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Abstract The human brain faces a fundamental information storage challenge—

forming useful new memories while not over-writing important old ones. Memory

consolidation, and the corresponding interplay between the hippocampus and

neocortex, is a protracted process to adjudicate between these two competing

factors. Converging evidence from behavioral, cellular, and systems neuroscience

strongly implicates a special role for sleep in stabilizing new declarative memories.

In this chapter, we review evidence that during sleep the reactivation of newly

acquired neuronal traces has lasting implications for memory transformation and

stabilization. We first summarize relevant theoretical issues in memory research

and then outline the physiological properties of sleep that may allow for this

reactivation. We consider many factors that affect spontaneous memory

reactivation, and we highlight research showing that memories can be selectively

targeted and modified using learning-related stimuli. Ultimately, the ability to

rescue otherwise fleeting episodes from oblivion plays a vital role in human life.

Research elucidating this ability will also be critical for understanding howmemory

breaks down in aging and disease.

During a young scientist’s graduate school interviews, a senior researcher told her

that she would not cut it in such a competitive field. At each major junction of her

life—her first publication, first tenure-track job, a named professorship, and a

lifetime achievement award—she remembered the researcher’s exact words, his

dismissive tone, and the seeds of doubt he planted about her career path as vividly

as the day it happened.

Most learning requires repetition. A barrage of visual experience in early life is

required for plasticity within the visual system (Wiesel and Hubel 1963). Hundreds

to thousands of hours of practice are required to form expert procedural skills. So
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how can an event that occurred just once and took less than 3 s be stored in the

connections of the brain for a full lifetime?

The answer appears to lie in the unique physiological properties of the hippo-

campus and its relationship with the neocortex. A personally important memory,

though played out in the world only once, becomes repeatedly replayed after that

one unique event by the networks of neurons involved in its formation and storage.

A key feature of this ability lies in how much occurs outside of the agent’s
consciousness. Whereas the young scientist’s memory of being told that she

would never succeed in science likely returned to her consciousness when revisiting

the memory in her mind or recounting the story to a friend, it seems that forming

this lasting memory trace required nothing like the number of hours of experience

or practice required for a highly refined skill. Thus, while most long-lasting

experience-dependent changes in the brain require numerous repetitions to drive

requisite changes in synaptic weights, episodic memories must become embedded

in the brain and replayed on their own, without extensive efforts to re-live the

experience over and over again.

This is not to say offline changes do not play a role in other types of memories.

On the contrary, sensory and procedural memories benefit from offline processes,

including sleep (Brawn et al. 2010b; Mednick et al. 2003). Additionally, there is

evidence that the hippocampus may play a role in types of learning previously

deemed to be hippocampal-independent (Albouy et al. 2013).

Nevertheless, something unique must occur that allows for lasting episodic

memory traces. The following discussion will focus mostly on changes that occur

to a memory trace after its initial formation, with consideration for how various

factors operative at encoding might alter this process. We will take a historical

perspective on the concept of memory consolidation and then consider the role by

which memory reactivation influences consolidation. Although consolidation cer-

tainly occurs to some extent during wake, we will focus on the physiological

properties present during sleep that create unique conditions for interactions

between the hippocampus and neocortex.

Memory Consolidation

Brief Historical Perspective

In this section, we will discuss two major advancements in the concept of memory

consolidation, specifically Müller and Pilzecker’s (1900) original study that pre-

cipitated the creation of the concept and Scoville and Milner’s (1957) research with
patient H.M. (Fig. 1). We will finish by outlining what researchers theorize about

the hippocampus and neocortex in explaining consolidation.

In a series of studies, Müller and Pilzecker (1900) taught participants lists of

nonsense syllables and tested them after a delay of typically a few hours (Lechner

et al. 1999). Between encoding and testing, they introduced other lists at various
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times within the delay interval and found that the later they gave the new lists, the

better participants typically remembered the original information. Thus, they pro-

posed a prolonged process eventually termed “consolidation” by which memories

become increasingly resistant to interference. Their seminal finding remains a

consistent and fundamental aspect of memory research today.

The next large piece of evidence about memory consolidation came from one of

the most famous patients in the history of neuroscience known as H.M. (Scoville

and Milner 1957). After H.M. had lived into his 20s with a form of epilepsy that

resisted all other forms of treatment, the neurosurgeon William Scoville proposed

performing brain surgery to remove the part of H.M.’s brain from which his

seizures originated: a large portion of the medial temporal lobe, including the

hippocampus. Little was known about this brain structure at the time, but the

severity and frequency of his seizures seemed to warrant attempting such an

experimental surgery. After removal of the hippocampus on both sides of his

brain, the neuropsychologist Brenda Milner found H.M. could perform a whole

host of mental functions and he retained many old memories. However, he forgot

ones lasting up to a few years before his surgery and, critically, could no longer

acquire new memories. He was thereafter, in the words of Suzanne Corkin (2013),

trapped in a “permanent present tense.”

H.M.’s impairment, while devastating, radicalized how researchers understood

memory. The emerging theoretical picture suggested that when an event is learned,

a confluence of information concurrently processed in the brain becomes bound

together. This information enters the hippocampus from multiple neocortical

streams specialized for processing highly detailed sensory inputs or thoughts as

well as the spatial and temporal context in which the information arrives. The

Fig. 1 Historical concepts in memory consolidation. (a) After encoding of a list of syllables (List

A), introducing interfering information (List B) impairs List A memory when introduced sooner

than later (Müller and Pilzecker 1900). A period of time without interference after learning is

therefore beneficial for long-term memory stabilization. (b) Following medial temporal damage

(such as when patient H.M. underwent surgery), the patient not only becomes unable to form new

memories going forward (anterograde amnesia), but also cannot recall memories from an earlier

time period (retrograde amnesia). Older memories remain largely intact. Therefore, during a

prolonged period after learning, some declarative memories become independent of the medial

temporal lobe
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hippocampus then rapidly binds together these distinct components. Initially highly

susceptible to interference, new links reach a stable form in the neocortex only after

a period of time. The relevant steps may require a certain number of reactivations

rather than a certain period of time, per se. In either case, consolidation can progress

such that networks within the neocortex are sufficient for retrieval—although

whether some memories, or the full re-experience of some memories, then depend

on only neocortical networks or on both neocortical and hippocampal networks

remains a hotly debated issue (see Moscovitch et al. (2005) for one perspective and

Squire and Bayley (2007) for another). In either case, converging data across many

amnesic patients and animal models has forged agreement among researchers upon

this basic conceptualization of consolidation.

Consolidation ¼ Reactivation?

We will begin this section by outlining how memory retrieval acts to reactivate,

strengthen, and reorganize a memory trace. We will then argue how this process

resembles what occurs spontaneously in the gradual process by which memories

become stabilized.

Cognitive psychological models of retrieval have long stressed the role of

context on memory retrieval (Godden and Baddeley 1975; Jensen et al. 1971).

For instance, psychology students often learn that studying information in the room

where the test eventually occurs produces better results. An analogous mental trick

is to try to create a mental context that allows for the successful retrieval of a

memory. A series of neuroimaging studies have investigated how this phenomenon

manifests itself in the brain. Unsurprisingly, neural reactivation patterns at retrieval

tend to match those at encoding (Buchsbaum et al. 2012; Gelbard-Sagiv et al. 2008;

Johnson and Rugg 2007; Nyberg et al. 2000; Polyn et al. 2005). Moreover, better

matches predict better memory (Johnson et al. 2009; Manning et al. 2012;

St-Laurent et al. 2014; Wing et al. 2015). A straightforward explanation of these

findings follows from the reinstatement hypothesis (Tulving and Thomson 1973);

the better the learning context is reinstated, the more likely a memory will be

successfully remembered.

