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Abstract

Both implicit learning and statistical learning focus on the ability of learners to pick up on patterns

in the environment. It has been suggested that these two lines of research may be combined into a

single construct of “implicit statistical learning.” However, by comparing the neural processes that

give rise to implicit versus statistical learning, we may determine the extent to which these two learn-

ing paradigms do indeed describe the same core mechanisms. In this review, we describe current

knowledge about neural mechanisms underlying both implicit learning and statistical learning, high-

lighting converging findings between these two literatures. A common thread across all paradigms is

that learning is supported by interactions between the declarative and nondeclarative memory sys-

tems of the brain. We conclude by discussing several outstanding research questions and future direc-

tions for each of these two research fields. Moving forward, we suggest that the two literatures may

interface by defining learning according to experimental paradigm, with “implicit learning” reserved

as a specific term to denote learning without awareness, which may potentially occur across all para-

digms. By continuing to align these two strands of research, we will be in a better position to charac-

terize the neural bases of both implicit and statistical learning, ultimately improving our

understanding of core mechanisms that underlie a wide variety of human cognitive abilities.
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1. Introduction

The ability to detect patterns in the environment is central to many aspects of human

cognition, ranging from perception to language, to decision-making, to the enjoyment of

avant-garde music. Understanding this ability has been the focus of two traditionally dis-

tinct lines of research, centered on “implicit learning” (Reber, 1967) and “statistical learn-

ing” (Saffran, Aslin, & Newport, 1996). Implicit learning is defined as “the capacity to

learn without awareness of the products of learning” (Frensch & Runger, 2003, p. 14). In

contrast, statistical learning is more broadly defined as the ability to extract the statistical

properties of sensory input across time or space (e.g., Frost, Armstrong, Siegelman, &

Christiansen, 2015; Schapiro & Turk-Browne, 2015; Siegelman, Bogaerts, & Frost,

2017). Although these two lines of research use different tasks and procedures, they also

share many commonalities and may in fact encapsulate the same underlying memory phe-

nomena, as has been previously discussed (Christiansen, 2018; Perruchet & Pacton,

2006). Both implicit learning and statistical learning involve the extraction of structure

from input and are generally thought to occur incidentally, through exposure to positive

examples, without instruction, and without intention to learn. Both types of learning also

then influence behavior in similar ways, for example, by making it easier to hear pho-

neme or word boundaries (statistical learning) or produce practiced motor sequences (im-

plicit sequence learning). It has recently been suggested that these two literatures may be

united under a single framework of “implicit statistical learning” (e.g., Rebuschat, 2015).

At this key juncture of increasing crosstalk and interaction between these two lines of

research, working toward a better understanding of the neural bases of these learning phe-

nomena is critical for continued progress in both these fields. By comparing the neural

processes that give rise to implicit versus statistical learning, we may determine the

extent to which these two learning paradigms do indeed describe the same core mecha-

nisms. Deepening our understanding of the neural mechanisms of implicit and statistical

learning will also continue to provide key insights into both these learning phenomena at

a theoretical level, providing biological constraints to narrow the space of possible mod-

els that may account for observed learning behavior. For example, past research has

shown that over the course of a typical paradigm, learning may occur in different ways,

mediated by different neural memory systems (e.g., Poldrack et al., 2001, cf. Reber,

2013). Neural evidence can thereby provide a more accurate, nuanced view of how quali-

tatively different mechanisms underlying learning may wax and wane over time. Finally

and more generally, neural measures can often provide a more sensitive index of process-

ing than behavioral data alone and allow for the investigation of populations in which a

behavioral response may be difficult to acquire (e.g., infants, certain groups of patients).

By obviating the need for behavioral responses, data from neuroscience can enable us to

address a wider variety of research questions. In sum, articulating the neural contributions

underlying implicit and statistical learning is critical to reaching a deeper understanding

of these learning mechanisms and provides a view of these capacities that could not be

achieved by considering behavioral data alone.
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With these goals in mind, this article reviews what we currently know about how the brain

accomplishes implicit learning and statistical learning tasks. We first provide a brief primer on

the memory systems of the brain. We then outline the concepts, research foci, and experimen-

tal paradigms that have been used in the two fields of implicit learning and statistical learning.

Next, we review findings that shed light on how learning occurs at the neural level in these

different paradigms. While we describe neuroscience studies on “implicit learning” and “sta-

tistical learning” in separate sections, this distinction is designed to reflect the separate histori-

cal trajectories and different paradigms used by each field, rather than to necessarily argue for

a strong delineation between these two constructs at a mechanistic level. We conclude by con-

sidering key commonalities in the neural bases underlying learning among these different

paradigms and possible future research directions to drive continued progress in both fields.

1.1. Memory systems of the brain

All types of learning, including implicit learning and statistical learning, can be under-

stood in terms of the underlying contributions made by the two basic memory systems of

the brain. Although memory performance may be mediated predominantly by one mem-

ory system alone, often performance is a function of interactions between two. Declara-

tive memory refers to the recall and recognition of facts and events and depends on the

medial temporal lobe (MTL) and various cortical regions, particularly the prefrontal cor-

tex and the parietal lobes (Gabrieli, 1998; Scoville & Milner, 1957; Squire, 2004; Squire

& Zola, 1996). The MTL consists of the hippocampus and adjacent perirhinal, entorhinal,

and parahippocampal cortices (Squire, Stark, & Clark, 2004). In contrast, facilitated pro-

cessing that occurs independently of recognition or recall is referred to as nondeclarative
memory (Squire & Zola, 1996) and does not require the MTL system. Nondeclarative

learning capacities are heterogenous and include skills, habits, procedures, priming, and

simple types of memory like habituation and sensitization, and as such do not rely on a

single, coherent memory system (Reber, 2013). Rather, nondeclarative memory reflects

an accumulation of changes that take place directly within the neural circuits that were

activated during the initial learning process, in processing areas such as the basal ganglia

