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Abstract

We consider contests with many, possibly heterogeneous, players and prizes, and

show that the equilibrium outcomes of such contests are approximated by the outcomes

of an appropriately defined set of mechanisms.

This makes it possible to easily approximate of the equilibria of contests whose

exact equilibrium characterization is complicated, as well as the equilibria of contests

for which there is no existing equilibrium characterization. We apply the results to

derive the effort-maximizing prize structure given a budget, and to investigate the

effect of changing the set of competitors on their equilibrium effort.
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1 Introduction

In many settings, agents compete for prizes by expending resources. Some of these settings,

such as lobbying, political campaigns, competitions for promotions, and research and de-

velopment races, typically involve a small number of competitors and prizes; other settings,

such as college admissions, grant competitions, competitions by employers for workers on a

national or international level (e.g., hospitals for residents), sales competitions in large firms,

and certain sports competitions (e.g., marathons) involve many competitors and prizes.1

The competitors often differ in their abilities, technologies, access to capital, and prior

investments. They may also receive differential treatment in the contest, and their valuations

for a given prize may differ. In addition, the prizes may be heterogeneous - colleges differ in

their prestige, grants differ in their size, jobs differ in their characteristics, etc. But solving

game-theoretic models with asymmetric players and heterogeneous prizes has proven difficult,

which has limited our understanding of contests. In particular, contest design questions, such

as identifying the effort-maximizing prize distribution given a pool of ex-ante asymmetric

competitors, are not well understood.2

This paper shows that the equilibrium outcomes of contests with a large (but finite)

number of competitors and prizes can be approximated by certain incentive-compatible (IC)

and individually rational (IR) mechanisms. The approximation applies even when solving for

equilibrium is difficult or impossible, which substantially expands the set of contests that can

be studied. This makes it possible to address previously intractable comparative statics and

contest design questions by translating them to tractable mechanism design questions. We

illustrate this in a flexible asymmetric contest setting by characterizing the effort-maximizing

prize distribution and the effect that changing the set of competitors has on the effort they

exert.

In our contest framework, n players compete for n prizes (some of which may be worth

0). Each player chooses a non-negative bid, and the player with the highest bid obtains the

1In 2012, 4-year colleges in the US received more than 8 mln applications and enrolled approximately

1.5 mln freshmen. In each of the last several years, the National Science Foundation received more than

40,000 grant applications and awarded more than 10,000 grants. In 2012, the National Residency Matching

Program, which has been modeled as a contest by Bulow and Levin (2006) (see Section 3), had close to

40,000 doctors who applied to more than 25,000 positions. Cisco, which has more than 15,000 partners in

the US, holds several sales competitions among its partners. Between 2010 and 2012, Tokyo, London, New

York, Chicago, and Sydney each hosted a marathon with more than 30,000 participants.

2For example, Moldovanu and Sela’s (2001) important contribution considered only whether one prize or

multiple prizes are optimal in an environment with ex-ante symmetric contestants.
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highest prize, etc. A player’s payoff depends on his bid, his type, and the prize she obtains,

and decreases continuously in her bid. This accommodates a wide range of asymmetries

among players and heterogeneity in prizes. Players’ types are distributed independently, but

not necessarily identically, which accommodates both complete-information and incomplete-

information asymmetric contests.

We study sequences of contests whose empirical distributions of player types and prizes

converge as n grows large. Given the limit type and prize distributions, the approximating

IC-IR mechanisms allocate the available prizes to the continuum of agents in a way that is

consistent with an “inverse tariff,” in which each bid determines a single prize.

The intuition for the approximation is as follows. In any contest, a player can bid 0 and

secure the lowest prize. This guarantees IR in the n-th contest and implies IR in the limit.

As the number of players increases, the mappings from bids to distributions of the bids’

percentile rankings (induced by the other players’ equilibrium strategies) become similar

across players, and coincide in the limit. This is because the rankings of two players who

make the same bid differ by at most 1. This “almost” implies that players’ mappings from

bids to distributions of prizes become similar, and coincide in the limit. Moreover, by a law

of large numbers, the common limit mapping from bids to prizes is deterministic, so each

bid maps to a single prize. This yields an inverse tariff such that, in the limit, agents choose

bids and obtain corresponding prizes, as in a mechanism-design setting. In particular, the

mechanism defined by the inverse tariff is IC.

This intuition is incomplete, however, since it assumes that the equilibrium outcomes

converge. In addition, for some bids the distributions of prizes may not be similar across

players even when the percentile rankings are. This is what happens in the setting of Section

3.2, in which there are half as many identical prizes as players and the limit percentile

ranking of a bid t is 1/2. By bidding slightly above t some players obtain a prize with

relatively high probability and other players obtain a prize with relatively low probability,

even when the number of players is large. Finally, for some contest specifications the notion

of approximation implied by the intuition is substantially weaker than the one we are able

to obtain.

Our most general, but weakest, result establishes convergence in weak∗-topology of the

equilibrium distributions over player types, prizes, and bids as n grows large to a distribution

over agent types, prizes, and bids that corresponds to a mechanism. This convergence

approximates the average equilibrium distribution over prize-bid pairs of the player types

that are close to a given agent type, but this may not be a good approximation of the

equilibrium strategy of any single player.

Under a strict single crossing condition on the players’ payoffwe establish a much stronger
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form of convergence, which delivers a simultaneous approximation of all players’ equilibrium

strategies. In this case, as n grows large players’ equilibrium strategies become almost deter-

ministic, and the resulting allocation of prizes approaches the assortative one. When payoffs

are also quasi-linear with respect to bids, the allocation is efficient, and the unique mecha-

nism that implements it is characterized by applying standard mechanism-design techniques.

We are then able to say (approximately, but with an arbitrary degree of precision as n in-

creases and uniformly across all equilibria) how each player will bid, and what prize she will

obtain by making any given bid. This result applies to many existing contest models, which

are surveyed in Section 1.1, as well as to contest specifications for which no equilibrium

characterization exists.

We use this result to derive the prize distribution that maximizes the aggregate bids in

a large contest. When the prize budget is sufficiently large, it is optimal to award a limited

number of the largest possible prizes. This continues to be true for any prize budget when

players’ marginal prize utility is weakly increasing. But when players’ marginal prize utility

is decreasing, the optimal prize distribution with a limited budget includes a range of prizes,

and may also include a number of the largest possible prizes. We also show that for any

prize distribution, a first-order stochastic dominance shift of the players’ type distribution

increases the aggregate bids.

The rest of the paper is organized as follows. Section 1.1 surveys the related literature.

Section 2 introduces the basic terminology and notation. Section 3 presents some examples

that illustrate our results in some settings that have been studied in the literature. Section

4 contains our main results and some discussion of their application. Section 5 develops

the contest design application. Section 6 contains the proofs of our main results when the

limit set of prizes has full support. Section 7 concludes. Appendix A contains the proofs

of intermediate results from Section 6. Appendix B contains the proofs of our main results

when the limit set of prizes may not have full support.

1.1 Related Literature

Our model includes many variants of the multi-prize all-pay auction with complete and

incomplete information, in which each player chooses a bid and pays the associated (and

possibly idiosyncratic) cost.3 Closed-form equilibrium characterizations exist for complete-

information contests with two participating players (Hillman and Samet (1987), Hillman and

3Other models of competition postulate a probabilistic relation between competitors’ efforts and prize

allocation. See Tullock (1980) and Lazear and Rosen (1981). For a comprehensive treatment of the literature

on competitions with sunk investments, see Nitzan (1994) and Konrad (2007).
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Riley (1989), Che and Gale (1998, 2006), Kaplan and Wettstein (2006), Siegel (2010)), with

identical prizes and costs (Baye, Kovenock, and de Vries (1993, 1996), González-Díaz (2012),

Clark and Riis (1998)), and with identical players (Barut and Kovenock (1998)). Algorithmic

equilibrium characterizations exist for some contests with identical prizes and heterogeneous

costs (Siegel 2010, 2013b),4 and with heterogeneous prizes and identical costs (Bulow and

Levin (2006), González-Díaz and Siegel (2012), Xiao (2013)). The heterogeneity in prizes,

however, is limited to very specific functional forms. Moreover, algorithmic characterizations

make further analysis, such as comparative statics and contest design, difficult or impossible.

Incomplete-information contests have been solved when there are two players (for example,

Amann and Leininger (1996), Siegel (2013a)), and when players are ex-ante identical (for

example, Krishna and Morgan (1997), Moldovanu and Sela (2001, 2006)).5 In contrast, our

model accommodates ex-ante asymmetric players, heterogeneous prizes, and complete and

incomplete information.

Our paper also contributes to the literature on large games. This literature typically

makes continuity assumptions that exclude auction-like games (for example, Kalai (2004)

and Carmona and Podczeck (2009, 2010)). A notable exception is Bodoh-Creed (2012), who

explicitly considers uniform-price auctions with incomplete information, but assumes enough

uncertainty about the set of prizes to exclude the possibility of a small change in the rank

order of a bid having a large effect on the prize obtained. Moreover, the analysis in this

literature often focuses on ε-equilibria of large games, which may not approximate Nash

equilibria well. In contrast, our approach deals with the discontinuities that arise naturally

in contests, approximates Nash equilibria, and uncovers a novel connection to mechanism

design.

A more closely related paper is Hickman’s (2009) theoretical analysis of affirmative action

in college admissions. He considers a quasi-linear contest model with incomplete information

that satisfies strict single crossing, and approximates the outcome for a large number of

applicants by a continuum model in which the limit set of prizes has full support (so a small

change in the rank order of a bid cannot have a large effect on the prize obtained). Our

paper differs from Hickman’s (2009) work in three main ways. First, our approach does not

require quasi-linearity, strict single crossing, or full support of the limit prize set (although

we obtain stronger results under these conditions), and is therefore applicable to a wider

4Siegel (2009, 2013c) gives a closed-form expression for players’ equilibrium payoffs, but does not solve

for equilibrium.

5Parreiras and Rubinchik’s (2010) characterize some equilibrium properties in a setting with ex-ante

asymmetric players and one prize.
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range of settings. Second, we relate the outcomes of large contests to mechanisms, which

allows us, under certain conditions, to derive the approximation in closed form. Third, our

model accommodates both complete information and incomplete information, and therefore

includes many existing contest models as special cases.

Finally, there is a literature on matching and search that employs continuum models to

approximate matching models with many participants. Azevedo and Leshno (2012) show

that stable matchings are easy to find and are often unique in a two-sided matching model

with a continuum of agents on one side. Che and Kojima (2010) show that the random

priority mechanism and the probabilistic serial mechanism converge to each other as the

number of copies of a given set of object types grows large. Hoppe, Moldovanu, and Sela

(2009) consider assortative and random matching in a two-sided model with costly signaling

and a continuum of agents on each side. Peters (2010) analyzes a model of directed search

with a continuum of workers and firms, which is more tractable than the discrete version of

the model.

2 Terminology and notation

2.1 Agents and prizes

An agent is characterized by a type x ∈ X = [0, 1]. We will use the terms “player” for discrete

contests and “agent” for the limit case. A prize is characterized by a number y ∈ Y = [0, 1].

Prize 0 is “no prize.”

Agents’ utilities are given by a continuous function U (x, y, t), where x is the agent type,

y is the single prize he obtains, and t ≥ 0 is his bid. The utility of obtaining no prize by
bidding 0 is normalized to 0, i.e., U (x, 0, 0) = 0 for all x. Higher prizes are better and higher

bids are more costly, so U(x, y, t) strictly increases in y for every x > 0 and t ≥ 0, and

strictly decreases in t for every x ≥ 0 and y ≥ 0. The utility is quasi-linear in bid if it can
be written as

U(x, y, t) = v(x, y)− t.

We assume that sufficiently high bids are prohibitively costly, so U (x, 1, bmax) < 0 for

some bmax and all x. We therefore restrict the range of bids that agents can make to B =

[0, bmax]. To simplify our proofs, we choose bmax to be rational.

We say that weak single crossing holds if for any x1 < x2, t1 < t2, and y1 < y2 we have

that U(x1, y2, t2) ≥ U(x1, y1, t1) implies U(x2, y2, t2) ≥ U(x2, y1, t1). That is, if some type

prefers to obtain a higher prize at a higher bid, then so does any higher type. If the higher
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type’s preference is strict, i.e., the second inequality is strict, then we say that strict single

crossing holds.

An example that we will use throughout the paper is the quasi-linear utility

U(x, y, t) = xh (y)− t, (1)

where h (0) = 0 and h is continuous and strictly increasing, and therefore satisfies strict

single crossing. This functional form generalizes many of the ones used in existing contest

models, including those described in Section 3.1 and Section 3.2.

2.2 Contests

For every n, we define “the n-th contest,” in which n players compete for n known prizes

yn1 ≤ yn2 ≤ ... ≤ ynn (some of which may be no prize). Player i’s privately-known type

xni is distributed according to a CDF Fn
i , and these distributions are commonly known

and independent across players.6 In the special case of complete information, each CDF

corresponds to a Dirac measure. In the contest, each player chooses a bid in B, the player

with the highest bid obtains the highest prize, the player with the second-highest bid obtains

the second-highest prize, and so on. Ties are resolved by a fair lottery. The utility of player

i from bidding t and obtaining prize ynj is U
¡
xni , y

n
j , t
¢
. A slight adaptation of the proof of

Corollary 1 in Siegel (2009) shows that when each player’s set of possible types is finite the

contest has at least one mixed-strategy equilibrium. For general distributions F n
i , equilibrium

existence follows from Corollary 5.2 in Reny (1999).7

We let Fn = (
Pn

i=1 F
n
i ) /n, so Fn (x) approximates the expected percentile ranking

of type x given the vector of players’ types. We denote by Gn the empirical distribution of

prizes, which assigns a mass of 1/n to each ynj (recall that the prize y
n
j is known). We assume

that Fn converges in weak∗-topology to a continuous and strictly increasing distribution F ,

and Gn converges to some distribution G. We elaborate on this assumption in the next

subsection. If G strictly increases on Y , we say that G has full support, or that prizes have

full support. Note that G may have full support even if there are masses of identical prizes,

i.e., G is discontinuous, or, equivalently, G has atoms.

