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Abstract

A decision make (DM) considers the acquisition of a multi-attribute object with uncertain

qualities which can be discovered at a cost. DM’s problem is to decide how much to invest in

the discovery and whether to adopt or discard based on partial information. We characterize

the solution in some special cases and discuss the computability of the solution in more general

cases.

1 Introduction

This paper considers a truly fundamental problem. A decision maker (DM) considers the acquisition

of a multi-attribute object with uncertain qualities which can be discovered at a cost. DM’s problem

is to decide, on the basis of partial information, how much to invest in the discovery and whether

to adopt or discard the object. Almost any decision one can think of (be it purchasing a good or

deciding on a job offer) is of this sort.

The object in question has n attributes. Acceptance of the object gives DM utility u(x1, ..., xn),

where xi is the level of attribute i. Rejection yields utility of V . At the outset DM does not know

the xi’s. She knows that they are independent draws from distributions Fi and can discover the

realization of each xi at a cost ci. We will assume throughout that u(x1, ..., xn) = x1 + ...+ xn, but

the analysis easily generalizes to weighted additive utility u(x1, ..., xn) = α1x1 + ...+ αnxn.

We study two scenarios of this decision problem. In the simultaneous scenario DM decides in

advance on a set of attributes S ⊂ {1, ..., n} to discover. After incurring the associated cost
∑

i∈S ci
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and learning the realizations xi, i ∈ S, she decides whether to accept or reject the object. In the

sequential scenario, DM discovers attributes sequentially in the order that she chooses and can decide

on acceptance or rejection at every point in the process. The discovery costs are incurred along the

process accordingly.1

In the simultaneous scenario we show that, when two attributes are ordered by second-order

stochastic dominance, and have the same cost of discovery, the dominated attribute will be more

attractive for discovery (i.e., is included in the optimal set whenever the other is). When two

attributes are ordered by a somewhat stronger criterion, we characterize the differences in the costs

of discovery across attributes that can reverse the previous observation and make a dominating

attribute more attractive for discovery. We also characterize the optimal set in some other special

cases, in which it can be computed by a pseudo polynomial-time algorithm. We show, however, that

polynomial-time algorithms may not exist2.

In the sequential scenario, we analyze two special cases. For the case of simple binary Fi’s and

equal ci’s, we show that the optimal order of discovery is also in the reverse order of dominance.

For the case of two independently and symmetrically distributed attributes with reservation utility

equal to the expected value of the object, we completely characterize the optimal decision rule. The

solution associates with each attribute an index that depends only on its distribution and cost; the

discovery starts with the attribute with the higher index. This is thus reminiscent of Gittins’ indices

in the context of the multi-armed bandit model (see Gittins and Jones (1974) and Gittins (1989))

and of Weitzman’s (1979) Pandora rule in the context of the search model.

Our model can be viewed as some sort of a search model, but it differs from conventional search

models in a significant way. In such models the searcher examines separate objects rather than

attributes of a single object. Consequently, the payoff from acceptance after examining k objects with

values x, ..., xk depends only on them (in search with recall it is max{x1, ..., xk}). In contrast, in our

problem, the corresponding payoff u(x1,..., xn) depends on all n attributes (including undiscovered

ones) and typically u would not be the maximum function.

This difference from conventional search models might not seem so large, but it still makes

the present problem more unwieldy in the sense that some "nice" results familiar from the search

literature cannot be reproduced here. When n > 2, there is no simple analog in the sequential

1We do not consider other possible scenarios like deciding on the order of discovery in advance and then proceeding

sequentially as might be the case in certain applications.
2 It is an open question whether the optimal set can be computed by a pseudo polynomial-time algorithms in more

general cases.
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scenario to Weitzman (1979)’s elegant optimal strategy (Pandora rule) for the related sequential

search model. In the simultaneous scenario the optimum cannot be found by the steepest ascent

algorithm as is the case in Chade and Smith (2005)’s simultaneous search model.

Neeman (1995) studies the optimal search strategy of an agent who faces a sequence of i.i.d. multi-

attribute objects, and can observe only one attribute of each object. His main result establishes the

desirability of observing an attribute whose distribution is second-order stochastically dominated

by all others and is thus reminiscent of our results on the precedence of second-order stochastically

dominated attributes in the discovery.

Before proceeding to the analysis, it might be useful to point out a somewhat alternative interpre-

tation. The xi’s can be viewed as realizations of signals about the value of the object, rather than as

actual attributes. With this interpretation the model is still formally equivalent, though the specific

additive payoff function that we assume might be more natural for the attribute interpretation.

2 Further assumptions and definitions

The model was already outlined in the introduction. It is further assumed3 that

V =

∫
x1dF1 = ... =

∫
xndFn = 0.

Consider two random variables y and z with the mean zero4 and cdfs G and H, respectively.

Recall that y is second-order stochastically dominated by z, denoted y �s.o. z, if

∫ s

−∞

H(t)dt ≤

∫ s

−∞

G(t)dt for all s.

We will also use a stronger notion of stochastic dominance: y is simply second-order stochastically

dominated by z, denoted y �s.s.o. z, if

G(t) ≤H(t) for all t ≥ 0

and

H(t) ≤ G(t) for all t ≤ 0

3We will comment on this and other simplifying assumptions in Section 6.
4Since we assume that the means of all attributes are zero, we define the relevant concepts for distributions with

zero mean.
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This notion is a special case of Diamond and Stiglitz (1974)’s concept of simple mean-preserving

spread.5 In particular, simple second-order stochastic dominance implies second-order stochastic

dominance. Proposition VI in the appendix contains a characterization of simple second-order

stochastic dominance that is analogous to the familiar characterization of second-order stochastic

dominance.

3 Simultaneous discovery of attributes

In this scenario DM selects a subset S of the attributes to be discovered simultaneously. After

observing the attributes in S, it is optimal to accept the object iff
∑

i∈S xi ≥ 0.
6 Therefore, DM’s

payoff as a function of S is

U(S) =

∫
...

∫
max

(

0,
∑

i∈S

xi

)

d
∏

i∈S

Fi(xi)−
∑

i∈S

ci. (1)

DM’s problem: Choose S∗ such that

S∗ ∈ arg max
S⊂{1,...,n}

U(S). (2)

The first part of Proposition I says that, other things equal, an attribute would be selected

“ahead” of an attribute that stochastically dominates it. The second part of Proposition I points

out what would be a sufficiently large cost difference ci − cj to offset the advantage of selecting an

attribute i over attribute j that dominates it. We are able to prove this second result only for the

stronger notion of simple second-order stochastic dominance.

