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Abstract

A LIFT measure, such as the response rate, lift, or the percentage of cap-

tured response, is a fundamental measure of effectiveness for a scoring rule

obtained from data mining, which is estimated from a set of validation data.

The LIFT measures are related to the ROC (Receiver Operator Characteris-

tic), but there exist some important differences. In this paper, we study how

to construct confidence intervals of the LIFT measures. We point out the dif-

ficulty of this task and explain how simple binomial confidence intervals can

have incorrect coverage probabilities, due to omitting variation from the sam-

ple percentile of the scoring rule. We derive the asymptotic distribution using

some advanced empirical process theory and the functional delta method in

∗Technical Report 14-02, Department of Statistics, Northwestern University.
†Wenxin Jiang is Professor of Department of Statistics, Northwestern University, Evanston,

IL 60208 (email: wjiang@northwestern.edu); and Yu Zhao is Statistician at Amazon (email:

yuzhaonwu@gmail.com).

1



Appendix B. The additional variation is shown to be related to a conditional

mean response, which can be estimated by a local averaging of the responses

over the scores from the validation data. Alternatively, a subsampling method

is shown to provide a valid confidence interval, without needing to estimate

the conditional mean response. A simple nonparamatric boostrap confidence

interval can also be used. Numerical experiments are conducted to compare

these different methods regarding the coverage probabilities and the lengths

of the resulting confidence intervals.

Keywords: bootstrap, confidence interval, empirical process, functional delta

method, LIFT, local average, %response, ROC (Receiver Operator Character-

istic), subsampling, validation data

1 Introduction

In data mining, predictive models can be used to detect the likely responders to mar-

keting campaigns. The capability of a predictive model to capture the responders

can be evaluated by a number of measures on the validation data. For example,

SAS Enterprise Miner, a popular data mining software, is capable of presenting var-

ious kind of “LIFT charts”, which is actually a general name that includes lift,

%response, and %captured.response, among others, for describing the effectiveness

of a predictive model in identifying responders, and also for comparing different pre-

dictive models (SAS Institute, 2003). For example, a predictive model (say, logistic

regression, or neural network) is used to rank the subjects in the validation data

according to a score, which can be related to an estimated probability of responding

to a marketing campaign. A measure such as the %response is then computed in

SAS from a fixed percentage, say, 100r% of validation data (r ∈ (0, 1)), where the
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predictive model scores above a corresponding cut-off point c̃r estimated from the

validation data. Figure 1 presents such a performance measure lift (for a logistic

regression model) plotted against the 10 decile values of r ∈ {0.1, 0.2, 0.3, ..., 1.0}, on

a validation data set explained in more detail in Section 6.

Despite their decade-long popularity in data mining practices, the LIFT measures

have not been studied very thoroughly in a statistical perspective. For example, a

recent literature review on “Confidence interval of lift” provided little relevant work,

and SAS Enterprise Miner still does not include the option of confidence intervals for

the LIFT measures in a typical output such as Figure 1. The current paper attempts

to fill this void and enable the users to add valid confidence intervals to Figure 1.

We will illustrate this with a real data application in Section 6.

The problem of finding a confidence interval, for example, for %response, may

be deceptively simple, since the parameter can be estimated by a sample proportion,

which would suggest a binomial confidence interval. However, we will show that the

proper solution will turn out to be much more complicated. Binomial confidence

intervals would not be appropriate to account for all the inherent variations, since

the sample proportion turns out to be not computed over statistically independent

subjects - these subjects all have model scores above a common cut-off point esti-

mated from the entire validation sample. We need to deal with the extra variation of

the cut-off point c̃r, of the 100r% top model scores, as estimated from the validation

sample. This turns out to be a mathematically challenging task, since a parameter

such as %response will be shown to be a discontinuous function of the estimated

cutoff point. We will use some advanced empirical process theory and the functional

delta method in Appendix B to derive the asymptotic distribution properly.

The phenomenon of improper coverage of the binomial confidence intervals was

first reported in Rosset et al. (2001), which is the only reference directly related
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to our paper. Their paper studied the behavior of binomial confidence intervals

for a LIFT measure (%captured.response), and found empirically that the they are

overly conservative and too loose compared to the bootstrap confidence intervals.

Since the emphasis of their paper is different (on the effect of sampling balance on

the measures), there empirical finding was not very noticeable and was placed in a

very short subsubsection (Rosset et al. 2001, Section 3.2.3 and Table 2).

Our paper will provide a theoretical explanation to the empirical phenomenon

reported in Rosset et al. (2001). We focus on how to derive a correct asymptotic

theory to account for the additional sources of variations in the confidence intervals.

Although little previous work was done on the asymptotic distributions and the

confidence intervals of the LIFT measures, there have been extensive studies on

a related performance measure ROC (Receiver Operator Characteristic), which is

commonly used in medical diagnosis (see, e.g., Ma and Hall 1993; Hsieh and Turnbull

1996; Hall et al. 2005ab; Horváth et al. 2008; Su et al. 2009). Our theoretical work

is most related to the theoretical works of Hsieh and Turnbull (1996) and Hall et al.

(2004) on ROC. The relations and differences, as well as some other related works,

are described in more details in a separate subsection (Section 2.3) later.

The following is an outline of this paper. In Section 2, we first define various

LIFT measures used in SAS and point out how these LIFT measures are related to

each other, and how they are estimated in data mining practices using a validation

data set. We then discuss the relation and difference between the LIFT measures and

ROC measures and discuss some related works in Section 2.3. Then in Section 3, we

describe the asymptotic distributions of the validation sample estimates of the LIFT

measures. The asymptotic variances are shown to be related to a mean response

conditional on the score at the cutoff point. At this point, two different approaches

are considered to derive confidence intervals (in Section 4): One uses a local averaging
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method to estimate the conditional mean parameter, the other uses a subsampling

method to bypass the step of local averaging. Simulations are conducted in Section 5

to compare the coverage probabilities and the lengths of the confidence intervals

obtained from the binomial method, the local averaging method, and the subsampling

method. A real data application is described in Section 6. Appendix A describes

how to extend our theory to compute confidence intervals that are simultaneously

valid for all the deciles r. Technical proofs and more general distributional results

based on empirical processes are included in Appendix B.

The current paper focuses on the large sample asymptotics, which is certainly

very appropirate in the current era of big data. For smaller sample sizes, some

adjustment on the variance estimation can lead to further improvements. These

details are included in Section 8, which also has included a nonparametric bootstrap

method in the numerical comparisons.

2 Lift measures

2.1 Notation and definitions

Before proceeding, we introduce some mathematical notation. Let Y ∈ {0, 1} be

the random response variable which will be 1 if a subject responds to the marketing

campaign and 0 if otherwise. Let X be a random input vector, which can include

demographic variables or household status variables that can be used to predict the

response. Let S = S(X) be a scalar function of X used to score the subjects. This

score S in the ideal case would be the same as the response probability P (Y = 1|X),

but in practice an estimated version (from a training data set based on logistic re-

gression, neural networks, or a decision tree, for example) of the response probability

(or its monotone transformation) is often used instead. In this paper we will not
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investigate how S is obtained, but only consider how it performs once the scoring

rule S(X) is given. Therefore, sometimes it may be simpler to directly treat S as a

random variable of interest and consider the joint distribution for (Y, S), instead of

for (Y,X).

