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Abstract

This paper analyzes risk sharing in economies with no aggregate uncertainty when

agents have ambiguity-sensitive preferences that are not necessarily convex, i.e., uncertainty-

averse in the sense of Schmeidler (1989). We consider three notions of “beliefs” for such

preferences, and propose a condition under which they coincide. Our main result shows

that, under this condition, betting is inefficient (i.e., every Pareto-efficient allocation pro-

vides full insurance, and conversely) if and only if agents’ sets of beliefs have a non-empty

intersection. Our condition implies a mild notion of aversion to ambiguity, and is consis-

tent with experimental evidence documenting violations of convexity.

1 Introduction

Over the last two decades, increasing attention to the findings of psychologists and exper-

imental economists has prompted a reexamination of many of the classical results on eco-

nomic and financial decision making. One of these results states that, if there is no aggregate

uncertainty, agents who maximize expected utility (EU) will engage in betting if and only if

they have different probabilistic beliefs. There is, however, compelling evidence that agents
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may violate (subjective) EU when some events relevant for the economy are more ambigu-

ous than others (Ellsberg, 1961). Motivated by this evidence, Billot, Chateauneuf, Gilboa, and

Tallon (2000) and Rigotti, Shannon, and Strzalecki (2008, henceforth RSS) have shown that a

version of the noted result on the absence of betting holds even if agents do not maximize

EU, so long as their preferences over uncertain consumption are convex and sufficiently well-

behaved. Yet, the interpretation of convexity in the presence of ambiguity has also been ques-

tioned. From a conceptual perspective, Epstein (1999), Ghirardato and Marinacci (2002, GM

henceforth) and Baillon, L’Haridon, and Placido (2011), among others, have pointed out that

convexity may not fully identify ambiguity-averse behavior. From an experimental perspec-

tive, recent work documents the significance of patterns of behavior that violate convexity, but

are intuitively consistent with aversion to ambiguity: see e.g. L’Haridon and Placido (2010).1

This paper shows that the equivalence between the absence of betting and the consistency

of agents’ beliefs does not require convexity. We establish this equivalence under a signifi-

cantly weaker condition that relates the “global” behavior of preferences to the “local” rank-

ing of consumption plans that are nearly riskless. This condition implies a notion of aver-

sion to ambiguity that generalizes a definition due to Ghirardato and Marinacci (2002), and is

consistent with the experimental violations of convexity observed by Baillon et al. (2011) (see

Example 5). Our analysis applies to arbitrary finite economies, unlike classical results in the

literature on general equilibrium in large non-convex economies (e.g. Anderson, 1988).

We now provide a more detailed overview of the results. We endow each agent i with pref-

erences over contingent consumption plans represented by a functional Ii and a Bernoulli

utility ui : plan f is preferred to g if and only if Ii (ui ( f )) ≥ Ii (ui (g )). We assume that each Ii

is strongly monotonic and locally Lipschitz, and that each ui is strictly increasing and strictly

concave. Notably, the functionals Ii are not required to be quasiconcave, or to satisfy scale or

location-invariance properties.

Statements about risk sharing involve agents’ beliefs. In the case of standard EU pref-

erences, betting is inefficient (i.e., only full-insurance allocations are efficient) if and only if

1In addition, experiments suggest that agents’ attitudes toward ambiguity may depend upon the prospects

being considered, thus contradicting convexity. See, e.g., Curley and Yates (1985), Heath and Tversky (1991) and,

more recently, Abdellaoui, Baillon, Placido, and Wakker (2011).
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agents share the same subjective probability. In the case of convex preferences, RSS identify

sets of probabilities which they call “local beliefs.” Under a further assumption on the struc-

ture of such beliefs, they show that betting is inefficient if and only if the agents’ set of local

beliefs have a non-empty intersection. Thus, a necessary first step in our analysis is to define

what is meant by “beliefs” for the non-convex preferences we consider. We identify and dis-

cuss three possible notions of beliefs, i.e., sets of probabilities. The first is RSS’s definition of

local beliefs. The other two arise naturally when considering the two different implications in

the equivalence between sharing priors and the inefficiency of betting.

To elaborate, Proposition 6 in Section 4 shows that, for the general preferences we con-

sider, a necessary condition for betting to be inefficient is that, at every feasible, full-insurance

allocation, there be at least one shared probability in the normalized Clarke (1983) differen-

tials of each agent i ’s preference functional Ii (Ghirardato and Siniscalchi, 2012). Proposition

7 instead shows that a sufficient condition for betting to be inefficient if that the shared prob-

ability at every full-insurance allocation belong to a particular subset of each agent’s normal-

ized Clarke differential, which we call the point core. Examples 3 and 4 show that, in general,

these conditions are not tight: betting may be efficient even if normalized Clarke differentials

have common elements at every full-insurance allocation (Example 3), and it may be ineffi-

cient even if there is no shared probability in the point cores at some full-insurance allocation

(Example 4). Thus, without further assumptions on preferences, there is no single notion of

“shared probability” that is both necessary and sufficient for the inefficiency of betting.

Our main methodological contribution is to identify an assumption on preferences, called

differential quasiconcavity at certainty (DQC), which implies that the local beliefs, point cores,

and normalized Clarke differentials coincide at every riskless consumption. DQC ensures that

there is a well-defined notion of “beliefs” for the purposes of risk sharing: betting is inefficient

if and only if the agents’ local beliefs / point cores / normalized Clarke differentials intersect

at every feasible, full-insurance allocation (Theorem 9). Furthermore, DQC implies that the

point cores at all riskless consumptions are non-empty; in the spirit of GM, we interpret this

as a mild form of dislike for ambiguity, which we call pointwise ambiguity aversion.

Loosely speaking, condition DQC requires that, if a consumption f is weakly preferred to

a riskless consumption x , then an agent whose endowment is precisely x would be willing to
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engage in an “infinitesimal” trade away from x and toward f . It turns out that this condition is

satisfied by all convex preferences; this relates our analysis to that of RSS (see Section 4 for de-

tails). However, DQC is also consistent with substantial departures from convexity. Intuitively,

an agent with non-convex preferences, who prefers f to x , but prefers x to 1
2 f + 1

2 x , may sat-

isfy DQC provided she prefers α f + (1−α)x to x when α is very small (indeed, infinitesimal).

Example 2 illustrates this intuition; Example 5 corroborates it by exhibiting a behaviorally in-

teresting class of non-convex preferences that satisfy DQC.

As mentioned above, in addition to convexity, RSS’s risk-sharing result employs an as-

sumption called “translation invariance at certainty,” or TIC. This assumption implies that

local belief sets are invariant across riskless consumptions. However, we illustrate in Example

8 that risk sharing can obtain even if local beliefs at certainty are not invariant in this sense

(the preferences in that example are convex). Our risk-sharing result, as per Theorem 9, is

consistent with this example: our assumptions do not include (or imply) TIC. In particular,

for betting to be inefficient, local beliefs must intersect at every feasible full-insurance allo-

cation, but the shared probability at each such allocation may well be different. If we also

impose TIC, then (Theorem 10) each agent i ’s local beliefs (equivalently, point cores or nor-

malized Clarke differentials) are invariant across riskless consumptions, and coincide with

the core of the preference functional Ii introduced by GM.2 In this case, the risk-sharing result

takes a simpler form: betting is inefficient if and only if the cores of the agents’ preference

functionals intersect.

This paper is organized as follows. Section 2 introduces the formal setup. Section 3 intro-

duces and analyzes the different notions of beliefs. Section 4 contains the main risk-sharing

results. Section 5 illustrates the results via additional examples. Finally, Section 6 concludes

by analyzing two extensions.

Related literature The relation with RSS and Billot et al. (2000) has already been discussed.

We note that these papers allow for an arbitrary state space; for simplicity, we restrict attention

to finite states.

2Notice that, under the assumptions of Theorem 10, each Ii has non-empty core, and therefore all agents are

ambiguity-averse in the sense of GM.
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Strzalecki and Werner (2011) extend and adapt the risk-sharing results in RSS to economies

with aggregate uncertainty and convex preferences. In section 6 we follow their approach and

provide a counterpart to our Proposition 7 for non-convex economies with aggregate uncer-

tainty. A full investigation of risk sharing in such economies is left to future research.

Billot, Chateauneuf, Gilboa, and Tallon (2002) provide a version of Proposition 7 for Choquet-

expected utility preferences (CEU; Schmeidler, 1989). They also prove a risk-sharing result for

such preferences that does not assume convexity (or DQC) but requires large economies, with

a continuum of agents of each “type.”

Dominiak, Eichberger, and Lefort (2012) consider an economy with two CEU agents and

riskless (full-insurance) endowments, extending the prior analysis of Kajii and Ui (2006) which

assumed convexity. They provide a condition which is necessary and sufficient for the non-

existence of Pareto-improving trades. Their analysis relies on the fact that there are only two

agents in the economy, whose initial endowment is constant; on the other hand, it does not

require either convexity or pointwise ambiguity aversion.

Marinacci and Pesce (2013) consider preferences that are both GM-ambiguity averse and

invariant biseparable (Ghirardato, Maccheroni, and Marinacci, 2004). They study the impact

of changes in GM-ambiguity aversion on efficient and equilibrium allocations. Though they

do not focus on risk sharing, they independently derive a version of our Proposition 7. See

however Example 6 in Section 5 of this paper on the implications of invariant biseparability

for risk sharing.

The notion of point core also plays a role in the results of Cerreia-Vioglio, Maccheroni,

Marinacci, and Rustichini (2015) on the structure of variational preferences.

Finally, Ghirardato and Siniscalchi (2012) provides a behavioral foundation for the analysis

in the present paper. Leveraging the results therein, Appendix A.2 in this paper characterizes

differential quasiconcavity at certainty in terms of the agent’s preferences.

5



2 Setup

2.1 Decision-theoretic framework

We consider an Arrow-Debreu economy under uncertainty with finitely many states S , a single

good that can be consumed in non-negative quantity, and N consumers. This section and

the next focus on the preferences of an individual consumer; to simplify notation, we do not

use consumer indices. These will be introduced in Section 4, which deals with efficient and

equilibrium allocations in the Arrow-Debreu economy under consideration.

Behavior is described by a preference relation ¼ over bundles (contingent consumption

plans) f ∈ RS
+. Our results apply to any preference that admits the following representation:

for every f , g ∈RS
+,

f ¼ g ⇔ I
�

�

u ( f (s )
�

s∈S

�

≥ I
�

�

u (g (s )
�

s∈S

�

,

where u :R+→R and I : u (R+)S →R satisfy the following assumptions:

• u is continuously differentiable, strictly concave, and strictly increasing;

• I is normalized (I (1Sγ) = γ for every γ ∈ U), locally Lipschitz and strongly monotonic

(that is, f ≥ g and f 6= g imply f � g ).3

Henceforth, we denote the representation of the preference ¼ simply by (I , u ).4

Ghirardato and Siniscalchi (2012) argue that most parametric models of ambiguity-sensitive

preferences admit a representation (I , u ) where I is locally Lipschitz.5 They also provide an

axiomatization of preferences that admit a representation (I , u )where I is normalized and lo-

cally Lipschitz, in a setting a la Anscombe and Aumann (1963). In such a setting, strict concav-

ity of u has the usual characterization. Similar results can be obtained in a Savage (1954)-style

3I is monotonic if f ≥ g implies f ¼ g ; it is strictly monotonic if f (s )> g (s ) for all s implies f � g . Many, but

not all results in the Appendix hold if I is strictly, but not strongly monotonic.

4If a preference admits multiple representations (I , u ) that satisfy these assumptions, our results apply to any

such representation.

5For most preference models, either I is normalized, or else an equivalent, normalized representation can be

readily obtained.

6



setting with rich outcomes, a la Ghirardato, Maccheroni, Marinacci, and Siniscalchi (2003),

using subjective rather than lottery mixtures (see also Ghirardato and Pennesi, 2012).

It is convenient to let U = u (R+), and for every h = (h1, . . . , hS ) ∈ RS
+, denote by u ◦ h the

vector
�

u (h1), . . . , u (hS )
�

∈US . Also, to simplify notation, if Q is any measure (not necessarily a

probability measure) on S , then for every a ∈RS , Q (a ) =
∑

s Q (s )as . [Of course here a measure

is characterized by a vector in RS , and sometimes we will treat Q as such.]

2.2 Clarke differential

Given an open subset B of RS , the Clarke derivative of a locally Lipschitz function J : B →R

at b ∈ B in the direction a ∈RS is defined by

J ◦(b ; a )≡ lim sup
t ↓0,c→b

J (c + t a )− J (c )
t

. (1)

The Clarke differential of J at b ∈ B is then

∂ J (b ) = {Q ∈RS :∀a ∈RS ,Q (a )≤ J ◦(b ; a )}. (2)

If J is monotonic, every element Q of its Clarke differential at any given point is non-negative

(Rockafellar, 1980, Theorem 6, Corollary 3).

The function J is nice at b ∈ B if 0S 6∈ ∂ J (b ), where 0S = (0, . . . , 0) ∈ RS : this notion is dis-

cussed and axiomatized in Ghirardato and Siniscalchi (2012). In particular, if J is monotonic

and concave, or if it is translation-invariant, it is nice everywhere in the interior of its domain.

The function J is regular at b ∈ B if its directional derivative

J ′(b ; a ) = lim
t ↓0

J (b + t a )− J (b )
t

(3)

is well-defined for all a ∈RS , and coincides with J ◦(b ; a ): see Clarke (1983, Def. 2.3.4). If J is

continuously differentiable at b , then it is regular there (Clarke, 1983, Corollary to Proposition

2.2.1, and Proposition 2.3.6 (a)).

For the following two definitions, recall that preferences ¼ are represented by (I , u ). First,

the normalized Clarke differential of I at h ∈US is

C (h ) =
§

Q

Q (S )
: Q ∈ ∂ I (u ◦h ), Q 6= 0S

ª

. (4)

7



Ghirardato and Siniscalchi (2012) provide behavioral characterizations of the (normalized)

Clarke differential in an Anscombe and Aumann (1963) setting.