Proposition I: (i) Suppose that xi �
s.o. xj and ci ≤ cj . Given any S that does not contain i

or j, U(S ∪ i) ≥ U(S ∪ j).

(ii) Suppose that xi �s.s.o. xj and

ci − cj ≥

∫ ∞

0

xidFi(xi)−

∫ ∞

0

xjdFj(xj). (3)

Given any S that does not contain i or j, U(S ∪ i) ≤ U(S ∪ j).

Therefore, if x1 �
s.o. ... �s.o. xn and c1 ≤ ... ≤ cn, then there is a solution S

∗ of the form

S∗ = {1, ..., k}. In other words, if the attributes are ordered by second-order stochastic dominance,

there is a solution S∗ that consists of the k most dominated attributes.
5Their concept requires that H and G cross only once, and we use here at the special case in which the crossing

point is the common mean.
6The decision in the case of

∑
i∈S

xi = 0 is inessential for the analysis.
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If the attributes are ordered by simple second-order stochastic dominance, i.e. x1 �s.s.o. ... �s.s.o.

xn and (3) holds for j = i+ 1 for all i, then there is a solution S∗ of the form S∗ = {k, ..., n}; that

is, it consists of the k most dominant attributes for some k ∈ {1, ..., n}.

The intuition for the first part of Proposition I is that stochastically dominated distributions

have thicker tails, and hence provide more significant information about the value of the object.

Therefore, when their costs are not higher than those of discovering other attributes, they should

be discovered first. This part follows immediately from the following lemma.

Lemma 1: Let G0,G1 and G2 be the cdfs of random variables y0, y1 and y2, and suppose that

Ey0 = Ey1 = Ey2 = 0 and y1 �s.o. y2. Then

∫ ∫

y0+y2≥0

(y0 + y2) dG0(y0)dG2(y2) ≤

≤

∫ ∫

y0+y1≥0

(y0 + y1) dG0(y0)dG1(y1).

This lemma says that the benefit from discovering an additional attribute is higher than it would

be from discovering an attribute that second-order stochastically dominates it. When y0 ≡ 0 this

is immediately obvious from the definition of second order stochastic dominance. It takes another

step to show that, as one would expect, this is the case also when y0 is non-degenerate. The proof

of Lemma 1 as well as those all subsequent results are relegated to the appendix.

The proof of the second part of Proposition I uses the following lemma and an additional argument

presented in the appendix.

Lemma 2: Let G0,G1 and G2 be the cdfs of random variables y0, y1 and y2. Suppose that all

three random variables y0, y1 and y2 have mean 0, i.e., Ey0 = Ey1 = Ey2 = 0. Suppose further

that y1 is simply second-order stochastically dominated by y2, i.e., y1 �s.s.o. y2. Then

∫ ∫

y0+y1≥0

(y0 + y1) dG0(y0)dG1(y1)−

∫ +∞

0

y1dG1(y1) ≤

≤

∫ ∫

y0+y2≥0

(y0 + y2) dG0(y0)dG2(y2)−

∫ +∞

0

y2dG2(y2).

Lemma 2 implies that, if y1 �s.s.o. y2, then the incremental benefit from the discovery of addi-

tional attribute y0 (or attributes that sum up to y0) over the benefit of discovering attribute y is

lower when y = y1 than when y = y2.

The following example illustrates Lemmas 1 and 2.
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Example 1: Suppose ya with cdf Ga is distributed uniformly on the interval [−a, a], and yb with

cdf Gb is distributed uniformly on the interval [−b, b], where b < a. That is, ya is simply second-order

stochastically dominated, and so is second-order stochastically dominated by yb. Then

∫ +∞

0

yadGa(ya) =
a

4
;

∫ +∞

0

ybdGb(yb) =
b

4
,

and ∫ ∫

ya+yb≥0

(ya + yb) dGa(ya)dGb(yb) =
a

4
+
b2

12a
. (4)

Suppose first that y0 = ya, and yi = ybi for some b2 < b1 < a. That is, y1 �
s.o. y2. Lemma 1, in

this case, says that (4) increases in b.

Suppose now that y0 = yb, and yi = yai for some b < a2 < a1. That is, y1 �
s.s.o. y2. Lemma 2,

in this case, says that

∫ ∫

ya+yb≥0

(ya + yb) dGa(ya)dGb(yb)−

∫ +∞

0

yadGa(ya) =
b2

12a

decreases in a.

4 Sequential discovery of attributes

This section considers sequential discovery. DM decides on the order of discovery and at each point

whether to stop with an acceptance or rejection decision. The analysis of this case is somewhat

harder since the optimal decision at each point depends on the history. We therefore focus on two

special cases. In the first case of binary, symmetric distributions we characterize the optimal order

of discovery without fully characterizing the optimal rule. In the second case of two symmetrically

distributed attributes we completely characterize the optimal rule. Both of these cases confirm the

insight obtained in the simultaneous scenario that optimal discovery gives precedence to second-order

stochastically dominated attributes.

Proposition II: Consider the binary symmetric case Pr(xi = ai) = Pr(xi = −ai) = 1/2, where

a1>a2 > ... > an > 0 and ci = c > 0. In this case optimal discovery is in ascending order of the

indices (i.e., descending order of the ai’s).

Obviously, in this case Fi second-order stochastically dominates Fj for all j < i. So, this result

is consistent with the result of Proposition I. While, strictly speaking, this result is proved only

for the binary case, the logic of the proof seems to apply to a broader class of cases in which the
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distributions of the attributes are ordered by second-order stochastic dominance. Sanjurjo (2013)

has shown a version of this result for normally distributed attributes in his analysis of experimental

data presented in Gabaix et. al. (2006).

The second result of this section is for the case of two symmetrically7 and continuously distributed

attributes. The symmetry together with the restriction to two attributes facilitate a fairly elegant

result that does not seem to survive in a similar simple form under more general conditions. The

continuity of the distributions is assumed for the sake of simplicity and is not essential.

Observe that if

ci ≥

∫ +∞

0

xidFi(xi). (5)

it is optimal not to discover attribute i. If (5) holds with the reverse inequality, then the following

equation has a unique solution x∗i > 0

x∗i = −ci +

∫ +∞

−x∗
i

(x∗i + xi)dFi(xi) i = 1, 2. (6)

The meaning of x∗i is that, if the total value of the attributes that have been discovered is x
∗
i , DM

is just indifferent between accepting the object right away or first discovering attribute i and then

deciding optimally whether to accept or reject it.