A vast psychological literature shows that memory retrieval does not simply

involve finding a memory from storage and placing it back unaffected, as in

retrieving a book from a library and later returning it in the same condition. Rather,

successful retrieval produces better long-term enhancement than re-exposure to the

material itself, a phenomenon known as the testing effect (for a thorough review,

see Roediger and Karpicke 2006). During retrieval or during repeated study, stored

information can be reactivated, leading in theory to superior storage. A straight-

forward prediction follows that better neural reactivation of an encoding context

would produce better long-term memory at a later test. This prediction has been

supported both during repeated study (Newman and Norman 2010; Xue et al. 2010)
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and retrieval (Kuhl et al. 2010, 2012a, b; Vilberg and Davachi 2013; though see

Karlsson Wirebring et al. 2015).

The above studies show how neural reactivation can counteract forgetting; we

will now discuss how this relates to memory consolidation. We mentioned earlier

how remote memories eventually become independent of the hippocampus. The

gradual changes in activation from the hippocampus to the neocortex in animal data

(Lesburguères et al. 2011; Maviel et al. 2004) and human data (Takashima et al.

2009) offer a mechanism by which this transfer occurs. Even stronger support

comes from two studies showing that repeated reactivations render memories

more quickly resistant to disruption following hippocampal damage (Lehmann

and McNamara 2011; Lehmann et al. 2009). In these studies, rodents underwent

contextual fear conditioning and then were (or were not) re-exposed to the learning

context for 5 days after initial learning. After 5 days, they received sham or

hippocampal damage. Without re-exposure, hippocampal damage strongly

impaired memory, showing the memory was hippocampal-dependent. However,

with repeated exposures, hippocampal damage had no effect on memory. This

suggests that memory reactivation, and not time per se, causes memories to become

hippocampal-independent. The overarching idea is that newly formed memories

initially rely on the hippocampus and neocortex, whereas reorganization through

repeated hippocampal-neocortical interaction produces neocortical networks that

are sufficient for retrieval (Lesburguères et al. 2011; Redondo and Morris 2011;

Squire et al. 2015; Tse et al. 2011).

In these studies reported by Lehmann and colleagues, animals were placed back

into the original context, which was inferred to produce memory reactivation.

However, behavioral (Craig et al. 2015a; b; Dewar et al. 2012) and neural evidence

(Staresina et al. 2013; Tambini et al. 2010) suggests memories also undergo a

stabilization process in the absence of overt retrieval. In studies that controlled for

overt retrieval, increased resting functional connectivity patterns correlated with

the amount of previous learning (Peigneux et al. 2006) and post-learning changes in

hippocampal-cortical connectivity correlated with subsequent memory retention

(Tambini et al. 2010). To strengthen this idea, it was even found that post-learning

changes predicted memory during a non-learning control task (Staresina et al.

2013—but see Dewar et al. 2012, for evidence that rest benefits memories more

than does performing non-learning control tasks). Additionally, strongly encoded

items become the most preferentially reactivated (Tambini et al. 2010). Finally, it

may be especially important that hippocampal processes occur immediately after

learning. In humans, breaks between short video clips benefit memory, and allow

for the onset of a strong post-clip hippocampal response that predicts memory

(Ben-Yakov et al. 2013). Accordingly in rodents, replay occurs during learning

(Davidson et al. 2009; Karlsson and Frank 2009) and correlates with memory

measures (Dupret et al. 2010; Jadhav et al. 2012). Together, these studies provide

a mechanism by which learning produces neural changes that in turn provide for

stabilizing newly formed neural traces, presumably by assisting in hippocampal-

neocortical transfer. In other words, in considering the findings of Müller and
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Pilzecker over 100 years ago, these studies suggest consolidation may occur simply

because of reactivation and the processes may be indistinguishable.

We have thus far outlined evidence for how wakeful memory reactivation

contributes to stabilization. However, reactivation occurring during sleep plays an

important and unique role as well. The following sections will outline the basics of

sleep physiology and how it contributes to memory processing.

Characteristics of Sleep Physiology

The emergence of electroencephalographic investigations of sleep in the middle of

the twentieth century showed that sleeping was an active process. Throughout the

night, the brain progresses through cycles of distinctive stages of brain activity,

each cycle lasting approximately 90 min. The physiological features of these stages

provide clues about the functions of sleep in homeostasis and memory

consolidation.

Typically, wakefulness transitions into stages of light sleep, known as stage-1

and stage-2, followed by the stage of deep sleep known as slow-wave sleep (SWS).

To complete a full cycle, there will be a subsequent return to lighter stages,

followed by rapid eye movement (REM) sleep. Stages of light and deep sleep are

also known as non-rapid eye movement or NREM sleep (with Stage-1, Stage-2, and

SWS sometimes termed N1, N2, and N3). In general, the character of these stages is

influenced by factors such as circadian rhythms, such that cycles early in the night

contain longer SWS periods, whereas later ones contain longer REM periods.

Physiological signals during wakefulness are chaotic. Fast, low-amplitude

rhythms predominate in the EEG, muscle tension varies from moderate to high

levels, and wakeful rest with the eyes closed produces a prominent occipital alpha

rhythm, though with larger amplitudes in some people than in others. The alpha

rhythm is most strongly observed over occipital regions, particularly during periods

of rest with the eyes closed.

Stage-1 sleep appears at sleep onset with the appearance of quick vertex waves,

rolling eye movements, and the decline of the alpha rhythm. This stage is consid-

ered to be the bridge between sleep and wakefulness, characterized by brief

hallucinations and a low arousal threshold, meaning subjects can be easily awoken

by external stimuli.

During stage-2 sleep, the predominant EEG rhythm is theta (4–8 Hz) with

occasional K-complexes, which are high-amplitude deflections at approximately

0.8 Hz. Stage-2 also includes sleep spindles, which are short bursts of sigma activity

at 11–16 Hz. Slow oscillations appear to originate in the frontal cortex (Cash et al.

2009), whereas spindles begin in the thalamus and continue as a series of reverber-

ating thalamocortical oscillations (Morison and Bassett 1945). Arousal thresholds

increase, which may connect to the findings that K-complexes and sleep spindles

both coincide with reduced stimulus processing (Cote et al. 2000; Dang-Vu et al.

2010, 2011; Schabus et al. 2012). Stimuli can additionally elicit K-complexes and

J.W. Antony and K.A. Paller



spindles (Cash et al. 2009; Sato et al. 2007), and K-complexes are especially

prominent after emotional or personally-relevant stimuli (e.g. one’s own name)

(Brain 1958; Bremer 1954; Oswald et al. 1960). For these reasons, K-complexes

and spindles have been proposed to protect sleep by preventing unnecessary

arousals from occurring. Because K-complexes in stage-2 sleep resemble slow

oscillations in SWS in frequency, amplitude, and origin (Cash et al. 2009), stage-

2 sleep can be considered a transitional bridge to SWS.

No naturally occurring brain state differs more from wakefulness than SWS.

Slow, high-amplitude oscillations functionally segregate neuronal firing into dis-

crete time bins, acting as the orchestrator of large-scale hyperpolarization and

depolarization across the brain. Each oscillation has a down-state, during which

there is a large-scale bias towards hyperpolarization and low neuronal firing, as well

as an up-state, when there is bias towards depolarization and high neuronal firing

(M€olle et al. 2011). Spindles persist into this stage, beginning most frequently

during the slow oscillation up-state. Activation from neuromodulator systems

prevalent during wake, such as those mediated by acetylcholine (ACh) and cortisol,

wanes greatly during SWS (Diekelmann and Born 2010). Finally, arousal thresh-

olds are highest in this stage (Rechtschaffen and Kales 1968).