(which contains the striatum, which in turn contains the caudate and putamen, among

other structures), cerebellum, and neocortex (e.g., Eichenbaum & Cohen, 2001; Gabrieli,

1998; McClelland, McNaughton, & O’Reilly, 1995; Reber, 2013; Squire, 2004; Squire &

Zola, 1996). For example, perceptual repetition priming—which refers to facilitation in

processing a repeated stimulus—is driven by changes in sensory cortical areas that are

directly involved in initial perception (Squire & Zola, 1996). The lack of hippocampal

involvement, which allows for the flexible relational storage of information (Eichenbaum

& Cohen, 2001), may explain why perceptual priming effects are often found to be

highly stimulus specific.

Seminal evidence for the existence of these two separate memory systems came from

Scoville and Milner’s (1957) observations of a hippocampal amnesic patient known as

H.M. Following bilateral temporal lobe resection for intractable epilepsy, H.M. showed

complete loss of declarative memory for events subsequent to his surgery, together with
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partial retrograde amnesia for 3 years leading up to his operation. Despite this dramatic

impairment in his ability to form memories for new episodes and facts, H.M. showed pre-

served learning on other memory tests, such as mirror drawing and the Tower of Hanoi

puzzle (Cohen, Eichenbaum, Deacedo, & Corkin, 1985; Corkin, 1968; Milner, Corkin, &

Teuber, 1968). Subsequent research substantiated these early observations, demonstrating

that amnesic patients can achieve normal performance on many other memory tasks, such

as artificial grammar learning, prototype learning, probabilistic category learning, percep-

tuomotor skill learning, and perceptual priming (e.g., Cohen & Squire, 1980; Goshen-

Gottstein, Moscovitch, & Melo, 2000; Graf & Schacter, 1985; Keane et al., 1997; Knowl-

ton & Squire, 1993, 1994, 1996; Nissen & Bullemer, 1987; Reber & Squire, 1994, 1998).

These types of learning do not require a normally functioning hippocampus and came to

be known collectively as nondeclarative memory (Squire & Zola, 1996), as performance

on these tasks demonstrates memory storage while not requiring the conscious retrieval

of any knowledge. Thus, declarative and nondeclarative memory can be dissociated on

the basis of both conscious awareness and reliance on the MTL system, although there is

not a perfect one-to-one correspondence between awareness and MTL dependence (Han-

nula & Greene, 2012; Henke, 2010).

1.2. Competition between memory systems

As we will see, a common theme that emerges across implicit learning and statistical

learning paradigms is that there is frequently interaction or competition between the

declarative and nondeclarative memory systems of the brain. This is particularly evident in

implicit learning research, which, relative to the statistical learning literature, has tradition-

ally placed a much stronger emphasis on characterizing the neural basis of learning. Even

in paradigms that have been specifically designed to isolate “implicit learning” per se,

healthy learners completing these tasks may show behavioral evidence of having acquired

both declarative and nondeclarative memory (e.g., Perruchet, Gallego, & Savy, 1990; Per-

ruchet & Pacteau, 1990; Servan-Schreiber & Anderson, 1990). The finding that declarative

and nondeclarative memory systems are often both active during learning, and may compete

with one another, also appears across findings from the statistical learning literature. Thus,

investigating interactions between implicit and explicit memory, rather than how each sys-

tem functions in isolation, is critical to understanding how humans actually learn.

Equipped with a basic understanding of the two dissociable memory systems of the

brain, we now turn our attention to reviewing the conceptual definitions, research foci,

and experimental paradigms used in the two parallel literatures of implicit learning and

statistical learning.

1.3. Overview of implicit learning and statistical learning fields: Research foci and
experimental paradigms

A strong focus of implicit learning studies is on the nature of the representations

acquired during learning (i.e., whether conscious or unconscious). Paradigms used to
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study implicit learning in a laboratory setting include the artificial grammar learning task

(AGL; Reber, 1967), the serial reaction time task (SRTT; Nissen & Bullemer, 1987), and

the weather prediction task (Knowlton, Squire, & Gluck, 1994). Learning in all these

tasks is typically measured indirectly, without making direct reference to prior studied

items, and the knowledge supporting performance on these tasks has generally been

assumed to be unconscious (Reber, 1989).

For example, the AGL task—the hallmark paradigm of implicit learning research

(Reber, 1967)—requires participants to memorize strings of letters generated by a finite-

state artificial grammar. After exposure to numerous letter strings, participants are told

that the strings were based on specific rules, and then asked to categorize new letter

strings as either grammatical or ungrammatical. Despite having little verbalizable knowl-

edge about the underlying rules, participants are typically able to categorize new strings

at above-chance levels (Reber, 1967, 1976).

Similarly, in the SRTT, learning can occur in the absence of awareness of the underly-

ing sequence (Destrebecqz & Cleeremans, 2001). In the canonical version of this task,

participants respond to sequential visual cues that appear in one of four locations by

pressing one of four corresponding response buttons. After each response, the next cue

appears in a new location after a brief delay. Unbeknownst to participants, there are both

sequential trials, which follow a repeating sequence, and random trials, in which the

visual cues no longer follow a repeating pattern. As participants learn the hidden pattern,

their response time to the repeating cues gradually decreases over and above the general

response time reduction that occurs to randomly ordered cues as a function of task prac-

tice effects.