The symmetry of Fi implies
∫ +x∗

i

−x∗
i

xidFi(xi) = 0 and

∫ +∞

x∗
i

(−x∗i )dFi(xi) = −x
∗
i [1− Fi(x

∗
i )] = −x

∗
iFi(−x

∗
i ) =

∫ +∞

−x∗
i

x∗i dFi(xi)− x
∗
i (7)

Therefore, Equation (6) is equivalent to the equation

0 = −ci +

∫ +∞

x∗
i

(−x∗i + xi)dFi(xi). (8)

That is, if the total value of the attributes that have been discovered is −x∗i , DM is indifferent

between rejecting the object right away or first discovering attribute i and then deciding optimally

whether to accept or reject it.

Notice finally that the value of x∗i is determined only by attribute i (that is, by ci and Fi), and

is independent of attribute j.

Proposition III: Suppose that the object has only two symmetrically and continuously dis-

tributed attributes.

7A random variable y with mean zero and cdf G is symmetric if G(−y) = 1 −G(y), for every y ≥ 0.

7



According to every optimal strategy, if (5) holds, attribute i should not be discovered; otherwise,

attribute i should be discovered first if x∗i > x
∗
j . After discovering attribute i, the object should be

accepted immediately if xi > x
∗
j , rejected immediately if xi < −x∗j and discovery should proceed

to attribute j otherwise. In the last case, the final acceptance (rejection) will follow if xi + xj is

positive (negative).

The following corollary establishes the insights of Proposition I for the present case.

Corollary 1: (i) Suppose that x1 �s.o. x2 and c1 ≤ c2. Then, attribute 1 should be discovered

first.

(ii) Suppose that x1 �
s.s.o. x2 and

c1 − c2 ≥

∫ +∞

0

x1dF1(x1)−

∫ +∞

0

x2dF2(x2),

then attribute 2 should be discovered first.

The analysis of this section can be replicated for discrete, and even for general distributions. If

the distribution of xi is discrete, then there exist
−x∗i and

+x∗i such that LHS(8) is no higher than

the RHS at −x∗i , and LHS(8) is no lower that the right-hand side at
+x∗i .

5 Computability

The above analysis focused on some specific cases. This section inquires about the more fundamental

question regarding the possibility of computing solutions for a broader class of cases.

Recall that the running time of an algorithm depends not only on the number of values U(S) we

have to compute, but also on the size of the parameter set. This includes the number of values each of

the xi’s can take, and the sizes of these values as well as those of the ci’s, as measured by the number

of digits in their binary expansions. Suppose the size of the parameters is commonly bounded by

a number M . Then, an algorithm that is polynomial in M and n is called pseudo polynomial. To

be truly polynomial, an algorithm must have running time that is either independent of M and

polynomial in n (strongly polynomial), or polynomial in logM , i.e., the number of bits to encode M

on a computer, and n (weakly polynomial).8

8McCormick (2008) or Fujishige (2005) contain a more-detailed discussion. However, they devote much of their dis-

cussion of polynomial-time algorithms to minimization of submodular (or equivalently maximization of supermodular)

functions. But our objective function is generally neither supermodular nor submodular.
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Attention will be restricted to the simultaneous discovery case, since it is conceptually simpler.

The question is whether the optimization problem (2) can be solved in polynomial, or pseudo-

polynomial time.9 Our first result suggests that in general we cannot expect the existence of

polynomial-time algorithms.

Proposition IV: There is no polynomial-time algorithm for solving problem (2), even in the

case in which each xi has a binary distribution taking value ai with probability 1/2 and value −ai

with probability 1/2.

Since binary distributions taking values ai and −ai with equal probabilities are ordered by

second-order stochastic dominance, by Proposition I, there exist algorithms that deliver a solution

S to problem (2) by computing U(S) at a polynomial number of sets S of the form S = {1, ..., k}10.

Thus, Proposition IV must reflect the fact that the computation of U(S) for some sets S cannot be

performed in polynomial time. In contrast, pseudo polynomial-time algorithms for solving problem

(2) often exist.

Proposition V: If there exists an algorithm for solving problem (2) that requires computing

U(S) only for P (n) sets S, where P (n) is a polynomial function of n, then there also exists a pseudo

polynomial-time algorithm for solving problem (2).

Of course, any pseudo polynomial-time algorithm requires computing U(S) only for a polyno-

mial number of sets S. Therefore, the questions regarding pseudo polynomial-time algorithms can

be equivalently formulated in terms of the algorithms which require computing U(S) only for a

polynomial number of sets S.

6 Discussion and extensions

The results of this paper rely on fairly strong simplifying assumptions: (i) additive utility function;

(ii) independence of the attributes; (iii) common means of the attributes equal to the reservation util-

ity V ; (iv) simple binary distributions or two symmetrically distributed attributes in the sequential

discovery scenario.

9Of course, we must restrict attention here to distributions with finite support.
10However, we do not even know if there is a simple solution for all binary distributions. For example, whether for

the case in which xi takes values ai > 0 and bi < 0 and ci = c for all i there exists an algorithm for finding an optimal

set of attributes S which requires computing U(S) only at a polynomial number of sets S.
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The additive utility combined with the independence of the attributes introduce sufficient sepa-

rability into the optimization problems to make it possible to use marginal arguments with regard

to the discovery.11 In the absence of these assumptions, the discovery of an additional attribute

would interact with the set of discovered attributes in more complex ways and would preclude the

observations made in Proposition I.

Example 2: (a) Simultaneous search with three independently distributed attributes and

u(x1, x2, , x3) = x1 + x2 + x3 + x1 · x2.

Suppose that Pr(xi = 100) = Pr(xi = −100) = 1/2, i = 1, 2; Pr(x3 = 110) = Pr(x3 = −110) = 1/2

and ci = 1000 for all i. The optimal set of attributes to be discovered in this case is {x1, x2},

although each of them second-order stochastically dominates attribute x3. Intuitively, the reason is

that at the cost of order 1000, it only pays back to learn whether x1 ·x2 is equal to 10,000 or -10,000.

(b) Simultaneous search with three attributes but now with

u(x1, x2, , x3) = x1 + x2 + x3.