After SWS, the brain progresses back towards lighter stages, and then to REM.

Physiologically, REM resembles wakefulness in a number of ways. The EEG

shows high-frequency, low-amplitude activity and neuromodulator levels for ACh

and cortisol resemble their waking levels (Diekelmann and Born 2010). Subjec-

tively, REM coincides with dreaming episodes more than any other stage (though

dreaming also occurs in other stages). Despite these similarities between REM and

wakefulness, there are obviously major differences. Muscle activity is nearly

completely suppressed during REM. Brain areas involved in self-monitoring

show dramatically lowered activity, whereas emotional areas reach higher levels

than wake (Nir and Tononi 2010), likely corresponding to the emotionality and lack

of self-awareness during dreams. Finally, arousal thresholds during REM vary

widely, although the dreaming brain’s ability to incorporate and re-interpret infor-

mation coming from the outside world has been known at least since the days of

Freud and postulated at least since Aristotle (Freud 1913).

In the following sections, we will discuss sleep’s unique role in learning and

memory processes.

Sleep as an Ideal State for Memory Reactivation

As with many important findings in psychology, studies on the role of sleep in

memory began by accident (Jenkins and Dallenbach 1924). The story of this

accident begins with Hermann Ebbinghaus, the German psychologist who

pioneered experimental research on human memory in the late nineteenth and

early twentieth centuries. His studies mostly consisted in presenting auditory strings

of nonsense syllables and measuring how well they were remembered at various
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retention intervals. Arguably his most influential finding came from what is known

as the forgetting curve (Ebbinghaus 1885). Not only does memory fade over time, it

does so in a systematic and mathematically predictable way. Forgetting occurs

rapidly just after learning and less and less so over time, resulting in the curve he

championed. However, in creating this curve an anomaly repeatedly crept in:

forgetting was drastically lessened when the intervals included sleep than when

they did not. Ebbinghaus largely ignored this, perhaps because he had no plausible

explanation for it, but Jenkins and Dallenbach (1924) famously followed up the

anomaly. Indeed, their extensive study showed that sleep, as compared to wake,

benefits memory.

Approaches to Sleep Research and Multiple Types of Memory

Researchers have implemented three general approaches to isolating the impor-

tance of sleep: (1) testing memory retention across sleep versus wake intervals,

(2) restricting sleep, either to particular parts of the night or to specific stages,

(3) manipulating the conditions of intact sleep using pharmacology, sensory, or

electrical stimulation. The first approach is effective for testing whether a task could

be sleep-dependent; however, it produces rather limited conclusions given that

sleep intervals can produce different arousal levels than wake intervals and that

wake intervals can entail more interference than sleep intervals. Greater confidence

can be reached using the second and third approaches. Indeed, these three

approaches can provide increasingly more convincing evidence towards

establishing causal relationships between sleep and memory.

Since Jenkins and Dallenbach’s (1924) landmark study showing sleep benefits

for declarative memories, sleep has been shown to affect nearly every type of

memory. Well-established research paradigms have been used to show that sleep

benefits (1) motor sequence learning (Barakat et al. 2011; Brawn et al. 2010a;

Cohen et al. 2005; Fischer et al. 2002; Fogel and Smith 2006; Gulati et al. 2014;

Korman et al. 2007; Kuriyama et al. 2004; Manoach et al. 2009; Maquet et al. 2000;

Morin et al. 2008; Nishida and Walker 2007; Rasch et al. 2009; Robertson et al.

2004; Song and Cohen 2014; Walker et al. 2002b, 2003, 2005; Wamsley et al.

2012); (2) procedural memory (Huber et al. 2004; Landsness et al. 2009; Plihal and

Born 1997; Smith and MacNeill 1994; Tamaki et al. 2008); (3) visual perceptual

learning (Frank et al. 2001; Gais et al. 2000; Karni et al. 1994; Mednick et al. 2002,

2003, 2008; Stickgold et al. 2000); and (4) auditory perceptual learning (Brawn

et al. 2010b, 2013; Fenn et al. 2003; Gaab et al. 2004; Shank and Margoliash 2009).

Other aspects of cognition that show improvement across sleep include anagram

problem-solving (Walker et al. 2002b), statistical learning (Batterink et al. 2014;

Batterink and Paller 2015; Durrant et al. 2011), language abstraction in infants

(Gómez et al. 2006; Lany and Gómez 2008), and creative insight (Wagner et al.

2004; Yordanova et al. 2012). And of course, sleep replenishes attention,

processing speed, rational decision-making, and many other cognitive processes

that go beyond the scope of this chapter.
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Understanding the mechanisms underlying these findings depends on elucidat-

ing how memory relates to hallmarks of sleep physiology. It has often been

tempting to seek simplistic assignments between sleep stages and memory types,

as if there were always one-to-one relationships. Varying methods, contradictory

findings, and lumping disparate tasks into a single category have accounted for

much of the confusion on this point. Countless other factors have likely had blurring

effects as well—task difficulty and extent of learning influence sleep, which likely

influences sleep’s role in retention (Gais et al. 2002; Kuriyama et al. 2004); species

differences in their learning aptitudes and sleep physiology (Buzsáki et al. 2013);

human population and individual differences (Fenn and Hambrick 2012); the time

between learning and sleep (Benson and Feinberg 1977); circadian differences

between nap sleep and nocturnal sleep (Payne et al. 2008, 2012). However, a few

general patterns have emerged, and relationships between sleep stages and learning

may actually add nuances to how we understand differences between various

learning categories.

Early on in sleep/memory investigations, the research focus rested entirely on

REM sleep. This focus made intuitive sense, as the benefits of memory rehearsal

were established, and a reasonable assumption would be that if a sleep benefit

existed it would most likely come about through the reactivation of memories

during dreams. Indeed, dreams were seen as a necessary phenomenon, as depriving

REM sleep caused more subsequent entrances into it, as if it were a homeostatic

need (Dement 1960). (The same homeostatic pressure can be observed for SWS).

Accordingly, REM boosts were reported in the context of procedural learning prior

to sleep, including avoidance conditioning (Smith et al. 1980), Morse code learning

(Mandai et al. 1989), trampolining (Buchegger and Meier-Koll 1988), and other

types of procedural learning (see Smith 2001 for a more extensive review). Later

studies showed that REM sleep deprivation negatively affected learning on avoid-

ance learning (Fishbein 1971), operant conditioning (Smith and Wong 1991),

complex problem-solving tasks (Smith 1995), and visual discrimination (Karni

et al. 1994). Furthermore, playing learning-related cues during subsequent REM

sleep was found to strengthen complex procedural learning tasks such as Morse

code learning (Guerrien et al. 1989), a complex logic task (Smith and Weeden

1990) and fear conditioning (Hars et al. 1985). These findings implicated a strong

role for REM in procedural learning tasks.

This one-to-one relationship between procedural memory and REM sleep

seemed to provide a clear and simple principle for sleep/memory theorizing, but

it eventually broke down. For example, simpler motor tasks, such as explicit motor

sequence learning and visual rotor pursuit, relied on NREM stages, especially stage

2 (Nishida andWalker 2007; Smith and MacNeill 1994; Tamaki et al. 2008; Walker

et al. 2002a; though see Fischer et al. 2002, where performance in an identical task

correlates with REM). In addition, pharmacological REM suppression boosted,

rather than impaired, this type of learning (Rasch et al. 2009). To preserve some

sort of REM sleep mapping, one way to potentially account for these findings was to

invoke the idea that simpler procedural memory tasks rely on NREM sleep,

whereas more complex ones rely on REM sleep (Smith et al. 2004).
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On the other hand, the story grew yet more complex with new evidence

implicating SWS in procedural tasks. For example, performance in a motor adap-

tation task correlated with measures of SWS (Huber et al. 2004), and impairments

were found after SWS deprivation (Landsness et al. 2009). Also, some procedural

knowledge acquired with awareness of learning can be modulated by learning-

related cues during SWS (Antony et al. 2012; Cousins et al. 2014; Sch€onauer et al.
2014).

