ε ∈ (0,α), there is

k ′ such that ε > I (α1An ′
) and k ′′ such that I (α(1− 1Ak ′′

)) > α− ε (take γ = 0 and β = ε,α− ε

in the definition of monotone continuity). Letting k =max(k ′, k ′′), so A ⊂ Ak ′ and A ⊂ Ak ′′ , by

monotonicity both ε > I (α1Ak ) and I (α(1− 1Ak )) > α− ε hold; furthermore, since −α ∈ u (X ),

vertical invariance of I implies that I (α(1− 1Ak )) = α+ I (−α1Ak ) > α− ε, i.e. ε > −I (−α1Ak ).

Hence, ε> 1
2

I (α1Ak )−
1
2

I (−α1Ak ) = J (α1Ak ). To sum up, if η≥ 1, then monotonicity implies that

J (1Ak )≤η for all k ; and forη∈ (0, 1), taking ε=ηα yields k such that J (1Ak ) =
1
α

J (α1Ak )<
1
α
ε=η.

(2) ⇒ (1): Fix α,β ,γ ∈ u (X ) with α > β > γ; then there is k ′ such that J (γ+ (α− γ)1Ak ′
) <

γ+ 1
2
(β − γ). Let µ = α+ γ. so µ− γ− (α− γ)1A ′k

= α− (α− γ)1Ak ′
∈ B0(Σ, u (X )): then, by the

definition of J ,

γ+
1

2
(β −γ)>

1

2
µ+

1

2
I (γ+(α−γ)1Ak ′

)−
1

2
I (µ−γ− (α−γ)1Ak ′

);

substituting for µ and simplifying this reduces to

1

2
β >

1

2
α+

1

2
I (γ+(α−γ)1Ak ′

)−
1

2
I (α− (α−γ)1Ak ′

)≥
1

2
I (γ+(α−γ)1Ak ′

),

where the inequality follows from monotonicity of I , as α− (α−γ)1Ak ′
)≤α. Thus, β > I (γ+(α−

γ)1Ak ′
). Similarly, there is k ′′ such that J (α− (α−γ)1Ak ′′

)>α− 1
2
(α−β ), i.e.

α−
1

2
(α−β )<

1

2
µ+

1

2
I (α− (α−γ)1Ak ′′

)−
1

2
I (µ−α+(α−γ)1Ak ′′

),

and again substituting for µ and simplifying yields

1

2
β <

1

2
γ+

1

2
I (α− (α−γ)1Ak ′′

)−
1

2
I (γ+(α−γ)1Ak ′′

)≤
1

2
I (α− (α−γ)1Ak ′′

),
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because γ+ (α− γ)1Ak ′′
≥ γ. Thus, I (α− (α− γ)1Ak ′′

) > β . Therefore, by monotonicity, k =

max(k ′, k ′′) satisfies I (α− (α−γ)1Ak )>β > I (γ+(α−γ)1Ak ), as required.

B.4 Proof of Theorem 1

It is clear that (2) implies (3) in Theorem 1; thus, focus on the non-trivial implications.

B.4.1 (3) implies (1)

For all a ∈ u ◦F0, let Jp (a ) =
∫

a dp and I (a ) = Jp (a ) +A(Ep [ζa ]); thus, for all f , g ∈ F0, f ¼ g

iff I (u ◦ f ) ≥ I (u ◦ g ). It is easy to verify that I is constant-mixture invariant and normalized

(because Ep [ζi ] = 0 for all i and A(0) = 0); furthermore, by part 3 of Def. 1, it is monotonic, and

hence a niveloid by Prop. 6. This implies that¼ satisfies the first five axioms in (1). Furthermore,

for all a ∈ u ◦F0, letting γ∈ u (X ) be such that γ−a ∈ u ◦F0,

J (a )≡
1

2
γ+

1

2
Î (a )−

1

2
Î (γ−a ) =

1

2
γ+

1

2
Jp (a )+

1

2
A
�

Ep [ζa ]
�

−
1

2
Jp (γ−a )−

1

2
A
�

Ep [ζ(γ−a )]
�

= Jp (a ),

as Ep [ζi ] = 0 for all i and A(φ) = A(−φ) for all φ ∈ E (F0; p ,ζ); thus, the functional J defined in

Lemma 1 coincides with Jp on u ◦F0, and hence it is affine; thus, ¼ satisfies Axioms 7 and 8 as

well. Moreover, since p is countably additive, if (Ak )⊂Σ decreases to ;, J (1Ak ) = Jp (1Ak ) ↓ 0, and

Lemma 5 implies that I is monotonely continuous, so ¼ satisfies Axiom 6.

B.4.2 (1) implies (2)

Since¼ satisfies Axioms 1–5, it admits a non-degenerate niveloidal representation I , u by Propo-

sition 6; furthermore, it is wlog to assume that 0∈ int(u (X )). Moreover, since ¼ satisfies Axioms

7 and 8, the functional J defined in Eq. (20) is affine on u ◦F0 by Lemma 1; finally, since¼ satis-

fies Axiom 6, I is monotonely continuous, so Lemma 5 implies that the measure p representing

J is countably additive. This will be the baseline prior in the VEU representation.
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The next step is to construct the adjustment factors (ζi )0≤i<n along the lines of §4.1. A slight

detour and a preliminary result are needed to accommodate infinite state spaces. Let H be the

Hilbert space of (p -equivalence classes of) Σ-measurable, square-integrable functions on Ω.

Let 〈a ,b 〉 = Ep [ab ] for all a ,b ∈ H . Recall that, since Σ is countably generated, H is separable

Bogachev (cf. e.g. 2007, §1.12.102 and 4.7.63).

Lemma 6 For every q ∈ C , the map a 7→
∫

a dq is an L 2(p )–continuous linear functional on

H ; in particular, J extends to a continuous linear functional on H . Furthermore, for each such

q ∈C \{p}, there exists a q ∈H such that
∫

a dq= 〈a , a q 〉 for all a ∈H , and supω∈Ω |a q (ω)|= 2.

Proof: By Lemma 3,
∫

a dq ≤ 2J (a ) for all a ∈ B (Σ) such that a ≥ 0; hence, possibly by con-

sidering truncations and taking suprema,
∫

|a |2 dq ≤ 2J (|a |2) for all Σ-measurable functions a ,

where one or both integrals may be infinite. In particular, every a ∈H is also square-integrable

with respect to q , so a 7→
∫

a dq is well-defined on H .

Furthermore, if a k → a in the L 2(p ) norm topology, i.e. J (|a k −a |2)→ 0, then clearly q (|a k −

a |2)→ 0, which implies that q (a k )→q (a ).36 Hence, q (·) is a continuous linear functional on H .

By the Riesz-Frechet theorem, there exists a q ∈ H such that q (a ) = 〈a , a q 〉. I claim that a q

can be chosen to be bounded. To this end, for every M > 0, let EM = {ω : a q (ω)>M }: then

M ·p (EM )≤
∫

1EM a q dp=q (EM )≤ 2p (EM ),

where the second inequality follows from Lemma 3. Then either p (EM ) = 0 or M ≤ 2. Therefore,

since q is positive, 0≤ a q (ω)≤ 2 p -a.e., so the claim follows.

Now define the set

C = {c ∈H : ∀q ∈C , q (c ) = J (c )}. (25)

36If q (|a k − a |2) → 0, then a k converges to a in the L 2(q ) norm; by Dudley (1989, Theorems 5.5.2 and 5.1.1),

a k → a in the L 1(q ) norm as well, and this implies the claim.
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To interpret, recall that an act f in F0 or Fb is crisp iff λ f + (1− λ)g ∼ λx + (1− λ)g for all

g ∈ F0, λ ∈ (0, 1], and x ∈ X such that x ∼ f . This is equivalent to I (λu ◦ f + (1− λ)u ◦ g ) =

λI (u ◦ f ) + I ((1− λ)u ◦ g ), and hence, by Lemma 2, to q (u ◦ f ) = I (u ◦ f ) for all q ∈ C . In

particular, this implies J (u ◦ f ) = I (u ◦ f ) by Lemma 3, and so f is crisp iff u ◦ f ∈ C . The

definition of the set C employs this characterization of crisp acts to identify a class of functions

in H with analogous properties.

Conclude by showing that C is closed in H . By Lemma 6, if (c k ) ⊂ C is such that c k → c for

some c ∈H in the L 2(p ) norm topology, then J (c ) = limk J (c k ) = limk q (c k ) = q (c ) for all q ∈C ,

and therefore c ∈C .

Construction of the adjustment factors (ζi )0≤i<n . Observe that {a q − 1Ω : q ∈ C } is a subset

of the separable space H , and hence admits a countable dense subset {b0,b1, . . .}. Note that, for

every i ≥ 0, supΩ |b i | ≤ 1 by Lemma 6.

Let NC be the closure in H of the linear span of {b0,b1, . . .}; by Dudley (1989, Corollary

5.4.10), the Hilbert subspace NC has a countable orthonormal basis {ζ0,ζ1, . . .}, obtained by

applying the Gram-Schmidt procedure to {b0,b1, . . .}. In particular, note that this procedure

ensures that each ζi is bounded, i.e. it is an element of B (Σ).