Second, define I u :RS
+→R by I u ( f ) = I (u ◦ f ) for all f ∈RS

+; thus, f ¼ g iff I u ( f )≥ I u (g ).6

Remark 1 For every i ∈N , the Clarke differential at f ∈RS
++ of I u is

∂ I u ( f ) =

�

Q u ∈RS : ∀h ∈RS , Q u (h ) =
∑

s

Q (s )u ′( f (s ))h (s ) for some Q ∈ ∂ I (u ◦ f )

�

.

3 The core, local beliefs, and normalized Clarke differentials

We now introduce three sets of measures that will play a role in our analysis of risk sharing.

The first is due to RSS. For every bundle f ∈RS
+, let

π( f ) = {P ∈∆(S ) :∀g ∈RS
+, I (u ◦ g )≥ I (u ◦ f ) =⇒ P (g )≥ P ( f )}. (5)

That is, π( f ) is the set of prices (normalized to lie in the unit simplex) such that any bundle

that is weakly preferred to f is not less expensive than f . This is the usual notion of “quasi-

optimality.” Alternatively, we can interpret each P ∈ π( f ) as representing a risk-neutral SEU

preference whose better-than set at f contains the better-than set of ¼ at f .

RSS interpret π(·) as a definition of local beliefs. They also introduce a condition, ‘Transla-

tion invariance at certainty,’ that ensures that π(1S x ) =π(1S ) for all x > 0.

The second set of measures of interest is

πc( f ) = {P ∈∆(S ) : ∀g ∈RS
+, I (u ◦ g )≥ I (u ◦ f ) =⇒ P (u ◦ g )≥ P (u ◦ f )}. (6)

Notice that, if one assumes that u is linear, as in RSS (so that I also reflects risk attitudes),

then π = πc. Thus, π( f ) and πc( f ) differ only in that the measures in π( f ) are effectively risk-

adjusted probabilities, whereas the measures in πc( f ) are not.

If we restrict attention to constant bundles f = 1S x , for some x ≥ 0, since I is normalized,

πc(1S x ) = {P ∈∆(S ) : ∀g ∈RS
+, I (u ◦ g )≥ u (x ) =⇒ P (u ◦ g )≥ u (x )}.

6In RSS, preferences are assumed to be represented by some functional J :RS
+→R: f ¼ g iff J ( f )≥ J (g ). The

functional I u just defined corresponds to their J .
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Fixing the Bernoulli utility u in the representation of ¼, each element P ∗ of this set corre-

sponds to an SEU preference¼∗ whose better-than set at 1S x contains the better-than set of¼

at 1S x .7 GM interpret a probability that satisfies this condition at all riskless consumptions as

an “ambiguity-neutral” model for¼. They then show8 that the collection of all such ambiguity-

neutral models equals the core of the preference functional I (given the utility function u):

Core I = {P ∈∆(S ) : ∀ f ∈RS
+, I (u ◦ f )≤ P (u ◦ f )}. (7)

By analogy, we call the setπc(1S x ), for x ∈R+, the point core of¼at x (given the utility function

u), and interpret its elements as ambiguity-neutral models for ¼ at x .

A preference is GM-ambiguity-averse if it has a non-empty core; it is pointwise ambiguity

averse at x ∈ R+ if its point core at x is non-empty; and it is pointwise ambiguity averse if

this is true at every x ∈R+. Clearly, a GM-ambiguity-averse preference is pointwise ambiguity

averse; the converse is not true, as we show in Example 7.

The following result illustrates the relationship between the sets of measures introduced

thus far; it is central to our analysis.9

Proposition 1

1. for every x > 0, πc(1S x )⊆π(1S x );

2. for every x > 0, if I is nice at 1S u (x ), then π(1S x )⊆C (1S x );

3. Core I =
⋂

x>0π
c(1S x );

4. for every x > 0, Core I ⊆ ∂ I (1S u (x )); hence, Core I ⊆C (1S x ).

We illustrate some of these definitions and results in the following

7Remark 4 in the Appendix implies that πc(1S x ) is also the (normalized) Greenberg-Pierskalla differential of

I at 1S u (x ) (Greenberg and Pierskalla, 1973; Cerreia-Vioglio, Maccheroni, Marinacci, and Montrucchio, 2008).

8See also Proposition 8 in Cerreia-Vioglio, Ghirardato, Maccheroni, Marinacci, and Siniscalchi (2011).

9In all parts of this result, the case x = 0 is excluded. This is because π(1S 0) =πc(1S 0) =∆(S ), and furthermore

∂ I (1Sγ) is not defined for γ= 0.
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Example 1 Let S = {s1, s2} and consider the risk-neutral preferences represented by

I (h ) =max

�

�

1

2

p

h 1+
1

2

p

h 2

�2

,ε+ min
p∈[0.3,0.7]

[p h1+ (1−p )h2]

�

for some small ε > 0. Three indifference curves are depicted in Figure 1 (thick lines). The
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1S x m

1S x l

1S x h

g

Figure 1: Relationship between the core, Clarke differential, and local beliefs

indifference curves have two features of interest. First, there is a small inward “dent” at cer-

tainty; in a neighborhood of the 45◦ line, this preference coincides with the risk-neutral MEU

preference with priors C = {P ∈ ∆(S ) : 0.3 ≤ P (s1) ≤ 0.7}. Second, away from the certainty

line, indifference curves “flatten out” as they move farther away from the origin; thus, suffi-

ciently far away from the origin, preferences are close to being risk-neutral EU with a uniform

probability distribution on S , except in a neighborhood of the certainty line.10

Since u is the identity, the core of this preference is the set of probabilities that support the

indifference curves of I at every 1S x . There is a single such probability, namely the uniform

distribution. For any other probability P there is a sufficiently high prize x > 0 such that the

line with slope determined by P and going through 1S x intersects the indifference curve of I

going through 1S x .

10For bundles g with high values of one of the coordinate and low values of the other, the preference again

coincides with MEU (not shown in Figure 1). This is immaterial for the present purposes.
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Next, consider the local belief sets π(1S x ) and the point cores πc(1S x ). Since u is the iden-

tity, these sets coincide and are equal to the collection of probabilities that induce supporting

lines at 1S x . Clearly, the core of I —the uniform distribution—is included in each πc(1S x ).

However, the sets πc(1S x ) contain additional points. Furthermore, these sets are not con-

stant: they shrink as x increases. For instance, the thin lines in Figure 1 are the level curves

of probability distribution P that supports the indifference curve at 1S x m , and hence belongs

to πc
1(1S x m ). Furthermore, since P is also tangent to the same indifference curve at the bun-

dle g 6= 1S x m , any probability distribution that puts more weight on the vertical coordinate

(and hence induces flatter level curves) cannot belong to πc(1S x m ). However, by inspecting

the level curves of P going through 1S x ` and 1S x h respectively it is apparent that (i) there are

probabilities P ′ ∈ πc(1S x l ) that induce flatter level curves than P , and (ii) P itself does not

belong to πc(1S x h ).

Finally, since I behaves like a MEU preference with priors C around certainty, we have

C (1S x ) = ∂ I (1S u (x )) =C for all x > 0. In particular, this functional is nice at certainty, so part

2 of Proposition 1 applies. Note however that, for this preference, Core I (π(1S x ) =πc(1S x )(
C (1S x ) for every x > 0. �

Example 1 shows that the sets of measures defined above may differ. We now introduce a

sufficient condition under which these sets coincide. Consider the following definition.11

Definition 1 The functional I is differentially quasiconcave at b ∈ (int(U))S if

∀a ∈US , I (a )≥ I (b ) =⇒ ∀Q ∈ ∂ I (b ), Q (a − b )≥ 0. (8)

The functional I satisfies differential quasiconcavity at certainty (DQC) if it is differentially

quasiconcave at 1Sγ for all γ ∈ int(U).

As noted in the Introduction, a behavioral characterization of differential quasiconcavity can

be provided via Theorem 7 in Ghirardato and Siniscalchi (2012): see Appendix A.2.

The intuition for this definition is sharpest in case I is continuously differentiable at a point

b = u ◦ g , in which case the Clarke differential equals the gradient of I at b . In this case, I is

11int(U) denotes the interior of U.
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differentially quasiconcave at b if, whenever a bundle f (having utility profile a ) is weakly pre-

ferred to g , then moving from g in the direction of f by a small (infinitesimal) amount is also

beneficial. Proposition 3.1 in Penot and Quang (1997) implies that a continuous and strictly

monotonic function is quasiconcave if and only if it satisfies Eq. (8) everywhere on its do-

main. The key observation is that condition DQC requires that Eq. (8) hold only at certainty.

This allows for violations of quasiconcavity elsewhere on its domain, as the following exam-

ple illustrates. We shall also demonstrate in Section 5 that such violations can accommodate

interesting patterns of behavior.

Example 2 Let S = {s1, s2} and consider the risk-neutral VEU preferences defined by

I (h ) =
1

2
(h1+h2)−max

�

log
�

1+
1

4
(h1−h2)

2
�

,

�

�

�

�

1

2
θ (h1−h2)

�

�

�

�

�

.

At each point 1S x , the upper-contour sets of this preference are contained in the upper-contour

sets of the risk-neutral MEU preference characterized by the priors C = {P ∈∆(S ) : 1
2 (1+θ ) ≥

P ({s1}) ≥ 1
2 (1− θ )}; denote the functional representation of this MEU preference by J . For h

sufficiently close to the 45◦ line, and for h sufficiently far from it, I (h ) = J (h ); for bundles h

at an intermediate distance from the 45◦ line, the indifference curves of I are bent inward, so

I (h )≤ J (h ). See Figure 2.
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Figure 2: Indifference curves of a non-smooth, non-convex preference (θ = 1
2 )
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This preference is thus neither convex nor smooth. Its core is C , which is also its Clarke

differential at any point on the 45◦ line. It then follows from Proposition 1 parts 1, 2 and 3 that

the local belief sets and point cores at any constant bundle also coincide with C . Condition

DQC holds; to see this, note that, if I (h ) ≥ I (x ), then also J (h ) ≥ J (x ); since J is concave,

Proposition 4 below implies that it satisfies condition DQC, so Q (1S x ; h − x ) ≥ 0 for every

Q ∈ ∂ J (1S x ) = ∂ I (1S x ). �

On the other hand, the preferences in Example 1 do not satisfy condition DQC. For in-

stance, consider the point g in Figure 1: since it lies on the indifference curve going through

1S x m , it is indifferent to it, but if Q ∈ ∂ I (1S x m ) is the probability that assigns weight 1 to the

vertical coordinate, clearly Q (g −1S x m )< 0.

The following result shows that condition DQC provides a tight connection between the

normalized differentials C (1S x ) and the sets π(1S x ) and πc(1S x ):

Proposition 2 If DQC holds, then for every x > 0, C (1S x ) ⊆ πc(1S x ), and therefore C (1S x ) ⊆

π(1S x ). If in addition I is nice at 1S u (x ), then C (1S x ) =πc(1S x ) =π(1S x ).

Recall that, in Example 1, the set C (1S x ) is strictly larger thanπ(1S x ); as noted above, the pref-

erences therein violate condition DQC. On the other hand, the preference in Example 2 is not

quasiconcave, but it does satisfy DQC and niceness (because in a neighborhood of certainty

it coincides with a MEU preference). Consistently with Proposition 2, the normalized Clarke

differential and local belief sets coincide (and also happen to be constant across all x > 0).

Condition DQC also provides a tight connection between the core of each I and its nor-

malized Clarke differentials at certainty. Specifically, if DQC holds, then the core of I coincides

with the intersection of these Clarke differentials. Conversely, if the Clarke differential at some

x > 0 is contained in the core of I , then I is differentially quasiconcave at x .

Proposition 3

1. If DQC holds, then
⋂

x>0 C (1S x )⊆Core I (so, by Proposition 1,
⋂

x>0 C (1S x ) =Core I );

2. For every x > 0, if C (1S x )⊆Core I , then I is differentially quasiconcave at 1S u (x ).

3. If
⋃

x>0 C (1S x )⊆Core I , then DQC holds.
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Condition DQC always holds in two important cases (the first was already noted above):

Proposition 4 DQC holds if one of the conditions below is satisfied:

1. I is quasiconcave, or

2. Core I 6= ; and I is regular at every 1Sγ, γ> 0.

Thus, condition DQC holds for all preference models considered in RSS, because they

all satisfy convexity. Furthermore, recall that if a function is continuously differentiable at

a point, it is regular there; hence, condition DQC also applies to all smooth representations of

GM-ambiguity-averse preferences. However, as Example 2 suggests, this condition allows for

non-differentiabilities, in addition to non-convexities.

Finally, we observe that pointwise ambiguity aversion is (essentially) necessary for condi-

tion DQC to hold. By Proposition 2, the normalized Clarke differential at 1S x is contained in

the point core at x . So long as the non-normalized Clarke differential at 1S x does not consist

solely of the zero measure 0S (in particular, if I is nice at 1S x ), the set C (1S x ) is non-empty,

and therefore so is the point core at x . We record this fact for future reference:

Remark 2 If DQC holds then, for every x ∈ R+, C (1S x ) 6= ; implies that ¼ is pointwise ambi-

guity averse at x .

4 Risk Sharing

4.1 Notation and preliminaries

An economy is a tuple (N , (¼i ,ωi )i∈N ), where N is the collection of agents, and for every i ,

agent i is characterized by preferences ¼i overRS
+ and has an endowmentωi ∈RS

+. As in RSS,

we assume that there is no aggregate uncertainty: formally,
∑

iωi = 1Sω̄ for some ω̄ > 0.