Suppose that the xi’s take on the same values as in part (a), but x1 and x2 are perfectly correlated

while still independent of x3; ci = 60 for all i. The two optimal sets of attributes to be discovered

are {x1} and {x2}, not the stochastically dominated attribute x3. The reason is that by learning

the value of x1 or x2 DM learns the value of the other attribute. This enables DM to avoid expected

loss of 100 (= 200× 1
2
)> 60 = ci. In contrast, by checking x3, DM avoids only expected loss of 55

(= 110× 1
2)< 60 = c3.

Obviously, the analysis of the general problem with other utility specifications or with correlated

attributes would be useful in that it may open the way to other interesting applications. For example,

the case in which different attributes are independent signals about the quality of an object is a

very natural application but typically would involve a different utility function and perhaps some

correlation. But, unfortunately, we have no significant result for these cases. Research on related

topics (e.g., Gittins’ indices, see Gittins and Jones (1974), Gittins (1989), or Weitzman’s (1979)

Pandora rule) suggests that the analysis would be rather intractable without the independence.

Some small extensions are fairly immediate. For example, the first part of Proposition I generalizes

11The simple non-weighted additive form u(x1, ..., xn) =
∑

xi is of course just a normalization and the analysis

can be easily generalized to u(x1, ..., xn) =
∑

αixi.

10



straightforwardly to u(x1, ..., xn) = f (x1 + ...+ xn), where f is an increasing function, but it is even

unclear what would be a reasonable counterpart of the second part of Proposition I for this form of

utility function.

The equality of the means to V is not crucial for the simultaneous scenario. It is not needed

for the first part of Proposition I and a modified version of the second part of Proposition I can be

proved for the case in which the means differ from V .

Analysis of the sequential discovery scenario is somewhat more challenging owing to the contin-

gent nature of the decisions. Proposition II is stated and proved for the binary case. This assumption

simplifies the argument since the absolute value of attribute j is always larger than that of j + 1.

It seems that a similar argument would hold for general symmetric distributions but it would be

complicated by the absence of a deterministic ranking of the absolute values of the outcomes.

In the analysis of Proposition III (on sequential discovery), the symmetry, the restriction to two

attributes and the equality of the mean to V all guarantee that the threshold between immediate

acceptance and continued discovery, x∗i , is just the negative of the threshold between rejection and

continued discovery, −x∗i . This property makes it possible to order the attributes using the x
∗
i ’s with

the special feature being that x∗i depends only the properties of attribute i. In the absence of any of

these assumptions, these thresholds may not coincide and, in general, the ordering of the attributes

would not captured by an index that is computed for each attribute independently of the other.

7 Appendix

Recall from Section 2 the notion of simple second-order stochastic dominance and the relation �s.s.o.

based on it. Let z and y be random variable with E(z) = E(y) = 0. Suppose that y = z+ xz where

the distribution of xz depends on the realization of z. When the outcome of z is positive (negative)

xz takes on only nonnegative (non-positive) values. In such a case we will say that y is obtained

from z by moving mass away from the mean.

Proposition VI: Consider random variables y and z with the mean zero and with cdfs G and

H, respectively. Then the following statements are equivalent:

(i) y �s.s.o. z;

(ii) for any function f : R → R which is non-decreasing on (−∞, 0] and non-increasing on
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[0,+∞), ∫ +∞

−∞

f(y)dG(y) ≤

∫ +∞

−∞

f(z)dH(z); (9)

(iii) y is obtained from z by moving mass away from the mean.

Proof. Proposition VI follows from analogous characterizations of first-order stochastic domi-

nance. To see that (i) implies (ii), recall that a random variable z with cdfH first-order stochastically

dominates a random variable y with cdf G (denoted y �f.o. z) iff

+∞∫

−∞

f(t)dG(t) ≤

+∞∫

−∞

f(t)dH(t) (10)

for any non-decreasing function f . We will denote the first order dominance relation by y �f.o. z

and also use G �f.o. H in the same meaning.

Suppose that condition (i) of Proposition VI is satisfied for random variables y and z with cdfs

G and H. Then, G(0) = H(0). Denote this number by a and consider four random variables with

cdfs G−, H−, G+ and H+:

(a) G− coincides on (−∞, 0) with G, and G−(0) = 1 (i.e., G− has an atom of mass 1− a at 0);

(b) H− coincides on (−∞, 0) with H, and H−(0) = 1;

(c) G+ coincides on (0,+∞) with G, and G+(0) = a (i.e., G+ has an atom of mass a at 0);

(d) H+ coincides on (0,+∞) with H, and H+(0) = a.

Then, G− �f.o. H− and H+ �f.o. G+. This implies that (10) holds with G replaced with G−

and H replaced with H−, and also with G replaced with H+ and H replaced with G+.

To show that condition (ii) of Proposition VI is satisfied, consider a function f : R → R which

is non-decreasing on (−∞, 0) and non-increasing on (0,+∞), and define two functions f− and f+

such that

(e) f− coincides on (−∞, 0] with f , and is constant on [0,+∞);

(f) f+ coincides on [0,+∞) with −f , and is constant on (−∞, 0].

Since f− and f+ are non-decreasing,

+∞∫

−∞

f−(y)dG−(y) ≤

+∞∫

−∞

f−(z)dH−(z) and

+∞∫

−∞

f+(z)dH+(z) ≤

+∞∫

−∞

f+(y)dG+(y).

These inequalities imply respectively

0∫

−∞

f(y)dG(y) ≤

0∫

−∞

f(z)dH(z) and −

+∞∫

0

f(z)dH(z) ≤ −

+∞∫

0

f(y)dG(y).
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which together yield (9).

To see that (iii) implies (i), recall that y �f.o. z iff

y = z + xz, (11)

where the random variable xz takes non-positive values and whose distribution may depend on the

realization of z. Equivalently, y �f.o. z iff z = y+xy, where xy is a random variable with nonnegative

values.

Suppose that condition (iii) of Proposition VI is satisfied for random variables y and z. Consider

two pairs of random variables: y− and z−, and y+ and z+ such that

(g) y− = y if y ≤ 0 and y− = 0 if y > 0, and z− = z if z ≤ 0 and z− = 0 if z > 0;

(h) y+ = y if y ≥ 0 and y− = 0 if y < 0, and z− = z if z ≥ 0 and z− = 0 if z < 0.

Then, (11) is satisfied for z = z− and y = y−, and for z = y+ and y = z+. Thus, z− stochastically

dominates y−, and y+ stochastically dominates z+. This yields

H−(t) ≤ G−(t) and H+(t) ≥ G+(t)

for all t, where G− and H− are the cdfs of y− and z−, and G+ and H+ are the cdfs of y+ and z+,

respectively. And this yields G(t) ≥ H(t) for t ≤ 0, and G(t) ≤ H(t) for t ≥ 0.