Consider the orthogonal complement NC⊥ = {c ∈ H : ∀b ∈ NC, 〈c ,b 〉 = 0}. If c ∈ C , then

q (c ) = J (c ) for all q ∈ C , so in particular 〈c ,b i 〉 = 0 for all i ≥ 0. Therefore, 〈c ,b 〉 = 0 for any b

in the linear span of {b0,b1 . . .}, which is the same as the linear span of {ζ0,ζ1, . . .}; finally, this

implies that 〈c ,b 〉= 0 for all b ∈NC. Thus, C ⊂NC⊥. Conversely, if c ∈NC⊥, then in particular

〈c , a q −1Ω〉= 0 for all q ∈C , i.e. q (c ) = J (c ); hence, c ∈C . Thus, conclude that C =NC⊥.

Since 1Ω ∈C =NC⊥, 〈1Ω,ζi 〉= 0, i.e. Ep [ζi ] = 0 for all i . Henceforth, let n denote the number

of non-zero ζi ’s, and assume wlog that these are the first n elements of the sequence ζ0,ζ1, . . . .

Construction of the adjustment function A. Define first Ĩ : u ◦Fb+C →R by letting Ĩ (a+c ) =

I (a )+ J (c ) for all a ∈ u ◦Fb and c ∈C . This is well-posed: if a +c = a ′+c ′ for a , a ′ ∈ u ◦Fb and

c , c ′ ∈C , then a −a ′ = c ′− c ∈C ; thus, for all q ∈C , q (a ) = q (a ′+(a −a ′)) = q (a ′)+q (c ′− c ) =
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q (a ′) + J (c ′− c ), so that I (a ) = I (a ′) + J (c ′− c ) by Lemma 4. Thus, I (a ) + J (c ) = I (a ′) + J (c ′−

c )+ J (c ) = I (a ′)+ J (c ′), as needed. Also note that, if a ∈ u ◦Fb , then there exists γ∈R such that

γ−a ∈ u ◦Fb , and therefore −a ∈ u ◦Fb +C because C contains all constant functions.

Now considerϕ ∈ E (u ◦Fb ; p ,ζ), so there is a ∈ u ◦Fb such thatϕ = Ep [ζa ] = (〈a ,ζi 〉)i . Then

b =
∑

i ϕiζi is the projection of a onto NC, a−b ∈NC⊥ =C , and thus b = a+(b−a )∈ u ◦Fb+C .

Let A(ϕ) = 1
2

Ĩ (b )+ 1
2

Ĩ (−b ).

To see that A(·) is well-defined, suppose that ϕ = Ep [ζa ′] for some a ′ 6= a in u ◦Fb . Then b

is also the projection of a ′ onto NC and a ′−b ∈C , so b = a ′+(b −a ′) ∈ u ◦Fb +C ; thus, A(·) is

well-defined because so is Ĩ . Furthermore, 0n = Ep [aζ] for a = 0, which is the unique element

in NC∩C . Thus, A(0n ) = 1
2

I (0)+ 1
2

I (−0) = 0. Finally, ifϕ = Ep [ζa ] for some a ∈ u ◦Fb and b ∈NC

is the projection of a , then b ∈ u ◦Fb +C and so −b =
∑

i (−ϕi )ζi ∈ u ◦Fb +C , which implies

that A(−ϕ) = 1
2

Ĩ (−b )+ 1
2

Ĩ (b ) = A(ϕ).

Finally, verify that the map f 7→ Ep [u ◦ f ]+A(Ep [ζu ◦ f ]) indeed represents preferences. For

a ∈ u ◦Fb , if γ−a ∈ u ◦Fb then Ep [a ]+A(Ep [ζa ]) = J (a )+ 1
2

Ĩ (a )+ 1
2

Ĩ (−a ) = 1
2
γ+ 1

2
I (a )− 1

2
I (γ−

a )+ 1
2

I (a )+ 1
2

I (γ−a )+ 1
2

J (−γ) = I (a ), decomposing−a as (γ−a )+(−γ)with γ−a ∈ u ◦Fb and

−γ∈C . This completes the proof.

B.4.3 Proof of Corollary 1

By Corollary 4,¼ has a unique extension toFb that satisfies Axioms 1–5; clearly, this preference

also satisfies Axiom 6, and Lemma 1 shows that it satisfies Axioms 7 and 8 as well. The argument

in the preceding subsection actually constructs a VEU representation of the extension of ¼ to

Fb , which is sharp.

B.4.4 Uniqueness

Consider two VEU representations (u , p , n ,ζ, A) and (u ′, p ′, n ′,ζ′, A ′) of ¼, and assume that the

former is sharp. By standard arguments, u ′ =αu+β for someα,β ∈Rwithα> 0; consequently,
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a ∈ u ◦F0 if and only if αa +β ∈ u ′ ◦F0. Next, for every a ∈ u ◦F0, let I (a ) = Ep [a ]+A(Ep [ζ ·a ]);

define I ′ similarly using the second VEU representation. By Cor. 3, αI (a ) +β = I ′(αa +β ) for

every a ∈ u ◦F0; if a ,γ− a ∈ u ◦F0, then αa +β ,α(γ− a ) +β ∈ u ′ ◦F0, and so, if J and J ′ are

the functionals defined from I and, respectively, I ′ as in Eq. (20),

J ′(αa+β ) =α
1

2
γ+β+

1

2
I ′(αa+β )−

1

2
I ′(α(γ−a )+β ) =α

1

2
γ+β+

1

2
[αI (a )+β ]−

1

2
[αI (γ−a )+β ] =αJ (a )+β .

This implies that linear extensions of J and J ′ to B (Σ) coincide, and so p = p ′; hence,

αA
�

Ep [ζ ·a ]
�

=αI (a )+β −αJ (a )−β = I ′(αa +β )− J ′(αa +β ) = A ′
�

Ep [ζ′ ·αa ]
�

(26)

for all a ∈ u ◦F0, where the last equality uses the fact that Ep [ζ′j ] = 0 for all 0≤ j < n ′. Now, to

define a suitable linear surjection T : E (u ′ ◦F0; p ,ζ′)→E (u ◦F0; p ,ζ), suppose that Ep [ζ′ ·αa ] =

Ep [ζ′ ·αb ] for a ,b ∈ u ◦F0; let γ ∈ R be such that γ−b ∈ u ◦F0, so there is f ∈ F0 such that

1
2

a + 1
2
(γ−b ) = u ◦ f , or equivalently 1

2
(αa +β )+ 1

2
[α(γ−b )+β ] =αu ◦ f +β = u ′ ◦ f . But then

Ep [ζ′ ·u ′ ◦ f ] = Ep [ζ′ · 1
2
(a −b )] = 0, which implies that f is crisp.37 Since (u , p , n ,ζ, A) is sharp,

Ep [ζ·u ◦ f ] = 0, and so Ep [ζ·a ] = Ep [ζ·b ]. Thus, we can define T by letting T (Ep [ζ′·αa ]) = Ep [ζ·a ]

for all a ∈ u ◦ F0. That T is affine and onto is immediate. Finally, if ϕ′ = Ep [ζ′ · αa ], then

A(T (ϕ′)) = A(T (Ep [ζ′ ·αa ])) = A(Ep [ζ ·a ]) = 1
α

A ′(Ep [ζ′ ·αa ]) = 1
α

A ′(ϕ′), where the second equality

follows from the definition of T , and the third from Eq. (26): thus, A = 1
α

A ′ ◦T .

Finally, if (u ′, p , n ′,ζ′, A ′) is also sharp, assume that Ep [ζ ·a ] = Ep [ζ ·b ]: arguing as above, if

γ−b ∈ u ◦F0 and u ◦ f = 1
2

a+ 1
2
(γ−b ), then f is crisp. Since (u ′, p , n ′,ζ′, A ′) is sharp, Ep [ζ′·u ′◦ f ] =

0, i.e. Ep [ζ′ ·αa ] = Ep [ζ′ ·αb ]. Thus, T is a bijection.

B.4.5 Proof of Proposition 1

Recall first that, as shown in the proof of uniqueness, Ep [ζ · a ] = 0 implies that a is a crisp

function (in u ◦F0 or u ◦Fb ).