Another standard implicit learning task is the weather prediction task (Knowlton et al.,

1994). This task involves learning of associations between combinations of stimuli and

outcomes and is also generally assumed to occur without requiring the involvement of

the declarative memory system. The stimuli in this task consist of a set of cards. Each

card contains a unique geometric pattern and is associated with one of two possible out-

comes (sun or rain) with a fixed probability. On each trial, participants are presented up

to four cards and asked to predict the weather outcome. The actual weather outcome is

probabilistically determined by the individual cards, whereby each card is a partially

accurate predictor of the weather. With each trial, learners receive feedback and become

increasingly accurate at predicting the weather. This improvement can occur even though

learners may have little explicit knowledge of the information they are using to improve

their judgments.

In contrast to the field of implicit learning, statistical learning researchers have gener-

ally not focused on the nature of the representations acquired during learning (i.e.,

whether conscious or unconscious), but rather on the finding that learning appears to

occur incidentally—without instruction to detect patterns. Statistical learning is most

commonly studied within the context of speech segmentation, using the artificial speech

segmentation paradigm (Saffran, Newport, & Aslin, 1996; Saffran, Newport, Aslin,

Tunick, & Barrueco, 1997; Saffran et al., 1996). In this task, learners are exposed to a

continuous speech stream made up of repeating three-syllable nonsense “words” (e.g.,
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bupada + babupu + tutibu ? bupadababupututibu. . .; Saffran et al., 1996, 1996, 1997).

Learners must become sensitive to the co-occurrence statistics between neighboring sylla-

bles—which are higher within words than across word boundaries—in order to discover

the underlying “word” units. After exposure, learning in adult participants is then typi-

cally tested using a forced-choice recognition measure, requiring the discrimination of

words from the exposure steam (e.g., bupada) and nonword foil items (e.g., pubati). If
performance on this forced-choice measure is above chance, statistical learning is

inferred. Reaction times on a speeded target detection task have also been used, which

measure the effects of learning on online processing (e.g., Batterink, Reber, Neville, &

Paller, 2015; Batterink, Reber, & Paller, 2015; Franco, Eberlen, Destrebecqz, Cleeremans,

& Bertels, 2015; Kim, Seitz, Feenstra, & Shams, 2009; Turk-Browne, Scholl, Chun, &

Johnson, 2009). Statistical learning is also studied within the visual domain, using an

analogous paradigm in which participants view a sequence of images or abstract shapes

organized into repeating triplets (e.g., Fiser & Aslin, 2002; Turk-Browne, Jung�e, &

Scholl, 2005).

In sum, the paradigms used to study implicit learning and statistical learning

appear to focus on the same core mechanism—the detection of patterns governing

elements in complex stimulus domains (cf. Reber, in Rebuschat, 2015). Although

these tasks differ in notable ways—including demands on perceptual and motor pro-

cessing, use of auditory versus visual stimuli, and engagement of linguistic versus

nonlinguistic processing—“learning” in all cases is defined as the participants’ ability

to extract regularities in input they are exposed to, without any instruction to do so.

The overall similarities between the paradigms raise the possibility that similar neu-

ral mechanisms and substrates may be involved. In the next section, we review neu-

roimaging studies of healthy learners in order to characterize the specific brain areas

activated in these different learning paradigms, providing a valuable perspective on

the extent to which these different paradigms in these two literatures reflect similar

neural processes.

1.4. Implicit learning paradigms

1.4.1. Artificial grammar learning (AGL)
Neuroimaging studies have implicated a number of different regions in AGL, including

prefrontal cortical areas (most commonly left inferior frontal regions including BA 44/

45), parietal areas, and the basal ganglia (Forkstam, Hagoort, Fernandez, Ingvar, &

Petersson, 2006; Lieberman, Chang, Chiao, Bookheimer, & Knowlton, 2004; Petersson,

Folia, & Hagoort, 2012; Petersson, Forkstam, & Ingvar, 2004; Skosnik, Gitelman, Parrish,

Mesulam, & Reber, 2002). Different authors have focused on different neural regions

when interpreting these widespread activation patterns. For example, activation of left

inferior frontal gyrus or “Broca’s area” has been interpreted as reflecting this region’s

role in linguistic processing, online sequence processing, and sequence learning (Forkstam

et al., 2006; Petersson et al., 2004, 2012). Skosnik et al. (2002) found distinct neural cor-

relates in posterior parietal areas for grammaticality judgments contrasted with letter
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string recognition. This activity was interpreted as the letter strings becoming more word

form like as learning proceeded.

Behavioral evidence in amnesic patients and controls suggests that performance on the

AGL task can be supported by either exemplar-specific “chunk” knowledge that can in

some cases be explicit (i.e., the bigrams and trigrams shared between the strings pre-

sented at training and at test) or by abstract grammatical rule knowledge (Knowlton &

Squire, 1996). Neuroimaging evidence supports this notion of different explicit and impli-

cit sources of knowledge on this task, and additionally suggests that these different

sources of knowledge are supported by different neural substrates, with competitive inter-

actions occurring between these memory systems. For example, Lieberman et al. (2004)

found that test items with higher chunk strength elicited greater hippocampal activation

relative to low-chunk-strength items. In contrast, processing of grammatical compared to

ungrammatical strings (controlling for chunk strength) was associated with increased cau-

date activation. Furthermore, caudate and hippocampal activations were strongly nega-

tively correlated (r = �0.87), suggesting a competitive relationship between basal ganglia

and medial temporal areas. Petersson et al. (2012) also reported strong MTL deactivation,

including the hippocampus, during classification of grammatical items. Again, this activa-

tion was dissociated from chunk strength. This finding converges with the negative corre-

lation between hippocampal and caudate activation reported by Lieberman and

colleagues, and further supports the idea that knowledge of chunk strength—mediated by

the hippocampus—and knowledge of abstract grammar rules—mediated by the caudate—
actively compete with one another during grammatical classification.