Finally, to see that (ii) implies (iii), suppose that (ii) is satisfied. By applying it to functions f

that are non-decreasing on (−∞, 0], non-negative at 0, and equal to 0 on (0,+∞), we get that y−

and z− satisfy (10) and hence y− �
f.o. z−. It suffices to restrict attention to functions f with these

properties, since one can add to any function f , without affecting (10), a constant no smaller than

f(0); and then, since variables y− and z− take positive values with probability 0, one can change,

also without affecting the condition, the values of the so obtained function on (−∞, 0] to 0.

Similarly, z+ and y+ are shown to satisfy condition (10) and hence z+ �f.o. y+ by applying

condition (ii) to functions −f such that f is equal to 0 on (−∞, 0), non-negative at 0, and non-

increasing on [0,+∞). Thus, y− and z− satisfy (11) and so do z+ and y+, which is exactly the

condition defining moving mass away from the mean.�

7.1 Proofs of Lemmas 1 and 2, and the second part of Proposition I

Proof of Lemma 1: We need to show that the integral

∫ ∫

y0+yi≥0

(y0 + yi) dG0(y0)dGi(yi) (12)
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becomes higher when yi = y2 gets replaced with yi = y1, where y1 �s.o. y2.

Recall that a second-order stochastically dominated variable, such as y1, can be represented as a

mean-preserving spread of a variable that dominates it, such as y2, that is, as the compound lottery

such that in the first stage, we have a lottery y2; and in the second stage, we randomize each possible

outcome of y2 further so the final outcome is y2+ x, where the distribution of x has mean zero, and

may depend on the outcome of y2.

Consider a pair of realizations of variables y0 and y2 such that y0 + y2 ≥ 0 and variable x such

that y1 = y2 + x contingent on this particular realization of y2. For any such pair y0 and y2, we

have that

y0 + y2 =

∫
(y0 + y2 + x)dG(x) ≤

∫
max{0, y0 + y2 + x}dG(x) =

∫

y0+y2+x≥0

(y0 + y2 + x)dG(x).

This yields

∫ ∫

y0+y2≥0

(y0 + y2) dG0(y0)dG2(y2) ≤

∫ ∫

y0+y2≥0

(∫

y0+y2+x≥0

(y0 + y2 + x)dG(x)

)
dG0(y0)dG2(y2)

≤

∫ ∫

y0+y1≥0

(y0 + y1) dG0(y0)dG2(y1).

The proof is illustrated in Figure 1(a). For any pair of outcomes y0 and yi = y2 such that y0+yi+x ≥

0 for all outcomes of x, the addition of x to yi does not affect expression (12), because the expected

value of x is equal to 0 (an example of such a case is depicted in dashed arrows), then. And for any

pair of outcomes y0 and yi = y2 such that y0 + yi + x < 0 for some outcomes of x (an example of

such a case is depicted in solid arrows), the addition of x to yi makes expression (12) higher, because

the outcomes such that y0 + yi + x < 0 are located out of the region of integration.
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�

Proof of Lemma 2: We need to show that the integral

∫ ∫

y0+yi≥0

(y0 + yi) dG0(y0)dGi(yi)−

∫ +∞

0

yidGi(yi) (13)

becomes lower when yi = y2 gets replaced with yi = y1, where y1 �
s.s.o y2. To show this it will be

convenient to transform expression (13) as follows

∫ ∫

y0+yi≥0

(y0 + yi) dG0(y0)dGi(yi)−

∫ +∞

0

yidGi(yi) =

=

∫ ∫

y0+yi≥0

yidG0(y0)dGi(yi)−

∫ ∫

yi≥0,−∞<y0<+∞

yidGi(yi)dG0(y0)+

∫ ∫

y0+yi≥0

y0dG0(y0)dGi(yi) =

=

∫ ∫

y0+yi≥0,yi≤0

yidGi(yi)dG0(y0)−

∫ ∫

y0+yi≤0,yi≥0

yidGi(yi)dG0(y0)+

+

∫ ∫

y0+yi≥0

y0dG0(y0)dGi(yi) =

=

∫ ∫

y0+yi≥0,yi≤0

(y0 + yi)dGi(yi)dG0(y0) +

∫ ∫

y0+yi≤0,yi≥0

(−y0 − yi)dGi(yi)dG0(y0).
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The sequence of transformations is easier to understand with reference to Figure 1(b). The first

equality is obvious. To see the second equality notice that the left-hand side of that equality has

the integral of yi over the region y0 + yi ≥ 0 minus the integral of yi over the region yi ≥ 0, which

is exactly the integral over the region above line y0 + yi = 0 and to the left of line yi = 0 minus

the integral of yi over the region below line y0 + yi = 0 and to the right of line yi = 0. The third

inequality follows from the same argument applied to y0 instead of yi. Notice here that

∫ ∫

y0+yi≥0

y0dG0(y0)dGi(yi) =

∫ ∫

y0+yi≥0

y0dG0(y0)dGi(yi)−

∫ ∫

yi≥0,−∞<y0<+∞

y0dGi(yi)dG0(y0)

because the very last integral is equal to the expected value of y0, which is 0.

Consider the integral ∫ ∫

y0+yi≥0,yi≤0

(y0 + yi)dGi(yi)dG0(y0).

Consider also a pair of realizations of variables y0 and y2 such that y2 > 0, and a variable x that is

added to this particular realization of y2 to obtain variable y1 by moving mass away from the mean

(see Proposition VI). Then, we must have that x ≥ 0, and no pair of realizations y0, y1 so obtained

can belong to the region of integration for yi = y1. Thus, a pair y0, y1 can belong to the region of

integration for yi = y1 only when y2 ≤ 0, but then we also have that x ≤ 0, and that the pair of

realizations y0 and y2 must belong to the region of integration for yi = y2.

Therefore,

∫ ∫

y0+y1≥0,y1≤0

(y0 + y1)dG1(y1)dG0(y0) =

∫ ∫

y0+y2+x≥0,y2≤0

(y0 + y2 + x)dG(x)dG2(y2)dG0(y0)

≤

∫ ∫

y0+y2≥0,y2≤0

(y0 + y2)dG2(y2)dG0(y0).

A similar argument applies to the integral

∫ ∫

y0+yi≤0,yi≥0

(−y0 − yi)dGi(yi)dG0(y0).