37For all g ∈F0 and x ∈X with f ∼ x , Ep [λu ′ ◦ f +(1−λ)u ′ ◦ g ]+A ′(Ep [ζ′ · [λu ′ ◦ f +(1−λ)u ′ ◦ g ]]) = Ep [λu ′ ◦ f +

(1−λ)u ′ ◦ g ]+A ′(Ep [ζ′ · (1−λ)u ′ ◦ g ]) = Ep [λu ′(x )+ (1−λ)u ′ ◦ g ]+A ′(Ep [ζ′ · [λu ′(x )+ (1−λ)u ′ ◦ g ]]).
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(1) If n =∞, the statement holds vacuously. Otherwise, observe that Ep [ζ ·u ◦ f 1], . . . , Ep [ζ ·

u ◦ f m ] is a collection of m > n vectors in Rn , so there must be β1, . . . ,βm ∈R, not all zero, such

that
∑

j βj Ep [ζ ·u ◦ f j ] = 0. Let β̄ =
∑

j |βj | > 0. Now define α1, . . . ,αm and g 1, . . . , g m ∈ Fb by

letting (a) αj =
|βj |
β̄

and (b) g j = f j if βj > 0, and g j such that u ◦ g j = γj −u ◦ f j for a suitable

γj ∈R otherwise. Then
∑

j αj u ◦ g j = 1
β̄

∑

j βj u ◦ f j − 1
β̄

∑

j :βj<0βjγj . Therefore, by construction,

Ep

h

ζ ·
∑

j αj u ◦ g j

i

= 0, so
∑

j αj g j is a crisp combination of f 1, . . . , f m .

(2) Suppose that (u , p , n ,ζ, A) is sharp, so in particular the ζi ’s are orthonormal.

Since each ζi is bounded, there exists γ > 0 such that γζ′i ∈ u ◦Fb for all i = 0, . . . , m − 1;

thus, for each such i , let f i ∈Fb be such that u ◦ f i = γζ′i .

Suppose there exists a crisp combination
∑

j αj g j of f 0, . . . , f m−1. For j such that g j 6= f j ,

suppose that u ◦ g j = γj −u ◦ f j ; also, for all j = 0, . . . , m − 1, let βj = αj if g j = f j and βj =−αj

otherwise. Then, since (u , p , n ,ζ′, A ′) is sharp, Ep

h

ζ′ ·
∑

j βjζ
′
j

i

= 1
γ

Ep

h

ζ ·
∑

j αj u ◦ g j

i

= 0n ,

where constants cancel because Ep [ζ′] = 0n . But, since ζ′0, . . . ,ζ′m−1 are orthonormal, Ep [ζ′i ·
∑m−1

j=0 βjζ
′
j ] =βi for 0≤ i <m −1, and not all βi ’s are zero: contradiction.

(3) Suppose that (u ′, p ′, n ′,ζ′, A ′) is another representation of¼ onFb and, by contradiction,

n ′ < n . By (2), there is a tuple f 0, . . . , f n ′ that admits no crisp combination; however, by (1), every

tuple of n ′+1 elements must contain a crisp combination: contradiction. Thus, n ′ ≥ n .

(4) “If”: follow from (2) and the fact that, if¼ is not EU, then n > 0. Only if: since (u , p , n ,ζ, A)

is sharp and n = 1,¼ is not EU. Now suppose that f , g , ḡ ,α are such that both α f +(1−α)g and

α f +(1−α)ḡ are crisp. Since the representation is sharp, Ep [ζ·u ◦[α f +(1−α)g ]] = Ep [ζ·u ◦[α f +

(1−α)ḡ ]] = 0; hence, for all f̄ such that ( f , f̄ ) are complementary, also Ep [ζ·u ◦[α f̄ +(1−α)g ]] =

Ep [ζ ·u ◦ [α f̄ +(1−α)ḡ ]] = 0. This implies that there is a tuple of size m = 2 that admits no crisp

combinations, which contradicts (2).

B.5 Ambiguity Aversion

Proof of Corollary 2
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If¼ satisfies Ambiguity Aversion, then I is concave (cf. MMR, p. 28); in particular, if a ,γ−a ∈

u ◦F0, 1
2
γ= I ( 1

2
a+ 1

2
(γ−a ))≥ 1

2
I (a )+ 1

2
I (γ−a ) = 1

2

∫

a dp+ 1
2

A(Ep [ζ·a ])+ 1
2
γ− 1

2

∫

a dp+ 1
2

A(Ep [ζ·

(γ−a )]) = 1
2
γ+A(Ep [ζ ·a ]), and so A is non-positive. Finally, A is clearly also concave.

Conversely, suppose that A is concave (hence, also non-positive). Then I is concave, so for

all f , g ∈F0 with f ∼ g , I (u ◦ [λ f +(1−λ)g ])≥ I (u ◦λ f ).

Proof of Proposition 2

(3) ⇒ (1) is immediate (consider the EU preference determined by p and u ). To see that

(3)⇔ (2), note that, if f , f̄ are complementary, with 1
2

f + 1
2

f̄ ∼ z ∈ X , f ∼ x and f̄ ∼ x̄ , then

1
2

f + 1
2

f̄ ¼ 1
2

x + 1
2

x̄ iff u (z ) ≥ 1
2

∫

u ◦ f dp+ 1
2

A(Ep [ζ · u ◦ f ]) + 1
2

∫

u ◦ f̄ dp+ 1
2

A(Ep [ζ · u ◦ f̄ ]) =

u (z ) + A(Ep [ζ · u ◦ f ]), because Ep [ζ · u ◦ f̄ ] = −Ep [ζ · u ◦ f ] and A is symmetric; hence, the

required ranking obtains iff A(Ep [ζ ·u ◦ f ])≤ 0.

Turn now to (1)⇒ (3). Suppose that ¼ is more ambiguity-averse than some EU preference

relation ¼′. By Corollary B.3 in Ghirardato et al. (2004), one can assume that ¼′ is represented

by the non-constant utility u on X . Arguing by contradiction, suppose that there is f ∈F0 such

that A(Ep [ζ · u ◦ f ]) > 0. Let γ ∈ R be such that γ− u ◦ f ∈ B0(Σ, u (X )), and f̄ ∈ F0 such that

u ◦ f̄ = γ− u ◦ f . Then A(Ep [ζ · u ◦ f̄ ]) = A(Ep [ζ · u ◦ f ]) > 0; furthermore, 1
2

u ◦ f + 1
2

u ◦ f̄ =

u ◦ ( 1
2

f + 1
2

f̄ ) = 1
2
γ, which implies A(Ep [ζ ·u ◦ ( 1

2
f + 1

2
f̄ )]) = A(0) = 0. If now f ∼ x and f̄ ∼ x̄ for

x , x̄ ∈ X , then 1
2

u (x )+ 1
2

u (x̄ ) = 1
2
γ+A(Ep [ζ ·u ◦ f ])> 1

2
γ, so 1

2
x + 1

2
x̄ � 1

2
f + 1

2
f̄ . Now let z ∈ X be

such that 1
2

f (ω) + 1
2

f̄ (ω) ∼ z for all ω; then 1
2

x + 1
2

x̄ � z , so 1
2

x + 1
2

x̄ �′ z . But f ∼ x and f̄ ∼ x̄

imply f ¼′ x and f̄ ¼′ x̄ , and since¼′ is an EU preference, 1
2

f + 1
2

f̄ ¼′ 1
2

x+ 1
2

x̄ ; hence, z ¼′ 1
2

x+ 1
2

x̄ ,

a contradiction.

To see that (3) ⇔ (4), consider first the following Claim: for a complementary pair ( f , f̄ )

such that f ∼ f̄ , 1
2

f + 1
2

f̄ ∼ z ¼ f iff A(Ep [ζ ·u ◦ f ])≤ 0. To prove this claim, let 1
2

f + 1
2

f̄ ∼ z ∈ X :

then, since f ∼ f̄ and these acts have the same adjustments,
∫

u ◦ f dp =
∫

u ◦ f̄ dp, so both

integrals equal u (z ). Therefore, 1
2

f + 1
2

f̄ ∼ z ¼ f if and only if u (z ) ≥ u (z ) +A(Ep [ζ ·u ◦ f ]) =
∫

u ◦ f dp+A(Ep [ζ ·u ◦ f ]).

The Claim immediately shows that (3) implies (4). For the converse, assume that Axiom 11
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and consider the cases (a) ¼ satisfies C-Independence or (b) u (X ) is unbounded. In case (a),

then I is positively homogeneous, so if ϕ = Ep [ζ · a ] for some a ∈ B (Σ, u (X )) and α > 0, then

A(αϕ) = Î (αa )− J (αa ) = α[Î (a )− J (a )] = αA(ϕ): that is, A is also positively homogeneous.

In this case, it is wlog to assume that u (X ) ⊃ [−1, 1] and prove the result for f ∈ F0 such that

‖u ◦ f ‖ ≤ 1
3

. This ensures the existence of f̄ ∈ F0 such that u ◦ f̄ = −u ◦ f , as well as g , ḡ ∈ F0

such that u ◦ g = u ◦ f −
∫

u ◦ f dp and u ◦ ḡ = u ◦ f̄ −
∫

u ◦ f̄ dp=−u ◦ g . By construction, (g , ḡ )

are complementary and g ∼ ḡ , because
∫

u ◦ g dp =
∫

u ◦ ḡ dp = 0. The above Claim implies

that A(Ep [ζ ·u ◦ f ]) = A(Ep [ζ ·u ◦ g ])≤ 0, as required.