An allocation is tuple ( f1, . . . , fN ) such that fi ∈RS
+ for every i ∈N ; as usual fi is the contingent-

consumption bundle assigned to agent i . The allocation ( f1, . . . , fN ) is feasible if
∑

i f =
∑

iωi ;

it is a full-insurance allocation if, for every consumer i , f = 1S x for some x ∈R+; it is Pareto-

efficient if it is feasible, and there is no other feasible allocation (g1, . . . , gN ) such that g ¼ f for

all i , and g j � j f j for some j .
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It is useful to state the main result of Rigotti et al. (2008) for convex preferences.12

Theorem 5 (cf. Rigotti et al. (2008), Proposition 9) In addition to the maintained assumptions

in Sec. 2, suppose that every ¼i is strictly convex,13 and that πi (1S x ) = πi (1S ) for every x > 0.

Then the following are equivalent:

(i) There exists an interior, full-insurance Pareto-efficient allocation;

(ii) Every Pareto-efficient allocation is a full-insurance allocation;

(iii) Every feasible, full-insurance allocation is Pareto-efficient;

(iv)
⋂

i πi (1S ) 6= ;.

The implications (ii)⇒ (iii)⇒ (i) hold for general preferences.14 However, the implication

(i)⇒ (iv) uses the standard Second Welfare Theorem, which requires convexity. The argument

for (iv)⇒ (ii) also invokes convexity.

4.2 Necessary and sufficient conditions for efficiency

We now state two results that are reminiscent of the implications (i)⇒ (iv) and (iv)⇒ (ii) of

Theorem 5, but do not require convexity. These results are economically interesting in their

own right.

The first result generalizes the standard result that smooth indifference curves must be

tangent at any interior Pareto-efficient allocation. With convex preferences, the common

slope at the point of tangency determines a supporting price vector; as we discuss momen-

tarily, a “local price vector” is also identified in the non-convex, non-smooth case, though the

sense in which it “supports” the allocation is more delicate (see below). Thus, the following

result can also be viewed as a local version of the Second Welfare Theorem.

12 Strictly speaking, the assumptions in Theorem 5 are slightly stronger than those in RSS’s Proposition 9.

Specifically, we maintain the assumption that each Ii is locally Lipschitz; RSS only assume continuity. We retain

all our assumptions to streamline the exposition. Also note that all the parametric representations considered

in RSS are concave, and hence locally Lipschitz.

13That is, for f , g ∈RS
+ with f 6= g , f ¼i g implies α f + (1−α)g �i g for all α ∈ (0, 1).

14For (ii)⇒ (iii), the key step is in Remark 6, which follows from standard results. See also the proof of Propo-

sition 7.
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Proposition 6 Let ( fi )i∈N be an allocation such that each functional Ii is nice at ui ◦ fi . If ( fi )i∈N

is Pareto-efficient, then there exists a price vector p ∈RS
+\{0} and, for each i ∈N , scalarsλi > 0

and vectors Q u
i ∈ ∂ I u

i ( fi ) such that p =λiQ
u
i for every i . If in addition ( fi )i∈N is a full-insurance

allocation, then for each i ∈ N there are scalars µi > 0 and vectors Qi ∈ ∂ Ii (ui ◦ fi ) such that

p =µiQi ; therefore,
⋂

i∈N Ci ( fi ) 6= ;.

The key step in the proof of the first claim is provided by Bonnisseau and Cornet (1988), who

show that, under the stated assumptions, there is a vector p such that −p lies in the inter-

section of the Clarke normal cones of the upper contour set of I u
i at the bundle fi (see the

Appendix for a precise statement and a definition of the required terms). If preferences are

convex, this set coincides with the normal cone of the upper contour set of I u
i at fi in the

sense of convex analysis. (Indeed Clarke’s notion of normal cone is meant as a generalization

of the normal cone of convex analysis.) This suggests interpreting p as a “local price vector.”

The second claim states that, if the Pareto-efficient allocation ( fi )i∈N is a full-insurance

allocation, then the normalized Clarke differentials of the functionals Ii themselves have non-

empty intersection. For arbitrary Pareto-efficient allocations, this conclusion only applies to

the (normalized) Clarke differentials of the composite functional I u
i .

Thus, if a full-insurance allocation is Pareto-efficient, then (up to rescaling) the Clarke dif-

ferentials of the agents’ functionals Ii at that allocation have non-empty intersection. One

may then wonder if the converse is also true: is it the case that, if the normalized Clarke dif-

ferentials at some full-insurance allocation intersect, that allocation is Pareto-efficient? The

next example shows that the answer is negative.

Example 3 Interpret Figure 1 as an Edgeworth box: agent 1 has preferences inducing the thick

indifference curves, whereas agent 2 has risk-neutral preferences inducing the thin lines as

indifference curves; of course, for agent 2, utility increases in the south-western direction.

(Both consumers could be made strictly risk-averse without changing the analysis.)

Notice that the allocation
�

1S x h , 1S (ω̄−x h )
�

provides full insurance. The normalized Clarke

differential of I1 at 1S x h contains that of I2, which coincides with the probability P represent-

ing 2’s preferences. However, this allocation is not Pareto-efficient.

Note also that the allocation (g , 1Sω̄− g ) is Pareto-efficient, but does not provide full in-
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surance. �

The intuition behind this example is as follows. Clarke differentials provide information

about the local behavior of preferences (again, see Ghirardato and Siniscalchi, 2012, for a

precise characterization). If the normalized Clarke differentials have non-empty intersec-

tion at an allocation, then locally there are no mutually beneficial trades. However, the no-

tion of Pareto efficiency involves more than just local comparisons: there may be Pareto-

superior allocations sufficiently far from the given one. This is indeed the case for the allo-

cation
�

1S x h , 1S (ω̄− x h )
�

. Thus, the example suggests that, in order to obtain a converse to

Proposition 6, one needs to refer to a set of priors that also conveys global information about

preferences.

The second result we present shows that the point core sets πc(·) do provide the required

information.

Proposition 7 Assume that, for every feasible, full-insurance allocation (1S x1, . . . , 1S xN ), it is

the case that
⋂

i π
c
i (1S xi ) 6= ;. Then, a feasible allocation is Pareto-efficient if and only if it

provides full insurance. Moreover, such an allocation is a competitive equilibrium allocation

(with transfers).

In words, if, at every feasible, full-insurance allocation, agents share at least one ambiguity-

neutral model, then the set of Pareto-efficient allocations coincides with the set of feasible

full-insurance allocations. Recall that, in Example 3 the condition
⋂

i π
c
i (1S xi ) 6= ; fails at

(1S x h , 1S (ω̄− x h )), and in that economy there is both a full-insurance allocation that is not

Pareto-efficient and a non-full-insurance allocation that is Pareto-efficient.

A necessary condition for
⋂

i π
c
i (1S xi ) 6= ; is, of course, that every agent i ’s point core at

xi be non-empty. Thus, the assumption in Proposition 7 implies that each agent is pointwise

ambiguity averse at every feasible, full-insurance allocation.

In light of part 3 of Proposition 1, the condition
⋂

i π
c
i (1S xi ) 6= ; will be satisfied a fortiori

at every feasible, full-insurance allocation if the cores of the representing functionals Ii have

non-empty intersection. We then have

Corollary 8 If
⋂

i Core Ii 6= ;, then a feasible allocation is Pareto-efficient if and only if it
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provides full insurance. Moreover, such an allocation is a competitive equilibrium allocation

(with transfers).

Thus, under the conditions of Proposition 7 or Corollary 8, not only are full-insurance al-

locations efficient: they are the only efficient allocations. This generalizes the standard result

that, if agents share a common prior, then an interior allocation is Pareto-efficient if and only

if it provides full insurance.

The key intuition behind Proposition 7 is that, under the stated assumptions, if ( f1, . . . , fN )

is a feasible allocation that does not provide full insurance, and ci is the certainty equivalent of

fi for each agent i , then
∑

i ci < ω̄. It is then immediate to construct a full-insurance allocation

that Pareto-dominates the initial one.

In the case of SEU preferences with a common prior P , the inequality
∑

i ci < ω̄ follows

from the basic fact that, for a strictly risk-averse individual, the expected value of a non-constant

act is strictly greater than its certainty equivalent. Formally, in our setting, P ( fi ) > ci ; then,

since ( f1, . . . , fN ) is feasible, we get
∑

i ci <
∑

i P ( fi ) = P (
∑

i fi ) = ω̄.

Now consider the case in Corollary 8 and let P ∈
⋂

i Core Ii . Whenever fi is non-constant,

strict concavity of ui implies that ui (P ( fi )) > P (ui ◦ fi ); furthermore, by the definition of the

core, P (ui ◦ fi )≥ Ii (ui ◦ fi ) = ui (ci ). Thus, we again conclude that ui (P ( fi ))> ui (ci ), i.e., P ( fi )>

ci . In other words, ambiguity aversion reinforces the effects of risk aversion. The general case

in Proposition 7 uses a different argument but relies on a similar intuition.

Proposition 7 also strengthens the conclusion of Proposition 6. If the point cores intersect,

one can find a price vector that supports any feasible, full-insurance allocation as a competi-

tive equilibrium in the usual sense. By way of contrast, the vector p identified in Proposition

6 is a supporting price only in the local sense discussed above.

In Example 3, there is a feasible, full-insurance allocation that is not Pareto-efficient, and

a Pareto-efficient allocation that does not provide full insurance. The preferences considered

there do not satisfy the condition in Proposition 7.15 The following example instead shows

15Consider the allocation (1S x h , 1S (ω̄− x h )) in Figure 1. At this allocation, πc
2(1S (ω̄− x h )) consists of the prob-

ability P that represents 2’s preferences, but P clearly is not an element ofπc
1(1S x h ): there are bundles that agent

1 strictly prefers to 1S x h , and that an agent with risk-neutral EU preferences with prior P would consider worse

that 1S x h . (This continues to be the case if preferences are perturbed slightly so that both consumers have a
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that this condition, while sufficient, is not necessary for Pareto-efficient and full-insurance

allocations to coincide.

Example 4 Let S = {s1, s2}. Assume that consumer 2 has EU preferences, with a prior P that

assigns probability 0.4 to state s1 (on the horizontal axis) and power utility u (x ) = x 0.2. Con-

sumer 1 has preferences represented by

I1(h ) =max
�

1

2
h1+

1

2
h2,δ+ min

p∈[0,1]
[p h1+ (1−p )h2]

�

.

Thus, consumer 1’s preferences are risk-neutral EU, with a uniform prior, except within δ of

the certainty line. The value of δ is chosen so that, given the curvature of 2’s utility function,

there is no tangency anywhere except at certainty; see Figure 3. Then, in this economy, a fea-

0S

1S ω̄

Figure 3: Relationship between the core, Clarke differential, and local beliefs

sible allocation is Pareto-efficient if and only if it provides full insurance. Both preferences are

GM-ambiguity-averse. In particular, as in Example 1, the core of I1 consists solely of the uni-

form measure, whereas the core of 2’s EU preference functional is {P }. Thus, the intersection

of the cores is empty, even though the sets of Pareto-efficient and full-insurance allocations

strictly concave utility function.) Thus, the intersection of the point coresπc
i (·) at the allocation (1S x h , 1S (ω̄−x h ))

is empty.
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coincide. Note also that the normalized Clarke differentials are constant at certainty: they

equal∆(S ) for consumer 1, and {P } for consumer 2.

The sufficient condition in Proposition 7 is violated. For consumer 2, the point core is

equal to πc
2(1S x2) = {P } at every x2 ≥ 0; however, P 6∈ πc

1(1S x1) for x1 sufficiently large. For

instance, consider the rightmost point of tangency on the certainty line; denote the corre-

sponding feasible allocation by (x1, x2). Since P is not uniform, if the dent in 1’s preferences at

certainty (which depends upon the parameter δ) is sufficiently small, the tangent to 2’s indif-

ference curve at (x1, x2) will eventually cross 1’s indifference curve going through that point.

Therefore, P does not belong to the point core π1(1S x1) at x1. �

Finally, Example 8 in Section 5 describes an economy in which the sufficient condition

of Proposition 7 is satisfied, but that of Corollary 8 is not. Notably, both preferences in that

economy are convex.

4.3 Closing the gap

The preceding results show that the condition that
⋂

i Ci (1S xi ) 6= ; is necessary for the full-

insurance allocation (1S x1, . . . , 1S xN ) to be Pareto-efficient (Proposition 6), but it is not suffi-

cient (Example 3). On the other hand, the condition that
⋂

i π
c
i (1S xi ) 6= ; on the certainty line

(a fortiori, the condition
⋂

i Core Ii 6= ;) is sufficient for full-insurance allocations to be the

only Pareto-efficient ones (Proposition 7), but it is not necessary (Example 4). This points to

a gap between Propositions 6 and 7.

It turns out that differential quasiconcavity at certainty provides a simple way to close this

gap. The key insight is that, under Condition DQC (and niceness), the point core πc
i (1S xi )

and the normalized Clarke differential Ci (1S xi ) coincide for every xi > 0. [Items (ii)–(iv) in the

statement below correspond to items (ii)–(iv) in Theorem 5; there is no condition correspond-

ing to (i). See Example 7 for further discussion.]

Theorem 9 Assume that, for every i ∈N , DQC holds and Ii is nice at 1S ui (xi ) for every xi > 0.

Then the following are equivalent:

(ii) Every Pareto-efficient allocation is a full-insurance allocation;

(iii) Every feasible, full-insurance allocation is Pareto-efficient;
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(iv) For every feasible, full insurance allocation (1S x1, . . . , 1S xN ),
⋂

i

πc
i (1S xi ) =

⋂

i

πi (1S xi ) =
⋂

i

Ci (1S xi ) 6= ;.

Furthermore, under the above equivalent conditions, every interior, feasible full-insurance

allocation is a competitive equilibrium with transfers.

Proof: As just noted, for every i and xi > 0, since DQC holds and Ii is nice at 1S ui (xi ), Propo-

sition 2 implies that πc
i (1S xi ) =πi (1S xi ) =Ci (1S xi ).