Indeed, consider also a pair of realizations of variables y0 and y2 such that y2 < 0, and a variable

x that is added to this particular realization of y2 to obtain variable y1 by moving mass away from

the mean. Then, we must have that x ≤ 0, and no pair of realizations y0, y1 so obtained can belong

to the region of integration for yi = y1. Thus, a pair y0, y1 can belong to the region of integration

for yi = y1 only when y2 ≥ 0, but then we also have that x ≥ 0, and that the pair of realizations y0

and y2 must belong to the region of integration for yi = y2.
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Therefore,

∫ ∫

y0+y1≤0,y1≥0

(−y0 − y1)dG1(y1)dG0(y0) =

∫ ∫

y0+y2+x≤0,y2≥0

(−y0 − y2 − x)dG(x)dG2(y2)dG0(y0)

≤

∫ ∫

y0+y2≤0,y2≥0

(−y0 − y2)dG2(y2)dG0(y0).

The arguments are illustrated in Figure 1(b). For example, consider the integral over the region

above line y0 + yi = 0 and to the left of line yi = 0. If a pair of realizations y0, y2 lies in this region

for yi = y2, then a pair of realizations y0, y1 such that y1 was obtained by adding variable x from

Proposition VI (iii) to this particular realization y2 may or may not belong to the region above

line y0 + y1 = 0 and to the left of line y1 = 0, as illustrated by a dashed arrow and a solid arrow,

respectively. The value of y0 + y1 is in each case lower than the value of y0 + y2. In addition, if a

pair of realizations y0, y2 lies outside the region above line y0 + y2 = 0 and to the left of line y2 = 0,

then a pair of realizations y0, y1 such that y1 was obtained by adding variable x from Proposition

VI (iii) to this particular realization y2 also lies outside the region above line y0+ y1 = 0 and to the

left of line y1 = 0.

�
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Proof of the second part of Proposition I: Applying Lemma 2 to

y0 =
∑

k∈S

xk; y1 = xi; y2 = xj.

we have that

∫
...

∫

xk,k∈S∪j

max



0,
∑

k∈S∪j

xk



−
∫
...

∫

xk ,k∈S∪i

max

(

0,
∑

k∈S∪i

xk

)

≥

≥

∫ +∞

0

xjdFj(xj)−

∫ +∞

0

xidFi(xi).

By assumption, ∫ +∞

0

xjdFj(xj)−

∫ +∞

0

xidFi(xi) ≥ cj − ci.

Since
∑

k∈S∪j ck −
∑

k∈S∪i ck = cj − ci, it follows from (1) that U(S ∪ j) ≥ U(S ∪ i).�

7.2 Proof of Proposition II

The proof is by induction. Suppose that this result is true when m attributes are left and suppose

that m+1 are left. Let aj be maximal in this set and suppose that it is optimal to start with k such

that ak < aj. By the inductive assumption, if the process continues after discovering k, it continues

with j. The optimality of discovering k implies that the decision after the realization ak is different

than after the realization −ak, since otherwise it would be beneficial to postpone the discovery of

attribute k to a point in which it might be relevant. Thus, the possible decisions after discovering k

are

Table 1

ak accept continue accept

−ak reject reject continue

Consider next the alternative of starting with attribute j, making the same decisions after aj and

−aj as prescribed above for ak and −ak, then continuing with k if the decision is to continue and

thereafter following the optimal rule. The expected discovery cost is the same with both rules. Their

outcomes coincide when (xk, xj) = (ak, aj) or (−ak,−aj). Their outcomes may differ only when

(xk, xj) = (ak,−aj) or (−ak, aj). The following three tables describe all the ways in which the
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decisions may differ in these cases.

Table 2

i (ak,−aj) (−ak, aj)

k first accept reject

j first reject accept

ii (ak,−aj) (−ak, aj)

k first continue reject

j first reject continue

iii (ak,−aj) (−ak, aj)

k first accept continue

j first continue accept

For tables 2(i) and 2(ii), it is obvious that discovering j first is superior, since the difference

between the expected benefit of either accepting or continuing over rejection is larger for the case

−ak, aj than for the case ak,−aj by at least aj − ak > 0.

It remains to evaluate table 2(iii). Given the set S of undiscovered attributes and the sum

X of the values of the already discovered attributes, define Φ(S|X) to be the expected payoff of

continuing with an optimal policy, not counting the costs that have already been incurred. It is

defined inductively by

Φ({ℓ}|X) = max{0, X,
1

2
max{X − aℓ, 0}+

1

2
max{X + aℓ, 0} − c}

and

Φ(S|X) = max
ℓ∈S

max{0, X,
1

2
Φ(S\ℓ|X − aℓ) +

1

2
Φ({S\ℓ|X + aℓ)− c}

Consider now the situation described by table (iii). Discovering j first yields higher payoff

than discovering k first iff the difference between the expected continuation value and the value of

immediate acceptance is larger after ak,−aj than after −ak, aj . That is, if Φ(S|Y +ak− aj)− (Y +

ak−aj) > Φ(S|Y +aj−ak)− (Y +aj−ak), where S is the set of undiscovered attributes (excluding

j and k) and Y is the sum of the values of attributes discovered before j and k were reached. Now,

this follows from the fact that Φ(S|X)−X is decreasing in X, if |S| ≤ m (where m is given by the

inductive assumption in the beginning of the proof). This fact is established by induction on |S|.

For S = {ℓ}, Φ({ℓ}|X) − X = max{−X, 0, 12 max{−aℓ,−X} +
1
2 max{aℓ,−X} − c} which is

decreasing in X. Suppose now that this is true for all sets S such that |S| ≤ t < m and consider an

S such that |S| = t + 1. Since |S| ≤ m, the identity of the first attribute to be discovered out of S

is independent of X (by the inductive assumption made the beginning of the proof). Let ℓ be that

attribute and observe that

Φ(S|X)−X = max{−X, 0,
1

2
[Φ(S\ℓ|X − aℓ)− (X − aℓ)] +

1

2
[Φ(S\ℓ|X + aℓ)− (X + aℓ)]− c}

is decreasing in X, since by the inductive assumption Φ(S\ℓ|X − aℓ) − (X − aℓ) and Φ(S\ℓ|X +

aℓ)− (X + aℓ) are decreasing in X. �
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7.3 Proofs of Proposition III and Corollary 1

Proof of Proposition III: Suppose that x∗1 < x
∗
2. We will show that attribute 1 should be

discovered first. Other assertions of Proposition III are straightforward. The payoffs contingent on

any possible pair of realizations of the two attributes are exhibited in Figure 2(a). The top row in

each area is the payoff from discovering the realization of attribute 1 first, and playing the optimal

continuation strategy contingent on any realization of this attribute. According to this strategy, DM

should accept the object whenever x∗2 < x1; she should reject the object whenever x1 < −x
∗
2; and

when −x∗2 < x1 < x
∗
2, she should discover the realization x2 of attribute 2, accept the object when

x1 + x2 > 0 and reject the object when x1 + x2 < 0.