Finally, the preponderance of extant evidence indicates that NREM sleep under-

lies the consolidation of declarative memories. This is presented with a caveat that

declarative memories are nearly universally studied now as item or paired associ-

ations. Studies investigating SWS and REM deprivation separately showed that,

while REM deprivation had no effect on simple associations, it impaired declara-

tive memory for full stories (Empson and Clarke 1970; Scrima 1982; Tilley and

Empson 1978). Full stories are arguably more complex than associations, which

accords with the role of REM in other complex cognitive tasks, such as complex

procedural learning (see above), creativity in the remote associates task (Cai et al.

2009), solving anagrams (Walker et al. 2002a), Tower of Hanoi problems (Smith

and Smith 2003), and categorical probabilistic learning (Djonlagic et al. 2009).

Therefore, the role of REM sleep in declarative memory could be understated by

the choice in tasks typically employed in these studies.

We will now delve deeper into the role of sleep, particularly NREM sleep, in

declarative memory processing. We will again take a historical perspective and

cover a wide range of converging evidence using different methods.

Passive vs. Active Role for Sleep in Declarative Memory

In the early part of the century, retrograde interference was one of the better-known

characteristics of memory (Müller and Pilzecker 1900). As a result, Jenkins and

Dallenbach (1924) ascribed sleep only a passive role in memory, in providing a

temporary reprieve from constant encoding during wake. This hypothesis was

plausible; indeed, an alternative view only became prominent a half-century later.

The first counter-evidence came with a pair of studies in the 1970s. First,

Yaroush et al. (1971) measured memory retention over three 4-h intervals: the

first half of the night, containing large amounts of deep NREM sleep; the second

half of the night, containing large amounts of REM; and during 4 h of daytime

wakefulness. Retention over the first 4 h of sleeping consistently trumped that for

the other two conditions, indicating there may be something to NREM sleep

physiology that specifically reduced forgetting. However, it was possible the effects

could be explained by circadian factors, contributions from less predominant

stages, or that NREM offered more of a release from interference, especially as

the EEG during REM more resembled wakefulness and possibly interference from

dreams. This partial sleep restriction method has also been used successfully (Plihal

and Born 1997; Smith et al. 2004) to replicate the link between early, NREM-rich
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sleep and declarative memory while showing that procedural memories benefit

more from the later, REM-rich part of the night. The second 1970s study investi-

gated memory retention with an equivalent amount of sleep and wakefulness, but

allowed for sleep to come immediately or later on in the 24-h interval (Benson and

Feinberg 1977). Better memory after immediate sleep showed that the total amount

of overall interfering wakefulness could not alone explain the role of sleep in

memory [a finding replicated by Gais et al. (2006), Payne et al. (2012), and

Talamini et al. (2008)].

Converging evidence for memory replay during sleep accrued from neuronal

reactivation in cellular physiology in the 1980s–1990s and human behavioral

manipulations performed in the 2000s. The findings from cellular physiology will

be discussed in the next section. First, it is helpful to cover how the behavioral

studies have unfolded.

In Ellenbogen et al. (2006), Ellenbogen and colleagues set out to test whether

sleep helped stabilize a memory by experimentally inducing interference. Partici-

pants learned A–B paired associates and then experienced a 12-h sleep, 12-h wake,

or 24-h sleep-then-wake interval (among other conditions). Subsequently, they

returned to the lab and learned A–C associates before tests on the original A–B

pairs. As predicted, comparing 12-h conditions revealed superior memory for sleep

over wake. However, if sleep protected memories from interference, the investi-

gators argued, participants in the 24-h sleep-then-wake interference condition

should perform better than the 12-h wake condition, even though the interval was

longer and they had more time awake. This is indeed what they found.

Additional evidence for memory replay during sleep that included data on sleep

physiology was produced by directly manipulating the conditions of NREM sleep.

Gais and Born (2004) studied the role of low ACh levels during NREM sleep. They

found that administering ACh agonists to prevent these low levels interfered with

retention. Along with evidence that cholinergic activity suppresses output from the

hippocampus to extrahippocampal regions (Chrobak and Buzsáki 1994; Hasselmo

and McGaughy 2004), these findings suggest the low ACh levels during NREM

sleep create an important state for consolidation. Using a novel approach to link

SWS with memory processing, Marshall et al. (2006) directly manipulating slow

oscillations using transcranial direct current stimulation at 0.8 Hz. This oscillating

current, compared with sham stimulation, significantly boosted both slow oscil-

lations and declarative memory, and thus strongly linked slow oscillations to

memory consolidation.

These slow oscillations are not the only facet of sleep physiology apparently

playing a role in memory processing. Despite the abundance of divergent theories

about sleep spindles, as described above, they have emerged as a key physiological

factor in memory consolidation. Numerous studies have demonstrated correlations

between spindles and motor memory consolidation (Barakat et al. 2011; Kurdziel

et al. 2013; Nishida and Walker 2007; Rasch et al. 2009; Tamaki et al. 2008;

Walker et al. 2002a), as well as with declarative memory consolidation (Clemens

et al. 2005, 2006; Cox et al. 2012; Schabus et al. 2004; Studte et al. 2015; van der

Helm et al. 2011). However, these correlations are complicated by another line of
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research showing that spindles positively correlate with general cognitive abilities

(Bódizs et al. 2009; Fenn and Hambrick 2015; Schabus et al. 2006, 2008), leaving

open the possibility that any memory effects are merely secondary to general

cognitive effects that indirectly influence learning.

Evidence for a causal role for spindles in memory consolidation has slowly

accumulated. Many researchers have employed intra-subject measures comparing

learning and non-learning (control) sleep to control for individual differences. Gais

et al. (2002) first showed that learning boosted spindle density during subsequent

sleep. Spindle density correlated with memory at both pre- and post-nap tests, but

not memory change across the nap. Schabus et al. (2004, 2008) found no boost from

learning, but did find a correlation between experimental-control group density and

memory retention, meaning that individuals with increased spindles showed better

improvements. Schmidt et al. (2006) found that difficult learning (though not easy

learning) boosted and correlated with sleep spindles, suggesting that spindles may

effect changes depending on cognitive demands. Finally, learning-related spindle

boosts arise in the rodent EEG (Eschenko et al. 2006) and in human epilepsy

patients undergoing novel training on a brain-computer interface (Johnson et al.

2012). In a heroic effort, Bergmann et al. (2012) showed using combined fMRI-

EEG that spindle amplitude increased in a specific set of brain regions related to

learning but in other areas unrelated to learning. However, this increase correlated

with pre-sleep memory but not with memory change across the nap.

Another indirect line of support for spindles comes from methods aimed at

boosting slow oscillations. Marshall et al. (2006) could not measure spindle activity

during stimulation due to artifacts caused by the current, but did find enhanced slow

oscillatory activity between successive 5-min stimulation periods. Intriguingly,

during these 1-min non-stimulation periods, slow spindle power was enhanced.

Bolstering these findings, a later study found that playing two auditory noise bursts

in time with slow oscillation up-states can similarly boost slow oscillatory power

and memory (Ngo et al. 2013). This auditory stimulation protocol also boosted fast

spindles, which positively correlated with memory retention. Using a different

variation on this general methodology, Ong et al. (2016) also showed that acoustic

stimulation to increase slow oscillations also produced an increase in fast spindles.