The implication (ii)⇒ (iii) is standard. Now assume (iii) and fix a feasible, full-insurance al-

location (1S x1, . . . , 1S xN ). Then this allocation is Pareto-efficient. By Proposition 6,
⋂

i Ci (1S xi ) 6=

;; since πc
i (1S xi ) = πi (1S xi ) = Ci (xi ) for all i , (iv) holds. Finally, assume (iv): then, by Proposi-

tion 7, every Pareto-efficient allocation is a full-insurance allocation, i.e., (ii) holds.

Theorem 9 is a counterpart to RSS’s result (Theorem 5 in this paper) for preferences that are

not necessarily convex, i.e., uncertainty-averse. The assumptions only imply that every agent

is pointwise ambiguity averse (see Remark 2). Condition DQC plays the same role in Theorem

9 as convexity does in RSS’s result: it allows one to derive a “global” conclusion about Pareto

efficiency from a “local” assumption about the intersection of the point cores at certainty.

Yet, as discussed in Section 3, while convexity implies DQC, the latter allows for significant

departures from convexity (see also Example 5 in Section 5).

There are two additional differences between RSS’s result and Theorem 9. On one hand,

RSS assume that the local belief setsπi (1S xi ) are constant at certainty; there is no correspond-

ing assumption in Theorem 9 (cf. Example 8 in Section 5). On the other hand, the condition

in item (iv) of Theorem 5 (RSS’s result) involves agents’ preferences alone, whereas condition

(iv) in Theorem 9 involves both preferences and endowments—agents’ point core sets must

have a non-empty intersection at all feasible allocations.

It turns out that, if we adopt a counterpart to RSS’s assumption that local beliefs at cer-

tainty are constant, then we can similarly state condition (iv) purely in terms of preferences.

Consider the following definition:

Definition 2 Let ¼ be represented by (I , u ). Then ¼ satisfies condition IDC (Invariant nor-

malized Differentials at Certainty) if C (1S x ) =C (1S ) for all x > 0.
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Appendix A.2 characterizes this condition in terms of preferences. Under DQC and niceness,

the normalized Clarke differential Ci (1S x ) at every x > 0 coincides with the local belief set

πi (1S x ). Thus, under these assumptions, Condition IDC has the same implication as RSS’s

axiom TIC, namely that the sets πi (1S x ) do not depend upon x .

We also note that, under DQC and niceness, condition IDC also implies that preferences

are GM-ambiguity-averse (rather than just pointwise ambiguity averse).16

Theorem 10 Assume that, for every i ∈ N , Ii is nice at 1S ui (x ) for every x > 0, and that con-

ditions DQC and IDC hold. Then the following are equivalent:

(i) There exists an interior, full-insurance Pareto-efficient allocation;

(ii) Every Pareto-efficient allocation is a full-insurance allocation;

(iii) Every feasible, full-insurance allocation is Pareto-efficient;

(iv)
⋂

i CoreIi =
⋂

i π
c(1S ) =

⋂

i πi (1S ) =
⋂

i Ci (1S ) 6= ;.

Furthermore, under the above equivalent conditions, every interior, feasible full-insurance

allocation is a competitive equilibrium with transfers.

Proof: It follows by Proposition 2 that, under DQC, IDC, and niceness, πi (1S x ) = πc
i (1S x ) =

Ci (1S x ) = Ci (1S ) = πc
i (1S ) = πi (1S ). By Proposition 1 part 3 and IDC, Core Ii =

⋂

x>0π
c
i (1S x ) =

πc
i (1S ). Therefore,

⋂

i CoreIi =
⋂

i π
c
i (1S ) =

⋂

i πi (1S ) =
⋂

i Ci (1S ), and furthermore the con-

dition in (iv) of Theorem 10 is equivalent to the condition in (iv) of Theorem 9. Hence, the

equivalence of (ii), (iii) and (iv) follows from Theorem 9.

For (i) ⇒ (iv), if (1S x1, . . . , 1S xn ) is an interior, full-insurance Pareto-efficient allocation,

since each Ii is nice at 1S ui (xi ), Proposition 6 implies that
⋂

i Ci (1S xi ) 6= ;, so (iv) holds by

the equalities established above. Finally, (iii)⇒ (i) is immediate.

To sum up, Theorem 10 provides a more direct counterpart to RSS’s result (Theorem 5 in

this paper).17 On the other hand, Theorem 9 puts the emphasis on the role of differential

16By Proposition 1 part 3, Core Ii =
⋂

x>0π
c
i (1S x ) = πc

i (1S ); by Proposition 2, πc
i (1S ) = Ci (1S ); under niceness,

Ci (1S ) 6= ;, so Core Ii 6= ;.
17Another difference between Theorems 10 and 5 is the assumption of niceness at certainty. If preferences

have a concave representation, niceness is automatically satisfied, so for such preferences Theorem 5 follows
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quasiconcavity at certainty in risk sharing. In particular, risk sharing does not require that

preferences satisfy condition IDC (or RSS’s TIC). We discuss an alternative to conditions DQC

and IDC in Section 6 below.

5 More Examples

In this section we provide four additional examples that illustrate our results. Example 5 shows

that our Theorem 10 can accommodate behaviorally interesting preferences that are not cov-

ered by prior results on risk sharing. Example 6 considers the special case of invariant bisep-

arable preferences (Ghirardato et al., 2004). Example 7 illustrates a novel implication of our

results for convex preferences that are nice at certainty: a non-empty intersection of the point

cores is necessary for risk sharing. Finally, Example 8 illustrates how risk sharing may obtain

when condition IDC (or RSS’s Translation Invariance at Certainty) is violated; in the convex,

non-pathological economy described therein, Theorem 9 (and Proposition 7) apply, but The-

orem 10 (and Corollary 8) do not.

Example 5 (Smooth VEU preferences) A convenient class of preferences that satisfies all con-

ditions of Theorem 10, but is not necessarily covered by RSS’s result, is the family of VEU pref-

erences that are smooth (hence, regular) and GM-ambiguity-averse, but not necessarily con-

vex. These preferences admit a representation (I , u )with18

I (a ) = P (a ) +A
�

P (ζ0a ), . . . , P (ζJ−1a )
�

,

where P ∈ ∆(S ), 0 ≤ J ≤ |S |, each ζ j ∈ RS (an adjustment factor) satisfies P (ζ j ) = 0, and A :

RJ → R (the adjustment function) is continuously differentiable and satisfies A(φ) = A(−φ)

for all φ ∈ RJ , and A ≤ 0. To ensure strict monotonicity, additionally assume that P ({s }) > 0

for all s and, for all a ∈US and s ∈ S , 1+
∑

0≤ j<J
∂ A
∂ φ j
(P (ζ0a ), . . . , P (ζJ−1a ))ζ j (s )> 0. Note that I is

translation-invariant, so IDC holds; it is GM-ambiguity-averse, so Core I 6= ;; and it is regular

at certainty, so by Proposition 4 it satisfies DQC. Furthermore, by Propositions 1 and 2, and

directly from Theorem 10.

18If a , b :US →R, “a b ” denotes the function that assigns the value a (s )b (s ) to each state s .
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straightforward calculations (in the Appendix),

Core I =π(1S ) =π
c(1S ) =C (1S ) = {P }.

Therefore, in an economy where all agents have preferences satisfying these conditions, risk-

sharing obtains if and only if agents have the same baseline prior P (but possibly different

adjustment factors and functions).

Smooth, GM-AA VEU preferences can provide a tractable model of behavior that can be

deemed averse to ambiguity, even though it is inconsistent with convexity of preferences. To

illustrate, we show that they can accommodate the modal preferences in the “reflection ex-

ample” of Machina (2009) (see also Baillon et al., 2011). Let S = {s1, s2, s3, s4} and assume that

the events {s1, s2} and {s3, s4} are unambiguous and equally likely, but no further information

is provided as to the relative likelihood of s1 vs. s2 and s3 vs. s4. Furthermore, the draw of s1 vs.

s2 and s3 vs. s4 are perceived as being independent. Consider the bets in Table 1.

s1 s2 s3 s4

f 1 $4,000 $8,000 $4,000 $0

f 2 $4,000 $4,000 $8,000 $0

f 3 $0 $8,000 $4,000 $4,000

f 4 $0 $4,000 $8,000 $4,000

Table 1: Machina’s reflection example. Reasonable preferences: f 1 ≺ f 2 and f 3 � f 4

Machina (2009) argues on the basis of symmetry considerations that the preference rank-

ing f 1 ≺ f 2 and f 3 � f 4 is plausible and consistent with aversion to ambiguity; L’Haridon

and Placido (2010) verify that these rankings do occur in an experimental setting. However,

Baillon et al. (2011) show that preference models that satisfy convexity cannot accommodate

this behavior while respecting natural probabilistic formulations of the noted symmetry and

independence assumptions. We now demonstrate that, by way of contrast, smooth, GM-AA

VEU preferences can do so. A similar example is provided in Siniscalchi (2009), but the VEU

preferences described there are not smooth and violate DQC.

Assume a uniform baseline prior P and two adjustment factors ζ0,ζ1 ∈RS :

ζ0 = [1,−1, 0, 0] and ζ1 = [0, 0, 1,−1].

24



Act P (ζ0u ◦ f k ) P (ζ1u ◦ f k ) Adjustment (omitting 1
2θ )

f 1 α−1 α − log(1+θ −1(α−1)2)− log(1+θ −1α2)

f 2 0 1 − log(1+θ −1)

f 3 −1 0 − log(1+θ −1)

f 4 −α 1−α − log(1+θ −1α2)− log(1+θ −1(1−α)2)

Table 2: Adjustments

The adjustment function takes the form

A(φ) = A(φ0,φ1) =−
1

2
θ
∑

j=0,1

log

�

1+
φ2

j

θ

�

whereθ ∈ (0, 4); note that limθ→0 A(φ) = 0, so the limiting caseθ = 0 corresponds to EU. We ver-

ify in Appendix A.6 that this specification of the parameters P, A,ζ0,ζ1 yields a strictly mono-

tonic preference, and that higher values of θ correspond to greater ambiguity aversion in the

sense of GM. Finally, let u (0) = 0, u (8, 000) = 4, and u (4, 000) = 4α, for some α ∈ (0, 1).

All four acts f 1, . . . , f 4 have the same expected baseline utility: P (u ◦ f k ) = 2α+ 1 for k =

1, . . . , 4. Hence, their ranking is entirely determined by the adjustment terms A(P (ζ0u◦ f k ), P (ζi u◦

f k )). These are displayed in Table 2.

In order to generate the preferences f 1 ≺ f 2, we need to ensure that A(P (ζ0u ◦ f 1), P (ζ1u ◦

f 1))< A(P (ζ0u ◦ f 2), P (ζ1u ◦ f 2)). Notice that, since (α−1)2 = (1−α)2, this will also ensure that

A(P (ζ0u◦ f 3), P (ζ1u◦ f 3))> A(P (ζ0u◦ f 4), P (ζ1u◦ f 4))and therefore f 3 � f 4, as the adjustments

for f 1 and f 2 are the same as the adjustments for f 4 and f 3 respectively. Thus, we require

− log(1+θ −1(α−1)2)− log(1+θ −1α2)<− log(1+θ −1)

which, as shown in Appendix A.6, holds iff 0<θ < α(1−α)
2 . �

Example 6 (Invariant Biseparable preferences) A preference is invariant biseparable (Ghi-

rardato et al., 2004) if its representation (I , u ) is such that I is positively homogeneous and

translation-invariant on its domain. We now show that MEU preferences are the only invari-

ant biseparable preferences for which the conditions of Theorems 9 or 10 hold. Recall that,

similarly, the only invariant biseparable preferences to which the results in RSS apply —i.e.,
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the convex invariant biseparable preferences— are MEU preferences. Thus, both RSS’s main

risk-sharing result and our results generalize the one in Billot et al. (2000) only insofar as they

apply to preferences that do not satisfy either positive homogeneity or translation invariance.

Recall from Ghirardato et al. (2004) that, for an invariant biseparable preference repre-

sented by (I , u ), the functional I admits a unique extension to all ofRS , and the Clarke differ-

ential at zero, i.e., ∂ I (0S ), consists of probability measures and coincides with ∂ I (1S u (x )) for

all x > 0. Hence, I is nice at 1S u (x ) for every x > 0, and condition IDC holds.

Let C = ∂ I (0S ) = ∂ I (1S u (x )) ⊆∆(S ) for any x ≥ 0. By Proposition 3, condition DQC holds

if and only if C =
⋂

x>0 Ci (1S x ) =
⋃

x>0 Ci (1S x ) = Core I . But by Proposition 16 in Ghirardato

et al. (2004), C =Core I if and only if I is concave, in which case I (·) =minP∈C P (·).

Hence, an invariant biseparable preference satisfies condition DQC if and only if it is MEU.

Equivalently, for an invariant biseparable preference, there is no gap between Propositions 6

and 7 if and only if preferences are in fact MEU. �

Example 7 Let S = {s1, s2}. Agent 1’s preferences are represented by the utility function u (x ) =

x 0.6 and the differentiable, quasiconcave, but not concave functional

I (a ) =
1

2
a2+

√

√

4+
1

4
a 2

2 +2a1−2.

Agent 2 has EU preferences, with probability P and utility u (x ) = x 0.8. Figure 4 shows indif-

ference curves for these preferences, drawn as solid blue and red lines respectively. Agent 1’s

and 2’s indifference curves are tangent at the allocation (1S x l , 1S (ω̄−x l )); their common slope

there equals the slope of the two parallel, straight purple lines. (Thus, this slope identifies P .)