In case (b), suppose u (X ) is unbounded below (the other case is treated analogously). Con-

sider f ∈ F0 and construct f̄ ∈ F0 such that u ◦ f̄ = min u ◦ f (Ω) +max u ◦ f (Ω)− f . Then

f , f̄ are complementary. If f ∼ f̄ , then the Claim suffices to prove the result. Otherwise, let

δ =
∫

u ◦ f dp −
∫

u ◦ f̄ dp. If δ > 0, consider f ′ ∈ F0 such that u ◦ f ′ = u ◦ f − δ: then
∫

u ◦ f ′dp =
∫

u ◦ f̄ dp and f ′, f̄ are complementary, so f ′ ∼ f̄ and the Claim implies that

A(Ep [ζ · u ◦ f ]) = A(Ep [ζ · u ◦ f ′]) ≤ 0. If instead δ < 0, consider f ′ such that u ◦ f ′ = f̄ − δ,

so again f ∼ f ′ and the Claim can be invoked to yield the required conclusion.

Proof of Proposition 3

(2) ⇒ (1) is immediate, so focus on (1) ⇒ (2). Since constant acts are complementary, as-

sume wlog that u 1 = u 2 ≡ u ; it is also wlog to assume that 0 ∈ int(X ). Next, consider a ∈ u ◦F0

such that−a ∈ u ◦F0 and let f , f̄ be such that a = u ◦ f and−a = u ◦ f̄ . Then, by the properties

of the VEU representation, f ¼1 f̄ iff f ¼2 f̄ is equivalent to Ep 1[a ]≥ 0 iff Ep 2[a ]≥ 0. By positive

homogeneity, this is true for all a ∈ B0(Σ); in particular, Ep 1[a−Ep 1[a ]] = 0, so Ep 2[a−Ep 1[a ]] = 0,

i.e. Ep 1[a ] = Ep 2[a ], for all a ∈ B0(Σ), and the claim follows.

Now suppose that (1) and (2) hold, and that the VEU representations under consideration

are sharp. Then an act f is crisp for ¼j iff Ep [ζj ·u ◦ f ] = 0. Thus, if ζ1 = ζ2, ¼1 and ¼2 admit

the same crisp acts. Conversely, suppose ¼1 and ¼2 admit the same crisp acts; then, for all

a ∈ u ◦F0, Ep [ζ1 · a ] = 0 iff Ep [ζ2 · a ] = 0, and by positive homogeneity the same is true for all
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a ∈ B0(Σ). Therefore, if Ep [ζ1 · a ] = Ep [ζ1 ·b ] for a ,b ∈ u ◦F0, then also Ep [ζ2 · a ] = Ep [ζ2 ·b ],

and the converse implication also holds. Hence, we can define Ā2 : E (u ◦ F0; p ,ζ1) → R by

Ā2(Ep [ζ1 ·a ]) = A2(Ep [ζ2 ·a ]) to get a new VEU representation (u , p , n 1,ζ1, Ā2) for ¼2.

Proof of Proposition 4

Suppose that ¼1 is more ambiguity-averse than ¼2. Pick f ∈ F0 and let x ∈ X be such that

u (x ) = Ep [u ◦ f ] +A1(Ep [ζ1 ·u ◦ f ]). Then f ¼2 x , and therefore Ep [u ◦ f ] +A2(Ep [ζ2 ·u ◦ f ]) ≥

u (x ) = Ep [u ◦ f ]+A1(Ep [ζ1 ·u ◦ f ]), which yields the required inequality.

Conversely, suppose A1(Ep [ζ1 ·u ◦ f ]) ≤ A2(Ep [ζ2 ·u ◦ f ]) for all f ∈ F0: then, for all x ∈ X ,

f ¼1 x implies Ep [u ◦ f ] +A2(Ep [ζ2 ·u ◦ f ])≥ Ep [u ◦ f ] +A1(Ep [ζ1 ·u ◦ f ])≥ u (x ), i.e. f ¼2 x , as

required. The final claim is immediate.

B.6 Updating

For a ,b ∈ u ◦F0, let a Eb ∈ u ◦F0 be the function that equals a on E and b elsewhere.

Proof of Remark 1.

Only if: it will be shown that, for any event E ∈ Σ, p (E ) = 0 implies I (a ) = I (b ) for all a ,b ∈

u ◦F0 such that a (ω) = b (ω) for ω 6∈ E . To see this, assume wlog that I (a ) ≥ I (b ), and let α =

max{max a (Ω), max b (Ω)} and β =min{min a (Ω), min b (Ω)}. Then monotonicity implies that

I (αE a ) ≥ I (a ) ≥ I (b ) ≥ I (βEb ) = I (βE a ). Thus, it is sufficient to show that I (αE a ) = I (βE a ).

This is immediate if α = β , so assume α > β . Since p (E ) = 0, Ep [αE a ] = Ep [1Ω\E a ] = Ep [βE a ],

so if I (αE a )> I (βE a ), it must be the case that A(Ep [ζ·αE a ])> A(Ep [ζ·βE a ]). Letting γ=α+β ,

as usual γ−αE a ,γ−βE a ∈ u ◦F0; now

I (γ−αE a ) = Ep
�

[γ−αE a ]
�

+A
�

Ep [ζ · [γ−αE a ]]
�

= Ep
�

1Ω\E [γ−a ]
�

+A
�

−Ep [ζ ·αE a ]
�

=

= Ep
�

1Ω\E [γ−a ]
�

+A
�

Ep [ζ ·αE a ]
�

> Ep
�

1Ω\E [γ−a ]
�

+A
�

Ep [ζ ·βE a ]
�

=

= Ep
�

1Ω\E [γ−a ]
�

+A
�

Ep [ζ · [γ−βE a )]
�

= Ep
�

[γ−βE a ]
�

+A
�

Ep [ζ · [γ−βE a )]
�

= I (γ−βE a ),
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which is a violation of monotonicity, as γ−α=β <α= γ−β .

If: suppose that p (E ) > 0, and fix x , y ∈ X with x � y . If x E y � y , we are done. Otherwise,

note that x E y ∼ y , i.e. [u (x )− u (y )]p (E ) + A([u (x )− u (y )]Ep [ζ · 1E ]) = 0, implies A([u (x )−

u (y )]Ep [ζ ·1Ω\E ]) = A([u (x )−u (y )]Ep [ζ ·1E ]) =−[u (x )−u (y )]p (E ); hence,

I (u ◦ y E x ) = u (y )+p (Ω \E )[u (x )−u (y )]+A([u (x )−u (y )]Ep [ζ ·1Ω\E ]) =

= u (y )+p (Ω \E )[u (x )−u (y )]− [u (x )−u (y )]p (E ) =

= u (y )+ [u (x )−u (y )][p (Ω \E )−p (E )]< u (x ),

because p (Ω\E )−p (E ) = 1−2p (E )< 1 as p (E )> 0. Thus, x � y E x , and again Axiom 12 holds.

Proof of Proposition 5. Since E is not null, p (E )> 0, so p (·|E ) is well-defined.

Claim: If ( f , f̄ ) are complementary and constant on Ω \E , then

1

2
f +

1

2
f̄ (ω)∼

1

2
f̄ +

1

2
f (ω)

holds if and only if u ( f (ω)) = Ep [u ◦ f ] = Ep [u ◦ f |E ] for allω∈Ω \E .

Proof of the Claim: Let γ ∈ R be such that 1
2
γ = 1

2
u ( f (ω)) + 1

2
u ( f̄ (ω)) for all ω ∈ Ω; also let

α= u ( f (ω)) and β = u ( f̄ (ω)) for any (hence all)ω∈Ω \E . Then u ◦ f̄ = γ−u ◦ f and β = γ−α;

thus, forω∈Ω \E ,

I

�

u ◦
�

1

2
f +

1

2
f̄ (ω)

��

=
1

2
Ep [u ◦ f ]+

1

2
β +A

�

1

2
Ep [ζ ·u ◦ f ]

�

=

=
1

2
Ep [u ◦ f ]+

1

2
γ−

1

2
α+A

�

1

2
Ep [ζ ·u ◦ f ]

�

and

I

�

u ◦
�

1

2
f̄ +

1

2
f (ω)

��

=
1

2
Ep [u ◦ f̄ ]dp+

1

2
α+A

�

1

2
Ep [ζ ·u ◦ f̄ ]

�

=

=
1

2
γ−Ep [u ◦ f ]+

1

2
α+A

�

1

2
Ep [ζ ·u ◦ f ]

�

,

where the last equality uses the fact that Ep [ζ ·u ◦ f̄ ] =−Ep [ζ ·u ◦ f ] and A is symmetric. Hence,

1
2

f + 1
2

f̄ (ω) ∼ 1
2

f̄ + 1
2

f (ω) holds if and only if α = Ep [u ◦ f ]. Furthermore, Ep [u ◦ f ] = Ep [u ◦ f ·

1E ]+αp (Ω \E ), so it follows that α= Ep [u ◦ f |E ] as well.
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Next, note that the adjustment factors ζE = (ζi ,E )0≤i<n defined by Eq. (7) are easily seen to

be bounded and to have zero mean. Also observe that

Ep [ζE ·a |E ] = p (E )
¦

Ep [ζ ·a |E ]−Ep [a |E ]Ep [ζi |E ]
©

= Ep [ζ ·a ·1E ]−Ep [a |E ]Ep [ζi ·1E ] =

= Ep [ζ ·a E
�

Ep [a |E ]
�

], (27)

where the last equality follows from −Ep [ζi · 1E ] = Ep [ζi · 1Ω\E ]. To show that (u , p , n ,ζE , A) is a

VEU representation, it is sufficient to verify monotonicity. Observe that, for a ,b ∈ u ◦F0, a ≥ b

implies that Ep [a |E ] ≥ Ep [b |E ], and hence a E
�

Ep [a |E ]
�

≥ b E
�

Ep [b |E ]
�

. Since (u , p , n ,ζ, A) is

a VEU representation, Ep [a E
�

Ep [a |E ]
�

]+A(Ep [ζ ·a E
�

Ep [a |E ]
�

])≥ Ep [b E
�

Ep [b |E ]
�

]+A(Ep [ζ ·

b E
�

Ep [b |E ]
�

), i.e. by Eq. (27) Ep [a |E ]+A(Ep [ζE ·a |E ])≥ Ep [b |E ]+A(Ep [ζE ·b |E ]), as required.