Consider a marketing campaign that aims to contact the top 100r% (r ∈ (0, 1)) of

the subjects according to score S. Correspondingly, we define an “action indicator”

A = I(S > c) whose expectation is EA = r. Here an individual would be contacted

by the marketing campaign if and only if its action value A = 1. The parameter c is

a cutoff for the score S, which is the 100(1− r)% percentile of S. The performance

of the scoring method S can be described by the following LIFT measures:

(i) π ≡ %response = P (Y = 1|A = 1) = E(Y A)/EA = E(Y A)/r which measures

the percentage of responders among all the contacted people;

(ii) κ ≡ %captured.response = P (A = 1|Y = 1) = E(Y A)/EY which measures

the percentage of contacted people among all people who would respond;

(iii) lift = P (Y = 1|A = 1)/P (Y = 1) = E(Y A)/(EY EA) which is the ratio of

the %response achieved by action A and the baseline %response P (Y = 1);

(iv) expected.profit = Eg(Y,A), according to some pay-off function g(., .).

All these measures can be shown to be a monotone function of %response and

can be regarded as equivalent. So, for example, for any two actions A1 and A2,

lift(A1) > lift(A2) if and only if %response(A1) > %response(A2), since lift =

%response/EY . Likewise, %captured.response = (r/EY )%response, and expected.profit =

r[(g(1, 1) + g(0, 0) − g(1, 0) − g(0, 1)) · %response + g(0, 1) − g(0, 0)] + [(g(1, 0) −

g(0, 0))EY + g(0, 0)] are also monotone in %response. These relations immediately

imply the following result:
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Proposition 1 For two actions A1 and A2 with the same percentage of contacted

population EA1 = EA2 = r > 0, we have

%response(A1)

%response(A2)
=

%captured.response(A1)

%captured.response(A2)
=
lift(A1)

lift(A2)
,

whenever these ratios are finite.

2.2 Estimated LIFT measures from the validation sample

The quantities defined above are population quantities related to an unknown target

population. In practice, all these quantities will need to be estimated on a sample

(validation data). We will replace all P by P̃ , E by Ẽ, where tilde denotes the

empirical version of the corresponding measure for the validation sample. Therefore,

for example, Ẽg(Y,A) = m−1
∑m

i=1 g(Yi, Ai) for a validation sample (Yi, Si)
m
i=1 with

size m, which are assume to be iid (independent and identically distributed) with

(Y, S). In particular, the cut-off parameter c will be estimated by c̃, which is the

100(1−r) sample percentile. The corresponding estimated action rule is Ã = I[S > c̃]

with sample probability Ẽ(Ã) = r1. Then π = %response is estimated by

π̃ = Ẽ(Y Ã)/ẼÃ, (1)

where Ẽ(Ã) = r and Ẽ(Y Ã) = m−1
∑m

i=1 YiI(Si > c̃).

2.3 Relation to the literature on ROC

The LIFT measures are intimately related to the ROC, but there exist some impor-

tant differences. Using a notation similar to Hsieh and Turnbull (1996) and Hall et

1The two sides of this equation can actually be slightly different if r is not divisible by m.

However, we will ignore this difference in the notation for simplicity, since the size of the difference

is at most 1/m and does not change asymptotics in the leading order Op(1/
√
m).
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al. (2004), the ROC measures the True Positive rate 1 − F1(s) = P (S > s|Y = 1)

for a given False Positive rate p = 1 − F0(s) = P (S > s|Y = 0). Therefore the

ROC function can be expressed as ROC = 1 − F1 ◦ F−10 (1 − p). This is similar to

a LIFT measure %captured.response = P (S > c|Y = 1), which can be expressed

as %captured.response = 1 − F1 ◦ F−1(1 − r) where r = 1 − F (c) = P (S > c) is

the percentage of contacted population. In data mining, the later approach is more

natural, since it is more natural to examine the performance against r (the percent-

age of contacted population due to a limited budget), say, in a marketing campaign,

than to control the false positive rate p.

Our estimates of the LIFT measures in Section 2.2 are based on the empirical

distribution from the validation sampl, similar to Hsieh and Turnbull (1996) in the

ROC literature. Although the kernel-smoothed estimate by Hall et al. (2004) may

also be used in principle, we use the simplest empirical distribution estimate here,

since this is currently the prevalent practice in data mining softwares.

There are many methods to construct confidence intervals and simultaneous con-

fidence bands for ROC measures, see a good literature review and an extensive

numerical comparison of the performances by Macskassy et al. (2005a,b). For non-

parametric estimates of the ROC measures, the asymptotic distribution theory is

given by, e.g., Hsieh and Turnbull (1996), and pointwise confidence intervals are

provided by, e.g., Hall et al.(2004).

Our situation has some important differences from that of Hsieh and Turnbull

(1996) and Hall et al.(2004). Their nonparametric estimates of the two distribu-

tions F0 and F1 are assumed to be independent, since they correspond to mutually

nonoverlapping populations with Y = 0 and Y = 1, respectively. This is used in

their derivation of a first order approximation in a sum of two independent compo-

nents. On the other hand, our estimates of F and F1 are not independent, since F
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is the distribution of the combined population. In addition, Y is generally regarded

as random in data mining, and some other LIFT measures, such as the %response,

are not only related to the two distributions F1 and F as is the %captured.response,

but also related to the mixing proportion P (Y = 1).

In this paper, we focus on asymptotic distributions for estimated LIFT measures

with a given contacted proportion r, and provide methods for constructing pointwise

confidence intervals (similar to those of Hall et al. 2004). However, we also outline

in Appendix A how to derive confidence intervals that are simultaneously valid for

all decile values of r. In addition, a joint asymptotic distribution for the entire LIFT

curve estimate (similar to Hsieh and Turnbull 1996 in the context of ROC) is also

provided in Appendix B.

3 Asymptotic distribution for the estimated LIFT

measures

In general, below we will denote θ for any of the four LIFT measures and θ̃ as its

validation sample estimate.

We will consider how to construct a pointwise confidence interval for θ based

on the validation sample estimate θ̃. We show that for large m, θ̃ converges in

distribution to a normal distribution N(θ, var(θ̃)). The computation of asymptotic

variance var(θ̃), however, is not as straightforward as it looks. For example, although

the estimated %response π̃ = Ẽ(Y Ã)/ẼÃ can be regarded as a sample proportion

of individuals with Y = 1 out of all individuals being contacted (with Ã = 1), it is

not proper to use a binomial distribution to compute its variance, since Ã depends

on an estimated cutoff c̃, which is the (1− r)th empirical quantile of the scoring rule

S, dependent on all m random individuals. The terms being averaged in Ẽ(·) are
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therefore no longer independent. Moreover, the estimator

π̃ = m−1
m∑
i=1

YiI(Si > c̃)/r ≡ G̃(c̃)/r

depends on c̃ in a discontinuous way, so G̃′(c) does not exist, and we cannot use the

usual δ technique to derive the asymptotic distribution based on a first order Taylor

expansion in c̃. We will use the functional delta method (as described in, e.g., Section

3.9, van der Vaart and Wellner 1996) to solve this problem. The key observation is

that although π̃ is not continuous in c̃, it is differentiable (in Hadarmard’s sense) as

a functional of the empirical process G̃ and the empirical quantile process c̃, at the

limiting points of these empirical quantities, and we can essentially do a functional

delta method to derive the asymptotic distribution of π̃ from the joint distribution

of G̃ and c̃. We will show the derivation of the following results in Appendix B.

Proposition 2 Assume that P (Y = 1) > 0, and that the conditional probability

densities p(S|Y ) exist and are positive and continuous differentiable in a neighborhood

of S = c, for Y = 1 and Y = 0. Then we have the following results: for any of

the four LIFT measures θ, as m → ∞, the sample LIFT measure θ̃ converges in

distribution to a normal distribution N(θ, var(θ̃)), where

var(θ̃) = m−1var(H) = m−1E(H − EH)2,

where H = (Y − Λ)(aA+ b),

A = I(S > c), S is a score, c is the cutoff such that r = EI(S > c), r ∈ (0, 1),

and the symbol Λ denotes the conditional mean Λ = E(Y |S = c),.