6All probability measures are defined on the σ-algebra of Borel sets.

7Better-reply security of the mixed extension is immediate for strategy profiles that do not involve ties

for which winning the tie gives a better prize. For any other strategy profile and a corresponding point in

the closure of the graph of vector payoffs, any player who is not winning the limit ties with probability 1

along a sequence of profiles and payoffs converging to the point in the closure can secure a payoff strictly

higher than in the closure by increasing her tying bids slightly.
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Given an equilibrium of the n-th contest, we denote by Dn
i the distribution on X×Y ×B

that describes player i’s type, the prize she obtains, and her bids. We refer to the distribution

Dn = (
Pn

i=1D
n
i ) /n as the equilibrium outcome, and later relate the sequence of distributions

D1, D2, . . . to probability distributions D that describe the outcomes of some mechanisms.

2.3 Convergence of type and prize distributions

The convergence of F n and Gn to limit distributions F and G can be interpreted in several

ways. First, a modeler studying large contests may specify the limit distributions directly

and consider a sequence of discrete contests with distributions converging to the limit dis-

tributions. Examples include contests with complete-information in which player i’s type

is xni = F−1 (i/n) and prize j is characterized by ynj = G−1 (j/n) = inf{z : G (z) ≥ j/n},
and contests with the same prize structure and IID type distributions F n

i = F . The former

specification appears in the examples of Section 3.

Alternatively, the modeler may specify a sequence of contests using analytical formulas

that depend on the number of players and prizes, and take the limit of the associated sequence

of distributions F n and Gn as the number grows large. Even if the limit of the entire sequence

does not exist, every sequence contains a converging subsequence, and our methods can be

applied to every converging subsequence for which the limit of Fn is continuous and strictly

increasing.

Finally, given a single discrete contest, a researcher can postulate limit distributions F

and G to which the empirical type and prize distributions would converge if the number

of players and prizes grew large; if the number of players and prizes in the given contest

is sufficiently large, our approximation results can be applied. Moreover, in many settings

(such as those in Corollaries 3 and 4 below) the empirical type and prize distributions of

the given contest can be used as the limit distributions, since a small change in the limit

distribution has a small effect on the approximation.8

2.4 Limit mechanism-design setting

A (direct) mechanism M prescribes for each reported type x a joint probability distribution

Qx(y, t) over prizes and bids. A mechanism is incentive compatible (IC) if the expected

8In the settings of Corollaries 3 and 4, a small change in F and G leads to a small change in the prize-

bid pair that the approximating mechanism specifies for each type (the pair is given by the “assortative

allocation,” defined in Section 4, and by (5)).
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utility of each agent is maximized by reporting truthfully, i.e.,Z
y∈Y

Z
t∈B

U(x, y, t)dQz(y, t)

is maximized at z = x.

A mechanism is individually rational (IR) if the expected utility of each agent from

reporting truthfully is at least as high as the utility from bidding 0 and obtaining the “lowest”

available prize, i.e., Z
y∈Y

Z
t∈B

U(x, y, t)dQx(y, t) ≥ U (x, yinf , 0) , (2)

where yinf = inf {y : G (y) > 0}; in addition, we require that the inequality is an equality for
at least one type x. If prizes have full support, then yinf = 0, so the right-hand side of (2) is

U (x, 0, 0) = 0.

An inverse tariff is a non-decreasing upper semi-continuous function that maps bids to

prizes; a tariff mechanism is an IR mechanism for which there exists an inverse tariff such

that for every type x the distribution Qx(y, t) assigns probability 1 to the set of prize-bid

pairs that maximize U (x, y, t) among the prize-bid pairs in the graph of the inverse tariff.

A tariff mechanism is clearly IC.

A consistent allocation is a probability distribution H on X × Y whose marginal on X

coincides with F and whose marginal on Y coincides with G. With a continuum of agents

and prizes distributed according to F and G, this condition says that all the prizes are

allocated to agents, and each agent obtains exactly one prize (which can be no prize). The

conditional distribution Hx is interpreted as the lottery over prizes faced by an agent of type

x.

With quasi-linear utility, an allocation H is efficient if it allocates the prizes in a way

that maximizes the non linear part of the agents’ utility, i.e., it maximizesZ
x∈X

Z
y∈Y

v(x, y)dH(x, y)

across all consistent allocations.

A mechanism implements an allocation H if the marginal of Qx on Y coincides with Hx

for almost every type x. Distributions H and {Qx : x ∈ X} may not determine a probability
distribution on X × Y × B, because there may be no Borel probability distribution on

X×Y ×B with such conditionals and marginals.9 When such a distribution D exists, which

9For example, take some non-measurable function f : X → [0,∞), have H distributed uniformly on, and

assigning probability 1 to, the diagonal {(x, x) : x ∈ X}, and have Qx assigning probability 1 to the pair

(x, f (x)). That is, type x is prescribed prize x and bid f (x).
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will be the case in all our results, we say that the mechanism that implements H is regular,

and refer to D as the outcome of the mechanism.

Our results will show convergence of Dn to D. The notion of convergence, however, will

vary across the results. We will introduce the appropriate notions when we formulate our

results.

3 Examples

We first demonstrate our approximation approach and main results in a few contest settings

that appeared in the literature. We focus on complete-information contests, because no

equilibrium characterization exists for contests with incomplete information and more than

two ex-ante asymmetric players.

3.1 Heterogeneous prizes and multiplicative utilities

Consider (1) with h (y) = y, let xni = i/n (so Fn
i is a Dirac measure), and let y

n
j = j/n.

Thus, the limit distributions F and G are uniform. (Note that prizes have full support.)

The n-th contest is an all-pay auction with n players and n prizes, and the value of prize

j to player i is ij/n2. Such contests were studied by Bulow and Levin (2006), hence forth

B&L, who considered hospitals that compete for residents by offering identity-independent

wages.10 Hospitals are players, their posted wages are bids, and residents are prizes. The

best resident goes to the hospital with the highest wage, and so on.

Consider the efficient allocation in the limit setting, in which an agent of type x obtains

prize x. The unique IC-IR mechanism that implements this allocation prescribes for every

type x bid x2/2. This mechanism is a tariff mechanism with a continuous inverse tariff

that maps every bid t ∈ [0, 1] to prize
√
2t.11 Corollary 1 below shows that this mechanism

approximates the equilibrium outcome for large n, in that every player i obtains a prize close

to i/n and bids close to (i/n)2 /2.

This simple approximation contrasts with the elegant, but rather complicated, algorithm

developed by B&L to derive the unique mixed-strategy equilibrium of the contest.

10In the notation of B&L, ∆i = i/n2, as in their Proposition 5.

11It is easy to see that this mechanism, and those in later examples, are regular.
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n-1
n

1
2

0
Bid

Figure 1: The support of players’ strategies in the unique equilibrium

B&L show that, in equilibrium, each player chooses a bid from an interval. The intervals

are staggered, so a higher player has an interval with (weakly) higher lower and upper

bounds. (The intervals are depicted in Figure 1.) In particular, if a bid t is contained in

some player’s bidding interval, then it is contained in the bidding intervals of consecutive

players l, l + 1,..., m, where l is the lowest player whose interval contains t, and m is the

highest player whose interval contains t.

B&L show that

l = argmin
q

(
1

m− q

mX
k=q

n2

k
− n2

q
> 0

)
, (3)

and the density of the strategy of player q, l ≤ q ≤ m, at bid t that belongs to her bidding

interval is
1

m− l

mX
k=l

n2

k
− n2

l
. (4)

By iteratively applying (3) and (4), B&L compute the endpoints of players’ bidding intervals

and the densities of their bidding strategies.

For the rate of convergence of the approximation, because m− l is of order
√
2l (Lemma

3 in B&L), any player i is outbid with certainty by every bidder j > i, except for a number

of players j that is of order
√
n. Thus, player i obtains a prize that differs from i/n by at

most an expression of order 1/
√
n. A similar, but slightly more involved, argument shows

that the bidding interval of player i shrinks quickly, so that any bid in the interval differs

from (i/n)2/2 by at most an expression of order 1/
√
n.
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3.2 Identical prizes

Consider (1) with h (y) = y, let xni = i/n (so F n
i is a Dirac measure), and let y

n
j = 0 if

j/n ≤ 1/2 and ynj = 1 if j/n > 1/2. Thus, the limit distribution F is uniform, and the limit

distribution G has G(y) = 1/2 for all y ∈ [0, 1) and G(1) = 1. (Note that G does not have

full support.) The n-th contest is an all-pay auction with n players and m ≡ pn/2q identical
(non-zero) prizes,12 and the value of a prize to player i is i/n. Such contests were studied

by Clark and Riis (1998), who considered competitions for promotions, rent seeking, and

rationing by waiting in line (see also Siegel (2010)).

Consider the efficient allocation in the limit setting, which assigns a prize to agents

with types higher than 1/2. The unique IC-IR mechanism that implements this allocation

prescribes for every type x ≤ 1/2 bid 0 and for every type x > 1/2 bid 1/2. This mechanism

is a tariff mechanism with a discontinuous (but upper semi-continuous) inverse tariff that

maps bids t ∈ [0, 1/2) to prize 0 and bids t ≥ 1/2 to prize 1. Corollary 2 below shows that
this mechanism approximates the equilibrium outcome for large n, in that a large fraction

of players i with i/n > 1/2 obtain a prize and bid close to 1/2 with high probability, and

a large fraction of players i with i/n < 1/2 obtain no prize and bid close to 0 with high

probability. The approximation applies to a large fraction of players, and not to all players

as in Section 3.1, because G does not have full support. This, however, makes little difference

on the aggregate level (for welfare, total expected bids, etc.).

This simple approximation contrasts with the complete, but less than straightforward,

closed-form equilibrium characterization derived by Clark and Riis (1998).

.

.

.
1

n-m-1

n-m
n-m+1
n-m+2

n

.

.

.

.

.

.

0 (n-m)/n

Figure 2: The support of players’ strategies (dots represent atoms) in the unique

equilibrium

12The analysis that follows applies to any fixed limit ratio p ∈ (0, 1) of prizes to players.

11



As depicted in Figure 2, in the equilibrium of the n-th contest the n−m−1 players with
the lowest valuations bid 0, and each of the m + 1 players with the highest valuations bids

on an interval, so m of them obtain a prize. The common upper bound of the intervals is

(n−m) /n = 1 −m/n ∈ {1/2, 1/2 + 1/2n}, and the lower bound of the interval of player
i > n−m is ³

1− m

n

´Ã
1−

iY
k=n−m+1

k

i

!
,

which increases in i.

Thus, for every ε > 0, as n grows large the number of players with valuations greater

than 1/2 who bid on [ε, 1−m/n] grows large. This may appear to contradict the equilibrium

approximation for large n. The apparent discrepancy is overcome by noting that the lower

bound of the bidding interval of a player with valuation approximately (1/2) + ε is for large

n approximately

1

2

Ã
1−

1
2
·
¡
1
2
+ 1

n

¢
· ... ·

¡
1
2
+ εn

n

¢¡
1
2
+ ε
¢εn

!
=
1

2

Ã
1−

1
2
· ... ·

¡
1
2
+ εn

2n

¢¡
1
2
+ ε
¢ εn
2

·
¡
1
2
+ εn

2n
+ 1

n

¢
· ... ·

¡
1
2
+ εn

n

¢¡
1
2
+ ε
¢ εn
2

!
.

The first fraction is bounded above by ((1/2 + ε/2) / (1/2 + ε))εn/2, and the second fraction

is bounded above by 1, so as n increases the lower bound of the bidding interval approaches

1/2 as fast as 1 − bn approaches 1, where b < 1. Therefore, for any ε > 0, for sufficiently

large n at most a fraction ε of the players bid more than ε away from what the mechanism

prescribes for the types that correspond to them.

3.3 Heterogeneous prizes and identical players

Consider U (x, y, t) = y − t (so strict single crossing fails), let xni = i/n (so Fn
i is a Dirac

measure), and let ynj = j/n. The limit distributions F and G are uniform. The n-th contest

is an all-pay auction with n players and n prizes, and the value of prize j to all players is

j/n. Such contests were studied by Barut and Kovenock (1998), who considered grading,

promotions, procurement settings, and political competitions.

Consider the uniform allocation, whose density is h(x, y) = 1 for all values of x and

y. The unique IC-IR mechanism that implements this allocation has Qx(y, t) distributed

uniformly on the diagonal y = t. This is a tariff mechanism with a continuous inverse

tariff that maps every bid t ∈ [0, 1] to prize t. Theorem 3 below shows that the mechanism

approximates the equilibrium outcome for large n in an aggregate sense. This is weaker than
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the approximation in the previous subsections, because strict single crossing fails. Indeed,

Barut and Kovenock (1998) showed that the n-th contest has a unique equilibrium, in which

all players randomize uniformly across all bids t ∈ [0, 1].13

4 Main results

4.1 Results with strict single crossing

We show that under strict single crossing the equilibria of large contests are approximated

by tariff mechanisms that implement the assortative allocation, in which type x obtains

prize y = G−1 (F (x)), where G−1(z) = inf {y : G (y) ≥ z} for z > 0 and G−1 (0) = yinf =

inf {y : G (y) > 0}. We first consider settings in which prizes have full support, so G−1

is continuous. This guarantees that when the number of players and prizes is large, it is

enough to know the approximate rank-order of a player’s bid to know the approximate prize

she obtains.

Theorem 1 Suppose that strict single crossing holds and prizes have full support. Then,
for any ε > 0, there is an N such that for all n ≥ N in any equilibrium of the n-th contest,

(a) every player i obtains with probability at least 1− ε a prize that differs by at most ε

from G−1(F (xni ));

(b) there is a regular tariff mechanism with a continuous inverse tariff that implements

the assortative allocation, such that the bid of every player i differs with probability 1 by at

most ε from the bid that the mechanism prescribes for type xni .