In another follow-up experiment, Ngo et al. (2015) showed that playing four

auditory bursts during up-states had no greater effect on memory than the

two-burst condition, and did not elicit a further boost in fast spindle power.

Altogether, these studies show that spindles may represent an essential factor

mediating the effect of increased slow oscillatory power on memory enhancement.

Using a very different approach, Mednick et al. (2013) delivered the most

convincing causal evidence that spindles benefit memory to date. They found that

delivering zolpidem (Ambien) boosts spindle density without increasing slow

oscillation power. Furthermore, spindle density increases under zolpidem predicted

within-subject memory retention improvements. Although zolpidem increased time

in SWS, neither this SWS measure nor slow oscillatory power predicted memory

improvements under zolpidem. In a follow-up study, a similar effect of zolpidem

was found on emotional memories (Kaestner et al. 2013).
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In summary, there is good evidence that slow oscillations and spindles benefit

memory. We will now discuss how these measures of cortical activity fit together

with events occurring in the hippocampus, where newly formed memories stir.

Memory Replay During Sleep

By the 1980s, it was clear the hippocampus played an important role in forming

new memories and that memories underwent a period of consolidation. However,

the specific hippocampal mechanisms responsible for driving this process were

largely unknown. Gy€orgy Buzsáki et al. (1983) described a physiological process

consisting of a sharp wave in the local field potential followed by a high frequency

burst (150–250 Hz, termed a ripple) occurring uniquely in the hippocampus.

Intriguingly, these events were most prevalent during NREM sleep (Buzsaki

1986; Hartse et al. 1979). Buzsaki (1989) prophetically proposed that they played

a role in memory consolidation. However, it was difficult to corroborate this view at

the time, as evidence linking sharp-wave/ripples (SWRs) to specific memory traces

was lacking.

The evidence for replay came in steps. First, Pavlides and Winson (1989)

showed that hippocampal place cells with enhanced activation during wake con-

tinued to show enhanced activation during sleep. While intriguing, there remained

the possibility that each cell simply kept firing on its own as a homeostatic

mechanism without any relation to other cells. Wilson and McNaughton’s (1994)
seminal study put this concern to rest and largely legitimized future studies on sleep

and memory relationships. They recorded from numerous hippocampal place cells

in the hippocampus before, during, and after a rat explored a novel spatial envi-

ronment. Remarkably, cell pairs that fired together while the rat explored the

environment similarly fired together during post-learning sleep. Because these

cells did not fire together during pre-learning sleep, the post-learning results can

be attributed to learning rather than merely a function of neurons that were already

highly connected.

Wilson and McNaughton’s findings inspired numerous studies that expanded

upon how and when replay occurred. Not only do previously co-activated place

cells correlate during post-learning sleep, they fire in the same order (though with

less fidelity), as if one could read out the spatial location the rat was traversing

during sleep (Louie and Wilson 2001; Skaggs and McNaughton 1996). Replay of

place-cell firing patterns occur most commonly during hippocampal SWRs (Dupret

et al. 2010; Kudrimoti et al. 1999; O’Neill et al. 2006, 2008; Pennartz et al. 2004;
Peyrache et al. 2009). Enhanced co-firing of cell pairs during wake increases replay

during sleep (O’Neill et al. 2008). In relation to activity in other parts of the brain,

SWRs overlap with and slightly precede sleep spindle events in other areas such as

the ventral striatum (Lansink et al. 2009) and neocortex (Siapas and Wilson 1998).

Moreover, wakeful hippocampal-neocortical (Ji and Wilson 2007) and neocortical-

neocortical (Hoffman and McNaughton 2002) firing patterns replay during sleep.
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Other details about the speed, conditions, and timing of replay have also been

uncovered. Place-cell replay patterns become compressed by a factor of 6–7x

during sleep (Euston et al. 2007), occur for extended events spanning as long as

10 m of track over 60 s (replaying at approximately 8 m/s) across multiple SWRs

(Davidson et al. 2009), and also occur, though to a lesser extent, during wake (Carr

et al. 2011; Diba and Buzsáki 2007; Dupret et al. 2010; Karlsson and Frank 2009).

Though ensemble reactivations occur most frequently during SWRs, one could

argue that the large-scale synchrony that encompassed SWR events reflected

previous neuronal firing without relating to memory. However, a few findings

speak against this idea. First, learning (Eschenko et al. 2008; Ramadan et al.

2009) and LTP (Behrens et al. 2005; Buzsaki 1984) boost SWRs during subsequent

NREM sleep. Second, reactivation events are specific to learning-related ensembles

(Dupret et al. 2010; Peyrache et al. 2009) and correlate with memory retention

(Dupret et al. 2010). Third, and most definitively, manipulating SWRs alters

memory. Imposing replay with artificial stimulation during SWS SWRs enhances

fear memory (Barnes and Wilson 2014). Suppressing SWRs impairs memory both

when done during learning in a spatial working memory task (Jadhav et al. 2012)

and during subsequent sleep when rodents learn a maze over a series of days

(Ego-Stengel and Wilson 2009; Girardeau et al. 2009). These studies provide a

crucial causal link to the role of hippocampal SWRs and memory consolidation.

Since hippocampal replay occurs most frequently during SWRs, they constitute

strong indirect evidence for the role of replay in memory consolidation.

Early neuroimaging studies using positron emission tomography gave the first

and currently most illustrative evidence of reactivation on a systems-level. Maquet

et al. (2000) showed learning-specific activation of brain areas during REM sleep

that were previously activated by motor-sequence learning. In a similar vein,

Peigneux et al. (2004) showed learning-specific hippocampal activation after learn-

ing a novel spatial environment, and this activation correlated with memory

improvement. However, these studies showed enhanced activity over a long time

scale. In contrast, one recent study (Deuker et al. 2013) enlisted multivariate

methods to decode whether newly formed memories were reactivated during

sleep and wake after learning. Possible reactivation patterns were observed, though

puzzlingly only during stage-1 sleep. One shortcoming of this study relates to the

difficulty participants had reaching deep sleep, but the presence of an effect

nevertheless offers encouragement for pursuing these sorts of approaches.

Across a wide range of neuroscientific techniques, there is strong evidence that

replay reflects learning. However, not all learning events are remembered in the

long-term, so there must be a mechanism by which memories become differentiated

over time. Below, we will cover how various factors influence spontaneous memory

reactivation and how these influences may play a role in determining which

memories endure.
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Factors Influencing Spontaneous Reactivation

Humans form far more episodic memories than they can remember after some time

passes, suggesting there are computational limits on the hippocampal-neocortical

system. Thus, human memory is cluttered with competition among memories,

forcing the system to devise a mechanism by which it can keep the memories

deemed to be of the greatest future use, even if it comes at the expense of other, less

relevant memories. Over the last decade, it has become increasingly clear that sleep

plays a role in this prioritization (Fischer and Born 2009; Rauchs et al. 2011; Saletin

et al. 2011; van Dongen et al. 2012b; Wilhelm et al. 2011; though see Baran et al.

2013).

A prominent theory suggests that memories of higher importance become

“tagged” during wake by the hippocampus to undergo further consolidation during

sleep (Morris 2006; Redondo and Morris 2011). The “synaptic tagging and capture”

hypothesis (Morris 2006) suggests there are at least two steps in the consolidation

process: an early-LTP process occurring at encoding that rapidly decays and a late-

LTP process that involves hippocampal-neocortical dialogue and results in a

relatively persistent neural trace. Central to this idea is that a molecular “tag”

influenced by the early process (albeit not deterministically) signals the late process

to enact enduring changes that occur during offline periods like sleep.