The parameters (a, b) take different values for the four LIFT measures:

(i) For θ = %response, use (a, b) = (r−1, 0);

(ii) For θ = %captured.response, use (a, b) = ((EY )−1,−(EY )−1%captured.response);

(iii) For θ = lift, use (a, b) = ((rEY )−1,−(rEY )−1%captured.response);
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(iv) For θ = expected.profit = Eg(Y,A), use (a, b) = (g(1, 1) + g(0, 0) − g(1, 0) −

g(0, 1), g(1, 0)− g(0, 0)).

Remark 1 In practice, the deciles used are r ∈ {0.1, 0.2, 0.3, ..., 0.9, 1.0}, and the

last point r = 1.0 is not included in the domain (0, 1) of the Proposition. However,

the derived asymptotic variance formula is still correct for r = 1.0. This is because

when r = 1, all people are contacted, and the LIFT parameters have very simple

forms. e.g., the %response = P (Y = 1), lift = %captured.response = 1 always.

The variance of their sample estimates are trivial and can be checked individually to

satisfy the formulas of Proposition 2.

Corollary 1 Assume the conditions of Proposition 2. For the estimated %response

π̃ = Ẽ(Y Ã)/ẼÃ, the asymptotic variance is

var(π̃) = (mr)−1π(1− π) ∗ [1 + (1− r)(π − Λ)2/(π(1− π))]. (2)

For the estimated %captured.response κ̃ = Ẽ(Y Ã)/ẼY , the asymptotic variance

is

var(κ̃) = (mπ0)
−1κ(1− κ) ∗ [1− 2Λ + Λ2(1− r)/(π(1− κ))] (3)

For the esimated lift κ̃/r, the asymptotic variance is var(κ̃)/r2. Here π0 = EY ,

π = E(Y I(S > c))/EI(S > c) is the %response, π̃ is its estimator based on (1),

κ = E(Y I(S > c))/EY is the %captured.response, κ̃ is its estimator, S is a score,

c is the cutoff such that r = EI(S > c), r ∈ (0, 1), and Λ = E(Y |S = c).

Remark 2 (Theoretical behaviors of the binomial variances.) In the formula for the

asymptotic variance of the estimated %response, the term (mr)−1π(1−π) ≡ varB(π̃)

is the variance of a binomial proportion based on Bin(mr, π), where mr is the total

number of contacted people. In the formula for the asymptotic variance of the

estimated %captured.response, the term (mπ0)
−1κ(1−κ) ≡ varB(κ̃) is the variance
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of a binomial proportion Bin(
∑m

i=1 Yi, κ), where mπ0 can be estimated by the total

number of responders. (See Rosset et al. 2001, equations (8) and (10)).

Now consider the ratio var(κ̃)/varB(κ̃) = [1−2Λ+Λ2(1−r)/(π(1−κ))] (which is

also the variance ratio for the lift estimate). There is a negative sign, which suggests

that the correct variance may be smaller than the binomial variance, leading to

more accurate (shorter) confidence intervals. Note that the ratio var(κ̃)/varB(κ̃) =

1 − π + O(r).2 So the ratio may become nearly 0, and the binomial variance may

become much too large, for small r corresponding to a high %response π (i.e., when

a small percentage of highly likely responders are contacted). In this situation, our

theoretical result can provide an expanation about the empirical findings reported

in Rosset et al (2001, Table 2), that the binomial confidence intervals are loose at

small r values (such as 10%, 5%, 3% and 1%).

Regarding the ratio var(π̃)/varB(π̃) = [1 + (1 − r)(π − Λ)2/(π(1 − π))], note

that our result suggests that var(π̃) ≥ varB(π̃) and the difference depends on the

difference π − Λ = E(Y |S > c)− E(Y |S = c), which would be small if E(Y |S = s)

varies slowly for s ≥ c. However, when the mean function E(Y |S = s) changes

steeply, the binomial variance can be too small, leading to a lower-than-nominal

coverage probability for the resulting confidence interval.

We will provide two examples later (in Section 5.1), where the variance ratios

can be computed analytically, to show these two types of biases on the coverage

probabilities of the binomial confidence intervals. They will be named the Case I

example (for the too-long intervals for lift or %captured.response) and the Case II

example (for the too-short intervals for %response), respectively.

2This is established by expanding the ratio for small r and noticing that for smooth Λ(r), we

have Λ− π = O(r) for small r, and that κ = rπ/π0.
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4 Confidence intervals

4.1 Local estimation method

We now consider how to apply Proposition 2 to construct valid asymptotic confidence

intervals. Suppose we have a consistent variance estimate ˜var(θ̃) based on the valida-

tion sample, such that ˜var(θ̃)/var(θ̃)→ 1 in probability as m→∞. Then due to the

Slutsky’s theorem, as m→∞, Proposition 2 implies that (θ̃−θ)/
√

˜var(θ̃)→ N(0, 1)

in distribution, which implies that P (θ ∈ θ̃± zα
√

˜var(θ̃))→ 1−α for any α ∈ (0, 1),

if zα has a standard normal cumulative distribution function value Φ(zα) = 1−α/2.

Therefore an asymptotic 100(1− α)% confidence interval for θ is θ̃ ± zα
√

˜var(θ̃).

We now consider the problem of consistently estimating var(θ̃) by ˜var(θ̃) based

on the validation sample. In the variance formula, var(H) can be estimated by

the validation sample variance ˜var(H) = Ẽ(H − ẼH)2, where the unknown pa-

rameters (EY,%captured.response, c,Λ) are replaced by their consistent estimates

(ẼY , ˜%captured.response, c̃, Λ̃) based on the validation sample. The parameter r is

known (such as 20% to be contacted by a marketing campaign). Now we consider

estimation of Λ = E(Y |S = c). In general, Λ needs to be estimated from a local

regression of Y on S based on the validation data around S = c, where c is estimated

by c̃. For example, a local average estimate Λ̃ = ẼY I(S ∈ c̃± h)/ẼI(S ∈ c̃± h) is

well known to be consistent when h decreases with m such that h→ 0 and mh→∞.

4.2 Subsampling method

In the previous subsection, we described a method to construct a confidence inter-

val for a LIFT parameter θ. The asymptotic variance involves a conditional mean

response parameter Λ, which can be estimated by a local averaging of the responses

against the scores. An alternative method we consider here is to bypass the problem
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of estimating Λ by using a subsample estimate of the asymptotic variance, similar

to Ibragimov and Müller (2010).

Let θ̃j, j = 1, ..., q be q estimated LIFT measures based on q(> 1) independent

sub-samples of size mj, j = 1, ..., q. The total sample size is m =
∑q

j=1mj and we

consider the asymptotics when limm→∞mj/m = 1/q (which will be valid almost

surely, for example, when observations are randomly assigned to the q groups with

equal probability).

Let θ̄ and s be, respectively, the sample mean and sample variance of {θ̃j, j =

1, ..., q}. Then we have the following proposition.

Proposition 3 Assume the regularity condition of Proposition 2, and assume that

limm→∞mj/m = 1/q for all j = 1, ..., q. We have the following results as m → ∞:

√
q(θ̄− θ)/s converges in distribution to tq−1 (the t-distribution with q− 1 degrees of

freedom), and for any α ∈ (0, 1), P (θ ∈ θ̄± tq−1,αs/
√
q)→ 1− α, where tq−1,α is the

(1− α/2)th quantile of the tq−1 distribution. 3

Proof:

Applying the asymptotic normality result of Proposition 2, noting that the sub-

samples are independent whereas under this method, we have (*)
√
m/q(θ̃1−θ, ..., θ̃q−

θ)T converges in distribution to N(0, diag(σ2, ..., σ2)) where σ2 = var(H). (Note that

here the individual sample sizes mj have all been replaced by m/q due to the Slut-

sky’s Theorem.) Note that the result (*) satisfies the basic assumption (4) made in

Ibragimov and Müller (2010).