The figure shows that the slope of 1’s indifference curves at 1S x l and 1S x h is different; in-

deed, it may be verified that the slope of the indifference curve of I u at 1S x is − 2
u (x )+2 , which

is non-zero and strictly decreasing in x . Hence (cf. Remark 1), I is nice at certainty. Further-

more, since I is quasiconcave, it satisfies DQC by Proposition 4, and therefore by Proposition

2, πc
1(1S x ) =π1(1S x ) =C1(1S x ) for all x > 0. On the other hand, since agent 2’s preferences are

consistent with EU, π2(1S x ) =πc
2(1S x ) =C2(1S x ) =Core I2 = {P }.

From a decision-theoretic perspective, we observe that agent 1’s preference is convex (hence

uncertainty-averse in the sense of Schmeidler, 1989), as well as pointwise ambiguity-averse,

26



0S

1S ω̄

1S x l

1S x hg

Figure 4: A convex preference with empty core.

but not GM-ambiguity-averse.19 To see this, note that, by Proposition 1 the core must be con-

tained in the sets πc
1(1S x ) for all x > 0, but as noted above these sets are all singleton (hence,

non-empty) and different for different x , so Core I1 = ;. For the same reason, IDC fails.

Turn now to risk sharing. The assumptions of Theorem 9 hold. The purple line going

through x h is tangent to agent 2’s indifference curve, but does not support agent 1’s indiffer-

ence curve: therefore,πc
1(1S x h )does not intersectπc

2(1S (ω̄−x h )). Thus, condition (iv) in Theo-

rem 9 is violated. Correspondingly, conditions (ii) and (iii) also fail: the allocation (g , 1Sω̄−g )

is Pareto-efficient, but does not provide full insurance, whereas the interior, full-insurance

allocation (1S x h , 1S (ω̄− x h )) is not Pareto-efficient.

Finally, note that the interior, full-insurance allocation (1S x l , 1S (ω̄−x `)) is Pareto-efficient;

thus, in this economy, condition (i) in Theorem 5 holds. However, as just noted, conditions

(ii)-(iv) in Theorem 9 do not hold. Thus, this example demonstrates that condition (i) cannot

19Another example of a preference which is convex but not GM-ambiguity-averse can be found in Cerreia-

Vioglio et al. (2011).
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be included in the statement of Theorem 9. �

Example 8 Modify Example 7 by assuming that agent 2’s preferences are MEU, with priors

∆(S ) and utility u (x ) =
p

x . Refer to Figure 5.

0S

1S ω̄

Figure 5: Risk sharing with non-constant local beliefs at certainty.

Both preferences are convex, and hence satisfy DQC. Bernoulli utility is strictly concave.

The representing functionals Ii are nice at certainty, and in addition agent 2’s preferences sat-

isfy IDC: this follows because ∂ I2(1S x ) = C2(1S x ) = ∆(S ) for every x > 0. From Proposition

2, π2(1S x ) = πc
2(1S x ) = C2(1S x ) = Core I2 = ∆(S ) for every x > 0. Therefore, for every x > 0,

πc
1(1S x )∩πc

2(1S x ) 6= ;. Proposition 7 and Theorem 9 apply, and indeed the set of Pareto-efficient

and full-insurance allocations coincide.

Since agent 1’s preferences do not satisfy IDC, Theorem 10 does not apply. Indeed, nei-

ther does RSS’s original risk-sharing result (Proposition 9 in their paper): while both agents’

preferences are convex (and indeed 2’s preferences have a concave representation), agent 1’s

local beliefs do not coincide at certainty. Finally, since Core I1 = ; (as shown in Example 7),

Corollary 8 does not apply. �
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6 Extensions

6.1 Alternative conditions for risk sharing

The assumption of differential quasiconcavity at certainty in Theorem 9 is sufficient to obtain

the equivalence of conditions (ii)–(iv); however, it is not necessary. We discuss an alternative

that relaxes DQC significantly, at the cost of imposing more structure on the point cores at

certainty. Specifically, we can assume that differential quasiconcavity and niceness hold at

only some full-insurance allocation, where preferences are “least ambiguity-averse.”

Theorem 11 Assume that there exists a feasible, full-insurance allocation (1S x ∗1 , . . . , 1S x ∗N ) such

that, for every i ∈N , (1)πc
i (1S x ∗i )⊆π

c
i (1S x ) for all x > 0, and (2) Ii is differentially quasiconcave

and nice at 1S ui (x ∗i ).Then the following are equivalent:

(i) The allocation (1S x ∗1 , . . . , 1S x ∗N ) is Pareto-efficient;

(ii) Every Pareto-efficient allocation is a full-insurance allocation;

(iii) Every feasible, full-insurance allocation is Pareto-efficient;

(iv)
⋂

i CoreIi 6= ;.

Furthermore, under the above equivalent conditions, every interior, feasible full-insurance

allocation is a competitive equilibrium with transfers.

Proof: (ii)⇒ (iii) is standard, and (iii)⇒ (i) is immediate. Finally, if
⋂

i Core Ii 6= ;, then Corol-

lary 8 implies that every Pareto-efficient allocation must be a full-insurance allocation; thus,

(iv)⇒ (ii). To complete the argument, we show that (i)⇒ (iv). Since under (i) the allocation

(1S x ∗1 , . . . , 1S x ∗N ) is Pareto-efficient and provides full insurance, by Proposition 6
⋂

i Ci (1S x ∗i ) 6=

;. Consider an agent i . Since by assumption πc
i (1S x ∗i ) ⊆ π

c
i (1S x ) for all x > 0, πc

i (1S x ∗i ) =
⋂

x>0π
c
i (1S x ); then, by Proposition 1 part 3, Core Ii = πc

i (1S x ∗i ); finally, since Ii is quasicon-

cave and nice at 1S ui (x ∗i ), by Proposition 2 πc
i (1S x ∗i ) = Ci (1S x ∗i ) 6= ;. Thus, Core Ii = Ci (1S x ∗i ).

Since this is true for all agents i ∈N ,
⋂

i Core Ii =
⋂

i Ci (1S x ∗i ) 6= ;.

Assumption (1) requires that the point cores at each x ∗i are minimal with respect to set

inclusion. Invoking the interpretation of the point core discussed in Section 3, this means

that every ambiguity-neutral model at x ∗i is also an ambiguity-neutral model at every other
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point on the certainty line. In this interpretation, x ∗i is a point at certainty where the agent is

least pointwise ambiguity-averse. As the above proof shows, it then turns out that the point

core at x ∗i coincides with the (global) core of Ii .

Assumption (2) is notable in that niceness and differential quasiconcavity are only im-

posed at a single point on the certainty line. Thus, as noted above, the full strength of DQC

(and niceness) is not required to obtain risk sharing.

However, Theorem 11 combines assumptions about preferences and endowments to a

greater extent than Theorem 9: in Theorem 9, feasibility only appears in Condition (iv), whereas

in Theorem 11 it is part of assumptions (1) and (2). Furthermore, while there are examples of

preferences that satisfy the assumptions of Theorem 11, we do not know of an economically

meaningful such example that does not also satisfy the assumptions of Theorem 9.

In this spirit, notice that Theorem 11 is neither more nor less general than Theorem 9: in

Example 7, the assumptions of Theorem 9 are satisfied, but those of Theorem 11 are not.

Finally, Assumptions (1) and (2) still imply that all point cores are non-empty, and so agents

are pointwise ambiguity averse—as they must be in Theorems 9 and 10.

6.2 Aggregate uncertainty

Strzalecki and Werner (2011) consider risk sharing in economies with aggregate uncertainty

and convex preferences. While we leave a full investigation of such environments to future

work, we can state a partial generalization of Corollary 8 to the case in which the aggregate

endowment is non-constant, but “unambiguous” in a suitable sense. (We conjecture that

Proposition 7 can be similarly extended.)

We need two definitions. The first is a weakening of the notion of “unambiguous act” stud-

ied in Cerreia-Vioglio et al. (2011); the second adapts Strzalecki and Werner (2011)’s notion of

“conditional beliefs” to the class of preferences we consider.

Definition 3 Consider a preference ¼ on RS
+ represented by (I , u ). An act f : S → R+ is core-

unambiguous for (I , u ) if P (u ◦ f ) = I (u ◦ f ) for all P ∈ Core I . A partition G of S is core-

unambiguous for (I , u ) if every G -measurable20 bundle f is core-unambiguous for (I , u ).

20A bundle f is G -measurable if f (s ) = f (s ′) for all s , s ′ ∈G and G ∈G .
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In Cerreia-Vioglio et al. (2011) an act f is unambiguous if P (u ◦ f ) = I (u ◦ f ) for all priors

P in the set C that represents the largest independent subrelation of ¼ in the sense of Bewley

(2002).21 It turns out that Core I ⊆C , so Definition 3 is less demanding.22

Definition 4 (cf. Strzalecki and Werner, 2011, Definition 3) Consider a preference ¼ on RS
+

represented by (I , u ), and a partition G of S . The G -conditional core of I , written CoreG I , is

the collection of all probabilities Q ∈∆(S ) such that

(i) Q (G )> 0 for all G ∈G ; and

(ii) there exists P ∈Core I with P (G )> 0 and P (·|G ) =Q (·|G ) for all G ∈G .23

Loosely speaking, CoreG I is the set of all probabilities that “match” the probabilities condi-

tional upon each event G ∈ G induced by some P ∈ Core I . If every P in the core assigns

positive probability to the elements of G , then CoreG I is a larger set than Core I . Note also

that, if G = {S}, then CoreG I = Core I . For further interpretation, see Strzalecki and Werner

(2011).

We can now state the promised partial generalization of Corollary 8. Let E be the partition

induced by the aggregate endowment ω ≡
∑

iωi ∈ RS
+: that is, the coarsest partition G such

that ω is G -measurable. If the aggregate endowment is constant, then E = {S} and a bundle

is E -measurable if and only if it provides full insurance.

Proposition 12 If, for every i ∈N , E is core-unambiguous for (Ii , ui ), and
⋂

i CoreE Ii 6= ;, then

every Pareto-efficient allocation is E -measurable.

The other assertions in Corollary 8 do not generalize under the assumption that
⋂

i CoreG Ii 6=

;. Consider a two-state, two-agent economy with aggregate uncertainty: thenE is the discrete

21Ghirardato and Siniscalchi (2012) show that C is the union of all sets C (a ), for all a ∈
�

int(U)
�S

.

22Consider a risk-neutral CEU preference with S = {s1, s2, s3} and capacity ν given by ν({s1}) = 1
3 , ν({s2}) =

ν({s3}) = 0, and ν(E ) = 2
3 for every 2-element set E . The core of this preference consists solely of the uniform

probability Pu , so e.g. for a = (3, 2, 1) (obvious notation), Pu (a ) = 2= I (a ) = 3 ·ν({s1}) +2 · [ν({s1, s2})−ν({s1})] +3 ·

[1−ν({s1, s2})]. Thus, a is core-unambiguous. However, it is not unambiguous in the sense of Cerreia-Vioglio et al.

(2011): by results in Ghirardato et al. (2004), the set C contains, for example, the measure P = ( 13 , 0, 2
3 ) (obvious

notation) for which P (a ) = 5
3 .

23P (·|G ) and Q (·|G ) denote conditional probabilities given G .
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partition, so every bundle is E -measurable, and furthermore the E -conditional cores are de-

generate and always intersect no matter what the preferences. However (except for degener-

ate cases) not every feasible allocation is Pareto-efficient; moreover, one can easily construct

examples of Pareto-efficient allocations that are not competitive equilibria. Whether one can

obtain positive results under stronger assumptions is left to future research.

A Appendix: Proofs

A.1 Preliminaries

Proof of Remark 1: The map F : RS
+ → U

S defined by F ( f ) = (u ( f1), . . . , u ( fS )) is strictly dif-

ferentiable (pp. 30-31 Clarke, 1983) and, furthermore, it maps every neighborhood of f to

a neighborhood of F ( f ).24 Hence, since I u = I ◦ F , by Theorem 2.3.10 in Clarke ∂ I u ( f ) =

∂ I (u ◦ f ) ◦Ds F ( f ); that is, more explicitly, every Q u ∈ ∂ I u ( f ) is defined by

∀h ∈RS , Q u (h ) =
∑

s

Q (s )u ′( fs )hs

for some Q ∈ ∂ I (u ◦ f ).

The following geometric notions will be useful. For every bundle f ∈RS
+, let

U ( f ) = {g ∈RS
+ : g ¼ f },

the upper countour set of the preference ¼ at f . For every set C ⊂RS
+ and bundle f ∈RS

+, let

dC ( f ) = inf{‖ f − g ‖ : g ∈C }

The Clarke tangent cone to C at some f ∈C is

TC ( f ) = {v ∈RS : (dC )
0( f ; v ) = 0},

24To see this, fix a strictly positive bundle f and consider the set {g ∈RS
+ : fs −ε < g s < fs +ε∀s ∈ S}, which is

open. The image of this set via F is {v ∈US : u ( fs −ε)< vs < u ( fs +ε)∀s ∈ S}, because u is continuous and strictly

increasing. This set is also open.
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i.e. the set of directions v for which the Clarke derivative of the distance function (which is

Lipschitz and convex) is zero. The following characterization (Clarke, 1983, Theorem 2.4.5) is

useful:

TC ( f ) = {v ∈RS :∀( f k , t k )⊂C×R++ s.t. f k → f , t k ↓ 0, ∃(v k )⊂RS s.t. v k → v, f k+t k v k ∈C ∀k}.

Finally, define the Clarke normal cone to C at f by polarity:

NC ( f ) = {Q ∈ ba(S ) =RS : Q (v )≤ 0∀v ∈ TC ( f )}.

Specializing to our environment, we have

T ( f )≡ TU ( f )( f ) =
�

v ∈RS : ∀( f k , t k )⊂RS
+×R++ s.t. f k ¼ f ∀k , f k → f , t k ↓ 0,

∃(v k )⊂RS s.t. v k → v, f k + t k v k ¼ f ∀k
	

.

and it is convenient to define

N ( f )≡NU ( f )( f ) = {Q ∈RS : Q (v )≤ 0∀v ∈ T ( f )}.