Although neuroimaging studies commonly find that the caudate is activated in AGL,

patients with basal ganglia dysfunction due to Parkinson’s disease or Huntington’s disease

show intact AGL performance (Knowlton et al., 1996; Meulemans, Peigneux, & Van der

Linden, 1998; Reber & Squire, 1999; Witt, Nuhsman, & Deuschl, 2002). These findings

suggest that the caudate is not critically involved in AGL. Nonetheless, one possibility is

that the basal ganglia contribute to AGL in healthy participants, but that patients with

impaired basal ganglia functioning may rely on their intact MTL memory system in order

to achieve normal learning on this task (Moody, Bookheimer, Vanek, & Knowlton,

2004). Future studies will be needed in order to conclusively resolve this issue.

1.4.2. Serial reaction time task (SRTT)
In neuroimaging studies, learning of trained sequences relative to untrained sequences

is associated with activation of the striatum as well as cortical areas related to motor

planning (Daselaar, Rombouts, Veltman, Raaijmakers, & Jonker, 2003; Doyon et al.,

1996; Grafton, Hazeltine, & Ivry, 1995; Hazeltine, Grafton, & Ivry, 1997; Rauch et al.,

1995, 1997; Peigneux et al., 2000; Reiss et al., 2005; Seidler et al., 2005). In addition,

early stages of exposure to the sequence are also often accompanied by hippocampal acti-

vation, which decreases gradually over the course of training (Albouy et al., 2008;

Fletcher et al., 2005; Grafton et al., 1995; Rieckmann, Fischer, & B€ackman, 2010; Schen-

dan, Searl, Melorse, & Stern, 2003). Learning success is positively related to activation

in the striatum (Garraux et al., 2007; Peigneux et al., 2000; Rauch et al., 1997; Reiss
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et al., 2005) and to deactivation in the MTL (Albouy et al., 2008; Rieckmann et al.,

2010).

Two explanations have been proposed to account for the time course of involvement

of the MTL in sequence learning (Rieckmann et al., 2010). One suggestion is that the

MTL supports rapid initial acquisition of higher order associations in complex sequences

(Doeller, Opitz, Krick, Mecklinger, & Reith, 2005; Fletcher et al., 2005; Schendan et al.,

2003). This idea is supported by studies showing that the MTL seems to be especially

recruited in complex versions of the SRTT, in which participants are forced to rely on

second-order relationships (Curran, 1997; Schendan et al., 2003; Shanks, Channon,

Wilkinson, & Curran, 2006). The MTL may be involved in making predictions about pos-

sible outcomes (Bornstein & Daw, 2012, 2013); as learning progresses, the associations

between stimuli become more predictable, leading to concomitant decreases in MTL acti-

vation. An alternative explanation is that learning-related disengagement of the MTL is

related to competition or functional suppression between the striatal and MTL memory

systems, consistent with findings from other implicit learning tasks. According to this

view, greater expertise is associated with increased involvement of the striatum and

decreased reliance on the MTL system. This competition idea is supported by several

studies showing that SRTT learning is enhanced when declarative memory function or

top-down processing is disrupted (Brown & Robertson, 2007a,b; Galea et al., 2009;

Nemeth, Janacsek, Polner, & Kovacs, 2013; Virag et al., 2015).

Recently, P. J. Reber and colleagues (Gobel, Parrish, & Reber, 2011; Sanchez, Gobel,

& Reber, 2010; Sanchez & Reber, 2013) developed a modified version of the SRTT, the

Serial Interception Sequence Learning (SISL) task. The SISL task may better encapsulate

implicit learning compared to the standard SRTT, which is commonly accompanied by

evidence of explicit knowledge in healthy participants (Reber & Squire, 1994, 1998;

Willingham, Greeley, & Bardone, 1993). Although the SRTT requires participants to

respond to the onset of stationary cues that appear at fixed intervals, the SISL task

involves making responses at a much more rapid pace, which must be precisely timed to

moving cues. The SISL task is more challenging and requires participants to continually

engage in task performance, potentially leaving them with fewer resources to identify or

memorize the repeating sequence. The idea that response speed makes learning more

likely to be implicit is supported by the finding that decreasing the interval between the

response and the next cue in the standard version of the SRTT selectively impairs explicit

sequence learning (Destrebecqz & Cleeremans, 2001).

The SISL paradigm has been shown to produce robust implicit learning with low levels

of conscious sequence knowledge even in healthy participants (Sanchez et al., 2010). In

addition, providing participants with full explicit knowledge of the repeating sequence

does not impact sequence learning, consistent with the idea that explicit knowledge does

not normally contribute to performance on this task (Sanchez & P. J. Reber, 2013). Inter-

estingly, while performance of known sequences in the SISL paradigm is associated with

increased activity in the basal ganglia—pointing to the importance of this structure across

sequence learning tasks—it does not modulate hippocampal activity (Gobel et al., 2011).

As MTL activation is typically observed in the standard SRTT, this finding tentatively
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suggests that competition between the basal ganglia and MTL systems may not occur

during isolated implicit learning. It also raises the possibility that MTL activation during

the standard SRTT may reflect the acquisition of parallel explicit knowledge of the

sequence that does not actually contribute to implicit learning.