There may not be a unique mechanism that implements the assortative allocation, but

when the mechanism is unique it coincides with the one in part (b) of Theorem 1. For

example, if U is quasi-linear and satisfies the conditions of Milgrom and Segal’s (2002)

envelope theorem,14 then their Corollary 1 shows that the unique IC-IR mechanism that

implements the assortative allocation prescribes for type x bid

br (x) = v
¡
x,G−1 (F (x))

¢
−
Z x

0

vx
¡
z,G−1 (F (z))

¢
dz − v(0, yinf). (5)

In this case, (5) provides an explicit formula for the tariff mechanism in part (b) of Theorem

1.15 We therefore obtain the following corollary of Theorem 1, which applies to the setting

13The notion of approximation implied by Theorem 3 is in general weaker than in this example.

14The conditions are that v is differentiable and absolutely continuous in x, and supy∈Y |vx (x, y)| is
integrable on X.

15Other sufficient conditions for (5) are described in Krishna and Maenner’s (2001) Proposition 1.
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of Section 3.1.

Corollary 1 Suppose that strict single crossing holds, prizes have full support, and U is

quasi-linear and satisfies the conditions of the envelope theorem. Then, for any ε > 0 there

is an N such that for all n ≥ N , in any equilibrium of the n-th contest every player i obtains

with probability at least 1 − ε a prize that differs by at most ε from G−1 (F (xni )), and bids

with probability 1 within ε of br (xni ) given by (5).

Note that quasi-linearity also guarantees that the assortative allocation is efficient, be-

cause v (x2, y2)+v (x1, y1) > v (x2, y1)+v (x1, y2) for any x1 < x2 and y1 < y2.16 In addition,

for complete-information contests, such as those in Section 3.1, the proof of Theorem 1 shows

that the 1− ε in Theorem 1 and Corollary 1 can be replaced with 1.

When prizes do not have full support G−1 is discontinuous, so the approximate rank-

order of a player’s bid may be insufficient to determine the approximate prize she obtains.

Consequently, some players’ bids may be significantly different from what the limit mech-

anism specifies, even when the contest is large. For example, in the setting of Section 3.2,

when the percentile rank-order of a player’s bid is slightly above 1/2 she obtains G−1 of the

rank-order, which is 1, and when it is slightly below 1/2 she obtains G−1 of the rank-order,

which is 0. And for large n there are many players with valuations greater than 1/2 who bid

substantially less than 1/2. Thus, Theorem 1 does not hold.

Nevertheless, even when prizes do not have full support, the approximation of Theorem

1 holds for all but a small fraction of players.

Theorem 2 Suppose that strict single crossing holds (but prizes may not have full support).
Then, for any ε > 0, there is an N such that for all n ≥ N in any equilibrium of the n-th

contest,

(a) a fraction of at least 1−ε of the players i obtain with probability at least 1−ε a prize

that differs by at most ε from G−1 (F (xni ));

(b) there is a regular tariff mechanism that implements the assortative allocation, such

that the bid of each of a fraction of at least 1− ε of the players i differs with probability at

least 1− ε by at most ε from the bid that the mechanism prescribes for type xni .

16To see why, apply strict single crossing with t1 = v(x1, y1) and t2 = v (x1, y2). Since type x1 is indifferent

between obtaining y1 and paying t1 and obtaining y2 and paying t2, type x2 must strictly prefer the latter

option, which yields

v (x2, y2)− v (x1, y2) > v(x2, y1)− v(x1, y1).

14



We also have an analogue of Corollary 1, which applies to the setting of Section 3.2.

Corollary 2 Suppose that strict single crossing holds and U is quasi-linear and satisfies

the conditions of the envelope theorem. Then, for any ε > 0 there is an N such that for all

n ≥ N , in any equilibrium of the n-th contest each of a fraction of at least 1−ε of the players
i obtains with probability at least 1 − ε a prize that differs by at most ε from G−1 (F (xni )),

and bids with probability at least 1− ε within ε of br (xni ) given by (5).

The approximation results apply to many contests for which there is no existing equilib-

rium characterization. For example, consider (1) with F and G uniform. The assortative

allocation assigns prize x to type x, and (5) shows that br (x) = xh (x) −
R x
0
h (y) dy. By

Corollary 1, for xni = i/n (so Fn
i is a Dirac measure) and y

n
j = j/n, when n is large a player

with type x bids close to x−
R x
0
h (y) dy and obtains a prize close to x. While h (y) = y corre-

sponds to the setting of Section 3.1 and h (y) = y2 and h (y) = ey correspond to Xiao’s (2013)

quadratic and geometric prize sequences, for which he provides an equilibrium characteri-

zation,17 no equilibrium characterization exists for other, non-trivial functions h (including

h (y) = ym for m > 2). The same implication of Corollary 1 holds for contests with ex-ante

asymmetric players and incomplete information for which Fn converges in weak∗-topology to

the uniform distribution, although no equilibrium characterization exists for such contests.

Another example is contests that combine heterogeneous and identical (non-zero) prizes,

which have not been studied in the literature. Consider ynj = 2j/n for j/n ≤ 1/2 and ynj = 1
for j/n > 1/2, so G (y) = y/2 for y < 1 and G (1) = 1, with (1) and F uniform. The

assortative allocation assigns prize 2x to type x < 1/2, and prize 1 to type x ≥ 1/2. If Fn

converges in weak∗-topology to the uniform distribution, then Corollary 1 and (5) show that

for large n a player with type x bids close to min {x2, 1/4} and with high probability obtains
a prize close to min {2x, 1}.
In addition, the approximation results hold for quasi-linear utilities in which v (x, y) is

not multiplicatively separable, and for utilities that are not quasi-linear.

4.2 Results without strict single crossing

To formulate the results without strict single crossing, we recall that the weak∗-topology is

defined on the set of probability distributions ∆(Ω) over a compact space Ω, and consists of

17Xiao’s (2013) characterization is considerably more complicated than B&L’s, because in his setting

equilibria involve bidding strategies with non-interval support.
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all unions of finite intersections of sets of the form

{Q ∈ ∆(Ω) :

¯̄̄̄Z
hdP −

Z
hdQ

¯̄̄̄
< ε},

where P ∈ ∆(Ω), ε > 0, and h is a real-valued and continuous function on Ω (see Chapter

3 of Rudin (1973)).

Theorem 3 Regardless of single crossing (or prizes having full support), for any ε > 0 and
any metrization of the weak∗-topology there is an N such that for all n ≥ N , for any equi-

librium of the n-th contest there is a regular tariff mechanism that implements a consistent

allocation whose outcome is ε-close (in the metrization) to the outcome of the equilibrium.

If prizes have full support, then the inverse tariff is continuous. If weak single crossing holds

and the utility is quasi-linear, then the consistent allocation is also efficient.

The approximating mechanism may implement a consistent allocation other than the

assortative one, as the setting of Section 3.3 shows. In addition, Theorem 3 only allows us

to approximate the joint equilibrium distribution over prize-bid pairs of players with types

close to a given type, which is weaker than the approximation in the previous results (in

the sense of being implied). If, however, for every type x there is a unique prize-bid pair

(y(x), t(x)) that maximizes U (x, y, t) among the prize-bid pairs from the graph of the inverse

tariff, then convergence in weak∗-topology implies convergence in a sense similar to that of

Theorem 2. Namely, for any ε > 0 and sufficiently large n, for a fraction 1−ε of the players,

with probability 1− ε the prize that player i obtains differs from y(xni ) by at most ε and the

bid of player i differs from t(xni ) by at most ε.

Another limitation of Theorem 3 is that the set of tariff mechanisms that implement a

consistent allocation may be quite large even if every contest has a unique equilibrium. For

example, in the setting of Section 3.3 there is a continuum of efficient allocations and tariff

mechanisms that implement them, all associated with the same inverse tariff that maps each

bid t ∈ [0, 1] to prize t. We conjecture, however, that Theorem 3 is the strongest general

convergence result that one can obtain, because some contests have many equilibria, and

different sequences of equilibria may be approximated by different mechanisms.

Finally, note that while Theorem 3 and the results that precede it are in the spirit of

upper hemi-continuity, they are not implied by standard upper hemi-continuity arguments,

because discrete contests and the limit mechanisms belong to different spaces (for example,

one has a finite number of players and the other a continuum of agents).
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5 Contest Design

As an application of our results, we investigate the prize distribution that maximizes players’

aggregate bids (effort) in a large contest. This has not been possible so far for discrete

contests, because no equilibrium characterization exists for discrete contests with ex-ante

asymmetric players and general prize distributions. Section 4 indicates that we can instead

consider the approximating limit setting with a continuum of agents and prizes, which makes

such an investigation possible.

Consider (1) with h continuously differentiable,18 and suppose that F has a continuous,

strictly positive density f . Suppose also that there is an upper bound on the highest possible

prize, which corresponds to y = 1. (We will comment on the effect of increasing this upper

bound.) We first analyze the optimal prize distribution when the prize budget is unrestricted,

and then impose a budget constraint. In the latter case, we assume that h is defined so that

prize y costs y.

We begin by considering a fixed prize distribution G. Corollary 2 shows that the approx-

imating limit prize allocation is assortative, i.e., type x > 0 obtains prize y = G−1 (F (x)),

where G−1(z) = inf {y : G (y) ≥ z}. Using integration by parts, (5) shows that the resulting
aggregate bids are approximated byZ 1

0

h
¡
G−1 (F (x))

¢µ
x− 1− F (x)

f (x)

¶
f (x) dx. (6)

This expression coincides with the expected revenue from a bidder in a single-object

independent private-value auction if we replace h (G−1 (F (x))) with the probability that

the bidder wins the object when his type is x (Myerson (1981)). Increasing the probability

that type x obtains the object along with the price he is charged allows the auctioneer

to capture the entire increase in surplus, but requires a decrease in the price that higher

types are charged (to maintain incentive compatibility). This net increase in revenue, or

“virtual utility,” also coincides with a monopolist’s marginal revenue (Bulow and Roberts

(1989)). In our contest setting, increasing the prize that type x obtains increases competition

with slightly lower types, which “competes away” the additional prize value, but decreases

competition by higher types for their prizes, since the prize of type x becomes more attractive

to them.

Before analyzing the optimal prize distribution, we consider the effect that a change in

the agent type distribution has on the aggregate bids for a given prize distribution. For this,

18A similar analysis can be conducted for U (x, y, t) = v (x, y)− t with twice differentiable v (x, y) that has
positive second-order cross derivatives.
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it is convenient to rewrite (6) using a change-of-variable z = F (x) to obtainZ 1

0

h
¡
G−1 (z)

¢µ
F−1 (z)− 1− z

f (F−1 (z))

¶
dz =

Z 1

0

h
¡
G−1 (z)

¢
k (z) dz, (7)

where k (z) = F−1 (z)− (1− z) /f (F−1 (z)).19 Integration by parts shows that for differen-

tiable G−1 (7) is equal to Z 1

0

∂h (G−1 (z))

∂z

¡
(1− z)F−1 (z)

¢
dz,

so a first-order stochastic dominance (FOSD) shift in the agent type distribution increases

aggregate bids. Since for any prize distribution G values arbitrarily close to (7) can be

achieved with prize distributions whose inverse is differentiable, we obtain the following

observation.

Claim 1 For any prize distribution, a FOSD shift in the agent type distribution increases
the aggregate bids.

We now turn to analyzing the optimal prize distribution for a given type distribution F .

As is standard in the mechanism design literature, we assume that x− (1− F (x)) /f (x) is

strictly increasing in x, which is implied, for example, by a monotone hazard rate. Thus,

k (z) strictly increases in z. Denote by x∗ ∈ (0, 1) the unique type that satisfies x∗ −
(1− F (x∗)) /f (x∗) = 0, and let z∗ = F (x∗) ∈ (0, 1), so k (z∗) = 0.
Suppose first that the prize budget is unrestricted. Then, optimizing the integrand in

(7) leads to G−1 (z) = 0 if z ≤ z∗ and G−1 (z) = 1 if z > z∗. This G−1 is left-continuous

and monotonic, so G is a prize distribution and is therefore optimal. We thus obtain the

following observation.

Claim 2 If the prize budget is unrestricted, then for any function h the optimal prize distri-

bution assigns mass 1−F (x∗) ∈ (0, 1) to the highest possible prize and mass F (x∗) to prize
0.

Claim 2 shows that an all-pay auction with identical prizes (Clark and Riis (1998)) is

optimal when the budget is unrestricted. The claim also shows that increasing the highest

possible prize does not change the optimal quantity of prizes, but does increase the resulting

aggregate bids (because they are denominated in units of the highest possible prize).

Now suppose that the prize budget is restricted. We model this by introducing the budget

constraint
R 1
0
ydG (y) ≤ C. The parameter C is the per-competitor budget, denominated

in units of the maximal prize (recall that prize y costs y). The following observation is an

immediate implication of Claim 2.

19Even though G−1 may be discontinuous, it is monotonic, so the change-of-variable applies.
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Claim 3 If C ≥ 1−F (x∗), then the optimal prize distribution coincides with the one in the

unrestricted budget case.

Claim 3 shows that when the prize budget is large some of it is optimally left unused.

This is analogous to the seller in an optimal auction keeping the item some of the time

(by setting a reserve price), even if he does not value the item, and is also analogous to a

monopolist limiting the quantity sold.

Now consider a budget C < 1− F (x∗). Because G is a probability measure on [0, 1], we
have

R 1
0
ydG (y) =

R 1
0
(1−G (y)) dy (by integrating by parts) and

R 1
0
G−1 (z) dz+

R 1
0
G (y) dy =

1 (by looking at the graphs of G and G−1 in the square [0, 1]2). Thus, the budget constraint

can be rewritten as Z 1

0

G−1 (z) dz ≤ C. (8)

This is a substantial simplification, because maximizing (7) subject to (8) is a calculus of

variations problem.