Now suppose (1) holds. Fix f , g , f̄ , ḡ ∈ F0 as in Axiom 14. By the Claim, u ◦ f (ω) = Ep [u ◦

f |E ] = Ep [u ◦ f ] and u ◦ g (ω) = Ep [u ◦ g |E ] = Ep [u ◦ g ] for allω∈Ω\E . Then the Axiom implies

that f ¼E g iff f ¼ g , i.e. iff

Ep [u ◦ f ]+A
�

Ep [ζ ·u ◦ f ]
�

≥ Ep [u ◦ g ]+A
�

Ep [ζ ·u ◦ g ]
�

⇔Ep [u ◦ f |E ]+A
�

Ep

�

ζ ·u ◦ f E
�

Ep [u ◦ f |E ]
���

≥ Ep [u ◦ g |E ]+A
�

Ep

�

ζ ·u ◦ g E
�

Ep [u ◦ g |E ]
���

⇔Ep [u ◦ f |E ]+A
�

Ep [ζE ·u ◦ f |E ]
�

≥ Ep [u ◦ g |E ]+A
�

Ep [ζE ·u ◦ g |E ]
�

.

If now f , g ∈F0 are arbitrary, let x , y ∈X be such that u (x ) = Ep [u ◦ f |E ] and u (y ) = Ep [u ◦ g |E ].

Notice that then Ep [u ◦ f E x ] = Ep [u ◦ f E x |E ] = u (x ), and similarly for g E y . Finally, let f ′, g ′

be such that ( f E x , f ′) and (g E y , g ′) are complementary; notice that this requires that f ′, g ′ be

constant onΩ\E . Then, by the Claim, the acts f E x , f ′, g E y , g ′ satisfy the assumptions of Axiom

14, and the argument just given shows that then f E x ¼E g E y iff Ep [u ◦ f |E ]+A(Ep [ζE ·u ◦ f |E ])≥

Ep [u ◦ g |E ]+A(Ep [ζE ·u ◦ g |E ]). But by Axiom 13, f E x ¼E g E y iff f ¼E g , so (2) holds.

In the opposite direction, assume that (2) holds. It is then immediate that Axiom 13 is sat-

isfied. Now assume that f , g , f̄ , ḡ are as in Axiom 14. Then the Claim shows that u ( f (ω)) =

Ep [u ◦ f |E ] and u (g (ω)) = Ep [u ◦ g |E ] for all ω ∈ Ω \ E , so Ep [u ◦ f |E ] + A(Ep [ζE · u ◦ f |E ] =
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p (E )Ep [u ◦ f |E ] +p (Ω \ E )u ( f (ω)) +A(Ep [p (E )(ζ−Ep [ζ|E ])u ◦ f |E ]) = Ep [u ◦ f ] +A(Ep [ζ1E u ◦

f ]+Ep [ζ1Ω\E ]Ep [u ◦ f |E ]) = Ep [u ◦ f ]+A(Ep [ζu ◦ f ]), and similarly for g , so Axiom 14 holds.

Conclude by verifying that the “law of iterated conditioning” holds: with notation as in §4.4,

ζi ,E ,F = p (F |E ) ·
�

ζi ,E −Ep [ζi ,E |F ]
�

=

= p (F |E ) ·
�

p (E ) ·
�

ζi −Ep [ζi |E ]
�

−Ep [p (E )(ζi −Ep [ζi |E ])|F ]
�

=

= p (F )ζi −p (F )Ep [ζi |E ]−p (F )Ep [ζi |F ]+p (F )Ep [ζi |E ] = ζi ,F .
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C Vector Expected Utility and Attitudes toward Variation,
Supplementary Material
Marciano Siniscalchi, December 16, 2008

Abstract. This document contains the following Supplementary Material: Omitted proofs (§C.1);

formal statements and proofs of results characterizing Complementary Independence for other

decision models (§C.2); Probabilistic Sophistication for VEU preferences (§C.3); and the analy-

sis of the consumption-savings example of Sec. 4.5 (§C.4).

C.1 Omitted proofs

Proof of Lemma 2

Proof: A binary relation � on a convex subset Φ of B (Σ) is a preorder if it is reflexive and tran-

sitive; monotonic if a ≥ b implies a � b ; conic if a � b and α ∈ (0, 1) imply αa + (1− α)c �

αb + (1−α)� c ; continuous if a k → a , b k → b , and a k � b k for all k imply a � b ; non-trivial if

a �b and not b � a for some a ,b .

Now, for a ,b ∈ B0(Σ, u (X )), let a �0 b iff the left-hand side of Eq. (22) holds; also, for a ,b ∈

B (Σ, u (X )), let a �b iff the left-hand side of Eq. (23) holds.

I closely mimic Prop. 4 in GMM. Monotonicity, transitivity and continuity of�0 and� follow

directly from the definition and the properties of I . Reflexivity follows from monotonicity. To

show that �0 and � are conic (i.e. independent), consider α ∈ (0, 1) and a ,b , c ∈ B0(Σ, u (X )) or,

respectively, B (Σ, u (X )): then, for all β ∈ (0, 1], note that β [αa +(1−α)c ]+(1−β )d =βαa +(1−

βα)[β (1−α)
1−βα c + 1−β

1−βαd ] and similarly for b . Thus, a �0 b or, respectively, a �b imply, in particular,

that

I (β [αa +(1−α)c ]+ (1−β )d ) = I

�

βαa +(1−βα)
�

β (1−α)
1−βα

c +
1−β

1−βα
d

��

≥

≥ I

�

βαb +(1−βα)
�

β (1−α)
1−βα

c +
1−β

1−βα
d

��

= I (β [αb +(1−α)c ]+ (1−β )d )

1



for all β ∈ (0, 1], so αa +(1−α)c �0 αb +(1−α)c or, respectively, αa +(1−α)c � αb +(1−α)c .

The case α= 1 is trivial.

Finally, if �0 is trivial, then in particular the conjunction “γ�0 γ′ and not γ′ �0 γ” is false for

all γ,γ′ ∈ u (X ). Take γ > γ′: then γ �0 γ′ by monotonicity, and so it must be the case that also

γ′ �0 γ. By the definition of �0, taking α= 1, this implies that I (γ) = I (γ′), which contradicts the

fact that I is normalized. The same argument applies to �.

The first claim now follows by applying Proposition A.2 in GMM to �0.

For the second statement, note that continuity of I implies that the left-hand side of Eq. (23)

holds iff I (αa+(1−α)c )≥ I (αb+(1−α)c ) for all c ∈ B0(Σ, u (X )): that is, one can restrict attention

to mixtures with simple functions. It then follows that �0 is the restriction of � to B0(Σ, u (X )).

Define �′ on B (Σ, u (X )) by stipulating that, for all a ,b ∈ B (Σ, u (X )), a �′ b iff q (a )≥q (b ) for

all q ∈C . Then�′ is easily seen to be a non-trivial, monotonic, continuous, conic preorder, and

clearly a �′ b iff a �b for a ,b ∈ B0(Σ, u (X )): that is,�0 is also the restriction of�′ to B0(Σ, u (X )).

Therefore, for all a ,b ∈ B0(Σ, u (X )), a � b iff a �′ b . It remains to be shown that this implies

�=�′.

Thus, suppose a � b for some a ,b ∈ B (Σ, u (X )). Then, for every α ∈ (0, 1), αa (Ω),αb (Ω) ⊂

int u (X ), and αa �αb because� is conic. Hence, there exist sequences (a k ), (b k ) in B0(Σ, u (X ))

such that a k ≥ αa , b k ≤ αb , a k → αa and b k → αb in the supremum norm. Then a k � αa �

αb �b k for all k , so also a k �′ b k . Since�′ is continuous, taking limits as k →∞ yieldsαa �′ αb ,

and taking limits as α→ 1 yields a �′ b . Exchanging the roles of � and �′ yields the converse

implication.