At the molecular level, some relationships have been worked out between early-

and late-LTP, memory persistence, and NMDA- and dopamine receptor-

dependence within the hippocampus (Wang et al. 2010). The amount of cell

co-firing within 50 ms of learning during spatial exploration resulted in enhanced

SWRs (O’Neill et al. 2008), and we previously mentioned links between learning

and LTP on SWRs. Therefore, replay of tagged memories could provide a mech-

anism by which memories differentially persist.

Electrophysiological oscillations during wake that group neuronal activity

across regions may play a role in the tagging process. At the cellular level,

prefrontal neuron assemblies producing high theta coherence during learning

were preferentially replayed during sleep SWRs (Benchenane et al. 2010). Simi-

larly, a recent study in humans (Heib et al. 2015) showed theta power during word-

pair encoding mediated the positive relationship between fast spindles and memory

retention. Thus, theta power may reflect an effective encoding process that tags

memories to undergo further consolidation.

Further evidence for differential memory tagging comes from experimental

manipulations that alter the future relevance, reward, or emotional content of

various items. Sleep benefits memory items that participants are directed to remem-

ber at encoding (Rauchs et al. 2011; Saletin et al. 2011), directed to bring to mind

(Fischer et al. 2011), told later would be important (van Dongen et al. 2012), or

would even be tested at all (Wilhelm et al. 2011). Importantly, sleep physiology

appears to become biased in conjunction with this memory prioritization. Partici-

pants who expected to be tested showed a pronounced increase in slow oscillatory

power and the number of spindles in relation to a control night (Wilhelm et al.
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2011), and sleep spindles correlated positively with memory change for to-be-

remembered items and also negatively with that for to-be-forgotten items (Saletin

et al. 2011). Using a similar paradigm with fMRI, Rauchs et al. (2011) found that

hippocampal activity at encoding predicted overnight changes in memory only for

to-be-remembered items. Crucially, this activity failed to predict overnight changes

for a separate group of subjects who were sleep-deprived. These results support the

idea that memories tagged during wake undergo further processing during sleep

(Morris 2006).

In rodents, a few studies found replay during SWRs occurs more frequently for

memory traces that are motivationally relevant, as assessed by the presence or

absence of reward (Lansink et al. 2008, 2009; Peyrache et al. 2009). Moreover, one

study showed reactivation does not occur when rewarded locations are cued and no

learning is required (Dupret et al. 2010), showing it relates directly with memory

importance. Dopaminergic (DA) fiber bundles emanating from the ventral tegmen-

tal area (VTA) heavily control reward processes. The VTA contains fiber bundles

that innervate the hippocampus and these have been shown to affect long-term

potentiation within the hippocampus (Bethus et al. 2010; Lisman and Grace 2005).

Additionally, one study found activity in the VTA and hippocampus predicts

memory for high-reward cues (Wittmann et al. 2005), and another found functional

interactions between these regions predicts long-term memory formation (Adcock

et al. 2006). Therefore, DAmay modulate hippocampal reactivation as a function of

reward during offline periods such as sleep.

Indeed, a recent study showed direct links between VTA-hippocampal stimu-

lation, neuronal reactivation, and memory retention (McNamara et al. 2014). The

authors found that VTA neurons increased their firing rate while rats explored a

novel environment. Optogenetic stimulation of VTA-hippocampal fibers increased

subsequent reactivation of related memory traces, which could be blocked by

administering DA antagonists before learning. Finally, this optogenetic stimulation

improved memory retention. Another recent study showed that new memories

could be implanted by pairing VTA-hippocampal firing with spontaneous place

cell reactivation (de Lavilléon and Lacroix 2015). First, the authors separately

found hippocampal place cells while rats explored a spatial environment and

stimulations of VTA ensembles that animals found rewarding. Next, during offline

periods of wake or sleep, spontaneous place cell reactivation was assessed online

and paired with rewarding VTA-hippocampal fiber stimulation. When rats were

re-introduced into the environment, they spent more time immediately in the

location represented by the place cell undergoing co-activation with

VTA-hippocampal fibers. Therefore, interactions between DA inputs to the hippo-

campus appear to strongly influence reactivation and subsequent memory retention

(Atherton et al. 2015; but see Berry et al. 2015).

Two pharmacological studies support this idea by specifically highlighting the

role dopamine plays in reward-enhanced consolidation. Wang et al. (2010) found

that strong rewards induced persistent memory when weak rewards did not, and this

enhancement could be blocked with dopamine antagonists. Additionally, in a study

with human subjects, Feld et al. (2014) showed participants a number of objects
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preceded by a high or low reward while administering either a dopamine agonist or

placebo to participants. Under the placebo condition, high reward items were

remembered better after sleep, but this difference was eliminated when participants

received the dopamine agonist. These results suggest that high reward items would

receive preferential processing during sleep under normal conditions, but the

presence of the dopamine agonist made low items receive further processing.

Another biologically adaptive way some memories will be given priority comes

from their level of emotional content (Richter-Levin and Akirav 2003). In some

experimental paradigms, sleep appears to play a role in this prioritization. For

instance, Payne et al. (2008) showed participants a series of pictures with a neutral

or emotional central image against a neutral background (e.g., an undamaged car or

a wrecked car, respectively, against a city backdrop). They tested participants after

encoding and then again after 30 min, 12 h of wake, or 12 h of sleep. They found

that sleep resulted in an enhanced selective benefit for emotional over neutral items

relative to both the 30-min and 12-h wake intervals, demonstrating specificity for

sleep in prioritizing maintenance of emotional material. The same research group

has repeatedly replicated this effect (Bennion et al. 2015; Payne et al. 2012, 2015;

Payne and Kensinger 2011), and other paradigms have produced comparable

evidence supporting a role for sleep in emotional memory (Hu et al. 2006; Nishida

et al. 2009; Wagner et al. 2001), with differential sleep effects lasting up to at least

4 years (Wagner et al. 2006).

Current conceptions of the mechanisms underlying emotional memory consoli-

dation accord with this idea. Generally for emotional memories, amygdala acti-

vation leads to enhanced memory retention (Cahill et al. 1996; Canli et al. 2000),

and enhanced amygdala-hippocampal interactions at encoding leads to better mem-

ory (Dolcos et al. 2004). Furthermore, elevated levels of the stress hormone cortisol

predict higher levels of amygdala activity for negative pictures (van Stegeren et al.

2005) and predict enhanced levels of selective memory enhancement for negative

stimuli after sleep (Bennion et al. 2015). Thus, a plausible mechanism is that

cortisol modulates amygdala activity, which, via interactions with the hippo-

campus, tags memories for further rehearsal during sleep (Bennion et al. 2015).

Emotional memory consolidation presents an intriguing case for the role of

emotions in REM sleep. In dream reports, REM sleep is frequently associated

with greater emotional content than other stages (Fosse et al. 2001) and REM

sleep also shows higher levels of amygdala activity than NREM sleep and wake-

fulness (Maquet et al. 1996). Accordingly, several studies have found that emo-

tional memory retention correlates with REM sleep (Nishida et al. 2009; Payne

et al. 2012; Wagner et al. 2001). These findings may, however, appear surprising, as

the emotional information would certainly be categorized as an example of declar-

ative memory, which otherwise is linked with the involvement of NREM sleep.

Indeed, unlike the case with nocturnal sleep, when participants take afternoon naps

they typically only attain NREM sleep, and emotional memory retention correlates

with SWS measures during the nap (Payne et al. 2015). There may be more to

decipher about these disparate findings, as they hint at the complexity of competing

and/or complementary processes operative during the various stages of sleep.
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Illuminating findings have also arisen in the context of investigations showing

that sleep does not selectively benefit emotional memories. Baran et al. (2012) and

Lewis et al. (2011) found no interaction between emotional versus neutral infor-

mation and sleep versus wake. Additionally, Atienza and Cantero (2008) found that

sleep deprivation hurt memory for emotional items less than for neutral informa-

tion, suggesting that in some paradigms emotional memories are simply less

susceptible to interference and may remain robust with reactivation processes that

occur during wake.