Due to the continuous mapping theorem, we derive from (*) that
√
q(θ̄ − θ)/s

converges in distribution to tq−1 (the t-distribution with q − 1 degrees of freedom).

3This suggests that we can construct a 100(1 − α)% asymptotic confidence interval for θ by

θ̄± tq−1,αs/
√
q. Alternatively, one can center the interval at the original whole sample estimater θ̃

to obtain θ̃ ± tq−1,αs/
√
q, as described in Section 8.
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Then the coverage probability result holds.

Q.E.D.

5 A simulation study

5.1 Two analytic examples

In the remarks after Corollary 1, we have described the behavior of the binomial

confidence intervals, based on a theoretical study on the ratios of the asymptotic

variances. In this subsection, we will use the notation of Corollary 1 and present two

examples where the asymptotic variances can be analytically computed, in order to

have a sense of the size of the numerical differences that can be observed. The sim-

ulation study later will be based on a smoothed version of the two models presented

here.

Case I: (gradual case)

Let S = X and X ∼ Unif(0, 1), E(Y |X) = X. we consider contacting

top r = 10% of the X-scores. Then the threshold valus is c = 0.9, since

P (X > c) = 10%. The other useful parameters include π0 = EY = 0.5,

Λ = E(Y |X = c) = 0.9, π = P (Y = 1|X > c) = 0.95, κ = P (X > c|Y =

1) = rπ/π0 = 0.19. This is a case with a small π − Λ = 0.05. The ration

var(π̃)/varB(π̃) = [1 + (1− r)(π − Λ)2/(π(1− π))] = 1.0473684, which is very

close to 1. So there should be not much difference in the coverage probability

and the length when one uses the binomial confidence interval for %response.

However, the ratio var(κ̃)/varB(κ̃) = [1−2Λ+Λ2(1−r)/(π(1−κ))] = 0.1473684

is very small. The length of the binomial confidence interval for the lift

or for the %captured.response will much be longer than needed, at a ratio
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1/
√
{var(κ̃)/varB(κ̃)} = 2.60494. The coverage probability will be overly

conservative.

Case II: (steep case)

The structure is similar to Case I except that we E(Y |X) = max{min{3(X −

1/3), 1}, 0}, which is a three-piece linear model that is 0 below X < 1/3, and 1

aboveX > 2/3. We conider contacting half of the people, r = 0.5. Then c = 0.5

since P (X > 0.5) = 0.5. The other useful parameters include π0 = EY = 0.5,

Λ = E(Y |X = c) = 0.5, π = P (Y = 1|X > c) = 11/12 = 0.9166667 =

P (X > c|Y = 1) = κ. This is a case with a large π − Λ = 0.4166667, caused

by a steep change in the middle part of the X domain. The variance ratio

var(π̃)/varB(π̃) = [1 + (1− r)(π − Λ)2/(π(1− π))] = 2.136364, which is much

larger than 1. So the binomial confidence interval for the %response is too

short and will under-cover in probability.

(In this case the binomial confidence interval for the lift or %captured.response

will also be too short since var(κ̃)/varB(κ̃) = [1−2Λ+Λ2(1− r)/(π(1−κ))] =

1.636364 > 1.),

When the nominal confidence level =0.95, the asymptotic coverage probability

for the binomial confidence interval (of the form π̃ ± 1.96
√

˜varB(π̃)) is only

Φ(+1.96
√

1/2.136364)− Φ(−1.96
√

1/2.136364) ≈ 0.820.

Although these two cases are only theoretical predictions based on piecewise

constant response curves, we will verify in the later simulations that these predictions

are qualitatively correct even with more realistic smooth response curves following

the logistic regression models.
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5.2 Simulations

We let the score S = X ∼ Unif [0, 1] in the simulations. We will use two different

logistic regression models to generate simulated data. These two cases will be called

the ‘gradual’ case and the ‘steep’ case, respectively.

In the first (gradual) case, the true response probability (logit model) is µ∗(x) =

E(Y |X = x) = 1
1+e2.75−5.4x , population with the top 10% of S is contacted, and

µ∗ varies little (from 0.892 to 0.934) in the contacted region S ∈ (0.9, 1.0].

In the second (steep) case, the true response probability (logit model) is µ∗(x) =

E(Y |X = x) = 1
1+e9−18.5x , population with the top 50% of S is contacted, and

µ∗ varies a lot (from 0.562 to 1.000) in the contacted region S ∈ (0.5, 1.0].

These are similar to the two cases discussed in Section 5.1 but are now smoothed.

We will compare the performance of three confidence intervals (CIs): the binomial

CI, the local estimation CI (as explained in Section 4.1), and the subsampling CI (as

explained in Section 4.2). For the subsampling method, we use q = 10 subsamples in

the simulation. For the local estimation method, we need to estimate the conditional

mean function Λ = E(Y |S = c). We will use a local average estimator Λ̃, which is the

sample average of Y for S ∈ [c− h, c+ h]. We will use h = m−1/3 in the simulations

(which will lead to the optimal convergence rate for estimating Λ). So, for example,

when m = 1000, we use hoptimal = 0.1.

In the Tables (1 to 6), we compare the empirical coverage probabilities with the

nominal ones for a thousand CIs obtained from the three methods (binomial, local

estimation, and subsampling), and also the average widths of the CIs, as well as the

algorithm complexities in terms of the total execution times.4 Each of these thousand

4The hardware information of the computer used to derive the results is as follows for reference

of timing. CPU: Intel R© Core
TM

i5-3210M CPU 2.50GHz; RAM: 8.00GB; OS: Windows R© 7 64 bits;
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CIs is derived from a common sample size m. We report the results for two choices

of the sample size: m = 1000 and m = 10000, which are quite typical sample sizes

for the real data sets used in data mining. (Behaviors at smaller sample sizes, and

with varying tuning parameters h and q, are summarized in Section 8.)

We first look at the performance of the Binomial CI. For %response, our theo-

retical predictions in Section 5.1 turn out to be very close to the actual simulation

results. In Case 1 (the gradual case), we predicted that the coverage probabilities

would be close to the nominal ones. The simulation results (based on 1000 CIs)

are 93.3% (nominal: 95%) and 91.9%(nominal: 90%). In Case 2 (the steep case),

we predicted that the CI would severely undercover. The simulation results are

81.2%(nominal: 95%) and 74.0%(nominal: 90%).

For lift and %captured.response, since they only differ by a factor r, the CI

coverage probabilities must be exactly the same in simulations, while the widths of

their CIs must differ exactly by a factor of r. In the gradual case (where the binomial

CI performs well for the %response), we notice that the binomial CIs for both lift

and %captured.response tend to be overly conservative and too loose (similar to

the findings reported in Rosset et al. 2001, Section 3.2.3). This can be seen in

the simulation results for Case 1, where for lift and %captured.response all the

coverage probabilities (based on 1000 CIs) are 100%. On the other hand, for Case

2, where the binomial CI undercovers for %response, it also undercovers for lift

and %captured.response. The simulation coverage probabilities are 85.5%(nominal:

95%) and 77.1%(nominal: 90%).

In summary, the results above verify our theoretical predictions. Regarding the

sample sizes (m) needed for the asymptotic CIs to have satisfactory coverage prob-

Pseudo-random number generator: R R©; Programming language and major software component:

R R©.
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abilities (being close to the nominal ones), both the local estimation method and

the subsampling method perform quite well when m = 1000 already, and they do

even better when m = 10000. (In comparison, increasing m does not improve the

performance of the binomial method. In other words, the binomial CIs can either

overcover or undercover even with m = 10000.) The local estimation method tends

to produce slightly shorter CIs than the subsampling method, but they both work

well in terms of the coverage probabilities.