Loosely speaking, T ( f ) is the set of directions v with the property that any sequence of bundles

preferred to f and converging to it can be perturbed in the direction v without leaving the

upper contour set of f . More informally, moving from bundles near f in the direction v by a

small amount leads to an act that is at least as good as f . Then, if Q is in the normal cone, −Q

is a price vector that assigns non-negative value to such changes.

The following two results pertain to the Clarke normal cone. Note that the first does not

require any particular assumption on the functional I .

Remark 3 For every bundle f ∈RS
++, −π( f )⊆N ( f ).

Proof: Fix P ∈ π( f ). Consider v ∈ T ( f ), the constant sequence f k ≡ f , and an arbitrary

sequence (t k ) ↓ 0. Since v ∈ T ( f ), there exists a sequence (v k ) → v such that, for every k ,

f k + t k v k ¼ f , i.e., I (u ◦ [ f + t k v k ])≥ I (u ◦ f ). Since P ∈ π( f ), P ( f + t k v k )≥ P ( f ), and there-

fore P (v k )≥ 0 for every k . By continuity, P (v )≥ 0. Therefore, −P ∈N ( f ).
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Lemma 13 For any agent i and bundle f ∈ RS
+, if I is nice at u ◦ f , then N ( f ) ⊆

⋃

λ≥0λ
�

−

∂ I u ( f )
�

. In particular, for any x > 0, if R ∈N (1S x )\{0S}, then there isµ> 0 and Q ∈ ∂ I (1S u (x ))

such that R =−µQ .

Proof: Let J u = −I u , and note that U ( f ) = {g ∈ RS
+ : J u (g ) ≤ J u ( f )}. By Proposition 2.3.1 in

Clarke (1983), ∂ J u ( f ) =−∂ I u ( f ). Recall that everyQ u ∈ ∂ I u (1S x )maps a ∈RS to
∑

s Q (s )u ′( fs )as =

u ′(x )Q (a ) for some Q ∈ ∂ I (1S u (x )); since u is strictly increasing, and Q is non-negative be-

cause I is monotonic, it follows that Q u = 0S only if Q = 0; but I is nice at u ◦ f by assumption,

so 0S 6∈ ∂ I u ( f ), i.e., I u and hence J u are nice at f . Then, by Corollary 1 to Theorem 2.4.7 in

Clarke (1983), N ( f )⊂
⋃

λ≥0λ∂ J u ( f ) =
⋃

λ≥0λ
�

− ∂ I u ( f )
�

, as claimed.

If f = 1S x for some x > 0, then every Q u ∈ ∂ I u (1S x ) maps a ∈ RS to
∑

s Q (s )u ′(x )as =

u ′(x )Q (as ) for some Q ∈ ∂ I (1S u (x )), where u ′(x ) > 0 by assumption. By the preceding claim,

every R ∈ N (1S x ) not equal to 0S can be written as R = −λQ u for some λ > 0 and Q u ∈

∂ I u (1S x ), and hence also as R =−λu ′(x )Q for some Q ∈ ∂ I (1S u (x )). The second claim follows

by taking µ=λu ′(x ).

Conclude this section with a remark that restates the definition of πc( f ) for f = 1S x .

Remark 4 For every x > 0, πc(1S x ) = {P ∈∆(S ) : ∀g ∈RS
+, u (x )≥ P (u ◦g ) =⇒ u (x )≥ I (u ◦g )}.

Proof: Denote the set on the rhs of the Remark by π̂(1S x ). Suppose that P ∈ πc(1S x ). We

show that, for every g ∈ RS
+, I (u ◦ g ) > u (x ) implies P (u ◦ g ) > u (x ), so P ∈ π̂(1S x ). Fix g

and suppose I (u ◦ g ) > u (x ). Since P ∈ πc(1S x ), P (u ◦ g ) ≥ u (x ). By contradiction, suppose

P (u ◦ g ) = u (x ). By monotonicity, there must be a state s such that g (s ) > x . There are two

cases. First, if there is some s ∈ S such that g (s ) > x and P ({s }) > 0, by continuity of u and I

there is ε > 0 such that the bundle g ′ defined by g ′(s ) = g (s )−ε≥ 0 and g ′(s ′) = g (s ′) for s ′ 6= s

satisfies I (u ◦g ′)> u (x ) and P (u ◦g ′) = P (u ◦g )+P ({s })[u (g (s )−ε)−u (g (s ))]< P (u ◦g ) = u (x );

this contradicts the assumption that P ∈πc(1S x ). Second, if g (s )> x implies P ({s }) = 0, then,

since P (u ◦ g ) = u (x ), it must be the case that P ({s }) > 0 implies g (s ) = x . Fix one such state

s ; since x > 0, by continuity of u and I we can find ε > 0 such that the bundle g ′ defined by

g ′(s ) = g (s )−ε = x −ε ≥ 0 and g ′(s ′) = g (s ′) for s ′ 6= s satisfies I (u ◦ g ′) > u (x ) and P (u ◦ g ′) =
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P (u ◦ g ) +P ({s })[u (x −ε)− u (x )] < P (u ◦ g ) = u (x ); again, we obtain a contradiction. Hence,

P (u ◦ g )> u (x ), as claimed.

Conversely, suppose that P ∈ π̂(1S x ). We show that, for every g ∈ RS
+, u (x ) > P (u ◦ g ) im-

plies u (x )> I (u ◦g ), so P ∈πc(1S x ). Fix g and suppose that u (x )> P (u ◦g ). Since P ∈ π̂(1S x ),

u (x ) ≥ I (u ◦ g ). By contradiction, suppose u (x ) = I (u ◦ g ). By continuity of u and P , there

is ε > 0 such that u (x ) > P (u ◦ (g + 1Sε)); however, by strong monotonicity I (u ◦ (g + 1Sε)) >

I (u ◦ g ) = u (x ), which contradicts the assumption that P ∈ π̂(1S x ). Hence, u (x )> I (u ◦ g ).

Corollary 14 For all x > 0 and P ∈πc(1S x ), P ({s })> 0 for all s ∈ S .

Proof: Fix x > 0, s ∈ S and P ∈ πc(1S x ). Define g by g (s ) = x +1 and g (s ′) = x for all s ′ 6= s . If

P ({s }) = 0, then u (x ) = P (u ◦ g ), and therefore, by Remark 4 u (x ) ≥ I (u ◦ g ): this contradicts

the assumption that I is strongly monotonic.

A.2 Behavioral characterization of conditions DQC and IDC

Fix a preference ¼ represented by a pair (I , u ) that satisfies the assumptions of Section 2; in

particular, recall that u is strictly increasing and continuous. In order to introduce the key

definition from Ghirardato and Siniscalchi (2012), two ancillary notions are required.

First, define a mixture operation onR+ as follows: for any x , y ∈R+ and α ∈ [0, 1], αx ⊕ (1−

α)y denotes the (unique) z ∈R+ such that u (z ) =αu (x )+ (1−α)u (y ). If, following Anscombe

and Aumann (1963), one extends preferences to acts mapping states to lotteries over R+, one

can alternatively take z to be the gamble that yields x and y with probabilities α and 1−α

respectively. Ghirardato et al. (2003) and Ghirardato and Pennesi (2012) provide alternative

characterizations of the mixture operation ⊕ that do not require objective lotteries.

Convergence of acts is in the usual Euclidean topology. Since u is strictly increasing and

continuous, and the state space S is finite, this is equivalent to the convergence notion con-

sidered by Ghirardato and Siniscalchi (2012).
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Definition 5 For any pair of acts f , g and prize x ∈R+, say that f is a (weakly) better deviation

than g near x , written f ¼∗x g , if, for every (λn )n≥0 ⊂ [0, 1] and (h n )n≥0 such that λn ↓ 0 and

h n → 1S x ,

λn f ⊕ (1−λn )h n ¼λn g ⊕ (1−λn )h n eventually.

The basic intuition is that f is a better deviation than g at x if, starting from an initial riskless

consumption bundle 1S x , the DM prefers to move by a vanishingly small amount in the direc-

tion of the bundle f rather than in the direction of the bundle g . Furthermore, this remains

true if the initial bundle is not exactly 1S x , but is close to it. We then have:

Proposition 15 Assume that I is nice at every 1S u (x ), x > 0.

(i) ¼ satisfies IDC if and only if, for every x , y > 0 and f , g ∈RS
+, f ¼x g implies f ¼y g .

(ii) I satisfies differential quasiconcavity at 1Sγ, where γ= u (x ) and x > 0, if and only if, for

every f , g ∈RS
+ such that f (s )� g (s ) for all s , and all y ∈ (0, x ), g ¼ x implies f ¼x y .

Note that, by (ii), a simple sufficient condition for differential quasiconcavity at x > 0 is

∀g ∈RS
+, x > 0, g ¼ x =⇒ g ¼x x .

This condition is not also necessary because the relation¼x is in general not continuous: this

is discussed in Ghirardato and Siniscalchi (2012) (Example 4). However, it confirms the basic

insight provided in Section 3: if g is at least as good as x , and hence a global improvement

over x , it is also a better local deviation from x .

Proof: (i) is immediate from Theorems 6 or 7 in Ghirardato and Siniscalchi (2012).

For (ii), suppose that ¼ satisfies the stated condition. Consider γ > u (0) and a ∈ US , so

there are x ∈R++ and g ∈RS
+ such that γ= u (x ) and a = u ◦g . Suppose that I (a )≥ γ, so g ¼ x .

Then f ¼x y for all f ∈RS
+ with f (s )� g (s ) and y ∈ (0, x ). Since S is finite and¼x is monotonic,

this also implies that, for every f ′ ∈ RS
+ with y � f ′(s ) for every s , f ¼x f ′. That is, for every

spread ( f , f ′) of (g , 1S x ), f ¼x f ′. Since I is nice at 1S u (x ), by Theorem 7 in Ghirardato and

Siniscalchi (2012), P (u ◦g )≥ u (x ) for all P ∈C (1S x ). But this implies that Q (u ◦g )≥Q (1S u (x )),

i.e., Q (a −1Sγ)≥ 0, for all Q ∈ ∂ I (1Sγ); thus, I is differentially quasiconcave at γ.

Conversely, suppose that I is differentially quasiconcave at 1Sγ for some γ ∈ int u (X ). Let

x = u−1(γ) > 0 and consider f , g ∈ RS
+ with f (s ) � g (s ) for all s , and y ∈ (0, x ). Suppose that
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g ¼ x , so I (u ◦ g ) ≥ u (x ) = γ. Then, by differential quasiconcavity, Q (u ◦ g − 1Sγ) ≥ 0 for all

Q ∈ ∂ I (1Sγ); since I is nice at 1Sγ, this implies that P (u ◦ g ) ≥ u (x ) for all P ∈ C (1S x ). By

Theorem 7 in Ghirardato and Siniscalchi (2012), g ′ ¼x g ′′ for all spreads (g ′, g ′′) of (g , 1S x ); in

particular, this is true for ( f , 1S y ), so the stated condition holds.

A.3 Proof of the results in Section 3

Proof of Proposition 1: (1): fix x > 0. Suppose P ∈ Core I and consider a bundle g ∈ RS
+.

Assume that P (1S u (x ))≥ P (u ◦ g ). Since I is normalized and P is in the core of I , I (1S u (x )) =

u (x ) = P (1S u (x )) ≥ P (u ◦ g ) ≥ I (u ◦ g ). Since this holds for all g ∈ RS
+, P ∈ πc(1S x ). Hence,

Core I ⊆πc(1S x ).

For the second inclusion, note that P ∈ πc(1S x ) iff, for all g ∈ RS , I (u ◦ g ) > u (x ) implies

P (u ◦ g ) > u (x ). Now fix P ∈ πc(1S x ) and consider a bundle g ∈ RS
+. Assume that I (u ◦ g ) ≥

u (x ). Since U does not include its upper bound, there is ε̄ > 0 such that, for all ε ∈ (0, ε̄),

u ◦ g +1Sε ∈US (i.e., there is gε ∈RS
+ with u ◦ gε = u ◦ g +1Sε). Then, for any such ε, by strong

monotonicity, I (u ◦ g + 1Sε) > I (u ◦ g ) ≥ u (x ), and so P (u ◦ g ) + ε = P (u ◦ g + 1Sε) > u (x )

because P ∈ πc(1S x ). Since this holds for all ε ∈ (0, ε̄), P (u ◦ g ) ≥ u (x ); since u is (strictly)

concave, u (P (g )) ≥ P (u ◦ g ) ≥ u (x ); since u is strictly increasing, P (g ) ≥ x ; and since g ∈ RS
+

was arbitrary, P ∈π(1S x ).

(2): fix x > 0 and consider P ∈ π(1S x ). By Remark 3, −P ∈ N (1S x ). By Lemma 13, if I is

nice at 1S u (x ), then N (1S x ) \ {0S} ⊆
⋃

µ>0 (−∂ I (1S u (x ))). Therefore, there are µ > 0 and Q ∈

∂ I (1S u (x )) such that −P = µ(−Q ), i.e., P = µQ . Furthermore, 1 = P (S ) = µQ (S ), so µ =Q (S )−1

and P = Q
Q (S ) ∈C (1S x ), as required.

(3): By the first inclusion in part (1), Core I ⊆
⋂

x>0π
c(1S x ). Conversely, suppose P ∈

⋂

x>0π
c(1S x ). We claim that P ({s }) > 0 for all s ∈ S . By contradiction, suppose that P ({s }) = 0

for some s ∈ S . Then, for every x > 0, P (1S u (x )) = u (x ) > u (0) = P (u ◦ 1{s }), and therefore,

since P ∈ πc(1S x ), I (1S u (x )) ≥ I (u ◦ 1{s }). Since this holds for all x > 0, by continuity of u and

I , I (1S u (0))≥ I (u ◦1{s }), i.e., 0¼ 1{s }, which contradicts strong monotonicity.