To solve this problem, consider an optimal G−1. Because it is non-decreasing, left-

continuous, and takes values in [0, 1], there are zmin ≤ zmax in [0, 1] such that G−1 (z) = 0 for

z ≤ zmin, G−1 (z) = 1 for z > zmax, andG−1 (z) ∈ (0, 1) for z ∈ (zmin, zmax). Moreover, zmin ≥
z∗, because increasing zmin < z∗ to z∗ increases the value of (7) without violating (8). In

addition, C < 1−F (x∗) implies that zmax > z∗ and that (8) holds with equality (the budget

constraint binds). Because k (z) is continuous and strictly increasing, standard calculus-of-

variations arguments show that if zmin = zmax, then h0 (0) k (zmin) ≤ h0 (1) k (zmax), and if

zmin < zmax, then there exists some λ ≥ 0 such that h0 (G−1 (z)) k (z) = λ for z ∈ (zmin, zmax),
with h0 (0) k (zmin) ≤ λ if zmin > z∗ and h0 (1) k (zmax) ≥ λ if zmax < 1.

These properties pin down G−1 when h is convex or concave. To see this, suppose first

that h is weakly convex. Then zmin = zmax, because h0 (G−1 (z0)) k (z0) < h0 (G−1 (z00)) k (z00)

for any z0 < z00 in (zmin, zmax). Therefore, the binding budget constraint implies the following

observation.

Claim 4 If C < 1 − F (x∗) and h is weakly convex, then the optimal prize distribution

assigns mass C to the highest possible prize and mass 1− C to prize 0.

Claim 4 shows that an all-pay auction with identical prizes remains optimal when the prize

budget is small, provided that agents’ marginal prize utility is non-decreasing. In contrast

to the case of a large or unrestricted budget, however, Claim 4 shows that increasing the

highest possible prize without changing the budget (effectively decreasing C) decreases the

the optimal quantity of prizes, and increasing the budget without increasing the highest
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possible prize increases the optimal quantity of prizes. Both changes increase the resulting

aggregate bids.

Things are different when h is weakly concave (but not linear). Then zmin < zmax, because

h0 (0) > h0 (1), so the optimal prize distribution includes a variety of prizes.

Claim 5 If C < 1− F (x∗) and h is weakly concave (but not linear), then the optimal prize

distribution includes a range (a continuum) of non-zero prizes.

As we will show below, the prize distribution may or may not assign positive mass to the

highest possible prize.

We now show that when h is strictly concave the optimal distribution is pinned down by

the properties described after (8) once it is determined whether the inequalities zmin ≥ z∗

and zmax ≤ 1 are strict. There are four cases to consider. Suppose first that zmin > z∗ and

zmax < 1. Then, h0 (G−1 (z)) k (z) = λ for z ∈ (zmin, zmax). Since h is strictly concave and
k is continuous, h0 (0) k (zmin) ≤ λ implies that h0 (0) k (zmin) = λ and h0 (1) k (zmax) ≥ λ

implies that h0 (1) k (zmax) = λ. This yields zmin = k−1 (h0 (1) k (zmax) /h
0 (0)) and

G−1 (z) = h0
−1
µ
h0 (1) k (zmax)

k (z)

¶
for z ∈ (zmin, zmax) , (9)

so G−1 is pinned down by zmax.

Similarly, if zmin = z∗ and zmax < 1, then (9) holds; if zmin > z∗ and zmax = 1, then

G−1 (z) = h0
−1
(h0 (0) k (zmin) /k (z)) for z ∈ (zmin, 1); and if zmin = z∗ and zmax = 1, then for

some λ > 0 we have h0 (G−1 (z)) k (z) = λ for z ∈ (zmin, zmax), so

G−1 (z) = h0
−1
µ

λ

k (z)

¶
. (10)

In all four cases, the remaining variable (zmax, zmax, zmin, and λ) is pinned down by the

binding budget constraint.

To illustrate this solution, consider F uniform, C < 1 − F (x∗) = 1/2, and h (y) =
√
y. Then x∗ = z∗ = 1/2, k (z) = 2z − 1, h0 (0) = ∞, h0 (1) = 1/2, and h0

−1
(a) =

1/4a2. Since h0 (0) = ∞, zmin = 1/2. Suppose that zmax < 1. Then (9) applies, so

the binding budget constraint implies that
R zmax
1
2

((2z − 1) / (2zmax − 1))2 dz +
R 1
zmax

1dz =

C ⇒ zmax = (5− 6C) /4, which implies that C > 1/6. We therefore have G−1 (z) =

(2 (2z − 1) / (3 (1− 2C)))2 for z ∈ [0, (5− 6C) /4] and G−1 (z) = 1 for z ∈ [(5− 6C) /4, 1].
This implies that

G (y) =

⎧⎨⎩ 1
2
+

3
√
y(1−2C)
4

y ∈ [0, 1)

1 y = 1
,
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so there is a continuous distribution of positive intermediate prizes and a mass (6C − 1) /4
of the highest possible prize. The resulting aggregate bids, given by (7), are (12C (1− C) +

1)/16.

Now suppose that zmax = 1. Then (10) applies, and we haveZ 1

1
2

4 (λ/ (2z − 1))−2 dz = C,

so λ = 1/
√
24C, which implies that C ≤ 1/6. We therefore have G−1 (z) = 6C (2z − 1)2, so

G (y) =

⎧⎨⎩ 1
2
+
p

y
24C

y ∈ [0, 6C]

1 y = [6C, 1]

and there is a continuous distribution of positive intermediate prizes with no mass of any

positive prize. The resulting aggregate bids are
√
6C/6. The following figure depicts these

results.

Figure 3: The optimal prize distribution as C increases from 0 to 1/2 (left) and the resulting aggregate bids (right)

To summarize the example, for any budget there is a mass 1/2 of zero prizes. As C

increases from 0 to 1/6, the maximal prize allocated increases from the lowest to the highest

possible prize, and the prize distribution remains continuous above 0. Once C reaches 1/6,

the maximal prize allocated is the highest possible prize, and as C increases from 1/6 to

1/2, the mass of the highest possible prize increases from 0 to 1/2, so the prize distribution

is discontinuous at 1. In particular, increasing the highest possible prize without changing

the budget (effectively decreasing C) changes the optimal prize distribution and increases

the aggregate bids if and only if C > 1/6.

6 Proofs

We choose an equilibrium for each contest, and refer to the sequence in which the n-th element

is the equilibrium of the n-th contest as the sequence of equilibria. For each of the theorems,
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we will show that every subsequence of this sequence contains a further subsequence that

satisfies the statement of the theorem. This suffices, because the following observation can

be applied with Zn being the set of equilibria of contest n.

(Subsequence Property) Given a sequence of sets {Zn : n = 1, 2, . . .}, suppose that
for every sequence {zn : n = 1, 2, . . .} with zn ∈ Zn, every subsequence {znk : k = 1, 2, . . .}
contains a further subsequence {znkl : l = 1, 2, ...} such that every element znkl has some
property. Then there exists an N such that for every n ≥ N every element in Zn has this

property.20

To simplify notation, we take the subsequence to be the sequence of equilibria (this has

no effect on the proofs).

The proof of Theorem 2 is in Appendix B. The structure of the proof is similar to that

of Theorem 1 below, but the proof of Theorem 1 relies heavily on the continuity of G−1, so

to prove Theorem 2 almost every step of the proof must be modified and additional results

must be derived.

6.1 Proof of Theorem 1

We denote the equilibrium of the n-th contest by σn = (σn1 , . . . , σ
n
n), where σ

n
i is player i’s

equilibrium strategy; a strategy of player i is a random variable taking values in X × B

whose marginal distribution on X coincides with the distribution of player i’s types F n
i .

By referring to player i bidding with some probability in a subset S of B, we mean the

probability of the set X×S, i.e., the probability of S measured by the marginal distribution

of player i’s strategy on B.

We denote by Rn
i (t) the random variable that is the percentile location of player i in the

ordinal ranking of the players in the n-th contest if she bids slightly above t and the other

players employ their equilibrium strategies.21 That is,

Rn
i (t) =

1

n

Ã
1 +

X
k 6=i
1{σnk∈X×[0,t]}

!
,

where 1{σ∈X×[0,t]} is 1 if σ ∈ X × [0, t] and 0 otherwise. Let

An
i (t) =

1

n

Ã
1 +

X
k 6=i
Pr (σnk ∈ X × [0, t])

!
20Otherwise, there would be a subsequence of elements without the property.

21This is the infimum of her ranking if she bids above t, which is equivalent to bidding t and winning any

ties there. If ties happen with probability 0, then this is equivalent to bidding t.
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be the expected percentile ranking of player i. Then, by Hoeffding’s inequality, for all t in

B we have

Pr (|Rn
i (t)−An

i (t)| > δ) < 2 exp
©
−2δ2 (n− 1)

ª
. (11)

Finally, let

An (t) =
1

n

nX
i=1

An
i (t)

be the average of the expected percentiles rankings of the players in the n-th contest if they

bid t and the other players employ their equilibrium strategies.

Let T n be the mapping from bids to prizes induced byAn. That is, Tn (t) = (Gn)−1 (An (t)),

where (Gn)−1 (z) = inf {y : Gn (y) ≥ z} for z > 0, and (Gn)−1 (0) = inf {y : Gn (y) > 0}. (In
words, (Gn)−1 (z) is the prize of an agent with percentile ranking z when prizes are distrib-

uted according to Gn.)

Take an ordering of the rationals in B, denoted by q1, q2, . . .. Take a converging subse-

quence of the sequence T n (q1), denote it by T n1 (q1), and denote its limit by T (q1). Take a

converging subsequence of the sequence Tn1 (q2), denote it by T n2 (q2), and denote its limit

by T (q2). Continue in this fashion to obtain a function T : {q1, q2, . . .} → [0, 1], which is

weakly increasing (because every T n is). In addition, define a subsequence of Tn such that

its k-th element is the k-th element in the sequence Tnk . For the rest of the proof, denote

this new sequence by Tn. Note that Tn converges to T on {q1, q2, . . .}.
The following lemma shows that T can be extended uniquely to a continuous function

on the entire interval B.

Lemma 1 For any t ∈ B (not necessarily rational) and any two sequences qm ↑ t and rm ↓ t
of rationals in B, we have limT (qm) = limT (rm).

The proof of Lemma 1, and those of other results in this subsection, is in Appendix A.

The idea of the proof is that if T is discontinuous at some t, then for large n it is better to

bid slightly above t than slightly below t. But if no player bids slightly below t, then players

bidding slightly above t would profitably deviate by lowering their bids.

We extend T to the entire interval B by setting T (t) = limT (tm) for some sequence

tm → t of rationals in B. Lemma 1 shows that T (t) is the same regardless of the chosen

sequence tm. Lemma 1 also guarantees that this is indeed an extension, and that the extended

T is continuous. Continuity and monotonicity of T imply the following result.

Lemma 2 Tn converges to T uniformly on B.
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We now relate the inverse tariff T to players’ behavior in the equilibria that correspond

to the sequence T n. Denote by BRx type x’s set of optimal bids given T , i.e., the bids

t that maximize U(x, T (t), t). Denote by BR (ε) the ε-neighborhood of the graph of the

correspondence that assigns to every type x the set BRx.22 Denote by BRx (ε) the set of

bids t such that (x, t) ∈ BR (ε).

Note that BR (ε) is a 2-dimensional open set, while each BRx (ε) is a 1-dimensional

“slice” of BR (ε). Note also that BRx (ε) may contain bids whose distance from every bid in

BRx is more than ε. Using sets BRx (ε), we can characterize players’ equilibrium behavior.

Lemma 3 For every ε > 0, there is an N such that for every n ≥ N , in the equilibrium of

the n-th contest every best response of every type xni of every player i belongs to BRxni
(ε).

The proof up to this point did not rely on strict single crossing, a fact we will use in the

proof of Theorem 3. We now show that under strict single crossing BRx is a singleton.

Lemma 4 If strict single crossing holds, then for all x the set BRx is a singleton. In

addition, the function br that assigns to x the single element of BRx is continuous and

weakly increasing.

Lemma 4 implies that for every ε > 0 there is a δ > 0 such that BRx (δ) ⊆ [br (x) −
ε, br (x) + ε] for every type x. We therefore have the following corollary of Lemmas 3 and 4.

Corollary 3 For every ε > 0, there is an N such that for every n ≥ N , in the equilibrium

of the n-th contest every best response of every type xni of every player i belongs to (br (x
n
i )−

ε, br (xni ) + ε).

To prove part (b) of the theorem we need to show that T ◦br is the assortative allocation.
This is done by the following lemma.

Lemma 5 G−1 (F (x)) = T (br (x)) for all types x.

Thus, the mechanism that prescribes for type x prize T (br (x)) and bid br (x) is a tariff

mechanism that implements the assortative allocation. Moreover, IR holds: every type can

get at least 0 by bidding 0, and type 0 gets no more than 0 (because T (br (0)) = 0).

To complete the proof, it remains to show part (a) of the theorem. This part follows from

Corollary 3 and Hoeffding’s inequality. We provide the details of the proof in Appendix A.

22I.e., BR (ε) is the union over all types x and bids t ∈ BRx of the open balls of radius ε centered at (x, t).
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6.2 Proof of Theorem 3

In order not to refer to material we present later, we prove the theorem under the assump-

tion that prizes have full support.23 Recall that the proofs of Lemmas 1-3 did not rely on

strict single crossing. Without strict single crossing, however, best response sets may not

be singletons, so we cannot pin down each player’s limiting bidding behavior or a unique

mechanism induced by T .

From the sequence of equilibria that corresponds to the sequence T n that converges

uniformly to T , choose a subsequence such thatDn converges to some probability distribution

D in weak∗-topology. We will now show thatD assigns probability 1 to the set C = {(x, y, t) :
t ∈ BRx and y = T (t)} ⊂ X × Y ×B.