1.4.3. Probabilistic category learning
Neuroimaging studies have demonstrated activation of the basal ganglia, in particular

the striatum, during probabilistic category learning (Aron et al., 2004; Moody et al.,

2004; Poldrack, Prabhakaran, Seger, & Gabrieli, 1999; Poldrack et al., 2001). In addi-

tion, activity was also observed in a broad network of prefrontal, parietal, and occipi-

totemporal cortical regions. Mirroring findings from other implicit learning tasks,

neuroimaging studies of probabilistic category learning also consistently find a decrease

in MTL activation versus baseline (Aron et al., 2004; Moody et al., 2004; Poldrack

et al., 1999, 2001). This finding again suggests a competitive interaction between these

two memory systems.

Particularly relevant to the competition idea is the study by Poldrack et al. (2001),

who used fMRI to compare neural activation during probabilistic category learning under

two different conditions. In the version designed to engage implicit memory (i.e., the typ-

ical version of the task), subjects learned on the basis of trial-by-trial feedback; in con-

trast, in a modified version of the task designed to engage explicit memory, subjects

learned on the basis of category labels, without making a categorization decision. Rela-

tive to the standard task version, the “explicit” version resulted in reduced activation of

the basal ganglia and increased activation of the MTL, indicating that engagement of

these two memory systems is modulated by whether the task encourages use of implicit

or explicit memory strategies. In addition, activity in the MTL correlated negatively with

activity in the striatum across learners. Furthermore, MTL and striatum showed reciprocal

changes over time; the MTL was initially active and the striatum inactive, but as learning

progressed, the striatum quickly became activated while the MTL became deactivated.

These findings suggest that the MTL plays a role in learning during early stages of train-

ing, but that the basal ganglia subsequently “take over” learning, leading to disengage-

ment of the MTL. A similar pattern of results was found by Foerde, Knowlton, and

Poldrack (2006), who compared probabilistic category learning under dual-task versus

single-task conditions. Equivalent levels of learning were found under the two conditions,

but distraction by a secondary task reduced the involvement of the MTL and increased

the involvement of the striatum. These results again point to a competitive interaction

between memory systems during probabilistic category learning, as has been shown for

other implicit learning tasks.

1.4.4. Statistical learning paradigms

We will now turn our attention to what is known about the neural basis of statistical

learning. In contrast to the implicit learning literature, understanding the neural bases of

learning has not been a central focus of statistical learning research. In addition, the field
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of statistical learning as a whole is younger, as can be seen readily by comparing the

publication years for the two seminal papers of each field (Reber, 1967; Saffran, Aslin, et

al., 1996; Saffran, Newport, et al., 1996). Thus, whereas there is a rich and decades-old

literature on the neural mechanisms underlying implicit learning, parallel topics in the

area of statistical learning have only recently come under investigation. Nonetheless,

recent findings from statistical learning seem to converge with previous results from

implicit learning, suggesting additional parallels between these two literatures.

A handful of neuroimaging studies have investigated the neural basis of this type of

statistical learning, contrasting activation evoked by speech streams with repeating words

with that evoked by random syllable streams (Cunillera et al., 2009; Karuza et al., 2013;

McNealy, Mazziotta, & Dapretto, 2006). These studies have consistently found that statis-

tical regularities produce enhanced activation of higher level auditory networks, in

regions that have been previously implicated in auditory and/or linguistic processing, such

as the left superior temporal gyrus and the left inferior frontal gyrus (Broca’s area; BA

44/45), extending to premotor cortex (BA 6; McNealy et al., 2006; Cunillera et al., 2009;

Karuza et al., 2013). In addition, activation of left IFG/ventral PMC correlates with

behavioral performance on postexposure tests of statistical learning (Cunillera et al.,

2009; Karuza et al., 2013).

Thus, statistical learning underlying speech segmentation seems to be at least partially

supported by unimodal auditory cortical regions.

In the visual domain, at least one neuroimaging study has revealed analogous results to

what has been found using the speech segmentation paradigm, showing that processing of

visual statistical structure is associated with enhanced activation in high-level visual net-

works (Turk-Browne et al., 2009). Participants viewed sequences of abstract shapes,

which were either organized into repeating triplets or randomly ordered. Compared to

random blocks, blocks containing visual regularities yielded greater activation in cate-

gory-specific visual regions, namely object-selective lateral occipital cortex and word-

selective ventral occipitotemporal cortex.

Taken together, these results have led to the proposal that statistical learning is largely

supported by modality-specific learning mechanisms (Frost et al., 2015). According to

this view, local computations are performed in separate neural networks in different corti-

cal areas (e.g., visual, auditory, and somatosensory), each of which operates on modality-

specific representations and is governed by its own set of constraints. For example,

because auditory information unfolds over time, the auditory cortex displays greater sen-

sitivity to temporal information. In contrast, relationships between items in the visual

domain can be processed simultaneously, and thus, the visual cortex displays enhanced

sensitivity to spatial information but lower sensitivity to temporal information. This

model of statistical learning is supported by behavioral evidence showing a lack of corre-

lation within individuals across different types of statistical learning tasks (e.g., syllables

versus geometric shapes; Siegelman & Frost, 2015). This idea of modality specificity also

echoes what has been demonstrated for different types of implicit learning—namely, that

implicit learning results from experience directly shaping neural circuits within specific

sensory cortical areas (Reber, 2013).
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Although there appear to be important modality-specific contributions to statistical

learning, some neural regions may play a domain-general role. For example, while the

left IFG (i.e., “Broca’s area”) has been previously implicated in statistical learning of

structured speech as described previously (Cunillera et al., 2009; Karuza et al., 2013;

McNealy et al., 2006), it may also contribute to other types of statistical learning. In the

visual domain, activation of the left IFG was found to correlate with behavioral familiar-

ity with shape triplets (Turk-Browne et al., 2009). In addition, in a nonlinguistic auditory

statistical learning paradigm using tone stimuli, left inferior frontal cortex showed

enhanced activation to structured tone sequences, but not to random sequences of tones

(Abla & Okanoya, 2008). Although the left IFG appears to contain subregions that are

truly language specific, other subregions within this general area may contribute to

domain-general processes, such as the processing and integration of sequential informa-

tion (Fedorenko, Duncan, & Kanwisher, 2012). Interestingly, processing of artificial

grammar rules in the AGL paradigm is also associated with left IFG activation (Forkstam

et al., 2006; Petersson et al., 2004, 2012), suggesting a shared neural basis for the pro-

cessing of structure in AGL and statistical learning tasks.