These apparently contradictory findings can be reconciled. The interaction of

emotion and memory is complex, and the general assertion that emotions enhance

memory is by no means universal (Mather and Sutherland 2011). For instance,

memories can become enhanced or inhibited depending on numerous factors at

encoding, such as whether they occur before, after, or simultaneously with emo-

tional information, their level of association with the emotional content, the level of

perceptual contrast, or the relevance of the information for current goals (see

Mather and Sutherland 2011, for an extensive review). Furthermore, a complex

set of hormonal factors (McGaugh 2000), interactions between the amygdala and

the hippocampus (Dolcos et al. 2004) or vmPFC (Bennion et al. 2015), and

emotional learning during consolidation (Dunsmoor et al. 2015) can affect memory

beyond the time of encoding. The type of molecular tag, including the strength of

the tag and what does or does not become tagged alongside emotional information

likely differs based on experimental paradigm, and this will affect what role offline

processes play in memory. This research topic deserves much further attention, as it

could aid treatment for disorders such as depression and post-traumatic stress

disorder (LaBar and Cabeza 2006).

In this section, we have outlined some major factors that naturally influence

memory reactivation. In the next section, we will discuss a relatively new method

that involves artificially targeting memories for reactivation at specific times during

sleep.

Targeted Declarative Memory Reactivation

As with many aspects of science and human thought, speculations and unexplained

findings supported the idea that TMR could work long before it became part of

established and accepted ways of thinking. In the late 1980s and early 1990s, a few

studies showed altered memory after linking a stimulus with a learning episode and

re-administering the stimulus as a memory cue during EEG-verified sleep. In some

of the first successful studies employing TMR, Hars et al. (1985) enhanced active

avoidance conditioning in rats by cueing during REM, whereas Hennevin and Hars

(1987) impaired the same type of learning by cueing during SWS. Hars and

Hennevin (1990) again found an effect for REM stimulation impairing spatial

memories. In human participants, Smith and Weeden (1990) enhanced Morse

code learning by re-playing learning-related auditory clicks during REM sleep.
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To understand why these studies were largely ignored, it is important to note these

studies preceded much of the reactivation literature that grounded sleep and mem-

ory at the neuronal level. Furthermore, the mechanisms at work during the various

sleep stages were largely unknown. To be sure, the mechanisms for each of these

effects are still somewhat mysterious, though with current knowledge of neuronal

reactivation mechanisms in TMR, it is easier to envision their workings.

In a seminal study, Rasch et al. (2007) revived TMR and bolstered the idea that

memories are actively reprocessed during sleep. Participants learned pairs of

pictures on a spatial grid akin to a memory game, all while smelling a rose odor.

Next, they slept in the lab, and some subjects received the rose odor again upon

entering SWS. After waking up, those receiving the rose odor remembered signifi-

cantly more pairs than those who did not. This method failed to boost memory when

the rose cue was delivered during wake, or during REM, or when the rose odor was

delivered during SWS but was not present during learning, demonstrating the

specificity of reactivation of the learning episode.

Rudoy et al. (2009) followed up on this finding to investigate its specificity for

individual memories (Fig. 2a). Participants learned 50 object-location associations

against a background grid and a semantically related sound cue played concurrently

with each visual object presentation (e.g. cat image—“meow” sound). During a

subsequent afternoon nap, Rudoy used 25 sounds to cue half of the object locations

during SWS. After the nap, participants recalled locations more accurately for

objects associated with those sounds, in comparison to objects associated with

sounds not presented during sleep, showing that TMR can be used to reactivate

individual memories.

Fig. 2 Mechanisms of targeted declarative memory reactivation during sleep. (a) After unique

auditory cues were paired with individual items, presenting those cues during subsequent SWS

significantly enhanced memory (Rudoy et al. 2009). (b) Targeting memories using olfactory

stimuli resulted in enhanced activity in the hippocampus (Rasch et al. 2007). (c) After unique

cues were paired with different locations in a rectangular grid, presenting the cues during sleep

resulted in enhanced firing of corresponding place cells (Bendor and Wilson 2012). Such biased

cellular firing patterns presents a plausible mechanism by which targeting memories results in

differential memory performance
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Numerous other studies have subsequently shown TMR benefits and begun to

elucidate the corresponding neural mechanisms. TMR enhances spatial memories

via specific odors (Rihm et al. 2014), otherwise forgotten low-priority memories

(Oudiette et al. 2013), memories of moderate initial strength (Creery et al. 2014),

emotional memories (Cairney et al. 2015), and vocabulary words with the words as

cues (Schreiner and Rasch 2014; Schreiner et al. 2015). It reduces subsequent

retroactive interference (Diekelmann et al. 2011) and accelerates the consolidation

process (Diekelmann et al. 2012). Additionally, stimulation boosts spindle power

over learning-related regions (Cox et al. 2014), and enhances parahippocampal-

mPFC connectivity (van Dongen et al. 2012a), implicating spindles and dialogue

with the neocortex as possible underlying mechanisms.

In line with the expectation that targeted memory reactivation should resemble

spontaneous memory reactivation, four studies suggest a role for replay in TMR.

The first showed that cueing a bird’s own newly-learned song during post-learning

sleep elicited replay of neurons involved in forming the memory (Dave and

Margoliash 2000). The second showed with fMRI that odor presence enhanced

activity in the hippocampus relative to its absence (Rasch et al. 2007; Fig. 2b). The

third involved cueing different sounds as rats explored the two sides of a rectan-

gular environment (Bendor and Wilson 2012; Fig. 2c). Upon subsequent sleep, the

sounds elicited corresponding place cell activity for each respective side of the grid,

suggesting the cues directly activated the neurons involved in forming those

memories. The fourth showed that patients with bilateral hippocampal lesions did

not benefit from TMR and that memory benefits from TMR correlated inversely

with amount of hippocampal damage (Fuentemilla et al. 2013), offering causal

evidence that the hippocampus plays an important role in TMR.

Finally, TMR has been shown to influence other types of cognition such as

creativity (Ritter et al. 2012), procedural memories (Antony et al. 2012; Cousins

et al. 2014; Sch€onauer et al. 2014), fear memories (Barnes and Wilson 2014;

Hauner et al. 2013; Rolls et al. 2013), and learning to reduce implicit social biases

(Hu et al. 2015).

Basic Model of Sleep Reactivation and Major Open Questions

The aforementioned lines of evidence can be integrated into a basic model of

declarative memory consolidation (Fig. 3). Hippocampal SWRs time-lock to slow

wave up-states (M€olle et al. 2006), neocortical spindles time-lock to slow wave

up-states (M€olle et al. 2011), and SWRs time-lock to spindle down-states during the

slow-wave up-state (Ayoub et al. 2012; Siapas and Wilson 1998; Staresina et al.

2015). This scheme suggests that slow waves coordinate reactivation in the form of

hippocampal-neocortical dialogue, like a conductor leading an orchestra (M€olle and
Born 2011). However, there are major open questions and a few possible contra-

dictions about the processes underlying reactivation.
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One major question involves the role of various parts of NREM sleep in

declarative memory consolidation. A recent review (Genzel et al. 2013) argues

there is likely a difference between lighter NREM sleep (stage-2 sleep and early

SWS) and deep NREM sleep (late SWS). Slow oscillations are more frequently

global in nature during light NREM sleep (Nir et al. 2011), which likely improves

coordination between disparate brain areas such as the hippocampus and neocortex.