By standard arguments the correspondence that assigns BRx to type x is upper hemi-

continuous. Therefore, the set {(x, t) : t ∈ BRx} ⊂ X × B is closed, and by continuity of

T , C is also closed. Suppose to the contrary that D assigns a positive probability to the

complement of C. Then, for some ε > 0, D assigns a positive probability to the complement

of the 2ε-neighborhoodO of C, that is, to the setX×Y ×B−O. Consider the ε-neighborhood
V of C and its closure V̄ (which is contained in O), and take a continuous function f :

X × Y ×B → [0, 1] such that f(V̄ ) = 1 and f(X × Y ×B −O) = 0. Then,Z
fdD < 1.

But by Lemma 3, for sufficiently large n every best response of every type xni of every

player i is in BRxni
(ε). And by (11), when a player bids t her percentile location in the

ordinal ranking Rn
i (t) is with high probability close to A

n
i (t), so she obtains a prize close to

Tn (t). By uniform convergence of T n to T , the prize is close to T (t). Thus, for sufficiently

large n every type xni of player i bids t and obtains with arbitrarily high probability a prize

y such that (xni , y, t) ∈ V . This yields Z
fdDn → 1, (12)

a contradiction.

Thus, the limit mechanism determined by D prescribes for each of a measure 1 of types

x bids t ∈ BRx and corresponding prizes T (t) with probability 1. This implies that D

23Relaxing this assumption is straightforward given the proof of Theorem 2 in Appendix B. In the notation

of that proof, the relaxation involves replacing T with T ∗ (this still implies that the set C defined below is

closed), and using Lemma 12 from Appendix B to show (12). The rest of the proof stays unchanged.
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determines a tariff mechanism. It is regular, because each Dn is regular, and it implements

a consistent allocation, because each Dn implements a consistent allocations.

For the last part of the theorem, suppose that for some x0 < x00 and t0 > t00 type x0 is

prescribed t0 and type x00 is prescribed t00. Then x0 weakly prefers t0 to t00 and x00 weakly

prefers t00 to t0. By weak single crossing, x00 weakly prefers t0 to t00, and therefore is indifferent

between the two bids. Thus, if a lower type is prescribed a higher prize, this is without loss

of efficiency.

7 Conclusion

In large contests, players’ strategies and the resulting distribution of prizes are approximated

by the outcomes of certain mechanisms. Under strict single crossing and quasi-linearity of

players’ utilities, the approximating mechanism is unique. Thus, the outcomes of large

contests can be approximated by using standard techniques from the mechanism design

literature, even when solving for equilibrium is difficult or impossible. An immediate impli-

cation is that the outcome of large contests that satisfy strict single crossing is approximately

assortative, regardless of the details of players’ utilities, their private information, and the

distribution of prizes. In particular, the distinction between complete and incomplete in-

formation disappears for large contests. Another implication is that contest design and

certain comparative statics exercises can be conducted easily for large contests, as Section 5

demonstrates.

The approach and results can also be used to provide foundations for contest models with

a continuum of competitors, in the spirit of Morgan, Sisak, and Várdy (2013). It may also

be possible to derive additional results that are weaker than Theorems 1 and 2, but stronger

than Theorem 3, by identifying suitable conditions weaker than strict single crossing.

The approximation approach may prove useful for studying other contest specifications.

One example is contests in which some players have initial advantages that must be overcome

by other players.24 More generally, the approach may be useful in analyzing other large

discontinuous games, such as large auctions and double auctions.

24One such contest to which our approximation approach applies is all-pay auctions with head starts

and identical valuations (Siegel (2013b)). Obtaining a general result for contests with head starts is not

straightforward, however, because they require allowing the agent’s utility function to weakly decrease in

his bid, whereas many of our arguments rely on the assumption that a higher bid is inferior if it does not

increase the probability of obtaining better prizes.
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A Proofs of results from Section 6.1

We first describe some properties of inverse tariff T defined in Section 6, to which we will

refer in several proofs:

(1) T is (weakly) increasing, because every Tn is (weakly) increasing.

(2) T (0) = 0, otherwise players bidding 0 would have profitable deviations.25

(3) T (bmax) = 1, because An (bmax) = 1 and therefore Tn (bmax) = 1.

In addition, we will often refer to the following property of discrete contest equilibria:

(No-Gap Property) In any equilibrium, there is no interval (a, b) ∈ B of positive length

in which all players bid with probability 0 and some player bids in [b, bmax] with positive

probability.

Proof: Suppose the contrary, and consider such a maximal interval (a, b). A player would

only bid b or slightly higher than b if some other player bids b with positive probability.

But the player who bids b with positive probability would be better off either by slightly

increasing her bid (if another player bids b and winning the tie leads to a higher prize) or by

decreasing her bid (in the complementary case).

Finally, we will refer to the following properties, which are implied by convergence in

weak∗-topology of Fn to F and Gn to G:

(a) Fn converges to F pointwise.

(b) (Gn)−1 converges to G−1 pointwise.

Proof: Convergence in weak∗-topology implies pointwise convergence at every point at

which the limit is continuous (see Billingsley (1995), Theorem 25.8). Since we assumed that

F is continuous, this yields (a).

To show (b), suppose that for some r ∈ [0, 1] and δ > 0 we have that (Gn)−1(r) ≤
G−1(r)− δ for arbitrarily large n. (An analogous argument applies to the case (Gn)−1(r) ≥
G−1(r) + δ.) With no loss of generality, assume that the inequality holds for all n, and that

(Gn)−1(r) converges to some y ≤ G−1(r)−δ. There exists a prize z such that y < z < G−1(r)

and G is continuous at z. By full support, G strictly increases, so G(z) < r. Since Gn(z)

converges to G(z), we have that Gn(z) < r for large enough n. This yields z ≤ (Gn)−1(r),

contradicting the assumption that (Gn)−1(r) converges to y < z.

25Indeed, suppose to the contrary that T (0) > 0. This means that for some δ > 0 and large enough n,

An (0) > Gn(0) + δ. Thus, a fraction of at least Gn(0) + δ players bid 0 in the n-th contest with positive

probability. Any one of them would be better off bidding slightly above 0, and winning against all other

players who bid 0, than bidding 0 and with positive probability losing to all other players who bid 0.
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A.1 Proof of Lemma 1

Suppose the lemma is false for some t ∈ (0, bmax), qm ↑ t, and rm ↓ t. Let y0 = limT (qm)

and y00 = limT (rm) (the limits exist by the monotonicity of T ), and let γ = (y00 − y0) /2.

Suppose first that U (0, y, t) strictly increases in y. (Recall that we assumed U (x, y, t)

strictly increases in y only for x > 0.) Then, by uniform continuity of U , there exist δ,∆ > 0

such that every type x gains at least ∆ from obtaining a prize higher by γ at a bid higher

by δ. More precisely,

U (x, y + γ, t+ δ)− U (x, y, t) ≥ ∆ (13)

for all x, y, and t such that y + γ and t + δ belong to the domain of U . This implies, as U

is bounded, that every type x strictly prefers bidding t + δ and obtaining with sufficiently

high probability a prize sufficiently close to y+γ to bidding t and obtaining with sufficiently

high probability a prize sufficiently close to y, independent of the prizes obtained with the

remaining probability.

Choose an element t0 > 0 of the sequence qm and an element t00 < bmax of the sequence

rm such that t00 − t0 < δ. Next, choose n large enough so that |T n (t00)− T (t00)| < γ/2 and

|T n (t0)− T (t0)| < γ/2. This implies that Tn (t00)− Tn (s) > γ for any bid s ≤ t0.

By choosing n large enough, we guarantee (see (11), which applies uniformly to all bids)

that Rn
i (s), the percentile ranking of player i who bids s in the n-th contest, is close to

An (s) with high probability, and Rn
i (t

00) is close to An (t00) with high probability. Thus,

every type x obtains a prize sufficiently close to T n (t00) with a sufficiently high probability

by bidding (slightly above) t00, and obtains a prize that is with a sufficiently high probability

at most slightly higher than Tn (t0) by bidding (slightly above) any s ≤ t0. Therefore, because

t00 − t0 < δ, no player bids any s ∈ (t00 − δ, t0] with positive probability, so by the No-Gap

Property Tn (t0) = 1. But T n (t0)→ T (t0) ≤ y0 < y00 ≤ 1, a contradiction.
When U (0, y, t) only weakly increases in y, the argument above shows that for any ε > 0

there exist δ,∆ > 0 for which (13) holds for every type x ∈ [ε, 1]. There also exist t0 and
t00 in the sequences qm and rm such that t00 − t0 < δ and T n (t00) − Tn (t0) > 3γ/2 for large

enough n. Letting t000 = inf {s : Tn (s) ≥ Tn (t00)− γ} ∈ (t0, t00] we see that only players with
types lower than ε can bid in [t0, t000). Thus, for small enough ε (by continuity of G−1 and

convergence of (Gn)−1 to G−1), in order to increase Tn (t0) to Tn (t0) + γ/2 multiple players

with types ε or higher must bid t000 with positive probability and therefore tie there. But

then any one of these players could profitably deviate to bidding slightly above t000.26

26By doing so the player would obtain with high probability a prize of at least Tn (t0) + γ/2 instead of
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For the case t = bmax, set t00 = bmax and repeat the argument above.27 Finally, suppose

that t = 0. Then the above proof with t0 = 0 shows that for large n no player bids t0 = 0

with positive probability. This means, in turn, that sufficiently small bids give lower payoffs

than bid t00. Thus, no player bids close to t0 = 0 with positive probability, which contradicts

the No-Gap Property.

A.2 Proof of Lemma 2

Suppose the contrary. Then, there is some δ > 0 and a sequence of integers n1, n2, . . . such

that for every nk there is some bid tk with |T nk (tk)− T (tk)| > δ. Passing to a subsequence

if necessary, we assume that the sequence tk → t.

Consider rationals q0 and q00 such that q0 < t < q00 and T (q00) − T (q0) < δ/2; such

numbers exist because T is continuous.28 For large enough values of k, we have that

|T nk (q0)− T (q0)| < δ/2 and |Tnk (q00)− T (q00)| < δ/2.

For any t0 ∈ [q0, q00], either (a) Tnk (t0) ≥ T (t0), or (b) T nk (t0) ≤ T (t0).

By the monotonicity of T and Tnk , we have

T nk (t0)− T (t0) ≤ T nk (q00)− T (q0) ≤ |Tnk (q00)− T (q00)|+ |T (q00)− T (q0)| < δ

in case (a), and

T (t0)− T nk (t0) ≤ T (q00)− T nk (q0) ≤ |T (q00)− T (q0)|+ |T (q0)− T nk (q0)| < δ

in case (b).

Since tk ∈ [q0, q00] for large enough values of k, we obtain a contradiction to the assumption
that |Tnk (tk)− T (tk)| > δ for all such k.

A.3 Proof of Lemma 3

Suppose to the contrary that for arbitrarily large n, in the equilibrium of the n-th contest

some type xni of some player i has a best response that belongs to the complement ofBRxni
(ε).

Passing to a convergent subsequence if necessary, we assume that xni → x∗.

losing the tie with positive probability and then obtaining with high probability a prize of at most Tn (t0)+ε.
27The only difference is that bidding “slightly above bmax” is impossible. But by bidding bmax a player

wins with probability 1, because bmax is strictly dominated by 0 for all players.
28If t = 0 set q0 = 0, and if t = bmax set q00 = bmax.
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Notice that for every x there is a δx > 0 such that (under the inverse tariff) any bid from

the complement of BRx (ε) gives type x a payoff lower than any element of BRx does by at

least δx. Let δ = δx∗.

We have that:

1. The maximal payoff of type x, attained at any bid from BRx, is continuous in x.

This follows from Berge’s Theorem.

2. For every ρ > 0, for sufficiently large n the highest payoff that type xni can obtain by

bidding in the complement of BRxni
(ε) cannot exceed by ρ the highest payoff that type x∗

can obtain by bidding in the complement of BRx∗ (ε).

Indeed, suppose that for a sequence nk diverging to∞ type xnki obtains by bidding some tk
in the complement of BRx

nk
i
(ε) a payoff at least ρ higher than the highest payoff that type x∗

can obtain by bidding in the complement of BRx∗ (ε). Passing to a convergent subsequence if

necessary, we assume that tk → t. Since every (xnki , tk) belongs to the complement of BR (ε),

so does (x∗, t); thus, (x∗, t) belongs to the complement of BRx∗ (ε). However, by continuity

of the payoff functions, bidding t gives type x∗ a payoff by at least ρ higher than the highest

payoff that type x∗ can obtain by bidding in the complement of BRx∗ (ε), a contradiction.

By 1 and 2, for sufficiently large n, any bid in the complement of BRxni
(ε) gives type

xni a payoff lower by at least δ/2 than any bid in BRxni
. Indeed, by 2 applied to ρ = δ/4,

any bid in the complement of BRxni
(ε) gives type xni a payoff at most δ/4 higher than the

highest payoff that type x∗ can obtain by bidding in the complement of BRx∗ (ε). This last

payoff is in turn lower than the payoff that type x∗ obtains by bidding in BRx∗ by at least

δ. And by 1, the payoff that type xni obtains by bidding in BRxni
cannot be lower by more

than δ/4 than the payoff that type x∗ obtains by bidding in BRx∗.

By uniform convergence of Tn to T , the analogous statement, with δ/2 replaced with

some smaller positive number and T replaced with Tn, is also true. This means, however,

that for sufficiently large n, player i would be strictly better off bidding slightly above any bid

in BRxni
when his type is xni than bidding in the complement of BRxni

(ε). This is because

(11) implies that for sufficiently large n, by bidding slightly above t the player obtains a

prize arbitrarily close to Tn(t) with probability arbitrarily close to 1.