C.2 Characterizations of Complementary Independence for other models

Proposition 7 (Complementary Independence for MEU and CEU preferences)

(1) A MEU preference ¼ satisfies Axiom 7 if and only if there is p ∈C such that, for all q ∈C ,

2



2p −q ∈C (that is, p is the barycenter of C ).

(2) A CEU preference ¼ satisfies Axiom 7 if and only if there is p ∈ ba1(Σ) such that, for all

E ∈Σ, v (E )+ [1−v (Ω \E )] = 2p (E ).

In (1) and (2), p ∈ ba1(Σ) is the unique probability charge that satisfies f ¼ f̄ ⇔
∫

u ◦ f dp ≥
∫

u ◦ f̄ dp for all complementary pairs ( f , f̄ ), where u is the utility function in the MEU or CEU

representation of¼.

Proof: (1) follows from Lemma 3 and the observation that, for MEU preferences, the set C

constructed in Lemma 2 coincides with C (cf. Ghirardato et al., 2004, §5.1).

For (2), notice that the Choquet integral is positively homogeneous; hence, I has a unique

extension from B0(Σ, u (X )) to B0(Σ), and J (a ) = 1
2

I (a )− 1
2

I (−a ) for all a ∈ B0(Σ). If ¼ satisfies

Complementary Independence, then, using the VEU representation, I (1E ) = p (E )+A(Ep [ζ1E ])

and I (−1E ) =−p (E )+A(−Ep [ζ1E ]) =−p (E )+A(Ep [ζ1E ]), so I (1E )−I (−1E ) = 2p (E ). On the other

hand, using the CEU representation, Iv (E ) = v (E ) and Iv (−1E ) =−[1−v (Ω\E )]; since I = Iv , the

claim follows. In the opposite direction, suppose that a =
∑K

k=1αk 1Ek for a partition E1, . . . , EK

of Ω and numbers α1 < α2 < . . . < αK . Then Iv (a ) =
∑K

k=1αk

�

v
�

∪K
`=k E`

�

−v
�

∪K
`=k+1E`

��

and

similarly, invoking the condition in the Proposition,

Iv (−a ) =
K
∑

k=1

(−αk )
�

v
�

∪k
`=1E`

�

−v
�

∪k−1
`=1 E`

��

=

=
K
∑

k=1

(−αk )
�

2p
�

∪k
`=1E`

�

−1+v
�

∪K
`=k+1E`

�

−2p
�

∪k−1
`=1 E`

�

+1−v
�

∪K
`=k E`

��

=−2
K
∑

k=1

αk p (Ek )+ Iv (a ),

and so 1
2

I (a )− 1
2

I (−a ) = J (a ), where J is the linear functional represented by p . The claim now

follows from Lemma 1.

Proposition 8 (Complementary Independence for Variational Preferences) Let ¼ be a varia-

tional preference, and assume that the utility function u is unbounded either above or below.

3



Then¼ satisfies Axiom 7 if and only if there exists p ∈ ba1(Σ) such that

∀q ∈ ba1(Σ), 2p −q ∈ ba1(Σ)⇒ c ∗(q ) = c ∗(2p −q ) and 2p −q 6∈ ba1(Σ)⇒ c ∗(q ) =∞.

In particular, c ∗(p ) = 0. Finally, p is the unique probability charge such that, for all complemen-

tary pairs ( f , f̄ ), f ¼ f̄ ⇔
∫

u ◦ f dp≥
∫

u ◦ f̄ dp.

The reader is referred to Maccheroni et al. (2006) for a discussion of the unboundedness as-

sumption.

Proof: The preference¼ has a niveloidal representation Ic ∗ , u , where Ic (a ) =minq∈ba1(Σ)

∫

a dq+

c ∗(q ). For conciseness, say that c ∗ is symmetric around p ∈ ba1(Σ) iff it satisfies the condition in

Prop. 8. By Lemma 1, Axiom 7 holds iff the functional J defined by J (a ) = 1
2
γ+ 1

2
Ic ∗(a )− 1

2
Ic ∗(γ−a )

is affine. Thus it suffices to show that J is affine iff c ∗ is symmetric around p .

Suppose that c ∗ is symmetric around p . Consider a complementary pair ( f , f̄ ), and let z ∈X

be such that 1
2

f (ω) + 1
2

f̄ (ω) ∼ z ; thus, a ≡ u ◦ f = 2u (z )− u ◦ f̄ ≡ γ− u ◦ f̄ . Now let q ∗ ∈

arg minq∈ba1(Σ)

∫

a dq+ c ∗(q ); since clearly c ∗(q ∗)<∞, 2p −q ∗ ∈ ba1(Σ) and c ∗(q ∗) = c ∗(2p −q ∗).

Now, for all q ∈ ba1(Σ) such that 2p −q ∈ ba1(Σ),
∫

(γ−a )d(2p −q )+ c ∗(2p −q ) = γ−2

∫

a dp+

∫

a dq+ c ∗(q )≥

≥ γ−2

∫

a dp+

∫

a dq∗+ c ∗(q ∗) =

∫

(γ−a )d(2p −q ∗)+ c ∗(2p −q ∗).

Since any q ∈ ba1(Σ) such that 2p−q ∈ ba1(Σ) can obviously be written as q = 2p−[2p−q ], and

all other q ∈ ba1(Σ) have c ∗(q ) =∞, it follows that Ic ∗(γ−a ) = γ−2
∫

a dp+
∫

a dq∗+c ∗(2p−q ∗) =

γ− 2
∫

a dp+ Ic ∗(a ); therefore, J (a ) = 1
2
γ+ 1

2
Ic ∗(a )− 1

2
Ic ∗(γ− a ) =

∫

a dp, i.e. J is affine and

represented by p .

In the opposite direction, suppose that γ+ 1
2

Ic ∗(a )− 1
2

Ic ∗(γ−a ) =
∫

a dp for all a ,γ−a ∈ B0(Σ);

also, for every f ∈ F0, let m f ∈ X be such that u (m f ) = 1
2

minω∈Ωu ( f (ω)) + 1
2

maxω∈Ωu ( f (ω)),

4



and recall that u (x f ) = Ic ∗(u ◦ f ). For every q ∈ ba1(Σ) such that 2p −q ∈ ba1(Σ),

c ∗(2p −q ) = sup
f ∈F0

u (x f )−
∫

u ◦ f d(2p −q ) =−2

∫

u ◦ f dp+ sup
f ∈F0

Ic ∗(u ◦ f )−
∫

(−u ◦ f )dq=

=−2

∫

u ◦ f dp+ sup
f ∈F0

2

∫

u ◦ f dp+ Ic ∗(2u (m f )−u ◦ f )−2u (m f )−
∫

(−u ◦ f )dq=

= sup
f ∈F0

Ic ∗(2u (m f )−u ◦ f )−
∫

[2u (m f )−u ◦ f ]dq= sup
f ∈F0

Ic ∗(u ◦ f )−
∫

u ◦ f dq= c ∗(q );

the last step follows because, for every f ∈ F0, there is f̄ ∈ F0 such that u ◦ f̄ = 2u (m f )−u ◦

f , and therefore computing the supremum over f ∈ F0 is the same as computing it over the

complementary acts f̄ constructed from each f ∈F0 in this way. If instead 2p −q 6∈ ba1(Σ) but

c ∗(q )<∞, the above calculations still show that

sup
f ∈F0

u (x f )−
∫

u ◦ f d(2p −q ) = c ∗(q )<∞.

Now 2p (Ω)−q (Ω) = 1, so there must be E ∈Σ such that 2p (E )−q (E )< 0. Therefore,

sup
f ∈F0

u (x f )−
∫

u ◦ f d(2p −q ) = sup
f ∈F0

Ic ∗(u ◦ f )−
∫

u ◦ f d(2p −q )≥

≥ sup
α,β∈u (X ):α>β

Ic ∗(β +(α−β )1E )−
∫

[β +(α−β )1E ]d(2p−q) =

= sup
α,β∈u (X ):α>β

Ic ∗(β +(α−β )1E )−β − (α−β )[2p (E )−q (E )]≥

≥ sup
α,β∈u (X ):α>β

β −β − (α−β )[2p (E )−q (E )] =∞

which contradicts c ∗(q ) <∞. The second equality follows from the fact that 2p (Ω)−q (Ω) = 1,

and the second inequality follows from monotonicity of Ic ∗ ; the final equality uses the fact that

u (X ) is unbounded and 2p (E )−q (E )< 0.

Proposition 9 Let ¼ be a smooth-ambiguity preference (with finite-support µ). If there exists

p ∈ ba1(Σ) such that µ(q ) = µ(2p − q ) for all q ∈ ba1(Σ), then Axiom 7 holds. Furthermore, if

5



0∈ int u (X ), p is the only probability charge such that, for all complementary pairs ( f , f̄ ), f ¼ f̄

iff Ep [u ◦ f ]≥ Ep [u ◦ f̄ ].