Now fix g ∈ RS
+ and let x ∈ R+ be such that u (x ) = P (u ◦ g ). If x = 0, then the preceding
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claim implies that g = 0, and so P (1S u (0)) = u (0) = I (u ◦ g ). Otherwise, since by assumption

P ∈ πc(1S x ), P (1S u (x )) = u (x ) = P (u ◦ g ) implies I (1S u (x )) ≥ I (u ◦ g ); but I (1S u (x )) = u (x ) =

P (1S u (x )) = P (u ◦ g ), so indeed P (u ◦ g )≥ I (u ◦ g ).

(4): Fix P ∈Core I . x > 0, and a ∈RS . Let γ= u (x ). We calculate:

I ◦(1Sγ; a ) = lim sup
c→1Sγ,t ↓0

I (c + t a )− I (c )
t

= lim sup
d→1Sγ,t ↓0

I (d )− I (d − t a )
t

≥

≥ lim sup
t ↓0

I (1Sγ)− I (1Sγ− t a )
t

≥ lim sup
t ↓0

γ−P (1Sγ− t a )
t

=

= lim sup
t ↓0

γ−γ+ t P (a )
t

= P (a ).

The second equality follows because, if c → 1Sγ and t ↓ 0, then d ≡ c + t a → 1Sγ; conversely,

if d → 1Sγ and t ↓ 0, then c ≡ d − t a → 1Sγ. The first inequality follows by considering the

constant sequence d ≡ 1Sγ. The second inequality follows from normalization and the fact

that P ∈Core I : I (1Sγ− t a )≤ P (1Sγ− t a ), so −I (1Sγ− t a )≥−P (1Sγ− t a ).

Hence, for every a ∈ RS , maxQ∈∂ I (1Sγ)Q (a ) = I ◦(1Sγ; a ) ≥ maxP∈Core I P (a ), so by standard

results (e.g., Clarke, 1983, Prop. 2.1.4 (b)), Core I ⊆ ∂ I (1Sγ). Furthermore, by definition,

Q ∈Core I implies Q (S ) = 1, so Q = Q
Q (S ) ∈C (1S x ).

Proof of Proposition 2: Fix x > 0 and P ∈ C (1S x ). We first claim that P ({s }) > 0 for all

s ∈ S . By assumption, there is Q ∈ ∂ I (1S u (x )) such that Q (S ) > 0 and P = Q
Q (S ) . By strong

monotonicity, I (1S u (x )+1{s })> u (x ); by continuity, there exists ε ∈ (0, u (x )) such that 1S u (x )+

1{s }−ε1S\{s } ∈US and

I (1S u (x ) +1{s }−ε1S\{s })> u (x ).

Therefore, since I is differentially quasiconcave at 1S u (x ) by DQC,

Q (1S u (x ) +1{s }−ε1S\{s }−1S u (x ))≥ 0 ⇔ Q ({s })≥ εQ (S \ {s }) ⇔ P ({s })≥ εP (S \ {s }).

If P ({s }) = 0, the last inequality reduces to 0≥ ε, a contradiction. Thus, P ({s })> 0.

We now show that, for any g ∈RS
+, u (x )≥ P (u ◦g ) implies u (x )≥ I (u ◦g ); thus, P ∈πc(1S x ).

We show that the contrapositive holds. Suppose that I (u ◦ g ) > u (x ); notice that we cannot

have g (s ) = 0 for all s , because by assumption x > 0 and so u (x ) > u (0) = I (1S u (0)) by strong
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monotonicity of u and normalization. Hence, for every α ∈ (0, 1), g (s )≥αg (s ) in every state s ,

and there is at least one state s ∗ such that g (s ∗) > αg (s ∗). Furthermore, by continuity there is

α∗ ∈ (0, 1) such that I (u ◦ (α∗g )) > u (x ). By DQC, I is differentially quasiconcave at 1S u (x ), so

Q (u ◦ (α∗g )−1S u (x ))≥ 0, and so P (u ◦ (α∗g ))≥ u (x ). Finally, since there is at least one state s ∗

with g (s ∗)>α∗g (s ∗), and we showed above that P ({s ∗})> 0, P (u ◦ g )> P (u ◦ (α∗g ))≥ u (x ).

Hence, C (1S x ) ⊆ πc(1S x ), and indeed by Proposition 1 part 1, C (1S x ) ⊆ πc(1S x ) ⊆ π(1S x ).

If in addition I is nice at 1S u (x ), part 2 of Proposition 1 implies that π(1S x ) ⊆ C (1S x ), so

C (1S x ) =πc(1S x ) =π(1S x ).

Note: the above argument shows that it is enough to assume quasiconcavity at 1S u (x ) in

order to obtain the noted inclusions.

Proof of Proposition 3 (1): Assume that DQC holds, and let P ∈
⋂

x>0 C (1S x ). Fix a ∈ US

and let γ= I (a ). By monotonicity of I , mins as ≤ γ≤maxs as . Since a ∈US , by continuity of u

there is x ≥ 0 such that γ= u (x ).

If x = 0, then, since u (x ) = u (0) = minU, a ≥ 1S u (0), and so P (a ) ≥ P (1S u (0)) = u (0) =

u (x ) = γ = I (a ). Now consider x > 0, so γ > minU. By definition, since P ∈ C (1S x ), there

is Q ∈ ∂ I (1Sγ) such that Q (S ) > 0 and P = Q
Q (S ) . Since U = u (R+) does not contain its upper

bound and is connected because u is continuous, γ ∈ int(U). Hence, by DQC, I (a ) = γ implies

Q (a − 1Sγ) ≥ 0, i.e., Q (a ) ≥ Q (1Sγ); hence also P (a ) ≥ P (1Sγ). Therefore, P satisfies P (a ) ≥

P (1Sγ) = γ= I (a ). Since this holds for all a ∈US , P ∈Core I . Thus,
⋂

x>0 C (1S x )⊆Core I .

(2): Assume that C (1S x ) ⊆ Core I for some x > 0, let γ = u (x ), and fix a ∈ US . Suppose

that I (a ) ≥ γ: then, for every P ∈ Core I , P (a ) ≥ I (a ) ≥ γ = P (1Sγ), i.e, P (a − 1Sγ) ≥ 0. Since,

by assumption, C (1S x ) ⊆Core I , if Q ∈ ∂ I (1Sγ), so that Q
Q (S ) ∈ C (1S x ), one has Q (a − 1Sγ) ≥ 0.

Hence, I `(1Sγ; a −1Sγ) =minQ∈∂ I (1Sγ)Q (a −1Sγ)≥ 0, i.e., I is differentially quasiconcave at 1Sγ.

(3): since γ ∈ int(U) iff u−1(γ)> 0, the result is immediate from (2).

To prove results involving the condition in DQC, it is convenient to define the Clarke lower

derivative of I (cf. Ghirardato et al., 2004, pp. 150 and 157) as

I `(b ; a ) = lim inf
t ↓0,c→b

I (c + t a )− I (c )
t

;

39



It is readily verified that I `(b ; a ) = −I ◦(b ;−a ) and, therefore, I `(b ; a ) =minQ∈∂ I (b )Q (a ) for all

interior b ∈US and all a ∈RS . Then, the condition in DQC can equivalently be restated as

∀γ ∈ int(U), a ∈US , I (a )≥ γ =⇒ I `(1Sγ; a −1Sγ)≥ 0. (9)

Proof of Proposition 4: For both results, we use the equivalent characterization in Eq.

(9). As noted in the text, part (1) follows from a result in Penot and Quang (1997); however,

since their assumptions are formulated somewhat differently from ours, invoking their result

requires some work. We provide a direct proof.

(1) Fix γ ∈ int(U) and a ∈ US such that I (a ) ≥ γ. Also fix ε > 0 such that a + 1Sε ∈ US

(this must exist, becauseU= u (R+) does not contain its supremum). By strong monotonicity,

I (a + 1Sε) > γ. Consider sequences (c k ) ⊂ US and (t k ) ⊂ R++ such that c k → 1Sγ and t k ↓ 0.

Note that

t k [(a +1Sε)−1Sγ] + c k = t k [(a +1Sε)−1Sγ+ c k ] + (1− t k )c k

and, since c k → 1Sγ, eventually (a+1Sε)−1Sγ+c k ∈US ; furthermore, by continuity I (a+1Sε−

1Sγ+ c k )→ I (a + 1Sε) and I (c k )→ I (1Sγ) = γ. Therefore, for k sufficiently large, I (a + 1Sε−

1Sγ+ c k )> I (c k ). Then, by quasiconcavity, for all such k ,

I (t k [(a +1Sε)−1Sγ] + c k ) = I (t k [(a +1Sε)−1Sγ+ c k ] + (1− t k )c k )≥ I (c k ).

It follows that

I `(1Sγ; (a +1Sε)−1Sγ) = lim inf
c→1Sγ,t ↓0

I (t [(a +1Sε)−1Sγ] + c )− I (c )
t

≥ 0.

Finally, by continuity of I `(1Sγ; ·), I `(1Sγ; a −1Sγ)≥ 0 as well.

(2): if I is regular, I `(1Sγ; a − 1S x ) = −I ◦(1Sγ; 1Sγ− a ) = −I ′(1Sγ; 1Sγ− a ); furthermore, if

I (a )≥ I (1Sγ) = γ, by GM-ambiguity aversion and normalization, for any P ∈Core I ,

−I `(1Sγ; a −1Sγ) = I ′(1Sγ; 1Sγ−a ) = lim
t ↓0

I (1S x + t [1S x −a ])− I (1S x )
t

=

= lim
t ↓0

I (1S x + t [1S x −a ])− x

t
≤ lim

t ↓0

P (1S x + t [1S x −a ])− x

t
=

= lim
t ↓0

x + t x − t P (a )− x

t
= x −P (a )≤ I (a )−P (a )≤ 0,

so DQC holds.
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A.4 Proof of the results in Section 4

The key step in the proof of Proposition 6 is contained in the following result.

Lemma 16 If ( fi )i∈N is a Pareto-efficient allocation, then there exists a price vector p ∈RS
+\{0}

such that −p ∈Ni ( fi ) for all i ∈N .

Proof: Apply Prop. 2.1 (a) and (e) and Theorem 2.1 in Bonnisseau and Cornet (1988) to get

−p ∈
⋂

i∈N Ni ( fi ). We only need to show that p is non-negative. By monotonicity, RS
+ ⊂ Ti ( fi ):

to see this, note that, if v ∈RS
+, then for any sequence ( f k , t k ) such that f k ¼i fi , f k → fi , and

t ↓ 0, the constant sequence v k = v satisfies f k + t k v k ≥ f k ¼i fi for all k .

Now consider v ∈ RS
+ s.t. vs = 0 iff ps ≥ 0, and vs = 1 otherwise. If ps < 0 for some s , then

p ·v < 0, i.e. −p ·v > 0, which contradicts the fact that v ∈ Ti ( fi ) and−p ∈Ni ( fi ) for all i . Thus,

p ≥ 0.

Proof of Proposition 6: For the first implication, Lemma 16 yields p ∈RS
+ \ {0S} such that

−p ∈ Ni ( fi ) for all i ; by Lemma 13, −p ∈
⋃

λ>0λ
�

− ∂ I u
i ( f )

�

for all i ∈ N , and the claim fol-

lows. The second claim follows from the second part of Lemma 13. Finally, at a full-insurance

allocation (1S x1, . . . , 1S xN ), p = µiQi for every i , where µi > 0 and Qi ∈ ∂ Ii (1S ui (xi )); then

Qi (S ) =
∑

s ps

µi
, and therefore Qi

Qi (S )
= µ−1

i p

µ−1
i

∑

s ps
= p

∑

s ps
≡ P ; hence, P ∈

⋂

i Ci (1S x ).

Remark 5 If−Ii is regular, then by Theorem 2.3.10 and Corollary 1 to Theorem 2.4.7 in Clarke

(1983) −I u
i is also regular, and Ni ( fi ) =

⋃

λ≥0λ
�

− ∂ I u
i ( fi )

�

.

The next Remark follows from standard arguments; we include the proof for completeness.

Observe that the argument relies on continuity and strong monotonicity.

Remark 6 If a feasible allocation ( f1, . . . , fN ) is not Pareto-efficient, then it is Pareto-dominated

by a Pareto-efficient allocation.

Proof: By assumption, there exists a feasible allocation (g1, . . . , gN ) that Pareto-dominates

( f1, . . . , fN ). Assume wlog that g1 �1 f1. Consider the following problem: maximize I1(u1 ◦h1)
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subject to (h1, . . . , hN ) being feasible and hi ¼i g i for all i = 2, . . . , N . Notice that the alloca-

tion (g1, . . . , gN ) satisfies these constraints. By standard arguments (e.g. Mas-Colell, Whinston,

and Green, 1995, §16.F), since preferences are continuous and strongly monotonic, a solu-

tion (h ∗1 , . . . , h ∗N ) to this problem exists and is Pareto-efficient. Furthermore, for every i > 1,

h ∗i ¼i g i ¼i fi , and h ∗1 ¼i g1 �1 f1; that is, (h ∗1 , . . . , h ∗N ) is a Pareto-efficient allocation that Pareto-

dominates ( f1, . . . , fN ).

Proof of Proposition 7: Assume that
⋂

i π
c
i (1S xi ) 6= ; for every feasible, full-insurance allo-

cation (1S x1, . . . , 1S xN ), with xi ≥ 0 for all i ∈N .

We first show that every Pareto-efficient allocation must provide full insurance. To do so,

consider a feasible allocation ( f1, . . . , fN ). We show that, if this allocation does not provide full

insurance, there is a full-insurance allocation that Pareto-dominates it.

For every i ∈N , let ci be the certainty equivalent of fi : that is, ui (ci ) = Ii (ui ◦ fi ). There are

two cases to consider.