The bottom row is the payoff from discovering the realization of attribute 2 first, but then playing

the (possibly suboptimal) continuation strategy, according to which DM should accept the object

whenever x∗2 < x2; she should reject the object whenever x2 < −x
∗
2; and when −x

∗
2 < x2 < x

∗
2, she

should discover the realization x1 of attribute 1, accept the object when x1 + x2 > 0 and reject the

object when x1 + x2 < 0. (The optimal continuation strategy would have threshold x∗1 not x
∗
2.)

We obtain Figure 2(b) from Figure 2(a) by deleting the common components of the corresponding
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top and bottom payoffs. Finally, we obtain Figure 2(c) from Figure 2(b) by means of (6) and (8).

Notice that for any given value of x1, the component −c2 appears in the bottom row of Figure 2(b)

either for every single value of x2 or for no value of x2. The component −c2 appears for every single

value of x2 when x1 > x∗2 or when x1 < −x
∗
2. In the former case, we can replace −c2 with x

∗
2 + x2

for x2 < −x∗2 and with 0 for x2 > −x∗2. In the latter case, we can replace −c2 with x
∗
2 − x2 for

x2 > x∗2 and with 0 for x2 < x
∗
2. These changes do not affect the integral of the bottom row payoff

across all pairs of realizations of the two attributes. To see this, observe first that (6) and (8) imply

x∗iFi(−x
∗
i ) = −ci +

∫ +∞

−x∗
i

xidFi(xi) (14)

and

x∗i [1− Fi(x
∗
i )] = −ci +

∫ +∞

x∗
i

xidFi(xi) (15)

Now, the desired result for the first case follows from (14) and from
∫ +∞

−x∗
2

x2dF2(x2) =

∫ +x∗
2

−x∗
2

x2dF2(x2) +

∫ +∞

+x∗
2

x2dF2(x2) = −

∫ −x∗
2

−∞

x2dF2(x2),

which in turn follows from the symmetry of x2. Similarly, for the second case the desired result

follows from (15).
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We replace −c1 in the top row of Figure 2(b) in a similar fashion. More precisely, the component

−c1 appears for every single value of x1 when x2 > x∗2 or when x2 < −x
∗
2. In the former case, we

replace −c1 with x
∗
2 + x1 for x1 < −x

∗
2 and with 0 for x1 > −x

∗
2. And in the latter case, we replace

−c1 with x∗2 − x1 for x1 < −x∗2 and with 0 for x1 > −x∗2. This will increase the integral of the

top row across all pairs of realizations of the two attributes by (14) and (15). Indeed, we would

not affect the integral by replacing −c1 with x∗1 + x1 for x1 < −x
∗
1 and with 0 for x1 > −x

∗
1 in the

former case, and replacing −c1 with x
∗
1 − x1 for x1 < −x

∗
1 and with 0 for x1 > −x

∗
1 in the latter

case. However, x∗1 < x
∗
2, so the left-hand sides of (14) and (15) exceed the right-hand sides of the

two equations, respectively.

The entries in the top and bottom rows of Figure 2(c) coincide. This implies that the expected

payoff from discovering attribute 2 first, followed by playing a suboptimal continuation strategy is

no lower than the expected payoff from discovering attribute 1 first, followed by playing the optimal

continuation strategy.�

Proof of the first part of Corollary 1: We first write formula (8) as
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ci =

∫ +∞

−∞

max{0, (−x∗i + xi)}dFi(xi).

Notice that the function which is integrated on the right-hand side of this equation is convex. Thus,

x1 �s.o. x2 implies that for any given value x∗ = x∗1 = x
∗
2, the right-hand side is no lower for i = 1

than for i = 2. Since c1 ≤ c2, we have that x∗1 ≥ x
∗
2.�

Proof of the second part of Corollary 1: Add ci−
∫ +∞
0 xidFi(xi) to both sides of (8) to get

ci −

∫ +∞

0

xidFi(xi) =

∫ +∞

0

max{−xi,−x
∗
i }dFi(xi).

By Proposition VI, x1 �
s.s.o. x2 implies that for any given value x

∗ = x∗1 = x
∗
2, the right-hand side

is no lower for i = 2 than for i = 1. Since, by assumption, the left-hand side is no higher for i = 2

than for i = 1, we have that x∗1 ≤ x
∗
2.�

7.4 Proofs of Propositions IV and V

In the following we use the notation [h] = {1, . . . , h} for any integer h. Let

g(n) = E

[

max

(

0,
n∑

i=1

xi

)]

.

Then it holds U([n]) = g(n) and thus working with g is equivalent to dealing with U . From this it

follows that if it is NP-complete to compute g, then it is also NP-complete to evaluate U(S). (It is

already hard for a specific S = {1, 2, . . . , n}.)

7.4.1 Proof of Propositions IV

Suppose that a1, ..., an are positive natural numbers. Let a = (a1, ..., an), a = (a1, ..., an, an+1),

where an+1 = 1,

M :=
1

2
a([n]),

and for any ∅ �= S ⊂ [n],

a(S) :=
∑

i∈S

ai.

Define M and a(S), where ∅ �= S ⊂ [n+ 1], for a in a manner similar to M and a(S) for a.

Let u(a) stand for the number of sets S such that a(S) =M . The idea is to show that if we were

able to compute expression g(n) in polynomial time, then we would also be able to compute u(a) in
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polynomial time. And then, by checking whether u(a) = 0, we would be able to solve the problem

of partitioning, which is known to be NP-complete (see, e.g., Garey and Johnson (1979)).

Assume, without loss of generality, that M is an integer. (Indeed, if M is not an integer, there

obviously exists no S such that a(S) =M .)

If S denotes set {i : xi = −ai} and T denotes set {i : xi = ai}, then

n∑

i=1

xi = a([t])− a(S) = (a([n])− a(S))− a(S) = −2a(S) + a([n]),

and so
n∑

i=1

xi ≥ 0 ⇔ a(S) ≤
1

2
a([n]).