Neuroimaging evidence also indicates that there are contributions to statistical learning

from domain-general memory systems, notably the striatum and the MTL systems, just as

has been found for diverse types of implicit learning tasks (e.g., Bischoff-Grethe, Martin,

Mao, & Berns, 2001; Lieberman et al., 2004; Rauch et al., 1997; Seger & Cincotta,

2005). Striatal activation has been observed to statistical structure in both the auditory

domain (Karuza et al., 2013; McNealy et al., 2006) and the visual domain (Turk-Browne

et al., 2009). In this latter study, by excluding data from subjects who performed above

chance on the familiarity test, the investigators focused on extracting neural correlates of

implicit statistical learning. Caudate activation (but no hippocampal activation) was

observed even in learners who exhibited no subsequent familiarity, suggesting that this

region may contribute to implicit statistical learning, dissociable from explicit knowledge.

In contrast, when all learners were included in the analysis, both caudate and hippocam-

pal activation were observed. The involvement of the MTL in statistical learning is also

supported by a finding by Schapiro, Kustner, and Turk-Browne (2012). By presenting par-

ticipants with a continuous stream composed of hidden pairs of objects and applying pat-

tern similarity analysis, these authors found that the representations of objects presented

in pairs became more similar to one another after exposure compared to before exposure

in the hippocampus and MTL cortex. The right hippocampus may be particularly impor-

tant for making predictions about upcoming stimuli, as it shows increased activation to

predictive stimuli compared to non-predictive stimuli (Turk-Browne, Scholl, Johnson, &

Chun, 2010).

The observed activation of the MTL system during statistical learning raises the same

question that has been central to the study of implicit learning: Does the MTL play a nec-
essary role in statistical learning, or does activity in this region merely represent the

acquisition of parallel (explicit) representations that do not centrally contribute to learn-

ing? Although a few studies have examined amnesic patients’ performance on statistical

learning tasks, this question cannot yet be answered conclusively. Schapiro, Gregory,
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Landau, McCloskey, and Turk-Browne (2014) found that patient LSJ, who suffered com-

plete bilateral hippocampal loss and broader MTL damage, showed widespread deficits in

statistical learning across a range of visual and auditory stimuli (Schapiro et al., 2014).

However, given that many normal, healthy participants also do not show above-chance

performance on statistical learning tasks (e.g., Siegelman & Frost, 2015), it is difficult to

unambiguously attribute patient LSJ’s deficits to neurobiological impairment. Building on

this work, Covington, Brown-Schmidt, and Duff (2018) studied a larger group of patients

with MTL damage and reported that patients exhibit less learning overall compared to

healthy controls. Nonetheless, these patients still exhibited above-chance learning, and

their performance fell within the distribution of healthy participant performance. In addi-

tion, lesion size did not reliably predict performance. These results suggest that the hip-

pocampus may contribute to statistical learning but is not strictly necessary for statistical

learning to occur. Thus, the question of whether the MTL is necessary for statistical

learning has not been conclusively resolved and awaits further investigation.

To summarize this small but growing literature on the neurobiological basis of statisti-

cal learning, there appear to be both modality-specific and domain-general neural mecha-

nisms that contribute to learning. One class of findings indicates that statistical learning

occurs within modality-specific sensory cortical areas, according to the stimuli presented

during learning. For example, visual sequences activate higher level visual cortex,

whereas word segmentation tasks activate higher level auditory areas. In addition, statisti-

cal learning also appears to be supported by domain-general memory systems that are

involved regardless of stimulus modality. Both the striatum and MTL are activated to sta-

tistical structure across different modalities (audition and vision). This finding corre-

sponds to what has been observed across many different types of implicit learning tasks

—that multiple memory systems may be active under normal learning conditions in

healthy learners, acquiring separate representations in parallel.

Using these findings as a point of departure, in the next section, we consider some out-

standing questions and potential directions for future research on the neural bases of sta-

tistical learning and implicit learning. Many of the same methods, research questions, and

conceptual approaches that have been productive in one field may be equally valuable

when applied to the parallel research field (e.g., applying implicit learning concepts to

statistical learning and vice versa).

2. Directions for future research

2.1. Statistical learning

2.1.1. Testing interactions between memory systems over the course of exposure
One important acknowledgment that has driven progress in the field of implicit learn-

ing is that implicit and explicit learning systems often operate in parallel in healthy learn-

ers, sometimes competing and sometimes interacting. In the domain of language learning,

it has also been proposed that these two types of memories contribute and interact (e.g.,
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Ullman, 2004, 2005). Given neuroimaging evidence demonstrating both hippocampal and

striatal involvement in the same statistical learning task (e.g., Turk-Browne et al., 2009),

interactions between these two different memory systems may also play a role in statisti-

cal learning generally, with different neural systems engaged at different points in time
throughout the learning process. One possibility is that the hippocampus may contribute

to statistical learning early during the exposure period, consistent with its role in making

predictions about upcoming stimuli (Bornstein & Daw, 2012, 2013; Turk-Browne et al.,

2010). As learning progresses, the striatum may become more involved, while the hip-

pocampus becomes disengaged. Such a finding would echo results from different implicit

learning tasks showing reciprocal engagement of these two memory systems over the

course of learning (e.g., Albouy et al., 2008; Fletcher et al., 2005; Poldrack et al., 2001).