Table 1: CIs for %response, case 1, µ∗(x) = E(Y |X = x) = 1
1+e2.75−5.4x

sample size n=1000 n=1000 n=1000 n=10000 n=10000 n=10000

method Binomial Local Subsample Binomial Local Subsample

coverage(95%CI) 0.933 0.933 0.941 0.952 0.952 0.947

width 0.108 0.109 0.124 0.0346 0.0348 0.0389

coverage(90%CI) 0.919 0.919 0.890 0.888 0.904 0.898

width 0.0908 0.0916 0.100 0.0290 0.0292 0.0315

time(sec) 12.66 18.17 13.43 124.91 184.1 136.37

Table 2: CIs for %response, case 2, µ∗(x) = E(Y |X = x) = 1
1+e9−18.5x

sample size n=1000 n=1000 n=1000 n=10000 n=10000 n=10000

method Binomial Local Subsample Binomial Local Subsample

coverage(95%CI) 0.812 0.936 0.942 0.821 0.947 0.947

width 0.0424 0.0612 0.0731 0.0134 0.0199 0.0226

coverage(90%CI) 0.740 0.892 0.881 0.737 0.899 0.905

width 0.0355 0.0514 0.0592 0.0113 0.0167 0.0183

time(sec) 14.53 22.23 20.89 142.63 224.25 182.43

Table 3: CIs for Lift, case 1, µ∗(x) = E(Y |X = x) = 1
1+e2.75−5.4x

sample size n=1000 n=1000 n=1000 n=10000 n=10000 n=10000

method Binomial Local Subsample Binomial Local Subsample

coverage(95%CI) 1.00 0.946 0.939 1.00 0.939 0.942

width 0.686 0.290 0.332 0.217 0.0915 0.103

coverage(90%CI) 1.00 0.897 0.888 1.00 0.887 0.890

width 0.576 0.243 0.270 0.182 0.0768 0.0832

time(sec) 12.66 18.17 13.43 124.91 184.1 136.37
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Table 4: CIs for Lift, case 2, µ∗(x) = E(Y |X = x) = 1
1+e9−18.5x

sample size n=1000 n=1000 n=1000 n=10000 n=10000 n=10000

method Binomial Local Subsample Binomial Local Subsample

coverage(95%CI) 0.855 0.962 0.946 0.851 0.949 0.943

width 0.0972 0.135 0.142 0.0308 0.0415 0.0460

coverage(90%CI) 0.771 0.910 0.894 0.769 0.897 0.893

width 0.0816 0.113 0.115 0.0259 0.0348 0.0373

time(sec) 14.53 22.23 20.89 142.63 224.25 182.43

Table 5: CIs for %captured response, case 1, µ∗(x) = E(Y |X = x) = 1
1+e2.75−5.4x

sample size n=1000 n=1000 n=1000 n=10000 n=10000 n=10000

method Binomial Local Subsample Binomial Local Subsample

coverage(95%CI) 1.00 0.946 0.939 1.00 0.939 0.942

width 0.0686 0.0290 0.0332 0.0217 0.00915 0.0103

coverage(90%CI) 1.00 0.897 0.888 1.00 0.887 0.890

width 0.0576 0.0243 0.0270 0.0182 0.00768 0.00832

time(sec) 12.66 18.17 13.43 124.91 184.1 136.37

Table 6: CIs for %captured response, case 2, µ∗(x) = E(Y |X = x) = 1
1+e9−18.5x

sample size n=1000 n=1000 n=1000 n=10000 n=10000 n=10000

method Binomial Local Subsample Binomial Local Subsample

coverage(95%CI) 0.855 0.962 0.946 0.851 0.949 0.943

width 0.0486 0.0674 0.0711 0.0154 0.0207 0.0230

coverage(90%CI) 0.771 0.910 0.894 0.769 0.897 0.893

width 0.0408 0.0565 0.0576 0.0129 0.0174 0.0186

time(sec) 14.53 22.23 20.89 142.63 224.25 182.43
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Figure 1: lift estimates without confidence intervals. (The solid horizontal line

represents the “baseline lift”, which is equal to the lift estimate at r = 1.0.)
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6 Real data application
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Figure 2: lift estimates and their CIs (The solid horizontal line with height 1 repre-

sents the “lift with campaign action completely random”.)

To illustrate the application of the methodology, in this section we consider the

Orange Juice Data (Stine, Foster and Waterman 1998). The data contains pur-

chases where the customer either purchased Citrus Hill (Y = 1) or Minute Maid

(Y = 0) Orange Juice. A number of characteristics (X) of the customer and product

are recorded, such as “price difference” and “customer brand loyalty”. The total

number of observations is 1070, from which we save half randomly for the train-

ing data. We use logistic regression with the default option in SPSS to obtain an

estimate of the probability P (Y = 1|X), which will be used as the scoring rule

S(X). The rule S(X) is applied to the validation sample with m = 535, and the
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sample lift values are computed and plotted in Figure 2, according to the deciles

r ∈ {0.1, 0.2, 0.3, ..., 0.9, 1.0}.

In this figure, the pointwise asymptotic 95% confidence intervals are presented

as little squares (connected by dashed lines). They are computed according to the

local estimation method with bandwidth h = m−1/3. For comparison, we have also

presented the binomial confidence intervals as little diamonds (connected in solid

lines). We notice that the local estimation method can lead to much more accurate

confidence intervals, especially at small r. At r = 0.1, the width of the confidence

interval is reduced to 36% of the width from the binomial method.

Therefore, we have demonstrated that our method can be used to provide valid

confidence intervals to the LIFT chart function of the standard data mining software,

which will be a very useful addition for statisticians.

7 Discussions

Despite the popularity of the data mining practices, we find very little previous work

in statistical inference for the LIFT measures, which are commonly used in data

mining. In this paper, we have provided an asymptotic distribution theory for the

validation sample estimates of the LIFT measures. We have also discussed several

methods for constructing valid asymptotic confidence intervals for some common

LIFT measures, including %response, lift, and %captured.response.

The current work focuses on single confidence interval with one given scoring rule

applied to a fixed percentage of the targeted population. However, after adjusting

for multiplicity as outlined in Appendix A, our asymptotic distribution results may

also be applied to study simultaneous confidence intervals, with several different

percentiles of the contacted population, as is commonly plotted in the LIFT charts
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in data mining practices. This is illustrated in a real data example in Zhao (2014,

Ph.D. thesis). It will also be of interest to study the statistical comparison of several

scoring rules, say, one obtained from logistic regression, one from neural networks,

and one from a decision tree. We will leave this as future work.

8 Further technical details

More extensive simulation studies and additional technical details are contained in

this section, the contents are of which are summized below. We have studied the

sensitiy of the choice of the tuning parameters (h for local average and q for subsam-

pling), and we have studied the performance of the confidence intervals for smaller

sample sizes such as m = 200, 600, 1000. We have also studied the coverage property

for all r values from 0.1 to 1.0 and considered small sample corrections to improve

the performance for very small and very large r. In addition, we have also studied the

performance of a simple nonparametric bootstrap confidence interval. We found that

the bootrap method is not significantly better than the proposed methods and can

be slower by orders of magnitude. We found that the proposed methods are robust

under different choices of the tuning parameters, and have good coverage perfor-

mance for smaller sample sizes, at all decile values of r, after using the plus four-type

corrections which are similar to the ones used in common freshman textbooks (e.g.,

Moore 2010, p.508).

We have studied the nominal 95% confidence intervals in all these results. Also,

we have only reported results on lift and on %response. (We omitted %captured.response

since it is proportional to the lift by a nonrandom constant.) Here is a detailed sum-

mary.