A.4 Proof of Lemma 4

Observe that for any x0 < x00, strict single crossing implies that if t0 ∈ BRx0 and t00 ∈ BRx00,

then t0 ≤ t00. Suppose that BRx0 contained two bids, t1 < t2, for some type x. The first

observation and Lemma 3 imply that for any 0 < ε < (t2 − t1)/4, for sufficiently large
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n only players with types in I = [max {x0 − ε, 0} ,min {x0 + ε, 1}] may bid in the interval
[t1 + (t2 − t1)/4, t2 − (t2 − t1)/4].

Consider obtaining a prize that is ∆ higher in the limit prize distribution29 by increasing

the bid from t1 + (t2 − t1)/4 to t2 − (t2 − t1)/2. If ∆ is sufficiently small, then by continuity

of G−1 the increase in the prize is small as well, so the associated increment in utility is

negative for all types, and uniformly bounded away from 0.

Therefore, taking ∆/2 = F (min {x0 + ε, 1})− F (max {x0 − ε, 0}), if ε > 0 is sufficiently

small, then for sufficiently large n every type of every player is better off bidding t1+(t2−t1)/4
than bidding t2−(t2−t1)/2. This is so, because with high probability the higher bid leads to
a prize that is approximately only ∆/2 higher in the prize distribution Gn.30 By convergence

of (Gn)−1 to (G)−1, for sufficiently large n this prize is not much more than ∆/2 higher in

the limit prize distribution.

Moreover, every type of every player is better off bidding t1+(t2−t1)/4 than bidding any
bid in interval (t2−(t2−t1)/2, t2−(t2−t1)/4), because such bids are even more costly than t2−
(t2− t1)/2, and enable a player to obtain a prize that is with high probability not much more
than ∆/2 higher in the limit prize distribution, than the prize the player obtains by bidding

t2− (t2− t1)/2. Therefore, no player bids in the interval ((t2 − (t2 − t1)/2, t2 − (t2 − t1)/4))

with positive probability, so by the No-Gap Property T n (t2 − (t2 − t1)/4) = 1 for sufficiently

large n. Thus, T (t2 − (t2 − t1)/4) = 1, so t2 cannot be in BRx, because bidding slightly

above t2 − (t2 − t1)/4 gives type x a higher payoff.

Consequently, BRx is a singleton for any x, and by strict single crossing, br is weakly

increasing. An argument analogous to the argument used to show that BR is a singleton

also shows that br is continuous.31

29More precisely, given an initial prize y0, the prize that is ∆ higher in the limit prize distribution is the

prize y00 such that ∆ = G(y00) − G(y0). The prize that is ∆ higher in the prize distribution Gn is defined

similarly.
30This follows from the convergence of Fn to F and Hoeffding’s inequality applied to random variables

Zn
i =

½
1 if min {x0 + ε, 1} ≤ xni ≤ max {x0 − ε, 0} ,

0 otherwise,

for i = 1, ..., n.
31More precisely, suppose that br is discontinuous at some x, and apply the argument to t1 = br(x1) and

t2 = br(x2) where x1 and x2 are slightly lower and higher, respectively, than x.
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A.5 Proof of Lemma 5

Consider an arbitrary type x. Let xmin = min {z : br (z) = br (x)} and xmax = max{z :
br (z) = br (x)} (xmin and xmax are well defined because br is continuous).

First, observe that G−1(F
¡
xmin

¢
) = G−1(F (xmax)). Indeed, by Corollary 3, for suffi-

ciently large n all types in the interval [xmin, xmax] bid in the n-th contest close to br (x).

Suppose that G−1(F
¡
xmin

¢
) < G−1(F (xmax)), and consider the players whose type belongs

to [xmin, xmax] with positive probability.32 Among these players, the one whose expected prize

is the lowest contingent on having a type in this interval can profitably deviate to bidding

slightly above br (x), thereby outbidding the other players with a type in this interval and

obtaining a discretely higher prize.

Suppose that xmin > 0. By Corollary 3 for any δ > 0, there is an N such that if n ≥ N ,

then the equilibrium bids of every player with type lower than xmin − δ are lower than

br(xmin), and the equilibrium bids of every player with type higher than xmin are higher than

br
¡
xmin − δ

¢
. Therefore, a player who bids br

¡
xmin

¢
outbids all players with types lower than

xmin − δ, so T n(br
¡
xmin

¢
) ≥ (Gn)−1(Fn

¡
xmin − δ

¢
), and a player who bids br

¡
xmin − δ

¢
is

outbid by all players with types higher than xmin, so T n
¡
br
¡
xmin − δ

¢¢
≤ (Gn)−1(F n

¡
xmin

¢
).

Since Tn converges to T , T and br are continuous, (Gn)−1 converges to (G−1), Fn converges

to F , and F and G−1 are continuous, we obtain T
¡
br
¡
xmin

¢¢
= G−1

¡
F
¡
xmin

¢¢
.

Similarly, if xmax < 1, we obtain that T (br (xmax)) = G−1 (F (xmax)).

Thus, since br(x) = br(xmin) = br(xmax) andG−1(F (x)) = G−1(F (xmin)) = G−1(F (xmax)),

we have that T (br (x)) = G−1 (F (x)) when xmin > 0 or xmax < 1. However, it cannot happen

that xmin = 0 and xmax = 1, because 0 = G−1(F (0)) < G−1(F (1)) = 1.

A.6 Proof of Part (a) of Theorem 1

Consider a type x ∈ X. Let t = br (x), and let t0 and t00 be such that T (t0) = T (t)− ε/3 and

T (t00) = T (t) + ε/3. Finally, let x0 and x00 be such that t0 = br (x0) and t00 = br (x00). (Take

x0 = 0 and t0 = 0 if T (t)− ε/3 < 0, and x00 = 1 and t00 = br(1) if T (t) + ε/3 > 1.)

By Lemma 3, for sufficiently large n, every player with type no higher than x0 bids less

than the player with type x, and every player with type no lower than x00 bids more than the

player with type x. By Hoeffding’s inequality, this implies that the player of type x outbids

with high probability at least a fraction of players close to Fn (x0).

32For large n, at least a fraction of players close to F (xmax)−F
¡
xmin

¢
have types that belong to [xmin, xmax]

with positive probability.
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Since F n converges to F , she outbids with high probability at least a fraction of players

close to F (x0). So, since (Gn)−1 converges to G−1, she obtains (with high probability) a prize

no lower than G−1 (F (x0))− ε/3 = T (t)− 2ε/3. Similarly, for sufficiently large n a player of
type x outbids with high probability at most a fraction of players close to F (x00), and so she

obtains (with high probability) a prize no higher than G−1 (F (x00)) = T (t) + 2ε/3. (These

bounds are immediate if y − ε/2 < 0 or if y + ε/2 > 1.) Thus, type x obtains (with high

probability) a prize which differs from G−1(F (x)) by at most 2ε/3.

This proves part (a) for a single x, but we must show that there is an N such that for any

n ≥ N part (a) holds for all x simultaneously. Such an N can be obtained by taking a finite

grid of types x, and the corresponding grid of bids br (x) such that |T (t1)− T (t2)| < ε/3

for any pair of neighboring elements t1, t2 of the grid, and taking the largest N among the

N ’s corresponding to x’s from the grid.

B Proof of Theorem 2

Recall that G−1 (z) = inf {y : G (y) ≥ z} for z > 0 and G−1 (0) = inf {y : G (y) > 0}, and
note that G−1 may be discontinuous (but is left-continuous). Discontinuities require modi-

fying almost all the arguments used in the proof of Theorem 1. In order not to obscure the

structure of the proof, we relegate to the end of the section the proofs of all intermediate

results.

Let I0 = (yl0, y
u
0 ) be a longest interval in [0, G

−1 (1)] to which G assigns measure 0; let

I1 = (y
l
1, y

u
1 ) be a longest such interval disjoint from I1, and so on. Then, every open interval

of prizes that has measure zero is contained in one of the intervals I0, I1, .... And for any

ε > 0, there is a K such that the lengths of IK+1, IK+2, ... sum up to less than ε.

The definitions of Rn
i , A

n
i , A

n, and T n are as in Section 6.1. The definition of T , however,

must be changed. We first define a function A on the rationals in B. Take an ordering of

all rationals in B, denoted by q1, q2, . . ... Take a converging subsequence of the sequence

An (q1), denote it by An1 (q1), and denote its limit by A (q1). Take a converging subsequence

of the sequence An1 (q2), denote it by An2 (q2), and denote its limit by A (q2). Continue in

this fashion to obtain a function A : {q1, q2, . . .}→ [0, 1], which is weakly increasing (because

each An is). In addition, define a subsequence of An such that its k-th element is the k-th

element in the sequence Ank . For the rest of the proof, denote this new sequence by An (with

the corresponding sequence T n = (Gn)−1 ◦An). Note that An converges to A on {q1, q2, . . .}.
Let T = G−1 ◦ A. Since G may not have full support, we now have that T (0) = inf{z :

33



G(z) > 0} and T (bmax) = G−1 (1); in addition, T is still (weakly) increasing (compare to

properties (1)-(3) from Section A).

In addition, Fn pointwise converges to F , but (Gn)−1 may not pointwise converge to

G−1. However, the proof of property (b) from Section A gives that limn(G
n)−1(r) = G−1(r)

unless r is the value of G on an interval Ik = (ylk, y
u
k). Moreover, we can directly observe

that limn(G
n)−1(r) ≥ G−1(r) for every r that is the value of G on an interval Ik = (ylk, y

u
k),

but it can happen that limn(G
n)−1(r) = yuk and G−1(r) = ylk.

The discontinuities in G−1 imply that T defined on the rationals in B may not be con-

tinuous, so Lemma 1 does not hold. Points of discontinuity, however, correspond to open

intervals of prizes that have measure zero. More precisely, we have the following result.

Lemma 6 For any t > 0 in B (not necessarily rational) one of the following conditions

holds:

1. For any two sequences qm ↑ t and rm ↓ t of rationals in B, we have limT (qm) =

limT (rm).

2. There is some k = 1, 2, ... such that for any two sequences qm ↑ t and rm ↓ t, of rationals
in B, we have limT (qm) = ylk and limT (rm) = yuk . Moreover, limA (qm) = G(ylk) and

limA (rm) = G(yuk).

Using Lemma 6, we define a function T ∗ on the entire interval B by setting T ∗ (t) =

limT (rm) for some sequence rm ↓ t of rationals inB (and T ∗ (bmax) = G−1 (1)). Monotonicity

of T on the rationals guarantees that T ∗ (t) is well-defined, and is the same regardless of the

sequence rm. In addition, it is easy to check that T ∗ is (weakly) increasing, right-continuous,

and continuous at every bid t such that condition 1 from Lemma 6 holds. Note that T ∗ may

not be an extension of T , because when limT (rm) 6= T (t) for a rational t, we have that

T ∗(t) = limT (rm) 6= T (t).

Consider now a bid t > 0 such that condition 2 from Lemma 6 holds. Denote this

bid t by tk, where k is described in condition 2. Then, there is a bid t0 < tk such that

A (t0) = A (t) = G
¡
ylk
¢
, so A is constant on an interval below tk. Indeed, if A(t0) < G

¡
ylk
¢

for all t0 < tk, then, as in the proof of Lemma 6, for large n no player would bid any t0 slightly

below tk. This would be so, because bidding slightly above tk would almost certainly give

a prize no lower than yuk , whereas bidding t0 would almost certainly give a prize no higher

than ylk. Let

tlk = inf
©
t0 : A (t0) = G

¡
ylk
¢ª

< tk.
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It is also true that every maximal interval on which T ∗ is constant with a value lower

than G−1 (1) is
£
tlk, tk

¢
for some k. Indeed, consider a maximal nontrivial interval with lower

bound tl and upper bound tu on which the value of T ∗ is y < G−1 (1). It suffices to show

that T ∗ (tu) > y, because then condition 2 from Lemma 6 applies to tu, which implies that

tu = tk for some k; and the maximality of
£
tl, tu

¢
yields tl = tlk. Suppose that T

∗ (tu) = y.

Then, for large enough n bidding tu almost certainly gives a prize at most slightly higher

than y, whereas bidding slightly above tl almost certainly gives a prize not much lower than

y. But then, for large enough n, no player bids in some neighborhood of tu, because bidding

slightly above tl leads to a higher payoff. This contradicts the No-Gap Property, because

y < G−1 (1).

Because G−1 may be discontinuous, T n need not uniformly converge to T or T ∗, even on

the set of points at which they are continuous. In particular, for a rational t in
£
tlk, tk

¢
it may

be that Tn (t) = (Gn)−1 (An (t)) ≥ yuk for arbitrarily large n, whereas T (t) = T ∗ (t) = ylk.

Nevertheless, Tn “converges uniformly” except on some neighborhoods of a finite number of

intervals [tlk, tk]. More precisely, we say that T
n converges uniformly to T ∗ up to β on a set

C if there exists an N such that for every n ≥ N and t ∈ C we have that

|T n(t)− T ∗(t)| < β.

We then have the following modification of Lemma 2.

Lemma 7 For every β > 0, there exists a number K such that for every γ > 0, T n converges

uniformly to T ∗ up to β on the complement of

Oγ =
K[
k=1

(tlk − γ, tk + γ).

We now relate players’ equilibrium behavior in large contests to the inverse tariff T ∗.

Define BRx, BR (ε) and BRx (ε) as in Section 6.1 with T ∗ instead of T (the maximal payoff

is achieved because T ∗ is increasing and right-continuous, so is upper semi-continuous).

Define the mass expended (in the n-th contest) in an interval of bids I by players with type

x ∈ S as (
Pn

i=1 Pr (σ
n
i ∈ S × I)) /n. We then have the following result, which we use in

proving the remaining results.

Lemma 8 For all k and any ε > 0 and L > 0, there exists γ > 0 such that for sufficiently

large n we have that:
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(i) The mass expended in (tlk − γ, tlk + γ) by players with types x for which tlk /∈ BRx (ε)

is less than ε/3L;

(ii) The mass expended in (tk − γ, tk] by players with types x for which tk /∈ BRx (ε) is

less than ε/3L.