Case 1:
∑

i ci ≥ ω̄ > 0. Define a new allocation (1S x1, . . . , 1S xN ) as follows: for every i ∈ N ,

let xi =
ω̄

∑

j c j
ci . Then

∑

i xi =
ω̄

∑

j c j

∑

i ci = ω̄, i.e., (1S x1, . . . , 1S xN ) is feasible. Since ( f1, . . . , fN )

is not a full-insurance allocation, there is at least one agent i for whom fi is non-constant;

wlog let that be agent 1. By strong monotonicity, u1(c1) = I1(u1 ◦ f1)> u1(0); since u1 is strictly

increasing, c1 > 0, and therefore, x1 =
ω̄

∑

j c j
c1 > 0. By assumption, there is P ∈

⋂

i π
c
i (1S xi ); by

Corollary 14, since in particular P ∈πc
1(1S x1) and x1 > 0, P � 0.

For every i ∈ N , by construction Ii (ui ◦ fi ) = ui (ci ) ≥ ui (xi ). Since P ∈ πc
i (1S xi ), this im-

plies that P (ui ◦ fi )≥ ui (xi ). Finally, since ui is strictly concave, ui (P ( fi ))≥ P (ui ◦ fi ), and this

inequality is strict unless fi is constant; in particular, it is strict for i = 1. Therefore,

ui (P ( fi ))≥ P (ui ◦ fi )≥ ui (xi )

and the first inequality is strict for agent i = 1 and every other agent i for whom fi is non-

constant. Since ui is strictly increasing, P ( fi ) ≥ xi for all i , with strict inequality for at least

one agent.

Conclude that
∑

i P ( fi ) >
∑

i xi = ω̄. However,
∑

i P ( fi ) = P (
∑

i fi ) = P (1Sω̄) = ω̄, because

( f1, . . . , fN ) is feasible: contradiction. Thus, this case cannot occur.
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Case 2:
∑

i ci < ω̄. Let ε= ω̄−
∑

i ci

N : then, the full-insurance allocation
�

1S (c1+ε), . . . , 1S (cN +

ε)
�

is feasible and Pareto-dominates ( f1, . . . , fN ) by strong monotonicity, as claimed.

Conversely, consider a feasible, full-insurance allocation (1S y1, . . . , 1S yN ), and suppose that

it is not Pareto-efficient. Then, by Remark 6, it is Pareto-dominated by a Pareto-efficient al-

location; by the result just proved, under the maintained assumptions, this allocation must

be a full-insurance allocation, say (1S x1, . . . , 1S xN ). Since preferences are strongly monotonic,

this implies that xi ≥ yi for all i , and the inequality is strict for at least one i . But then
∑

i xi >
∑

i yi = ω̄, i.e., (1S x1, . . . , 1S xN ) is not feasible: contradiction. Thus, every full-insurance allo-

cation is Pareto-efficient.

Finally, let (1S x1, . . . , 1S xN ) be a full-insurance, hence Pareto-efficient allocation. Fix P ∈
⋂

i π
c
i (1S xi ). Since

∑

i xi = ω̄ > 0, there must be some i ∈N for whom xi > 0; since P ∈πc
i (1S xi ),

by Corollary 14, P � 0.

Now suppose that, for some i ∈ N and g ∈ RS
+, g �i 1S xi . Since P ∈ πc

i (1S xi ), P (ui ◦ g ) ≥

ui (xi ). If g is constant, i.e., g = 1S y for some y ∈ RS
+, then ui (y ) = Ii (ui ◦ g ) > ui (xi ) implies

that y > xi because Ii is normalized and ui is strictly increasing: thus, P (g ) = y > xi = P (1S xi ).

If instead g is non-constant, then, by strict concavity of ui and strict positivity of P , ui (P (g ))>

P (ui ◦ g )≥ ui (xi ), i.e., again P (g )> xi = P (1S xi ).

Hence, for all g , g �i 1S xi implies P (g ) > P (1S xi ) = xi ; equivalently, P (g ) ≤ xi implies

1S xi ¼i g . We can then let t = P (1S xi )−P (ωi ) = xi −P (ωi ): we get
∑

i t =
∑

i xi −
∑

i P (ωi ) =

ω̄−P (
∑

iωi ) = ω̄−P (1Sω̄) = 0. Hence t1, . . . , tN define feasible transfers. Since preferences are

strongly monotonic (hence local non-satiated), consumers will exhaust their budget P (ωi ) +

ti = xi , and the argument just given shows that they will demand 1S x1, . . . , 1S xN .

A.5 Proof of Proposition 12

We need a generalization of the first inclusion in part 3 of Proposition 1:

Lemma 17 If G is core-unambiguous for (I , u ), then Core I ⊆ πc(g ) for every G -measurable

bundle g ∈RS
+ \ {0S}.
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Proof: Fix a G -measurable g ∈RS
+ \ {0S}. Suppose P ∈Core I and consider a bundle f ∈RS

+.

Assume that P (u ◦ g ) ≥ P (u ◦ f ). Since P is in the core of I and g is G -measurable, hence

core-unambiguous, I (u ◦ g ) = P (u ◦ g ) ≥ P (u ◦ f ) ≥ I (u ◦ f ). Since this holds for all f ∈ RS
+,

P ∈πc(g ). Hence, Core I ⊆πc(g ).

Proof of Proposition 12: Let Q ∈
⋂

i CoreE Ii and, for every i ∈ N , let Pi ∈ Core Ii be the

probability that satisfies Condition (ii) in Definition 4. Since each Ii is strongly monotonic,

Pi ({s }) > 0 for every s ∈ S : to see this, note that, if f ∈ RS
+ is such that f (s ) = 1 and f (s ′) = 0

for all s ′ 6= s , then Pi ({s })ui (1) + [1−Pi ({s })]ui (0) = Pi (ui ◦ f )≥ Ii (ui ◦ f )> ui (0), which implies

Pi ({s })> 0. Therefore, by Condition (ii) in Definition 4, Q ({s })> 0 for every s ∈ S as well.

By contradiction, suppose ( f1, . . . , fN ) is a Pareto-efficient allocation but some bundle fi ,

say wlog f1, is notE -measurable. We construct a new allocation (g1, . . . , gN ) that isE -measurable

and Pareto-dominates it. For every i ∈N , every G ∈ E , and every s ∈G , let

g i (s )≡
∑

s ′∈G

Q ({s ′}|G ) fi (s
′) =

∑

s ′∈G

Pi ({s ′}|G ) fi (s
′), (10)

where the equality follows from the choice of P and Condition (ii) in Definition 4. That is, g i (s )

is the conditional expectation of fi given G , where s ∈G .

First, verify feasibility: for every G ∈ E and s ∈G ,

∑

i

g i (s ) =
∑

i

∑

s ′∈G

Q ({s ′}|G ) fi (s
′) =

∑

s ′∈G

Q ({s ′}|G )
∑

i

fi (s
′) =

∑

s ′∈G

ω(s ′) =ω(s ).

The next-to-last equality follows from the assumption that ( f1, . . . , fN ) is feasible. The last

equality follows from the assumption that E is the partition induced by ω, so that, if s ∈ G ,

thenω(s ′) =ω(s ) for all s ′ ∈G .

Turn to Pareto-dominance. For every G ∈ E , fix sG ∈G . For every i ∈N , since ui is strictly

concave,

Pi (ui◦ fi ) =
∑

G∈E

Pi (G )
∑

s∈G

Pi ({s }|G )ui ( fi (s ))≤
∑

G∈E

Pi (G )ui

�

∑

s∈G

Pi ({s }|G ) fi (s )

�

=
∑

G∈E

Pi (G )ui (g i (sG )) = Pi (ui◦g i ).

The inequality follows from Jensen’s inequality, and it is strict for agent 1 and any other agent

for whom fi is not E -measurable (i.e., for which fi is not constant on every G ∈ E ). The penul-

timate equality follows from the fact that
∑

s∈G Pi ({s }|G ) fi (s ) =
∑

s∈G Q ({s }|G ) fi (s ) = g i (sG ).
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If g i = 0S , then, since Pi is strictly positive, fi = 0S as well, and so trivially g i ¼i fi . Fur-

thermore, recall that by assumption there is G ∈ E such that f1 is not constant on G ; then,

g1(sG )> 0.

Now consider i ∈N such that g i ∈R+S \{0S} (including i = 1). Since Pi ∈Core Ii , by Lemma

17, also Pi ∈ πc
i (g i ), because by construction g i is E -measurable and E is core-unambiguous

for (Ii , ui ). Thus, Pi (ui ◦ g i )≥ Pi (ui ◦ fi ) implies g i ¼i fi .

Conclude that g i ¼i fi for all i ∈N . Furthermore, for i = 1, since g1(sG )> 0 for some G ∈ E ,

and P1(u1 ◦g1)> P1(u1 ◦ f1), by continuity of u1 and the fact that Pi (G )> 0 there is ε ∈ (0, g1(sG ))

such that P1(u1◦ (g1−1Gε))> P1(u1◦ f1) as well. Then, again by Lemma 17, g1−1Gε¼1 f1. Since

preferences are strongly monotonic, g1 �1 f1. This contradicts the assumption that ( f1, . . . , fN )

was Pareto-efficient.

A.6 Calculations for Example 5

Observe first of all that, for allφ ∈Rn ,

∇I (a )≡
�

∂ I (a )
∂ a (s )

�

s∈S

=



P ({s })



1+
∑

0≤ j<J

∂ A(P (ζ0a ), . . . , P (ζn−1a ))
∂ φ j

ζ j (s )









s∈S

. (11)

Thus, the condition in the text ensuring that preferences are strongly monotonic is simply the

requirement that all partial derivatives be strictly positive almost everywhere on US .

Next, we show that∇A(0J ) = 0J . Fix 0≤ j < J . Since A is continuously differentiable at 0J ,

satisfies A(0J ) = 0 and is symmetric about 0J ,

∇A(0J )·1 j = lim
t ↓0

A(0J + t 1 j )−A(0 j )

t
= lim

t ↓0

A(t 1 j )

t
= lim

t ↓0

A(t (−1 j ))

t
= lim

t ↓0

A(0J + t (−1 j ))−A(0J )

t
=∇A(0J )·(−1 j ),

which clearly requires that ∇A · 1 j =
∂ A(0J )
∂ φ j

= 0, as claimed. Since P (ζ j 1S x ) = x P (ζ j ) = 0, it

follows that∇I (1S x ) = P for all x > 0.

Next, we verify that the specification of adjustment factors and function in Example 5,

together with a uniform baseline prior, ensures strong monotonicity. We use Eq. (11): first,

note that
∂ A

∂ φ j
=−

1

2
θ ·

2θ −1φ j

1+θ −1φ2
j

=−
φ j

1+θ −1φ2
j

.
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Hence,
�

�

�

�

∂ A

∂ φ j

�

�

�

�

=
|φ j |

1+θ −1φ2
j

=
|φ j |

1+θ −1|φ j |2
.

Letting t = |φ j |, this is less then one iff t < 1+ θ −1t 2, i.e. iff t 2 − θ t + θ > 0. We study the

function t 7→ t 2 − θ t + θ for t ≥ 0. If t = 0, the function takes the value θ , so we need θ > 0.

The derivative of this function at any t > 0 (which is also the right derivative at 0) is 2t − θ ,

which shows that this function is strictly convex and has a minimum at t = 1
2θ , where it is

equal to 1
4θ

2− 1
2θ

2+θ . This is strictly positive iff − 1
4θ +1> 0, i.e. iff θ < 4, as claimed.

Now consider states s = s1, s2. Only ζ0 has non-zero values, and ζ0(s ) ∈ {1,−1}. Therefore,

if θ ∈ (0, 4),

1−
φ0

1+θ −1φ2
0

ζ0(s )−
φ1

1+θ −1φ2
1

ζ1(s )≥ 1−
�

�

�

�

φ0

1+θ −1φ2
0

�

�

�

�

> 0.

Similarly, in states s = s3, s4, ζ0(s ) = 0 and ζ1(s ) ∈ {1,−1}, so

1−
φ0

1+θ −1φ2
0

ζ0(s )−
φ1

1+θ −1φ2
1

ζ1(s )≥ 1−
�

�

�

�

φ1

1+θ −1φ2
1

�

�

�

�

> 0.

so I is strictly increasing.

We now show that, if θ increases, the resulting preference is more GM-ambiguity-averse.

By the characterization result in Siniscalchi (2009), it suffices to show that A(φ) is decreasing

in θ for everyφ. Differentiating A(φ)with respect to θ ,

∂ A(φ)
∂ θ

=−
1

2

∑

j

log(1+θ −1φ2
j )−

1

2
θ
∑

j

1

1+θ −1φ2
j

(−θ −2φ2
j );

it suffices to show that, for every j andφ j , log(1+θ −1φ2
j )>

θ−1φ2
j

1+θ−1φ2
j
. Let t ≡ θ −1φ2

j , so we need

to show that log(1+t )> t
1+t . Both functions equal zero at t = 0. For t > 0, the derivatives of the

lhs and rhs are 1
1+t and 1·(1+t )−t (1)

(1+t )2 = 1
(1+t )2 respectively. Since (1+ t )2 > 1+ t for t > 0, 1

1+t <
1

(1+t )2 ,

and therefore, for all t > 0, log(1+ t ) =
∫ t

0
1

1+s d s >
∫ t

0
1

(1+s )2 d s = t
1+t , as claimed.

Finally, we derive the condition on θ for the desired rankings to hold:

− log(1+θ −1(α−1)2)− log(1+θ −1α2)<− log(1+θ −1)

⇔ (1+θ −1(1−α)2)(1+θ −1α2)> 1+θ −1⇔ 1+θ −1(1−α)2+θ −1α2+θ −2(1−α)2α2 > 1+θ −1

⇔ (1−α)2+α2+θ −1(1−α)2α2 > 1

⇔ θ −1 >
1−α2− (1−α2)
α2(1−α)2

=
1−α2−1−α2+2α

α2(1−α)2
=

2α(1−α)
α2(1−α)2

=
2

α(1−α)
⇔ θ <

α(1−α)
2

.
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