Furthermore, SWRs (Clemens et al. 2007) and spindles (de Gennaro and Ferrara

2003) occur more frequently during lighter NREM stages, though this could be due

to analysis issues with respect to identifying spindles by eye when they are

superimposed on predominant slow oscillations (Cox et al. 2012). Efforts to boost

memory via inducing slow oscillations with stimulation have begun in stage-2 sleep

(Marshall et al. 2006; Ngo et al. 2013), creating the possibility that changes crucial

for memory occurred in early NREM stages. Additional confusion might have

arisen due to differences in sleep-stage terminology in humans and animal models,

whereby SWS has been used as a term for all of NREM sleep (Genzel et al. 2013).

Altogether, considering physiological differences in the hippocampus and neocor-

tex, the distinction of early and late NREM for declarative memory is plausible and

well worth further investigation.

The open issue above highlights another set of troubling complexities with

respect to the role of spindles. As reviewed above, much of the evidence on spindles

to date could be attributed to correlation rather than causation. Despite this,

converging evidence from four sources implicates a direct role of spindles in

Fig. 3 Overview of sleep-dependent declarative memory consolidation. (a) Newly-encoded

neural traces formed in the hippocampus become reactivated and consolidated via interactions

with the neocortex. (b) Prominent theories suggest slow oscillations group hippocampal SWRs

and thalamocortical spindles to coordinate hippocampal-neocortical transfer (from Born and

Wilhelm 2012). (c) Numerous factors influence the filtering process determining which memories

become later reactivated. (d) Reactivation processes operate on tagged neural traces to influence

the later stability of the memory trace. Many of the factors in (c) and (d) are highly interrelated

concepts from different levels of analysis
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stabilizing memories: (1) methods showing causal roles for slow oscillations in

memory also boost spindle power, suggesting that spindles could mediate the effect

of slow oscillations on memory (Marshall et al. 2006; Ngo et al. 2013, 2015),

(2) TMR induces spindle amplitude enhancements for learning-specific brain

regions (Cox et al. 2014), (3) spindles have specifically been shown to enhance

long-term potentiation between synapses in vitro (Rosanova and Ulrich 2005), and

(4) a pharmacological method to induce spindles enhances memory (Kaestner et al.

2013; Mednick et al. 2013). However, none of these findings show that spindles

benefit memory directly. For example, the pharmacological results could reflect

changes in other underlying processes (e.g., hippocampal SWRs) that indirectly

influence spindles. Additionally, real-time evidence for the role of spindles in

reactivation remains obscure, and questions remain about whether neural measures

of reactivation precede, become embedded in, or follow the spindle itself.

Other key questions arise about the nature of reactivation. On the cellular level,

there is at least a basic understanding that hippocampal replay re-emerges during

post-learning sleep and affects later memory retention (Ego-Stengel and Wilson

2009; Girardeau et al. 2009). To date, researchers investigating relationships

between replay and behavior have understandably focused on the fidelity of offline

reactivation to learning episodes. However, in addition to memory, sleep aids the

generalization and abstraction of information, which may rely on reactivation

(Stickgold and Walker 2013). In this light, findings in rodents (Karlsson and

Frank 2009) that replay has higher fidelity during wake than sleep may prove

illuminating. It would be interesting to discover if these abilities rely not on high-

fidelity replay, but on some intermediate level of replay fidelity that allows for the

incorporating the trace into other semantic networks or statistically similar

episodes.

A different line of research has begun to outline the molecular mechanisms

required for long-term plasticity (Takeuchi et al. 2014). However, it is currently

unknown how cellular reactivation interacts with plasticity on the single neuron

level. Specifically, would blocking reactivation (for instance, using optogenetics)

prevent placticity? Or vice versa, would blocking plasticity, as with protein syn-

thesis inhibitors and/or post-translational modification regulators (Routtenberg and

Rekart 2005) reduce reactivation?

On the systems level, there is no clear picture for what constitutes reactivation.

Over a full night of sleep, learning-related neural activity becomes enhanced

(Deuker et al. 2013; Maquet et al. 2000; Peigneux et al. 2004) and correlates with

memory retention (Deuker et al. 2013; Peigneux et al. 2004), and TMR/fMRI

studies have also implicated enhanced activity in medial temporal lobe structures

(Rasch et al. 2007; van Dongen et al. 2012a). However, we currently lack solid real-

time evidence of systems-level reactivation to correspond with results from neuro-

nal reactivation, although methods such as EEG or MEG hold promise in this

regard. Also, it remains unclear exactly how reactivation events are connected to

hallmarks of sleep physiology such as slow oscillations and spindles.

Finally, the timescale for systematic changes in the neural locus of memories is

not understood. Mander et al. (2011) showed that sleep, as opposed to wake, can
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promote the acquisition of new declarative memories, and this improvement cor-

relates with spindle activity. Sleep may therefore act as a way to “refresh” the

hippocampus to learn anew the next day, which accords with findings that sleep

enhances activation in the neocortex while reducing it in the hippocampus

(Takashima et al. 2009). However, discrepancies exist between this model and

the effects of hippocampal damage, which typically cause retrograde amnesia for

memories formed over much longer time periods. Critically, there is scant exper-

imental evidence on the extent to which reactivation occurs for memories more than

a single day old. How long does it take for memories to become independent of the

hippocampus? And does sleep reactivation continue to play a role beyond even the

first day of memory formation?

Concluding Thoughts

In 2005, Science magazine released a list of the 125 biggest questions the field of

science had yet to answer. Among them was, “Why do we sleep?” and “Why do we

dream?” Both remain perplexing. Why we spend a third of our lives in near-

complete inactivity has thus far eluded scientists. This is likely because, as with

many solutions to environmental pressures during evolution, there is no singular

purpose but rather a series of co-opted adaptations that best fit ecological niches.

Some lines of evidence suggest that sleep protects an agent from predators

(Siegel 2009) and aids brain metabolism and restoration (Silva et al. 2004;

Vyazovskiy et al. 2008, 2009, 2011; Xie et al. 2013; see Vyazovskiy and Harris

2013 and Tononi and Cirelli 2014 for helpful reviews). More pertinent to this

chapter, a recent theory posited that certain types of brain plasticity may only

become possible after the organism becomes detached from the environment, so

sleep may be the price paid for plasticity (Tononi and Cirelli 2014). Considering the

presence of circadian rhythms and sleep patterns in organisms without our complex

system of memory (Cirelli and Tononi 2008), the argument that sleep evolved

originally and primarily for memory is not strong.

However, that sleep plays a unique role in learning and memory has gradually

become an irrefutable position. Throughout evolution, many organs and networks

of cells originally evolved for one purpose and have later been used for another. The

inner ear originally evolved in early vertebrates for balance, but later became

involved in hearing (Torres and Giraldez 1998). The brain itself evolved to coor-

dinate movement, but has clearly taken on numerous other abilities. Thus, it seems

highly plausible that sleep originally evolved for purposes other than plasticity, but

became co-opted later as new selection pressures incentivized the need for greater

plasticity.

Behavioral, cellular, and systems level evidence suggests NREM sleep plays a

special role, though perhaps not an exclusive role, in consolidating declarative

memories. Reactivation is instrumental to our ability to retain information from a

single, unique episode. One could easily envision a world in which no moment
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effectively lived beyond the present. Humans forget most of their life’s episodes, as
the natural, entropic fate of any episode is oblivion. However, offline reactivation

can rescue otherwise fleeting episodes, especially those of high priority like the

experience of the young scientist on her interview outlined at the beginning of this

chapter. That the hippocampal-neocortical system has evolved a way to solidify

experiences that were formed only once is a marvel, and that it co-opted natural

sleep processes to effect its end is another testament to nature’s ability to find

unique solutions to adaptation challenges.
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