In addition, for any α > 0, for sufficiently large n we have that:

(iii) The mass expended in
£
tlk + α, tk − α

¤
by all players is less than ε/3L.

Lemma 3 must also to be modified.

Lemma 9 For every ε > 0, there exist K such that for every γ > 0, there is an N such that

for every n ≥ N in the equilibrium of the n-th contest every best response of every type xni
of every player i belongs to

BRxni
(ε) ∪

K[
k=1

(tlk − γ, tk).

Strict single crossing no longer implies that BRx is a singleton. Instead, we have the

following result.

Lemma 10 If strict single crossing holds, then for all but a countable number of types the

set BRx is a singleton. For those types for which it is not a singleton, BRx contains precisely

two elements: tlk and tk for some k. The correspondence that assigns to type x the set BRx

is weakly increasing (i.e., for any x0 < x00, if t0 ∈ BRx0 and t00 ∈ BRx00, then t0 ≤ t00) and

upper hemi-continuous.

Let br (x) = minBRx, and note that br is increasing and left continuous, and is not right

continuous precisely at types x for which BRx is not a singleton. We then have the following

corollary of Lemmas 8, 9, and 10, which is a modification of Corollary 3.

Corollary 4 For every ε > 0, there is an N such that for n ≥ N a fraction 1 − ε of of

players i bid in (br (xni )− ε, br (xni ) + ε) with probability at least 1− ε.

To prove part (b) of the theorem it remains to show that T ∗ ◦ br is the assortative
allocation. This is done by the following lemma, which is a modification of Lemma 5 that

accommodates the discontinuities in T ∗ and br.

Lemma 11 G−1 (F (x)) = T ∗ (br (x)) for any type x > 0.

36



To complete the proof, it remains to show (a) in the statement of the theorem. To do so,

we use the following result, which we also need to prove Theorem 3 without assuming full

support of prizes.

Lemma 12 For every ε, δ > 0, there is an N such that for n ≥ N , each type x from a set

whose F n-measure is at least 1−ε bids at least with probability 1−ε a t, and obtains at least
with probability 1− ε a y such that:

(1) |y − T ∗(t)| < δ, or

(2) |t− r| < δ and |y − T ∗(r)| < δ for some r in BRx.

Moreover, if strict single crossing holds, then (2) must hold for every such (x, y, t).

To see that Lemma 12 implies (a) in the statement of the theorem, choose some ε > 0.

Lemma 12 shows that for every δ > 0, there is an N such that for n ≥ N and for a fraction

1 − ε of players i, the F n
i -measure of their types x

n
i that satisfy the condition of Lemma

12 is at least (1− ε). This means that each such player i obtains with probability at least

1− ε a prize y that differs by at most δ from the prize T ∗(t) for some optimal bid t of the

player’s type. For types xni > 0 such that br (xni ) is a unique optimal bid, this yields (a)

by Lemma 11. However, by Lemma 9 and strict single crossing, there is only a countable

number of other types xni . And the F -measure of such types is 0 since F has no atoms, so

the Fn-measure of such types is arbitrarily small for sufficiently large n.

B.1 Proof of Lemma 6

Let limT (qm) = y0 and limT (rm) = y00. Both limits y0 and y00 exist and y0 ≤ y00 by

monotonicity. Suppose that y0 < y00. If G assigns a positive measure to (y0, y00), then it

assigns a positive measure to any interval with endpoints sufficiently close to y0 and y00. In

such a case, we obtain a contradiction by arguments similar to those used in the proof of

Lemma 1. Indeed, for sufficiently large n no bidder would bid slightly below t, because

bidding slightly above t would almost certainly give a better prize.

Thus, G assigns measure zero to (y0, y00). This implies that (y0, y00) ⊆ (ylk, yuk) for some
k. By definition, T takes values in [0, ylk] ∪ [yuk , 1], so y0 = ylk and y00 = yuk . Moreover, the

monotonicity of T implies that k is the same for any sequences qm ↑ t and rm ↓ t of rationals
in B. It remains to show that limA (qm) = G(ylk) and limA (rm) = G(yuk).

For this, note that if limA (qm) > G(ylk), then limT (qm) > ylk. Similarly, if limA (rm) >

G(yuk), then limT (rm) > yuk . The inequalities limA (qm) < G(ylk) and limA (rm) < G(yuk)

can be ruled out similarly if G does not have atoms at ylk or y
u
k . Suppose that G has an atom
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at yuk and limA (rm) < G(yuk). Since limT (rm) = yuk , A (r
m) > G(ylk) for sufficiently large

m. Take two rationals rm such that G(ylk) < A (rm) < G(yuk ); denote them by t
0 < t00. Then,

for sufficiently large n any player obtains a prize close to yuk with arbitrarily high probability

by bidding any t ∈ [t0, t00]. Thus, for sufficiently large n, no player would bid in the interval
[(t0 + t00)/2, t00] with positive probability. This contradicts the No-Gap Property.

Suppose that G has an atom at ylk and limA (qm) < G(ylk). Then, for sufficiently large

n bidding qm almost certainly gives a prize at most slightly better than ylk. In contrast,

bidding rm almost certainly gives a prize at least as good as yuk . This follows directly from

(11) if G has an atom at yuk . If G does not, then this again follows from (11) for large

enough n, because A (rm) > G (yuk) for any m. For large enough n a contradiction with the

No-Gap Property is obtained similarly to the last part of the proof of Lemma 1 that deals

with U (0, y, t) strictly increasing in y.

B.2 Proof of Lemma 7

The proof is analogous to the proof of Lemma 2. Take a K such that the lengths of IK+1,

IK+2, ... sum up to less than β/2. Take any γ > 0, and suppose to the contrary that there

is an increasing sequence of integers n1, n2, . . . , nm, . . . such that for every nm there is some

bid tm /∈ Oγ with |T nm (tm)− T ∗ (tm)| ≥ β. Passing to a subsequence if necessary, we

assume that the sequence tm → t. Take rationals q0 and q00 such that q0 < t < q00 and

T ∗ (q00)− T ∗ (q0) < β/2,33 and

[q0, q00] ⊂ B −
K[
k=1

[tlk, tk].

This is possible, since the lengths of IK+1, IK+2, ... sum up to less than β/2. In addition, for

large enough k we have that |Tnk (q0)− T ∗ (q0)| < β/2 and |T nk (q00)− T ∗ (q00)| < β/2, since

the length of each IK+1, IK+2, ... is less than β/2. The rest of the proof coincides with the

proof of Lemma 2.

B.3 Proof of Lemma 8

First, observe that the maximal payoff of type x, attained at any bid in BRx, is still contin-

uous in x. Indeed, upper semi-continuity of T ∗is all that is needed for the continuity of the

maximal payoff. This observation implies that there exists a δ > 0 such that for any type x

33If t = 0, take q0 = 0.
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any bid in the complement of BRx (ε) gives type x a payoff lower by at least δ than any bid

in BRx.

For (i), suppose the contrary that for any γ > 0 there are arbitrarily large n such that

the mass expended in (tlk − γ, tlk + γ) by players with types x for which tlk /∈ BRx (ε) is

at least ε/3L. Take γ small enough so that the payoff that such players obtain by bidding

slightly more than any bid in BRx is higher by δ/2 than the payoff that they would obtain

by bidding tlk − γ and getting ylk.
34

Suppose first that tlk > 0. We can assume, that tlk − γ is a rational. By monotonicity

of A and the definition of tlk, we have that A
¡
tlk − γ

¢
< G

¡
ylk
¢
. Take a positive α < ε/6L

such that A
¡
tlk − γ

¢
< G

¡
ylk
¢
− α. For any t ≥ tlk − γ and sufficiently large n, if An (t) <

G
¡
ylk
¢
− α/2, then no player of type x such that tlk /∈ BRx (ε) bids t, because by bidding

t such a player would obtain with high probability a prize no higher than ylk, and therefore

would obtain a higher payoff by bidding slightly more than any bid in BRx.

Let γn be defined by t
l
k−γn = inf

©
t : An (t) ≥ G

¡
ylk
¢
− α

ª
. SinceA

¡
tlk − γ

¢
< G

¡
ylk
¢
−α

and An (t) is right-continuous, we have that γn < γ (for sufficiently large n). And since for

every t < tlk − γn we have A
n (t) < G

¡
ylk
¢
− α/2 (by definition of γn), players with types x

for which tlk /∈ BRx (ε) must expend the mass of at least ε/3L in [tlk − γn, t
l
k + γ).

If more than half of this mass is expended in
¡
tlk − γn, t

l
k + γ

¢
, then we have that

An
¡
tlk + γ

¢
> An

¡
tlk − γn

¢
+ ε/6L ≥ G

¡
ylk
¢
− α + ε/6L > G

¡
ylk
¢
. This cannot happen

for sufficiently large n, because for t ∈
£
tlk, tk

¢
is A(t) = G

¡
ylk
¢
. Thus, the players with

types x for which tlk /∈ BRx (ε) bid precisely tlk − γn with probability at least ε/6L. Since

these players tie with each other at tlk − γn, by bidding t
l
k − γn they must obtain a prize of

a specific type y with probability 1, even if they lose all ties at tlk − γn. (Otherwise, each

of them could obtain a higher payoff by bidding slightly above tlk − γ + γn and winning the

ties at tlk − γn.) But a player who loses all ties at t
l
k − γn has rank order no higher than

G
¡
ylk
¢
− α, by definition of γn, so y ≤ ylk. Therefore, such a player would obtain a strictly

34To see why bidding slightly above any t ∈ BRx gives at least a payoff close to U (x, T ∗ (t) , t), consider

the following two cases:

(a) G−1(A(rm)) > T ∗ (t) for all rationals rm > t; in this case, since limn(G
n)−1(A(rm)) ≥ G−1(A(rm)),

for any rm > t, if n is sufficiently large, then (Gn)−1(A(rm)) > T ∗ (t). This implies that a player obtains a

prize higher than T ∗ (t) with arbitrarily high probability by bidding rm.

(b) G−1(A(rm)) = T ∗ (t) for rationals rm > t close enough to t; in this case, T ∗ (rm) = T ∗ (t) for such

rationals rm. This implies that t = tlk0 for some k
0. The claim now follows from left-continuity of G−1 and

the fact that limn(G
n)−1(q) ≥ G−1(q) for any q.
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higher payoff by bidding slightly more than any bid in BRx.

Now suppose that tlk = 0. Then A(tlk) ≤ G
¡
ylk
¢
. The case A(tlk) < G

¡
ylk
¢
is handled

as in the case tlk > 0 above. Suppose that A(tlk) = G
¡
ylk
¢
. Then, for any γ > 0 such that

tlk + γ < tk, for sufficiently large n the mass expended in
¡
tlk, t

l
k + γ

¢
by all players is smaller

than ε/6L, because A (t) = G
¡
ylk
¢
for any rational t ∈

¡
tlk + γ, tk

¢
. Thus, if (i) does not

hold, for sufficiently large n the mass expended precisely at tlk by the players with types x for

which tlk /∈ BRx (ε) is at least ε/6L, and so the ranking of a player who ties at tlk and loses is

at most G
¡
ylk
¢
− ε/12L. But in this case each player of type x for which tlk /∈ BRx (ε) would

strictly prefer bidding slightly more than any bid in BRx to bidding tlk, a contradiction.

To show (ii), note that if tk = tlk0 for some k
0, then (ii) follows from (i). Thus, suppose

that tk 6= tlk0 for any k
0. Suppose the contrary that for any γ > 0 there is an arbitrarily large

n such that the mass expended in (tk − γ, tk] by players with types x for which tk /∈ BRx (ε)

is at least ε/3L. Take γ small enough so that the payoff that such players obtain by bidding

slightly more than any bid in BRx is higher by δ/2 than the payoff that they would obtain

by bidding tk − γ and getting yuk . Observe that for sufficiently large n, by bidding tk any

player almost certainly obtains a prize at most slightly better than T ∗ (tk) = yuk . This is so,

because tk 6= tlk0 and so A(tk) 6= G(ylk0) for any k0. Therefore, for large enough n a player

with type x for which tk /∈ BRx (ε) would be better off bidding slightly above any t ∈ BRx

than bidding in (tk − γ, tk].

Part (iii) follows immediately from the fact that the value of A on
£
tlk, tk

¢
is G

¡
ylk
¢
, by

the definition of tlk.

B.4 Proof of Lemma 9

Take a δ > 0 such that for any type x any bid in the complement of BRx (ε) gives type x a

payoff lower by at least δ than any bid in BRx. Take β > 0 such that for any type x, bid t,

and prizes y0 and y00 with |y0 − y00| ≤ β we have

|U (x, y0, t)− U (x, y00, t)| ≤ δ

3
.

Next, take a K guaranteed by Lemma 7 for this β. In addition, take K large enough so the

lengths of IK+1, IK+2, ... sum up to less than β/2. Finally, for any λ > 0 take an Nλ that

satisfies the definition of uniform convergence up to β on the complement of Oλ. (Note that

K is the same for all λ.)

Suppose to the contrary of the statement of the lemma that there is a γ > 0 and a

subsequence of contests such that a type xni of player i in the n-th contest has a best response
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tn to the strategies of the other players that does not belong to BRxni
(ε)∪

[K

k=1
(tlk− γ, tk).

As usual, we assume that the subsequence is the entire sequence; moreover, we assume that

xni → x∗ and tn → t∗.

Consider the following two cases:

A. (t∗ 6= tk for any k = 1, ..., K) In this case, for some λ > 0 there is a neighborhood of

t∗ that is disjoint from Oλ. By uniform convergence of T n to T ∗ up to β on the complement

of Oλ,

U (xni , T
n (tn) , tn)− U (xni , T

∗ (tn) , tn) ≤ δ

3

for n ≥ Nλ. And because tn /∈ BRxni
(ε), for any t ∈ BRxni

we have

U (xni , T
∗ (t) , t)− U (xni , T

∗ (tn) , tn) ≥ δ.