1. (Bootstrap). As a referee suggested, we study the percentile bootstrap confidence
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interval, which is a simple nonparametric bootstrap method based on the 2.5%

and 97.5% bootstrap quantiles. We use 1000 bootstrap repetitions, which is a

typical number of bootstrap repetitions, as is used in Section 2.2 of Macskassy

et al. 2005.

A theoretical note: We believe that the bootstrap method is asymptotically

valid, since our results in Appendix B can be used to establish the Hadamard

differentiablity of the LIFT estimators and we can use the idea of Van der Vaart

(2000, Example 23.11) to prove the validity of the boostrap method. However,

we will describe later that the bootstrap method is much slower and does not

perform better than the proposed methods. Below, we will first point out that

the bootstrap method (as well as all other methods) can work very poorly in

some situations, and a plus four correction (explained below) can significantly

improve its performance.

2. (Plus four correction).

We notice that the asymptotic confidence intervals can work very poorly for

some finite sample situations (especially in Case II simulations). Plus four

corrections can significantly improve the finite sample performance.

For example, for the bootstrap method, initially, percentiles obtained were

directly based on resampling the original estimates, without the plus four cor-

rection. Then we notice that they perform poorly (in having very low coverage

probabilities) for small or moderate m, e.g., m = 500, for some r values in Case

II. After some experiments, we found the reason. In Case II, P (A = 1|Y = 1)

is nearly 1 for high r (e.g., for r = 0.9), and P (Y = 1|A = 1) is nearly 1 for

small r (e.g., 0.1). Over resampling, the sample proportions are almost always

one, which will often lead to zero-width confidence intervals, missing the true
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values by a little amount.

Similarly, in Case II for these r values, confidence intervals without plus four

do not work well for all other three methods. E.g., for the binomial method,

a binomial variance estimate such as
√
π̃(1− π̃)/50 is zero when the sample

proportion π̃ is, say, 50/50, without plus four correction. This often happens

for large success probability very close to one (such as π = 0.9997). Which will

be missed by the zero-width confidence interval [1, 1]. Even though it misses

only by a small amount, it will almost always happen and will lead to a very

low coverage probability. For remedy, one can use a plus four-type corrections

that are commonly used in freshman textbooks (e.g., Moore 2010, p.508), by

adding 4 observations with 2 Yeses and 2 Nos, then the π̃ in the sample variance

estimate will be replaced by 52/54, and the resulting confidence interval, even

though changes very little, will have a nonzero width enough to cover the true

value. The plus four approach can sometimes be overly conservative, but it is

better to overcover than to undercover, and the increase in the width of the

confidence interval is often very little anyway. The plus four correction does

not affect the asympotics and any differences will go away in the large sample

limit.

For the local estimation method, in the variance formulas we can use the plus

four estimates for all proportion parameters, including Λ (when estimated from

the observations falling within the bandwith).

Now we consider the plus four correction for bootstrap, i.e., bootstrapping the

plus four estimates. A random plus four method is needed here, since the

fixed plus four estimates (say, (50+2) out of (50+4),) would remain the same

over bootstrap resampling, if the resampled original estimates were all the same

(say, 50 out of 50) to begin with. The random method adds 4 observations with
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Bin(4, 0.5) Yeses and 4 − Bin(4, 2) No’s, to the sample proportion estimates,

independently over all the bootstrap repetitions.

Similarly, a fixed plus four method would not work for subsampling. We con-

sidered a random plus four method that adds a total number of 2 Yeses and

2 Nos, randomly assigned to the q subsample proportion estimates, when es-

timating the %response and the %captured.response. Alternatively, we con-

sidered a method of an approximate plus four type correction to the“variance

estimate”. We found that both methods work very similarly, with the aprox-

imate plus four method working slightly better. All the results reported in

this section for subsampling are based on this approximate plus four method.

This method involves increasing the original “variance estimate” (the sample

variance of q subsample estimates, without plus four correction, divided by

q) by a small correction 2/n2, where n is the sample size used in the original

(whole sample) proportion estimate (which is the total number of responses for

%captured.response, or the total number of contacted people for %response).

This correction does not affect the asymptotics since the asymptotic variance is

of order 1/n. It is based on an analogy related to the following approximation

to the plus four correction for the binomial method:

A theoretical note: Notice that for a binomial data with y Yeses and n − y

Nos, the effect of plus four correction on the binomial variance estimate is an

increase upto 2/n2. Let v4 = (y+ 2)/(n+ 4)∗ (1− (y+ 2)/(n+ 4))/(n+ 4) and

v = (y/n)(1− y/n)/n. Then v4 = v[n/(n + 4)3] + (2/n2)[(n + 2)n2/(n + 4)3],

where the factors in the square brackets are less than 1 and are very close to 1

for large n.

The plus four corrections lead to signficant improvement for all four meth-

ods in Case II. See Figure 3 (for Case I) and Figure 4 (for Case II) for a
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comparison of the four methods: binomial, local estimation, subsampling and

bootstrap, with and without plus four corrections. We tried sample sizes

m = 100, 300, 500, 1000 and reported the results at m = 500. The results

at other sample sizes are all similar.

3. (Performance Comparisons).

As seen in Figure 3 (for Case I) and Figure 4 (for Case II), all the four

methods (binomial, local estimation, subsampling and bootstrap) work well

in Case I, with or without plus four correction. In Case ll, all four methods

work very poorly without plus 4 correction, for %response at small r, and for

%captured.response at large r. All four methods work much better with plus

four corrections.

The proposed methods work very well in both Case I and Case II, compared to

the binomial method and the bootstrap method. The subsampling confidence

intervals are wider and more conservative than the local estimation confidence

intervals, probably due to the use of the t distribution instead of the z distribu-

tion. In terms of the coverage probabilities, there are no serious undercoverages

in either method, and any overcoverages do not lead to significant widening of

the confidence intervals. These hold for all decile values of r. This is in contrast

to the binomial method, which can also overcover for lift at small r values,

but the widening of the confidence intervals is much more severe.

4. (Time Comparison). In terms of the time needed to compute the confidence

intervals, the binomial method is the fasted, next the subsampling method,

next the local estimation method, and the bootstrap method is the slowest.

Over various runs, we observe that typical ratios of the computational time

needed are about 1 : (1.2 to 1.6) : (1.5 to 1.7) : (30 to 100).

28



5. (Center of the confidence intervals). Whenever possible, we use the unmodified

original sample proportion estimates as the center of the confidence intervals,

since sample proportions are most commonly used to estimate the LIFT mea-

sures (e.g., in standard data mining softwares)

This means that we do not use the plus four correction on the center of the (bi-

nomial, local, or subsampling) confidence intervals, but only use the correction

for improving the variance estimates.

This also means that for the subsampling method, we do not use the average

subsample estimates as the center of the confidence interval, but rather the

original whole sample estimates which are used in standard data ming soft-

wares, which are easier to compute, and can perform better (see below). [The

subsample estimates are only used to “estimate the variance” (by the sample

variance of q subsample esimates, divided by q), with a plus four correction.]

A theoretical note: We believe that the whole sample estimate θ̃ and the average

of the subsample estimates θ̄ are asymptotically equivalent. A heuristic argu-

ment is that they have the same infuence function and the same Hadamard

differential with respect to the underlying subsample empircal distribution

functions. However, in results not presented here, we found that the t con-

fidence intervals centered at the whole sample estimates θ̃ perform better than

the intervals centered at θ̄. This may be because the latter has a larger asymp-

totic bias (or order O(1/(m/q))) than that of the former (of order O(1/m)).

(See, e.g., Haas 2006.) However we expect that the difference will disappear

asymptotically. For large sample sizes such as those used in the earlier sim-

ulations in Section 5, the using confidence intervals centered at the average

subsample estimates also perform very well.
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6. (Effect of tuning parameters under various sample sizes).