Proof: Let (h, h̄) be complementary, and write a = u ◦ h, γ − a = u ◦ h̄. Then h ¼ h̄ iff
∫

φ
�

Eq [a ]
�

dµ ≥
∫

φ
�

Eq [γ−a ]
�

dµ, i.e. iff
∫

φ
�

Eq [a ]
�

dµ ≥
∫

φ
�

γ+Eq [−a ]
�

dµ; under the

assumption thatµ(q ) =µ(2p−q ), this can be rewritten as
∫

φ
�

Eq [a ]
�

dµ≥
∫

φ
�

γ+E2p−q [−a ]
�

dµ=
∫

φ
�

γ−2Ep [a ]+Eq [a ]
�

dµ. Sinceφ is strictly increasing, this holds if and only if Ep [a ]≥ γ

2
.

Now let f , f̄ , g , ḡ ,α be as in Axiom 7. Suppose that f ¼ f̄ and g ¼ ḡ . Letting u ◦ f̄ = γ f −u ◦ f

and u ◦ ḡ = γg −u ◦ g , the preceding argument implies that Ep [u ◦ f ]≥ 1
2
γ f and Ep [u ◦ g ]≥ 1

2
γg .

Hence, Ep [u ◦(α f +(1−α)g )]≥ γα ≡αγ f+(1−α)γg ; since u ◦(α f̄ +(1−α)ḡ ) = γα−u ◦(α f +(1−α)g ),

conclude that α f +(1−α)g ¼α f̄ +(1−α)ḡ , i.e the Axiom holds.

Finally, if u ◦ f̄ = γ−u ◦ f , then as noted above, f ¼ f̄ iff Ep [u ◦ f ] ≥ 1
2
γ; substituting for γ

and simplifying, this is equivalent to 1
2

Ep [u ◦ f ] ≥ 1
2

Ep [u ◦ f̄ ], and the factor 1
2

can be dropped.

Now consider q 6= p , so there is a ∈ B0(Σ)with Ep [a ]> Eq [a ]. Since by assumption 0∈ int u (X ),

assume [−1, 1]⊂ u (X ). Construct f ∈F0 such that u ◦ f (Ω)⊂ [0, 1
2
] and u ◦ f =αa+β , withα> 0;

then let f̄ ∈F be such that u ◦ f̄ =−u ◦ f . Finally, construct g , ḡ such that u ◦g = u ◦ f −Ep [u ◦ f ]

and u ◦ ḡ = u ◦ f̄ −Ep [u ◦ f̄ ]: this is possible as 1
2
≥ u ◦ f (ω)≥ 0≥ u ◦ f̄ (ω)≥− 1

2
and [−1, 1]⊂ u (X ).

Clearly, Ep [u ◦ g ] = 0= Ep [u ◦ ḡ ] and u ◦ ḡ =−u ◦ f +Ep [u ◦ f ] =−u ◦ g ; hence, g ∼ ḡ . However,

Eq [u ◦ g ] = Eq [u ◦ f ]− Ep [u ◦ f ] < 0 and Eq [u ◦ ḡ ] = Eq [−u ◦ g ] > 0, i.e. Eq [u ◦ ḡ ] > Eq [u ◦ g ],

which is inconsistent with g ∼ ḡ .

C.3 Probabilistic Sophistication for VEU preferences

An induced likelihood ordering ¼` is represented by a probability µ ∈ ca1(Σ) iff, for all E , F ∈ Σ,

E ¼` F iffµ(E )≥µ(F ). Finally, a probability measureµ is convex-ranged iff, for every event E ∈Σ

such that µ(E )> 0, and for every α∈ (0, 1), there exists A ∈Σ such that A ⊂ E and µ(A) =αµ(E ).
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Proposition 10 Fix a VEU preference relation ¼ and let p ∈ ca1(Σ) be the corresponding base-

line probability. If the induced likelihood ordering ¼` is represented by a convex-ranged prob-

ability measure µ∈ ca1(Σ), then µ= p1.

Proof: Fix x , y ∈ X with x � y . Since the ranking of bets x E y is represented by µ and also

by the map defined by E 7→ u (x )p (E ) + u (y )p (E c ) + A(Ep [ζ · x E y ]), there exists an increasing

function g : [0, 1]→ [u (y ), u (x )] such that u (x )p (E ) +u (y )p (E c ) +A(Ep [ζ · x E y ]) = g (µ(E )) for

all events E [this function g will in general depend upon x and y , but this is inconsequential].

Since A(Ep [ζ · y E x ]) = A(Ep [ζ · (x + y −x E y )]) = A(Ep [ζ ·x E y ]),

g (µ(E ))− g (1−µ(E )) = [u (x )−u (y )](2p (E )−1) (28)

for all events E ∈Σ. Since g is increasing, so is the map γ 7→ g (γ)− g (1−γ); thus, µ(E ) =µ(F ) if

and only if p (E ) = p (F ). Now, since µ is convex-ranged, for any integer n there exists a partition

{E n
1 , . . . , E n

n } of Ω such that µ(E n
j ) =

1
n

for all j = 1, . . . , n ; correspondingly, p (E n
j ) = p (E n

k ) for all

j , k ∈ {1, . . . , n}, and therefore p (E n
j ) =

1
n

for all j = 1, . . . , n . This implies that, for every event E

such that µ(E ) is rational, p (E ) =µ(E ).

To extend this equality to arbitrary events, note that, for every event E such that µ(E ) > 0

and number r <µ(E ), sinceµ is convex-ranged, there exists L ⊂ E such thatµ(L) = r
µ(E )µ(E ) = r .

Similarly, for every event E such that µ(E )< 1 and number r >µ(E ), there exists an event U ⊃ E

such that µ(U ) = r : to see this, note that µ(Ω\E )> 0 and 1−r <µ(Ω\E ), so there exists L ⊂Ω\E

such that µ(L) = 1− r ; hence, U =Ω \ L has the required properties.

Now consider sequences of rational numbers {`n}n≥0 ⊂ [0, 1] and {u n}n≥0 ⊂ [0, 1] such that

`n ↑µ(E ) and u n ↓µ(E ); by the preceding argument, for every n ≥ 1 there exist sets L n ⊂ E ⊂Un

such that µ(L n ) = `n and µ(Un ) = u n . It was shown above that p (L n ) =µ(L n ) and p (Un ) =µ(Un );

moreover, L n ⊂ E ⊂Un implies that p (L n )≤ p (E )≤ p (Un ). Therefore, p (E ) =µ(E ).
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C.4 Consumption-Savings Problem: Formalities

As a preliminary step, consider a two-period version of the problem with EU preferences,

max
s∈[0,w ]

v (w − s )+δ [πv (Hs )+ (1−π)v (Ls )] :

that is, find the optimal amount of savings s given wealth w , discount factor δ, and probability

of high return π. It is easy to verify that the solution is linear: s = αw , where α ∈ (0, 1) depends

upon all parameters but not on w . This standard result will be used below to construct the

solution to the multi-period problem with VEU preferences.

Now verify Eqs. (10), (11) and (12). Fix 0≤τ< T and 0≤ t < T−1. If t ≥τ−1, then one easily

verifies that Ep [ζt |Πτ(ω)] = Ep [ζt ] = 0 for allω. If instead t <τ−1, then Ep [ζt |Πτ(ω)] = ζt (ω).

For τ = 0, this implies that (ζt )0≤t<T−1 satisfies the properties in Def. 1. For τ > 0, together

with Eq. (7), this implies that ζt ,Πτ(ω)(ω) = p (Πτ(ω))ζt (ω) for t ≥ τ− 1, and ζt ,Πτ(ω)(ω) = 0

otherwise. Eq. (12) follows immediately.

This fact and Eq. (7) imply that, for all F ∈Πτ,

VF ( f ) = Ep [u ◦ f |F ]−
T−2
∑

t=0

�

�Ep [ζt ,F u ◦ f |F ]
�

�=

=
T
∑

t=0

δt Ep [v ◦ f t |F ]−
T−2
∑

t=max(0,τ−1)

�

�

�

�

�

Ep [ζt ,F

T
∑

s=0

δs v ◦ f s |F ]

�

�

�

�

�

.

Now if s ≤τ, then Ep [ζt v ◦ f s |Πτ(ω)] = v ◦ f s (ω)Ep [ζt |Πτ(ω)], which is 0 for t ≥τ−1. If s >τ and

t ≥ s , then f s depends upon r0, . . . , rs−1 and ζt upon rt , rt+1, and these are independent (given

Πτ(ω)), so Ep [ζt v ◦ f s |Πτ(ω)] = Ep [v ◦ f s |Πτ(ω)]Ep [ζt |Πτ(ω)], which again equals 0. Finally, if s =

t+1, then Ep [ζt v ◦ f t+1|Πτ(ω)] = Ep

�

Ep [ζt v ◦ f t+1|Πt+1(ω)]
�

�Πτ
�

= Ep

�

v ◦ f t+1Ep [ζt |Πt+1]
�

�Πτ(ω)
�

=

0, because t ≥max(0,τ−1) implies t +1≥τ and Ep [ζt |F ] = 0 for all F ∈Πt+1. Taking τ= 0, this

argument yields Eq. (10) directly; forτ> 0, note that since t ≥τ−1, ζt ,Πτ(ω)(ω) = p (Πτ(ω))ζt (ω),

and so again Eq. (11) follows (cf. Footnote 27).
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Consistent Planning can be formalized as follows. Let BT =
n

f ∈FA(w0) : f T =w f
T

o

; then,

assuming that Bτ+1 has been defined for τ< T , let

Bτ =
⋂

ω∈Ω

⋃

w≥0

arg max
f ∈Bτ+1:w

f
τ (ω)=w

Vτ( f |Πτ(ω)).