Thus, we obtain

U (xni , T
∗ (t) , t)− U (xni , T

n (tn) , tn) ≥ 2δ
3
.

Observe that any bid t0 higher than t guarantees, for sufficiently large n, a prize not much

worse than T ∗(t) with arbitrarily high probability.35

We will now show that by bidding tn, for sufficiently high n type xni obtains with arbi-

trarily high probability a prize no better than Tn (tn)+β. Indeed, since t∗ does not belong to£
tlk, tk

¤
for any k ≤ K, we have that A (t0) is bounded away fromG

¡
yl1
¢
, . . . , G

¡
ylK
¢
for ratio-

nals t0 sufficiently close to t∗. Therefore, An (tn) is also bounded away fromG
¡
yl1
¢
, . . . , G

¡
ylK
¢

for sufficiently large n. And for sufficiently large n, bidding tn gives with arbitrarily high

probability a rank order arbitrarily close to An (tn). Since the lengths of IK+1, IK+2, ... sum

up to less than β/2, and for any r other than G
¡
yl1
¢
, . . . , G

¡
ylK
¢
and sufficiently large n the

difference between (Gn)−1(r) and G−1(r) is no larger than the length of IK+1, by bidding tn

a player obtains with arbitrarily high probability a prize no better than (Gn)−1 (An (tn))+β.

Therefore, by definition of β, we have that by bidding tn type xni obtains a payoff that

is higher than U (xni , T
n (tn) , tn) by at most slightly more than δ/3. Consequently, for

sufficiently large n player i would obtain by bidding some t0 > t a payoff strictly higher

than by bidding tn, a contradiction.

B. (t∗ = tk for some k = 1, ...,K) Then, consider a t∗∗ slightly higher than t∗, such that

t∗∗ does not belong to [tlk, tk] for k = 1, ...,K, and such that: (i) for sufficiently large n the

payoff (of any player) in the n-th contest of bidding t∗∗ is not much lower than the payoff

of bidding tn; (ii) for sufficiently large n, we have that the difference between U(xni , T
∗(t), t)

35To see why, see footnote 34.
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for any t in BRxni
and U(xni , T

∗(t∗∗), t∗∗) is not much lower than δ. This latter condition is

possible because, by definition, (x∗, t∗) /∈ BR (ε), and by right continuity of T ∗ at t∗. Now,

using (ii), apply an argument analogous to that from case A with t∗∗ playing the role of tn,

with a contradiction obtained by referring to (i).

B.5 Proof of Lemma 10

Monotonicity of the correspondence follows from strict single crossing, and upper hemi-

continuity follows from standard arguments.36

Suppose that BRx contains a pair of bids t1 < t2. Below we will show that for any

ε > 0 and any interval [a, b] such that t1 < a and b < t2, for sufficiently large n the mass

expended in [a, b] by all players is at most ε. This implies that the function A, and therefore

T ∗, is constant on every such interval [a, b], and therefore on (t1, t2). But T ∗ (t2) > T ∗ (t1)

because t1 < t2 are in BRx, so by definition of the discontinuity points tk of T ∗ we must have

(t1, t2) ⊆
¡
tlk, tk

¢
for some k. And because BRx ⊆ B\ ∪

[∞

k=1
(tlk, tk), we have that t1 = tlk

and t2 = tk.

It remains to show that for any ε > 0, for sufficiently large n the mass expended in [a, b] by

all players is at most ε. We will show this for ε/2 and players of types lower than x (a similar

argument applies to types higher than x). Choose x0 < x such that F (x) − F (x0) < ε/3.

For sufficiently small λ > 0, sup∪z≤x0BRz (λ) < a. (This is because x0 < x and t1 ∈ BRx,

so every bid in BRz is at most t1 < a.)

Therefore, by Lemma 9, there is some K such that for every γ > 0 and sufficiently large

n any bid in [a, b] made by a player of type z ≤ x0 in the n-th contest is in
[K

k=1
(tlk − γ, tk).

Consider one of theseK intervals for which (tlk−γ, tk)∩ [a, b] 6= ∅. Since sup∪z≤x0BRz (λ) <

a ≤ tk, tk is not in BRz (λ) for any z ≤ x0. If tlk > sup∪z≤x0BRz (λ), then by (i) of Lemma 8

there exists a γ such that for sufficiently large n the mass expended in
¡
tlk − γ, tk

¢
by players

of type z ≤ x0 is less than ε/6K. If tlk ≤ sup∪z≤x0BRz (λ), then by (ii) and (iii) of Lemma

8, for sufficiently large n the mass expended in [a, tk) by players of type z ≤ x0 is less than

ε/6K.

Therefore, for large enough n the mass expended in [a, b] by players of type z ≤ x0 is

smaller than ε/6, and because F (x)− F (x0) < ε/3, the mass expended in [a, b] by players

of type z ≤ x is smaller than ε/2.

36More precisely, this follows from the fact that BRx is the set of all t such that (t, T ∗(t)) maximizes type

x’s utility over the closure of the graph of T ∗, which is a compact set.
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B.6 Proof of Corollary 4

Choose ε > 0. Lemma 10 implies that there is a finite number of intervals of types

with total F -mass ε/2, such that for every type x not in one of these intervals, BRx ⊆
(br (x)− ε, br (x) + ε).37 Consider the F -mass 1 − ε/2 of types x with the last property,

and let K be the one in the statement of Lemma 9. Then, by Lemma 9 and Lemma 8

for L = K, for sufficiently large n, at most an F -mass ε/2 of those types bid outside of

(br (x)− ε, br (x) + ε).

B.7 Proof of Lemma 11

The proof is analogous to that of Lemma 5. Consider an arbitrary type x. Define xmin =

min {z : br (x) ∈ BRz} and xmax = max {z : br (x) ∈ BRz}. By strict single crossing, BRz

has only one element br(z) = br(x) for all z ∈ (xmin, xmax); it may have two elements for
z = xmin or xmax, in which cases br(x) is the higher one and the lower one of the two,

respectively.

The claim that G−1(F
¡
xmin

¢
) = G−1(F (xmax)) is obtained by the same argument as in

the proof of Lemma 5. The rest of the proof requires the following minor changes when

BRxmin has two elements (and analogous changes when BRxmax has two elements):

1. Instead of xmin, we consider xmin = min
©
z : br

¡
xmin

¢
∈ BRz

ª
, and compare the

equilibrium bids of every player with type lower than xmin−δ to br(xmin), and the equilibrium
bids of every player with type higher than xmin to br

¡
xmin − δ

¢
. This change does not affect

the arguments, since G−1(F
¡
xmin

¢
) = G−1(F

¡
xmin

¢
).

2. It may not be true that the equilibrium bids of every player with type lower than

xmin − δ are lower than br(xmin), or the equilibrium bids of every player with type higher

than xmin are higher than br
¡
xmin − δ

¢
, because players may bid in

[K

k=1
(tlk−γ, tk)−BR(ε)

(see Lemma 9). However, this happens only with vanishing probability as n grows large, so

the arguments are again not affected.

37There is a K > 0 such that
P

k>K

¡
tk − tlk

¢
< ε. For each k ≤ K such that BRxk =

©
tlk, tk

ª
for some

type xk, consider the interval of types [xk − λ, xk + λ]∩ [0, 1], where λ is such that (continuous) F increases

by no more than ε/2K on any interval no larger than 2λ. The sum of the F -mass of these intervals is no

larger than ε/2, and the sum of the “jumps” of br on the complement of these intervals is smaller than ε.
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B.8 Proof of Lemma 12

Take any λ > 0. By Lemma 9, there is a large K such that for any γ > 0, if n is sufficiently

large, the equilibrium bid of every player i in the n-th contest belongs with probability 1 to

BRxni
(λ) ∪

K[
k=1

(tlk − γ, tk).

Assume that K is, in addition, large enough so that the lengths of IK+1, IK+2, ... sum up to

less than δ/2.

We first claim that for any t /∈ (tlk−γ, tk) for all k = 1, ...,K, there exists an Nt such that

for every n ≥ Nt, a player who bids t in the n-th contest obtains (with high probability) a

prize y such that |y − T ∗(t)| < δ/2. We will also show that there exists an N = Nt that is

common for all such bids t.

Suppose first that t 6= tk for any k = 1, ..., K. Since A (t) differs from G(ylk) and G(yuk)

for any k = 1, ..., K, any rank order close to A (t) also differs from G(ylk) and G(yuk ). By

(11), for sufficiently large n, a player who bids t has (with high probability) a rank order

close to A (t); in particular, this rank order differs from G(ylk) and G(y
u
k). By the assumption

that the lengths of IK+1, IK+2, ... sum up to less than δ/2, this implies that the difference

between T ∗ (t) and the prize obtained by a player who bids t is lower than δ/2 (with high

probability).

Suppose that t = tk for some k = 1, ...,K. By an argument analogous to the one used in

the previous case, the prize obtained by a player who bids t cannot, as n increases, exceed

T ∗(t) by δ/2 with a probability that is bounded away from 0. And T ∗(t) cannot exceed this

prize by δ/2 with a probability that is bounded away from 0 as n increases, because the

player would profitably deviate by bidding slightly above t, which would guarantee a prize

no worse than T ∗(t) with arbitrarily high probability.

Now, note that the number Nt that was chosen for any bid t has the required property

also for all bids close enough to t; in the case of t = tk for some k = 1, ..., K, we mean bids

close enough and higher than t. That is, for every t there is a neighborhood Wt of that t

with Nt that is common for all bids from this neighborhood. The family of sets Wt is an

open covering of the compact set of bids t that satisfy t /∈ (tlk− γ, tk) for k = 1, ...,K. Thus,

it contains a finite subcovering, and any number N that exceeds numbers Nt for all elements

of this finite subcovering has the required property.

This yields part (1) of the lemma for bids t /∈ (tlk − γ, tk) for all k = 1, ..., K. If strict

single crossing holds, and λ is sufficiently small, then part (2) of the lemma also holds for

such bids. To see why, notice that BRx is a singleton, and so br(x) is its only element, for
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all except a countable number of types x. Since F has no atoms, the set of such types has

F -measure 1. And for such types x, equilibrium bids t /∈ (tlk − γ, tk) for all k = 1, ..., K

belong to (br (x)− λ, br (x) + λ). If λ is sufficiently small, and x is bounded away from 0,

then |t− r| < δ for r = br (x), and T ∗(t)−T ∗(r) ≤ δ/2.38 And if λ is sufficiently small, then

also T ∗(r)−T ∗(t) ≤ δ/2, because t /∈ (tlk−γ, tk) for all k = 1, ...,K and the lengths of IK+1,

IK+2, ... sum up to less than δ/2. Finally, by our first claim, the prize y obtained by bidding

t must satisfy |y − T ∗(t)| < δ/2, so |y − T ∗(r)| < δ.

Now consider bids t such that t is in (tlk− γ, tk) for some k = 1, ..., K. By (iii) of Lemma

8, we can disregard bids t in [tlk + γ, tk − γ]. Suppose that t is in (tk − γ, tk) and tk 6= tlk0 for

all other k0 = 1, ..., K. By (ii) of Lemma 8, one can assume that tk ∈ BRxni
.39 We will show

that for sufficiently small γ and for sufficiently large n, player i obtains by bidding t (with

arbitrarily high probability) a prize y in (T ∗(tk) − δ, T ∗(tk) + δ). First, notice that player

i cannot obtain by bidding t a prize lower than T ∗(tk)− δ (with probability bounded away

from 0), because for small enough γ it would be profitable to deviate to bidding slightly

above tk, and obtain a prize not much lower than T ∗(tk) with high probability. Player i

cannot obtain by bidding t a prize higher than T ∗(tk) + δ (with probability bounded away

from 0), because by (11), for any rational rm > tk and sufficiently large n the rank order

of player i is with arbitrarily high probability bounded above by A(rm) . Thus, the upper

bound on the prize follows from the assumption that tk 6= tlk0 for all other k
0 = 1, ...,K, and

the lengths of IK+1, IK+2, ... sum up to less than δ/2.

Finally, suppose that t is in
¡
tlk − γ, tlk + γ

¢
for some k = 1, ...,K. By (i) of Lemma 8, one

can assume that tlk ∈ BRxni
. We will show that for sufficiently small γ and for sufficiently

large n, equilibrium bidding in
¡
tlk − γ, tlk + γ

¢
leads (with arbitrarily high probability) to a

prize y ∈ (T ∗(tlk)− δ, T ∗(tlk) + δ), except a small probability event. Indeed, by an argument

similar to that from the previous case, such a bid cannot lead to a prize lower than T ∗(tlk)−δ
(with probability bounded away from 0). To obtain a prize higher than T ∗(tlk) + δ with a

nonvanishing probability, a player’s expected rank order when bidding t cannot be lower

than G
¡
ylk
¢
by a nonvanishing constant. But, if a nonvanishing fraction of players win a

38Indeed, for types bounded away from 0, and for sufficiently small λ, we have that U(x, y, t) > U(x, y0, t0)

whenever y − y0 > δ/2 and t − t0 < λ. (The assumption that types are bounded away fro 0 is essential,

because we did not assume that U(0, y, t) strictly increases in y.) However, since r = br (x), we cannot have

U(x, T ∗(t), t) > U(x, T ∗(r), r).
39The lemma says only that the mass expended in (tk − γ, tk] by types x for which tk /∈ BRx (λ) for some

small λ > 0 is small. However, if λ > 0 is sufficiently small, then the mass of types x such that tk /∈ BRx

but tk ∈ BRx (λ) is small.
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prize higher than T ∗(tlk) + δ with a nonvanishing probability by bidding in
¡
tlk − γ, tlk + γ

¢
,

then the increase in expected rank order on the interval
¡
tlk − γ, tlk + γ

¢
is bounded away

from 0 for all n, which contradicts the fact that An(tlk + γ) approaches G(ylk) as n increases.
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