In Figure 5 (for Case I) and Figure 6 (for Case II), we consider the effect of

using different bandwith parameters h for the local estimation method. We

consider h = 0.5m1/3, m1/3, 1.5m1/3, for m = 200, 600, 1000. In Figure 7 (for

Case I) and Figure 8 (for Case II), we consider the effect of using different

number of subsample q for the subsampling method. We consider q = 5, 10, 20,

for m = 200, 600, 1000. In all these simulations, we found that the results

change very little. The coverage probabilities are not significantly affected by

different choices of h or q. In simulation results not presented here, we also

found that the widths of confidence intervals are not significantly affected by

different choices of h or of q. However, the widths of the subsampling confidence

intervals vary somewhat more than the widths of the local estimation confidence

intervals, and they tend to be wider and more conservative. In terms of the

coverage probabilities, there are no serious undercoverages for either method,

for all these choices of tuning parameters and sample sizes.

Appendix A: Simultaneous confidence intervals

Consider any LIFT measure θ, such as θ = %response = E(Y |S > c). It is

dependent on the scoring rule S, as well as the cutoff c which is determined by

the percentage contacted r = P (S > c). SAS Enterprise Miner plots the LIFT

charts to display multiple θ’s simultaneously. These θ’s can include, for example,

%responsek (or liftk) at all the deciles rk ∈ {0.1, 0.2, 0.3, ..., 1.0}. Let us label the

corresponding performance measures as θk, k = 1, ..., p. The previous confidence

intervals are of the form θ̃k±zαsk for the performance measure θk, k = 1, ..., p, where

sk =
√

˜var(θ̃k). These confidence intervals only have individually correct asymptotic

coverage probabilities, i.e., P (θk ∈ θ̃k± zαsk) ≈ 1−α, for each k = 1, ..., p. However,
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Figure 3: Comparison of four CI methods, without and with plus 4 correction, for

Case I. (m = 500)
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Figure 4: Comparison of four CI methods, without and with plus 4 correction, for

Case II. (m = 500)
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Figure 5: Different h for local method, with plus 4 correction, for Case I.
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Figure 6: Different h for local method, with plus 4 correction, for Case II.
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Figure 7: Different q for subsampling method, with approximate plus 4 correction,

for Case I.
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Figure 8: Different q for subsampling method, with approximate plus 4 correction,

for Case II.
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it is easy to adapt these to have simultaneous coverage probabilities at least 1− α

(asymptotically for large m), by using a Bonferoni coefficient zα/p instead of zα, since

a union bound implies that asymptotically for large m, P (θk ∈ θ̃k ± zα/psk ∀k =

1, ..., p) ' 1−α. This inequality reflects conservativeness, which may lead to wider

confidence intervals than needed. Improvement can be obtained as below, based on

accounting for the the correlations between the pairs of different θ̃k’s.

In this part of the paper we consider how to construct simultaneous confidence

intervals with the correct asymptotic coverage probability, of the form θ̃k ± qαsk,

k = 1, ..., p, so that P (θk ∈ θ̃k ± qαsk ∀k) ≈ 1− α for large m.

Denote ζk = (θ̃k−θk)/sk for k = 1, ..., p. Then (ζ1, ..., ζp)
′ is asymptotically normal

with N(0,R), where 0 is a p× 1 vector and Rjk = corr(θ̃j, θ̃k), j, k ∈ {1, ..., p}, are

matrix elements of correlation coefficients. Let Z = (Z1, ..., Zp) be N(0,R). Suppose

we find qα(R) such that P [maxpk=1 |Zk| ≤ qα(R)] = 1 − α (†). (This equation can

be solved by using Monte Carlo simulations of Z’s from N(0,R).) Then P (θk ∈

θ̃k ± qα(R)sk ∀k) = P [maxpk=1 |ζk| ≤ qα(R)] → P [maxpk=1 |Zk| ≤ qα(R)] = 1 − α as

m → ∞. This means that the confidence coefficients should be qα(R) now, instead

of zα.

In practice, R can be replaced by a consistent estimator R̃ based on the validation

sample, where R̃jk = ˜cov(θ̃j, θ̃k)/
√

˜cov(θ̃j, θ̃j) ˜cov(θ̃k, θ̃k). To estimate the covariances

˜cov, we use ˜cov(θ̃j, θ̃k) = C(rj, rk|Pm, Λ̃, ã, b̃) as explained in Remark 3 of Appendix

B, for the selected deciles rj, rk in D = {0.1, 0.2, ..., 0.9, 1.0}.

We have run additional simulations and have confirmed that the method proposed

here indeed provides satisfactory simultaneous empirical coverage probabilities for

both setups described in Section 5. For example, in the gradual case, for (%response,

lift, %captured.response), the coverage probability of 1000 nominal 95% CIs (based

on samples of size m = 1000) from the local average method is (0.942, 0.940, 0.941),
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simultaneouly for all the deciles from 0.1 to 0.9. The corresponding result in the

steep case becomes (0.963, 0.945, 0.944).5

The above method for simultaneous confidence intervals is based on the local es-

timation method. It is not obvious to us how to adapt the other methods (binomial,

subsampling, or nonparametric bootstrap) to form simultaneous confidence intervals

which are asymptotically correct.

Appendix B: Technical proofs

To prove Proposition 2, we first show a set of more general asymptotic distribu-

tion results, in a functional sense, when the LIFT measures are treated as functions

of r (the percentage of contacted population) in [p, q] ⊂ (0, 1), rather than just taking

a value at one point of r. Proposition 2 will then be proved as a corollary.

Weak convergence to Gaussian processes:

Denote W = (Y, S) and Wi = (Yi, Si). Let W,W1, ...,Wn be a random sample

from a probability distribution P on a measurable space (W ,A), whereW = {0, 1}×

<.

In general, for a probability distribution Q on (W ,A), we denote Qf =
∫
fdQ,

covQ(f1, f2) = Q(f1f2) − (Qf1)(Qf2), and varQ(f) = covQ(f, f), where f1, f2 and

f are measurable function from W 7→ <. In particular, Pf =
∫
fdP , and Pmf =

m−1
∑m

i=1 f(Wi) (corresponding to the empirical distribution Pm on the validation

5In these simulations, we noticed that when the population being contacted can have a very

high percentage of responses at some decile values of r, a commonly used plus 4 method (see, e.g.,

a popular textbook Moore 2010, p.508) is needed to achieve a good finite sample performance for

the proposed confidence intervals, which involves adding 2 subjects each with Y = 1 and Y = 0 to

the validation data set.
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sample W1, ...,Wm).

Let [p, q] ⊂ (0, 1). In general, for any probability distribution Q on (W ,A), and

any continuously differentiable mapping (λ, a, b) : [p, q] 7→ R3 define on [p, q] ⊂ (0, 1),

we denote

C(r, t|Q, λ, a, b) ≡ covQ[(Y−λ(r))(a(r)I(S > F−1Q (1−r))+b(r)), (Y−λ(t))(a(t)I(S >

F−1Q (1− t)) + b(t))],

where FQ(·) = QI(S ≤ (·)), and F−1Q (·) = inf{s : FQ(s) ≥ (·)}, are respectively

the cdf and the quantile function of Q.

For each continuously differentiable (a, b) : [p, q] 7→ R2, define on [p, q] ⊂ (0, 1),

a zero mean Gaussian process {Ga,b(t), t ∈ [p, q]} with covariance functions, for each

r, t ∈ [p, q]:

EGa,b(r)Ga,b(t) = covP [(Y−Λ(r))(a(r)I(S > F−1P (1−r))+b(r)), (Y−Λ(t))(a(t)I(S >

F−1P (1− t)) + b(t))] ≡ C(r, t|P,Λ, a, b),

where Λ(r) = P (Y |S = F−1P (1− r)),

and FP (·) = PI(S ≤ (·)) is the cdf of S.