Future neuroimaging studies may address this idea by using more fine-grained mea-

sures to assess the time course of learning over the exposure period. To specifically target

learning-related neural changes, time-course information could be combined with behav-

ioral measures of learning collected over the exposure period, using approaches such as

concurrent RT tasks (e.g., Batterink, 2017; Siegelman et al., 2017; Turk-Browne et al.,

2010) or intermittent offline testing (Karuza et al., 2013). This sort of paradigm would

allow for the assessment of whether reliance on one system over the other—across expo-

sure or potentially even at different stages of exposure—predicts behavioral performance

on tests of statistical learning. If positive evidence indicates that one memory system is

optimally suited for extracting structure from the environment, a further step would be to

test whether inhibiting the competing memory system enhances statistical learning, as has

sometimes been found for different types of implicit learning tasks (e.g., Filoteo,

Lauritzen, & Maddox, 2010; Foerde et al., 2006; Galea et al., 2009; Nemeth et al., 2013).

2.1.2. The role of the hippocampus in statistical learning
A related outstanding question with many parallels to the implicit learning literature is

whether the hippocampus plays a necessary, causal role in statistical learning, or whether

it merely acquires nonessential or redundant (explicit) knowledge in parallel. Yet a third

possibility is that statistical learning may operate on declarative, MTL-dependent memory

representations. Under this scenario, explicit memory traces would be initially acquired

by the MTL system, with statistical learning mechanisms then operating on these repre-

sentations to guide behavior (without necessarily requiring awareness).

As described previously, evidence from two prior studies suggests that patients with

MTL damage on average perform more poorly on statistical learning tasks than healthy

controls, including a case study failing to find above-chance performance (Covington

et al., 2018; Schapiro et al., 2014). However, a potential limitation of these two studies is

the use of only an offline recognition measure to assess learning. One possibility is that

MTL patients show intact statistical learning when assessed through implicit measures,

but they are impaired at tests involving explicit recognition, similar to dissociations that

have been found for implicit learning (e.g., priming versus recognition; e.g., Keane et al.,

1997; Goshen-Gottstein et al., 2000). To test this hypothesis, learning in these patients

could be assessed using more implicit measures, such as RTs (Batterink & Paller, 2017;
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Batterink et al., 2015, 2015; Siegelman et al., 2017), statistically induced chunking recall

(Isbilen, McCauley, Kidd, & Christiansen, 2017), or EEG-based neural entrainment to the

underlying structure (Batterink & Paller, 2017). The use of neural measures (e.g., EEG or

fMRI) in these patients could also potentially reveal evidence of learning even in the

absence of above-chance recognition performance (cf. Turk-Browne et al., 2009). In addi-

tion, neural measures would allow for direct comparisons of learning in patients and

healthy controls, circumventing the potential confound of impaired retrieval and recogni-

tion processes in the patient group. Clarifying the role of the hippocampus in statistical

learning would also provide important evidence on hippocampal computations, potentially

contributing to the growing body of work demonstrating hippocampal involvement across

a wide range of diverse tasks (e.g., Duff & Brown-Schmidt, 2017; Greene, Gross,

Elsinger, & Rao, 2006, 2007; Rubin, Watson, Duff, & Cohen, 2014; Westerberg, Miller,

Reber, Cohen, & Paller, 2011).

2.1.3. Understanding components of statistical learning
Evidence about the neural basis of statistical learning may also help to test current the-

oretical models and to better understand the substantial variability seen in statistical learn-

ing performance. As has been previously noted, individual performance on postexposure

statistical learning tasks varies substantially, with at least one-third of a sample often fail-

ing to perform the task at above-chance levels (Frost et al., 2015; Siegelman & Frost,

2015). While statistical learning is often conceptualized as a single process, it in fact

involves multiple dissociable neurocognitive components, and this individual variability

in performance may be driven by differences in any number of these components.

This idea has been discussed previously in a number of different forms. For example,

Frost et al. (2015) propose the individual variance in statistical learning performance can

be split into two main sources: (1) ability to encode representations of individual ele-

ments in a stream, within the presentation modality and (2) ability to compute the distri-

butional properties of the encoded representations (e.g., the transitional probabilities

between syllables). Karuza and colleagues (2014) describe four essential components to

statistical learning: (1) sensory input encoding, (2) pattern extraction, (3) model building,

and (4) retrieval/recognition. Similarly, we have recently proposed that statistical learning

in the context of speech segmentation can be dissociated into (1) “word identification,”

involving a transition from the perception and encoding of raw individual syllables to lar-

ger integrated words, and (2) subsequent memory storage and memory retrieval (Batterink

& Paller, 2017). Regardless of how exactly these different processes are divided or

described, logically they must all contribute to behavioral evidence of learning on postex-

posure tests. However, offline measures can only weigh in on whether that learning has

(or has not) ultimately occurred, and they cannot dissociate these conceptually distinct

components of learning.