Thus,

g(n) =
1

2n

{
a([n]) +

∑[
(−2a(S) + a([n])) : ∅ �= S ⊂ [n], a(S) ≤

1

2
a([n])

]}
=

=
1

2n−1

{
1

2
a([n]) +

∑[(
1

2
a([n])− a(S)

)
: ∅ �= S ⊂ [n], a(S) ≤

1

2
a([n])

]}
.

Further, define

h(a) := 2n−1 · g(n)−
1

2
a([n]) =

∑

∅ �=S⊂[n]:a(S)≤M

(M − a(S)),

f(a) := |∅ �= S ⊂ [n] : a(S) ≤M |,

h(a,−1) =
∑

∅ �=S⊂[n]:a(S)≤M−1

(M − 1− a(S))

and

f(a,−1) := |∅ �= S ⊂ [n] : a(S) ≤M − 1|.

If we were able to compute g(n) in polynomial time, then we would be able to compute h(a) and

h(a). We will now derive a non-singular system of five linear equation with variables f(a), f(a),

f(a,−1), h(a,−1), u(a) and with constant terms including h(a) and h(a). Solving this system, we

will find the value of u(a).

Since all numbers a(S) are integers,M−a(S) = 0 in the expression for h(a) unless a(S) ≤M−1.

This yields that

h(a) = h(a,−1) + f(a,−1). (16)

Further, observe that

−1 = f(a) + f(a,−1)− f(a). (17)
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Indeed, f(a) is the number of non-empty sets S ⊂ [n + 1] such that a(S) ≤ M . There are three

types of such sets S: (i) If n+ 1 /∈ S ⊂ [n+ 1], then a(S) = a(S) ≤ M = M + 1/2 ⇔ a(S) ≤ M;

(ii) If n+1 ∈ S �= {n+1}, then for S := S − {n+1}, we have a(S) = a(S) + 1 ≤M =M + 1/2 ⇔

a(S) ≤M − 1; (iii) If S = {n+ 1}, then a(S) = 1. This yields that f(a) = f(a) + f(a,−1) + 1.

Similarly,

h(a) =
∑

∅ �=S⊂[n+1]:a(S)≤M

(M − a(S)) =

=
∑

∅ �=S⊂[n]:a(S)≤M

(M − a(S)) +
∑

{n+1}∈S⊂[n+1]:a(S)≤M , S �={n+1}

(M − a(S)) +
(
M − 1

)
=

=
∑

∅ �=S⊂[n]:a(S)≤M

(M + 1/2− a(S)) +
∑

∅ �=S⊂[n]:a(S)≤M−1

(M − 1/2− a(S)) + (M − 1/2) =

= h(a) +
1

2
f(a) + h(a,−1) +

1

2
f(a,−1) +M − 1/2.

This is equivalent to

2 (h(a)− h(a) + 1/2−M) = f(a) + f(a,−1) + 2h(a,−1). (18)

Clearly,

u(a) = |∅ �= S ⊂ [n] : a(S) =M | = |∅ �= S ⊂ [n] : a(S) ≤M | − |∅ �= S ⊂ [n] : a(S) ≤M − 1|

= f(a)− f(a,−1);

that is,

0 = −u(a) + f(a)− f(a,−1). (19)

Finally,

|∅ �= S ⊂ [n] : a(S) ≤M − 1|+ |∅ �= S ⊂ [n] : a(S) =M|+ |∅ �= S ⊂ [n] : a(S) ≥M + 1| = 2n − 1.

Since a(S) ≤M − 1 ⇔ a([t]) ≥M + 1, where T stands for the complement of S,

2|∅ �= S ⊂ [n] : a(S) ≤M − 1|+ |∅ �= S ⊂ [n] : a(S) =M | = 2n − 1;

that is,

2n − 1 = 2f(a,−1) + u(a). (20)
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We can now solve the system of equation (16)-(20), and compute f(a), f(a), f(a,−1), h(a,−1),

u(a) as a function of h(a) and h(a). Indeed, the matrix





0 0 1 1 0

1 −1 1 0 0

1 0 1 2 0

1 0 −1 0 −1

0 0 2 0 1






is non-singular. Therefore, if we were able to compute h(a) and h(a) in polynomial time, then we

would also be able to compute u(a) in polynomial time. �

7.4.2 Proof of Proposition V

The proof follows immediately from the following lemma.

Lemma 3: There exists a pseudo polynomial-time algorithm for computing g(n).

Proof of Lemma 3: Suppose that xi, i = 1, ..., n, takes values ai in a finite set Si.

For t = 1, ..., n and at = (a1, ..., at), define

pt(a
t) :=

t∏

i=1

Pr {xi = ai} ,

and for any t = 1, ..., n, define

Vt(b) =
∑{

pt(a
t) · (a([t])) : a([t]) ≥ b

}
.

We will develop a recursive definition of Vt(b):

Vt(b) =
∑{

pt(a
t) · (at + a([t− 1])) : a([t]) ≥ b

}
=

=
∑{

pt(a
t) · at +Pr{xt = at}pt−1(a

t−1) · (a([t− 1])) : a([t]) ≥ b
}
=

=
∑{

pt(a
t) · at : a([t]) ≥ b

}
+
∑

at

Pr{xt = at}Vt−1(b− at).

Let

Ut(b) :=
∑{

pt(a
t) · at : a([t]) ≥ b

}
.

Then

Ut(b) =
∑

at

at Pr{xt = at} ·
(∑{

pt−1(a
t−1) : a([t− 1]) ≥ b− at

})
.
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Let

zt(b) :=
∑{

pt(a
t) : a([t]) ≥ b

}
.

Then

zt(b) =
∑

at

Pr{xt = at} ·
(∑{

pt−1(a
t−1) : a([t− 1]) ≥ b− at

})
=

=
∑

at

Pr{xt = at} · zt−1(b− at).

Therefore, zt(b) can be computed recursively, and so Ut(b) and Vt(b) can be computed recursively.

The recursive definition of Vt(b) provides an algorithm for computing g(n) = Vn(0) whose running

time is polynomial in the following three parameters: n,

s := max
i=1,...,n

|Si| ,

and the common bound L on the size of ai ∈ Si, i = 1, ..., n. Note that for each t = 1, ..., n, functions

zt, Ut and Vt need to be computed for b = 0, 1, ..., L. �

It is straightforward to observe that the presented algorithm is valid for computing U(S) for an

S by relabeling the elements in S.
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