The process Ga,b has almost surely continuous sample paths if Λ(r) satisfies a

Hölder condition, according to a corollary of the Kolmogorov-Chenstov theorem (see,

e.g., Exercise 2.3, Lalley 2011). Condition 2 below implies that Λ is continuosly

differentiable and that the Hölder condition is satisfied.

Condition 1: PY > 0.

Condition 2: The conditional probability density function PS|Y (s|y) is positive

and continuously differentiable on s ∈ [p̄, q̄] ≡ [F−1P (p)− ε, F−1P (q) + ε] for some

ε > 0, for y = 0, 1.

For each Q being a probability distribution (such as P or Pm) on the measurable

space (W ,A), Let
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FQ(s) = Q(I(S ≤ s) and

%responseQ(r) = r−1QY I(S > F−1Q (1− r)),

%captured.responseQ(r) = r ∗ liftQ(r),

liftQ(r) = %responseQ(r)/QY ,

expected.profitQ(r) = Qg(Y, I(S > F−1Q (1− r))).

where r ∈ [p, q] ⊂ (0, 1).

Proposition 4 Under Conditions 1 and 2, in `∞([p, q]), as m→∞, we have:

(i)
√
m[%responsePm −%responseP ] Ga,b,

where (a, b)(r) = (r−1, 0);

(ii)
√
m[%captured.responsePm −%captured.responseP ] Ga,b,

where (a, b)(r) = ((PY )−1,−(PY )−1%captured.response);

(iii)
√
m[liftPm − liftP ] Ga,b,

where (a, b)(r) = ((rPY )−1,−(rPY )−1%captured.response);

(iv)
√
m[expected.profitPm − expected.profitP ] Ga,b ,

where (a, b)(r) = (g(1, 1) + g(0, 0)− g(1, 0)− g(0, 1), g(1, 0)− g(0, 0)).

Proof :

For each Q being a probability distribution (such as P or Pm) on the measurable

space (W ,A), let its bivariate cumulative distribution function (cdf) be denoted as

FW,Q(y, s) = QI[(Y, S) ∈ (−∞, y) × (−∞, s)]. The bivariate empirical distribution

function of (Y, S) follows a functional central limit theorem :
√
m(FW,Pm − FW,P )

converges weakly to a zero mean Gaussian process in `∞(<̄2), according to Example

2.1.3 on P.82 of van der Vaart and Wellner (1996), who use <̄ to denote the extended

real numbers [−∞,+∞].
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For Q a bivariate distribution of W = (Y, S) ∈ {0, 1}×<, consider (QY, FQ, GQ),

where QY = QI(Y > 0.5) GQ(s) = QY I(S > s) = QI(Y > 0.5, S > s), FQ(t) =

QI(S ≤ t). They all can be reformulated as a linear transformation of the bivariate

cdf FW,Q. Therefore,
√
m((Pm − P )Y, FPm − FP , GPm − GP ) also converges weakly

to a limiting Gaussian process on <× `∞(<̄)× `∞(<̄).

Now we relate the four LIFT measures to (QY,GQ, FQ):

%responseQ(r) = r−1GQ ◦ F−1Q (1− r),

%captured.responseQ(r) = GQ ◦ F−1Q (1− r)/QY ,

liftQ(r) = r−1GQ ◦ F−1Q (1− r)/QY ,

expected.profitQ(r) = a1GQ ◦ F−1Q (1− r) + a2QY + a3r + a4,

where a1 = g(1, 1) + g(0, 0) − g(1, 0) − g(0, 1) and a2 = g(1, 0) − g(0, 0), a3 =

g(0, 1)− g(0, 0), a4 = g(0, 0).

Under Conditions 1 and 2, all the four lift measures %responseP , %captured.responseP ,

liftP , expected.profitP are Hadarmard differentiable with respect to (PY , FP , GP )

on appropriate domains and tangential sets. In particular, the Hadamard differen-

tiability of GP ◦ F−1P at (FP , GP ) is established by using the chain rule, the differ-

entiablity of the composite map, and the differentiablility of the inverse map, given

respectively in Lemma 3.9.3, Lemma 3.9.27, and Lemma 3.9.23 of van der Vaart and

Wellner (1996).

Applying the functional delta method Theorem 3.9.4 of van der Vaart and Wellner

(1996) then leads to the corresponding functional Gaussian limiting distributions.

Q.E.D.

Proof of Proposition 2:

Proposition 2 is a straightforward corollary to Proposition 4 at one point r.

Q.E.D.
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Proof of Corollary 1:

According to Proposition 2, in the case of the estimated %response π̃, the

asymptotic variance is var(π̃) = var(H)/m, where H = (Y − Λ)A/r. We have

var[(Y − Λ)A] = Evar[(Y − Λ)A|A] + varE[(Y − Λ)A|A], where the first term is

equal to E[π(1−π)A2] = π(1−π)r, and the second term is equal to var[(π−Λ)A] =

(π − Λ)2r(1 − r). Therefore, the asymptotic variance var(π̃) = m−1r−2V ar[(Y −

Λ)A] = (mr)−1π(1− π) + (mr)−1(π − Λ)2(1− r). This leads to (2).

For (3) for var(κ̃) = var(H)/m, where κ is the %captured.response, we use

H = (Y − Λ)(A − κ)/π0, where π0 = EY . Next, we write var[(A − κ)(Y − Λ)] =

Evar[(A − κ)(Y − Λ)|Y ] + varE[(A − κ)(Y − Λ)|Y ] = π0var[(A − κ)(Y − Λ)|Y =

1] + (1− π0)var[(A− κ)(Y −Λ)|Y = 0] + varE[(A− κ)(Y −Λ)|Y ] = (1−Λ)2κ(1−

κ)π0 + Λ2κ′(1 − κ′)(1 − π0) + Λ2(κ′ − κ)2π0(1 − π0), (*) where κ′ = E(A|Y = 0) =

E[(1 − Y )A]/E(1 − Y ) = r(1 − π)/(1 − π0). For the last step (*) note that the

distribution of A|Y = 1 is Bernoulli(κ) and A|Y = 0 is Bernoulli(κ′). Then the

conditional mean and variance of A given Y can be evaluated using κ and κ′, to obtain

the three terms of (*). Now expand (*) as a second order polynomial of Λ to obtain

π0κ(1−κ)(1− 2Λ) + r(1− r)Λ2 which leads to the final expression . [The coefficient

of Λ2 was originally complicated but can be identified as Evar(A|Y )+varE(A|Y ) =

var(A) = r(1− r).]

Q.E.D.

Remark 3 Let θP denote any of the four LIFT parameters corresponding to the

true distribution P , and θPm denote its sample version corresponding to the sample

distribution Pm. Let D be the set of deciles {0.1, 0.2, 0.3, ..., 0.9}. (The last point 1.0

is omitted here, but it can be considered separately and incorporated in D without

changing the covariance formulas, since the parameters involved at r = 1 are very
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simple, e.g., %response(1) = PY , and lift(1) = %captured.response(1) = 1.)

Then Proposition 4 implies that
√
m{θPm(s)) − θP (s))}s∈D converges in distri-

bution to a zero mean multivariate normal distribution with covariance function

C(r, t|P,Λ, a, b), with the choice of a, b corresponding to the choice of the LIFT

measure as specified in the Proposition.

The covariance function C(r, t|P,Λ, a, b) at any r, t ∈ [p, q] ⊂ (0, 1) can be con-

sistently estimated by C(r, t|Pm, Λ̃, ã, b̃), where (Λ̃, ã, b̃) are consistent estimates of

(Λ, a, b) at r, t. These can be used for constructing the pointwise confidence intervals

as well as the simultaneous confidence intervals of θP (r) on r ∈ D. (See Appendix

A.)
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