In contrast, neural measures of learning have the potential to provide insight into the

actual learning process itself, rather than merely the outcome of learning. Thus, these

measures may allow us to empirically dissociate theoretically derived components of sta-

tistical learning and to identify their underlying neural mechanisms. For example, we
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previously used an EEG-based measure of neural entrainment to track statistical learning

online, during exposure. This measure also allowed us to separate the “word identifica-

tion” component of statistical learning—that is, the perceptual binding of individual sylla-

bles into component words—from subsequent memory-related retrieval processes

(Batterink & Paller, 2017). In future studies, these sorts of neural measures of online sta-

tistical learning could be synergistically combined with experimental manipulations

designed to tease apart these different components of learning. As an illustration,

Bogaerts, Siegelman, and Frost (2016) independently manipulated exposure duration and

transitional probabilities to dissociate individual item encoding from higher order compu-

tations of distributional properties. These experimental manipulations impacted perfor-

mance on an offline forced-choice recognition measure and may also impact neural

signatures of learning in highly specific ways. For example, manipulations designed to

target item encoding may modulate learning effects in sensory cortex, whereas manipula-

tions that influence the computation of transitional probabilities may influence the neural

signatures of learning in domain-general memory systems. Thus, understanding the neural

basis of statistical learning may provide a powerful platform to tease apart different theo-

retical components of statistical learning.

2.1.4. Neural measures as sensitive indices of learning
Neural measures of statistical learning also hold great promise as tools to track learn-

ing in populations where behavioral responses may not be easily acquired. Using fMRI,

Turk-Browne et al. (2009) found neural signatures of learning in the striatum even in

observers who exhibited no subsequent explicit familiarity, suggesting that neural mea-

sures may provide more sensitive indices of learning than traditional behavioral measures.

Online EEG-based neural entrainment (Batterink & Paller, 2017) could also potentially

be used to track statistical learning without requiring a behavioral response. These types

of measures could be used to assess statistical learning in different patient populations

(e.g., hippocampal amnesia and Parkinson’s disease), under different conditions of con-

sciousness (e.g., sleep or anesthesia) and in different age groups (e.g., very young

infants). By providing continuous data sampled over the exposure period, neural measures

can also be used to track the time course of learning, rather than merely providing an

assessment of the final outcome of learning.

2.2. Implicit learning

On the other side of the coin, insights from statistical learning research may also be

applied to the field of implicit learning. Non-univariate neuroimaging methods such as

representational similarity analysis (e.g., Schapiro et al., 2012, 2013) and functional con-

nectivity analyses (Karuza et al., 2017) have recently been applied to understand statisti-

cal learning (2012), and they may be equally informative for understanding implicit

learning. As previously described, using pattern similarity analyses, Schapiro et al. (2012)

found that the representations of objects presented in pairs became more similar to one

another in the hippocampus and MTL cortex after exposure to a structured visual stream.
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A similar approach may be applied to implicit learning paradigms such as the AGL or

weather prediction tasks to investigate whether similar MTL-mediated mechanisms may

drive learning. For example, in the AGL task, letters or strings that occur together more

frequently during training may come to be represented more similar to one another in the

hippocampus, supporting a chunk-based model. An alternative (though not mutually

exclusive) possibility is that grammatical sequences will be represented more similar to

one another than ungrammatical sequences as a consequence of learning, reflecting

abstract grammatical knowledge independent of chunk strength.

Other non-univariate neuroimaging methods such as functional connectivity analyses

have also been used to explore neural changes associated with statistical learning. In a

spatial statistical learning task, decreases in task-based connectivity were reported over

the course of exposure to structured input, with greater decreases predicting better postt-

est performance (Karuza et al., 2017). Similar analyses could be applied to a variety of

implicit learning paradigms to understand how changes in connectivity among different

brain regions may support learning. Overall, taking advantage of continued advances in

neuroimaging will provide additional insights into different learning mechanisms that

drive performance in the various implicit learning tasks.

3. Conclusions

The neural events underlying implicit learning and statistical learning appear to share

many commonalities. At the same time, these two fields have separate and distinct histo-

ries, and understanding these different trajectories and research approaches is critical to

fostering synergy and continued progress in both areas. These separate research histories

argue against the idea that these two terms may be combined under a single construct of

“implicit statistical learning.” Moving forward, we suggest that a reasonable approach to

aligning these two strands of research is to discuss each type of learning by experimental

paradigm, with an acknowledgment that learning across these different paradigms can

often involve both declarative and nondeclarative memory systems in healthy learners. In

this way, the term “implicit learning” may continue to be used to refer to learning “with-

out awareness of the products of learning” (Frensch & Runger, 2003, p. 14), which may

potentially emerge in any of these experimental paradigms, including the canonical triplet

segmentation task typically used to study statistical learning as traditionally defined.

By taking advantage of what is currently known about the neural bases supporting

learning in all of these related experimental paradigms, we may continue to make pro-

gress in these two historically separate fields of statistical learning and implicit learning.

In particular, many decades of research have sought to uncover the neural mechanisms of

implicit learning; however, in comparison, parallel research in the field of statistical

learning is still in its infancy. To reach a better understanding of statistical learning,

future research may help clarify issues such as how memory systems interact over the

course of learning, and how the hippocampus may play a critical role. In addition, neural

measures may yield valuable insight into theoretically dissociable components of
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statistical learning, provide sensitive indices of learning to supplement behavioral mea-

sures, and track the time course of learning. By the same token, research using implicit

learning paradigms may also benefit from recent advances in neuroimaging methods,

which have already been successfully applied to shed light on statistical learning mecha-

nisms. By continuing to align these two strands of learning research, we will be in a bet-

ter position to characterize the neural systems that support the core human ability to

acquire patterns in the environment, helping us to understand the neurocognitive mecha-

nisms that underlie a wide variety of cognitive abilities.
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