Known universe + dreaming + complex cognitive procedural memory

Sleep Consolidates Perceptual Learning

- Sara Mednick
- Vipul Patel
- Beth Schirmer
- Dana Whidbee
- LaTanya James

Summary

- No improvement is seen until after sleep
 - Improvement increases over days without intervening rehearsal
 - Sleep is required within 30 hrs of training

Time Course of Improvement

Summary

- No improvement is seen until after sleep
 - Improvement increases over days without intervening rehearsal
 - Sleep is required within 30 hrs of training
 - Improvement requires both SWS and REM
Learning Across the Night

Quartile

Pearson r-value

-0.2
0.0
0.2
0.4
0.6
0.8
1
2
3
4

SWS

p = 0.05

REM

•

No improvement is seen until after sleep

• Improvement increases over days without intervening rehearsal

• Sleep is required within 30 hrs of training

• Improvement requires both SWS and REM

• Performance deteriorates without sleep

• Naps can stop deterioration

• Naps with REM lead to improvement

Summary

Sleep Consolidates Motor Learning

• Matthew Walker

• Tiffany Brakefield

• Alexandra Morgan

Training

Stabilize

SWS

Enhance

REM

Learning Rate Saturates Rapidly

Summary

• Improvement is seen after sleep

• Seen over 12, 24, or 48 hr if there is a night of sleep

• Is not seen after 12 hr without sleep, or after 48 hr with no sleep the first night
Summary

- Improvement is seen after sleep
 - Seen over 12, 24, or 48 hr if there is a night of sleep
 - Is not seen after 12 hr without sleep, or after 48 hr with no sleep the first night
- New sequence can produce interference
 - Only affects overnight improvement
 - Seen at 16" but not at 6 hr or 24 hr
Summary

- Improvement is seen after sleep
 - Seen over 12, 24, or 48 hr if there is a night of sleep
 - Is not seen after 12 hr without sleep, or after 48 hr with no sleep the first night
- New sequence can produce interference
 - Only affects overnight improvement
 - Seen at 10 hr but not at 6 hr or 24 hr
 - Seen at 24 hr with restimulation, but effect only seen over next night

Sleep and Memory Disorders

- Dara Manouch
- Ed Pace-Schott
- Bob Malison

Is Category Learning Sleep-Dependent?

n=12; PD mild, medicated, no dementia

Associate Memory is Altered During Sleep

Attention Randy O’Reilly: Top-down biasing on posterior cortex tasks?

Semantic Priming

- Cindi Rittenhouse
- Jen Holmes
- Beth Schirmer
- Lauri Scott
Episodic Memories are **NOT** Replayed in (most) Dreams

Two-week dream journals

- Magdelena Fosse
- Roar Fosse

New Experiences are Replayed at Sleep Onset

Hypnagogic dreams

- April Malia
- Denise Maguire
- David Roddenberry
- Karen Emberger
- Laura Babkes

Dream Sources & Episodic Replay

<table>
<thead>
<tr>
<th>Criterion</th>
<th>Subjects</th>
<th>Reports</th>
<th>Elements</th>
</tr>
</thead>
<tbody>
<tr>
<td>All reports with content</td>
<td>29</td>
<td>299</td>
<td>-</td>
</tr>
<tr>
<td>Elements with waking sources</td>
<td>27</td>
<td>194</td>
<td>364 (100%)</td>
</tr>
<tr>
<td>Episodic sources</td>
<td>22</td>
<td>104</td>
<td>147 (89%)</td>
</tr>
<tr>
<td>+ conserved location</td>
<td>17</td>
<td>31</td>
<td>36 (100%)</td>
</tr>
<tr>
<td>+ other conserved features</td>
<td>9</td>
<td>14</td>
<td>12 (63%)</td>
</tr>
<tr>
<td>+ judged episodic replays</td>
<td>4.6</td>
<td>5.8</td>
<td>5.8 (1-2.5)</td>
</tr>
</tbody>
</table>

Alpine Racer II

Skiing imagery
- 14 out of 16 players (88%)
- 42% of first night reports contain skiing imagery
- 3 out of 3 controls who only watched

Kinesthetic imagery
- 11 players (69%)
- 1 control (33%)
Alpine Racer Images

“I keep seeing all the places where I fall—like, hit the walls. It’s kind of annoying, and then my legs fly up in the air.” (SEC)
“I can sort of feel the motions of the game but more not really seeing it.” (MLC)
“I envisioned myself skiing, and for a second there it felt like I was skiing backwards—something I used to attempt when I was younger.” (CMD)

Delayed Onset Reporting

Delayed Onset Reports

“I felt as though I was falling downhill. And I was dreaming about like instructions to a young king or something.” (JAV, qst 4)
“I felt like I was sort of sliding downhill again. And, um ... there were instructions and a person and uh, I don’t know.” (JAV, qst 6)
*I was having a rather vivid image as though I was moving forward through some kind of a forest ... I was moving forward very stiffly. Um, my entire upper body was incredibly straight ... it felt almost as if I was moving forward on a conveyor belt, and, without my legs actually moving.” (MAM, qst 8)
“There was a squirrel making skiing motions”

Conclusion

I used to glibly say that everyone knows sleep is involved in memory processing, except people studying sleep and people studying memory. This has changed, but often begrudgingly.

If I could convince you of one thing today, it would be that the cutting edge of memory research is now bound up with the question of sleep. This is not the only place where exciting memory research is occurring, but it represents an area where finding questions are being answered that we didn’t even know to ask. And this is the best kind of place to be.
Training

\[v = SWS_1 \times REM_4 \]

Fatigue and Napping

Overtraining on TDT

- Dan Luskin
- Sara Mednick
- Neha Pathak
- Alicia Levin

Big Ones

- How are episodic and other declarative memories processed during sleep?
- What role do emotions play in regulating sleep-dependent memory processes?
- How are associative memory networks altered, both temporarily and more permanently during sleep?
- What role does sleep play in the development of hippocampus-independent memories?
- How are emotionally charged memories selectively reactivated prior to sleep onset?
- And what about dreams?

Dreams

- How does dreaming (and/or the biological processes subserving it) affect memory systems?
- What classes of memories are activated during dreaming?
 - Why aren’t episodic memories reactivated?
 - Does a failure of this suppression contribute to PTSD?
- How are memories selected and how are associated memories subsequently used to construct a dream?
- What function(s) are the brain pursuing during dreaming?
 - What happens when we “sleep on a problem”?
 - How dependent is the maintenance of our larger memory systems on these brain processes which produce dreaming?
The Chemistry and Physiology of the Brain Change Across the Night

A Good Night’s Sleep

Sleep Physiology

Neuromodulation Varies Across the Wake-Sleep Cycle

<table>
<thead>
<tr>
<th></th>
<th>Active Wake</th>
<th>Quiet Wake</th>
<th>SWS</th>
<th>REM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ach</td>
<td>++</td>
<td>+</td>
<td>−</td>
<td>+++</td>
</tr>
<tr>
<td>NE</td>
<td>++</td>
<td>+</td>
<td>+</td>
<td>−</td>
</tr>
<tr>
<td>5-HT</td>
<td>++</td>
<td>+</td>
<td>−</td>
<td>−</td>
</tr>
</tbody>
</table>

Ach: acetylcholine
NE: norepinephrine (noradrenalin)
5HT: serotonin

Regional Activation in REM Sleep

Hippocampal-Neocortical Dialog