The following result implies the stated equivalence (see item 4 for τ = 0). For a ,b ∈ {H , L},

let η(a ,b ) = 1 if a =b and η(a ,b ) =−1 otherwise.

Proposition 11 For all w ≥ 0, τ = 0, . . . , T and F ∈ Πτ, the problem in Eq. (13) has a unique

solution, which takes the form sτ,F (w ) =ατw ; for ε> 0 small, ατ,F ∈ [0, 1]; furthermore,

Vτ(w ) = βp
τ v (w ),

Φτ,t (w |F ) = βτ,t v (w ) t =τ, . . . T −2;

Φτ,τ−1(w |F ) = η(rτ−1, H ) ·βτ,τ−1v (w );

Φτ,τ−2(w |F ) = η(rτ−2, rτ−1) ·βτ,τ−2v (w ).

where βτ,t → 0 as ε→ 0. Finally, (for ε> 0 small), for all τ= 0, . . . , T ,ω∈Ω, and f ∈ Bτ:

1. fτ(ω) = (1−ατ,Πτ(ω))w
f
τ (ω);

2. Vτ(w
f
τ (ω)) =

∑T
t=τδ

t−τEp [v ◦ f t |Πτ(ω)];

3. for all t =τ−2, . . . , T −2, Φτ,t (w
f
τ (ω)|Πτ(ω)) = Ep [ζt ,Πτ(ω)

∑T
s=t+2δ

s−τv ◦ f s |Πτ(ω)].

4. If f , g ∈ Bτ and w f
τ (ω) = w g

τ (ω), then f t (ω′) = g t (ω′) for all t = τ, . . . , T and G ∈ Πt with

G ⊂Πτ(ω).

Proof: For τ= T , the objective function in Eq. 13 reduces to v (w −s ); thus, the unique solution

is s ∗T,F (w ) = 0, i.e. αT,F = 0. Clearly VT (w ) = v (w ), and ΦT,t can only be defined for t = T −

2, in which case ΦT,T−2(w |F ) = ζT−2,F (ω)VT (w ) = η(rT−2(ω), rT−1(ω)) · 2−Tεv (w ), where ω = F

[actually, F = {ω}]. Thus, βT,T−2 = 2−Tε; note that βT,T−2→ 0 as ε→ 0.

Now assume the claim is true for τ+1≤ T . Then the objective in Eq. 13 is equivalent to

v (w−s )+δβp
τ+1

�

1

2
v (Hs )+

1

2
v (Ls )

�

−δ[βτ+1,τ−1+βτ+1,τ][v (Hs )−v (Ls )]−δ
T−2
∑

t=τ+1

βτ+1,t [v (Hs )+v (Ls )]
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which is a two-period consumption-savings problem with EU preferences, probability of high

output equal to

π=
1
2
β

p
τ+1−

∑T−2
t=τ−1βτ+1,t

β
p
τ+1−2

∑T−2
t=τ+1βτ+1,t

and discount factor equal to δπ ≡ δ

β
p
τ+1−2

∑T−2
t=τ+1βτ+1,t

. Since βτ+1,t → 0 as ε→ 0, for ε small π,δπ ∈

(0, 1), so ατ,F ∈ [0, 1]. To complete the inductive step, the statement about Vτ(w ) follows from

standard arguments, so consider the functions Φτ,t . For t >τ,

Φτ,t (w |F ) = δ
�

Φτ+1,t (Hατ+1w |F ∩Hτ)+Φτ+1,t (Lατ+1w |F ∩ Lτ)
	

=

= δ
�

βτ+1,t v (Hατ+1w )+βτ+1,t v (Lατ+1w )
	

and the claim follows from the properties of power utility; for t =τ, we get

Φτ,τ(w |F ) =δ
�

η(H , H ) ·βτ+1,τv (Hατ+1w )+η(L, H ) ·βτ+1,τv (Lατ+1w )
	

and again the claim follows; for t =τ−1,

Φτ,τ−1(w |F ) = δ
�

η(rτ−1, H ) ·βτ+1,τ−1v (Hατ+1w )+η(rτ−1, L) ·βτ+1,τ−1v (Lατ+1w )]
	

=

= δ
�

η(rτ−1, H ) ·
�

βτ+1,τ−1v (Hατ+1w )−βτ+1,τ−1v (Lατ+1w )
�	

and finally, for t =τ−2,

Φτ,τ−2(w |F ) = Ep [ζτ−2,F Vτ((1−ατ,F )w )|F ] =η(rτ−2, rτ−1) ·ε2−τβp
τ v ((1−ατ,F )w )

and the assertion follows. Note that βτ,τ−2 → 0 as ε → 0; furthermore, if βτ+1,t → 0 for t =

τ−1, . . . , T −2 as ε→ 0, then also βτ,t → 0.

Turn to the final claim. For τ= T , by construction f T =w f
T = (1−αT,ΠT (ω))w

f
T , as αT,ΠT (ω) = 0;

also, VT (w
f
T (ω)) = v (w f

T (ω)) = v ◦ f T (ω) = Ep [v ◦ f T |ΠT (ω)]. The only continuation adjustment to

be examined isΦT,T−2(w
f
T (ω)|ΠT (ω)) = ζT−2(ω)VT (w

f
T (ω)) = ζT−2(ω)v (w

f
T (ω)) = ζT−2(ω)v ( f T (ω)) =

Ep [ζT−2v ◦ f T |ΠT (ω)], so item 3 holds. Finally, item 4 holds trivially.
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Now assume the claim is true forτ+1≤ T and considerτ< T . Fixω∈Ω and w ≥ 0 for which

C (w ,ω) ≡ { f ∈ Bτ+1 : w f
t (ω) = w } 6= ;. Clearly, for every s ∈ [0, w ] there is an act f ∈ C (w ,ω)

with fτ(ω) =w−s ; furthermore, any two acts f , g ∈C (w ,ω) such that f t (ω) = g t (ω) clearly also

satisfy w f
τ+1(ω′) = w g

τ+1(ω′) for all ω′ ∈ Πτ(ω), and item 4 of the inductive hypothesis implies

that then f t (ω′) = g t (ω′) as well for all t = τ+ 1, . . . , T ; therefore, Vτ( f |Πτ(ω)) = Vτ(g |Πτ(ω)).

Also, if f ∈ C (w ,ω), then f ∈ Bτ+1 ⊂FA(w0), and so w − fτ(ω) ∈ [0, w ]. Thus, one can identify

each choice of s ∈ [0, w ]with a class of acts in C (w ,ω) that deliver the same continuation payoff;

conversely, these classes partition C (w ,ω).

Now consider f ∈ C (w ,ω) and let s = w − fτ(ω). By the induction hypothesis, since f ∈

Bτ+1, for all ω′ ∈ Πτ(ω), Vτ+1(rτ(ω′)s ) =
∑T

t=τ+1δ
t−τ−1Ep [v ◦ f t |Πτ+1(ω′)], so by iterated expec-

tations δEp [Vτ+1(rτs )|Πτ(ω)] =
∑T

t=τ+1δ
t−τEp [v ◦ f t |Πτ(ω)]. Moreover, again for ω′ ∈ Πτ+1(ω),

Φτ+1,t (rτ(ω′)s |Πτ+1(ω′)) = Ep [ζt ,Πτ+1(ω′)
∑T

s=t+2δ
s−τ−1v ◦ f s |Πτ+1(ω′)] for all t = τ− 1, . . . , T − 2;

since, forω′ ∈Πτ(ω),Πτ+1(ω′) equals eitherΠτ(ω)∩Hτ orΠτ(ω)∩Lτ, Eq. (12) and the induction

hypothesis imply that

δ
�

Φτ+1,t (Hs |Πτ(ω)∩Hτ)+Φτ+1,t (Ls |Πτ(ω)∩ Lτ)
	

= Ep [ζt ,Πτ(ω)

T
∑

s=t+2

δs−τv ◦ f s |Πτ(ω)].

Therefore, Vτ( f |Πτ(ω) equals the value of the objective function in Eq. (13) at s =w − fτ(ω). It

then follows that f maximizes Vτ(·|Πτ(ω) over C (w ,ω) if and only if w − fτ(ω) = ατ,Πτ(ω)w . A

fortiori, this is the case for f ∈ Bτ. This and the induction hypothesis immediately imply Item

4; finally, Items 2 and 3 follow from the arguments given in the last paragraph (which apply to

any act that prescribes the consistent-planning choices from time τ+1 onwards).
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