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1 Introduction

This paper shows that the equilibrium outcomes of contests with a large (but finite) number

of competitors and prizes can be approximated by the outcome of a certain mechanism in

an environment with a single agent that has a continuum of possible types. The approxima-
tion applies even when solving for equilibrium is difficult or impossible, which substantially

expands the set of contests that can be studied relative to the existing literature.

In our contest framework, n players compete for n prizes (some of which may be worth

0). Each player chooses a non-negative bid, and the player with the highest bid obtains

the highest prize, etc. A player’s payoff depends on her bid, her type, and the prize she

obtains, and satisfies strict single crossing in type and prize-bid pairs. This accommodates

a wide range of asymmetries among players and heterogeneity in prizes. Players’ types

are distributed independently, but not necessarily identically, which accommodates both

complete-information and incomplete-information asymmetric contests.
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We study sequences of contests whose empirical distributions of player types and prizes

converge as n grows large. Given the limit type and prize distributions, the approximating

mechanism implements the assortative allocation of prizes to types, in which the location of

a prize in the prize distribution is equal to the location of the type in the type distribution

to which the prize is allocated. This mechanism corresponds to an “inverse tariff,” in which

each bid determines a single prize.

When payoffs are quasi-linear with respect to bids, the approximating mechanism is

characterized by applying standard mechanism-design techniques. We are then able to say

(approximately, but with an arbitrary degree of precision as n increases, and uniformly across

all equilibria) how almost each player will bid, and what prize she will obtain by making any

given bid. This result applies to many existing contest models, which are surveyed in Section

1.1, as well as to contest specifications for which no equilibrium characterization exists.

As an illustration, we derive simple approximations for some settings that have been

studied in the literature, in which the equilibria were complicated, derived by algorithms,

or could be solved only for specific functional forms. Our methods also facilitate further

analysis of contests, including contest design, welfare analysis, and comparative statics, by

making it possible to recast such questions as questions in mechanism design, which are

relatively well understood. This is left for future research.

The rest of the paper is organized as follows. Section 1.1 surveys the related literature.

Section 2 introduces the basic terminology and notation. Section 3 presents examples that

illustrate our results in some settings that have been studied in the literature. Section 4

contains our main results and some discussion of their application. Section 5 contains the

intuition for our results, and discusses the contribution to the methods for studying large

games. Section 6 provides rates of convergence for a class of contests with quasi-linear payoffs.

The Online Appendix contains the proofs of our main result when the limit set of prizes has

full support and when the limit set of prizes may not have full support. Both proofs have a

similar structure. The latter, which builds on the former, emphasizes arguments for dealing

with the discontinuities that arise when the limit set of prizes does not have full support.

1.1 Related Literature

Our model includes many variants of the multi-prize all-pay auction with complete and

incomplete information, in which each player chooses a bid and pays the associated (and

possibly idiosyncratic) cost.1 Closed-form equilibrium characterizations exist for complete-

1Other models postulate a probabilistic relation between competitors’ efforts and prize allocation. See

Tullock (1980) and Lazear and Rosen (1981). For a comprehensive treatment of the literature on competitions

2



information contests with two participating players (Hillman and Samet (1987), Hillman

and Riley (1989), Che and Gale (1998, 2006), Kaplan and Wettstein (2006), Siegel (2010)),

with identical prizes and costs (Baye, Kovenock, and de Vries (1993, 1996), González-Díaz

(2012), Clark and Riis (1998)), and with identical players (Barut and Kovenock (1998)).

Algorithmic equilibrium characterizations exist for some complete-information contests with

identical prizes and heterogeneous costs (Siegel 2010, 2014b),2 and with heterogeneous prizes

and identical costs (Bulow and Levin (2006), González-Díaz and Siegel (2012), Xiao (2013)).

The heterogeneity in prizes, however, is limited to very specific functional forms. More-

over, algorithmic characterizations make further analysis difficult or impossible. Incomplete-

information contests have been solved when there are two players (for example, Amann

and Leininger (1996), Siegel (2014a)), and when players are ex-ante identical (for example,

Krishna and Morgan (1997), Moldovanu and Sela (2001, 2006)). In contrast, our model ac-

commodates ex-ante asymmetric players, heterogeneous prizes, and complete and incomplete

information.

Our paper also contributes to the literature on large games, which typically makes conti-

nuity assumptions that exclude auction-like games (for example, Kalai (2004)). An exception

is Bodoh-Creed (2013), who explicitly considers uniform-price auctions with incomplete in-

formation, but assumes enough uncertainty about the set of prizes to exclude the possibility

of a small change in the rank order of a bid having a large effect on the prize obtained.

Moreover, the analysis in this literature often focuses on ε-equilibria of large games, which

may not approximate Nash equilibria well. In contrast, our approach deals with the discon-

tinuities that arise naturally in contests, approximates Nash equilibria, and uncovers a novel

connection to mechanism design.

A more closely related paper is Bodoh-Creed and Hickman’s (2015) theoretical analysis

of affirmative action in college admissions. They considers an additively separable contest

model with incomplete information that satisfies strict single crossing, and approximate the

outcome for a large number of applicants by a continuummodel in which the limit set of prizes

has full support (so a small change in the rank order of a bid cannot have a large effect on the

prize obtained). Our paper differs from this work in three main ways. First, our approach

does not require additive separability or full support of the limit prize set (although we

obtain stronger results under these conditions), and is therefore applicable to a wider range

of settings; more importantly, we allow for a general limit prize set, which facilitates the study

with sunk investments, see Nitzan (1994) and Konrad (2007).

2Siegel (2009, 2014c) gives a closed-form expression for players’ equilibrium payoffs, but does not solve

for equilibrium strategies.
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of optimal contest design. Second, we relate the outcomes of large contests to mechanisms,

which allows us, under certain conditions, to derive the approximation in closed form. Third,

our model accommodates both complete information and incomplete information.

2 Terminology and notation

2.1 Agents and prizes

An agent is characterized by a type x ∈ X = [0, 1]. We will use the terms “player” for discrete

contests and “agent” for the limit case. A prize is characterized by a number y ∈ Y = [0, 1].

Prize 0 is “no prize.”

Agents’ utilities are given by a continuous function U (x, y, t), where x is the agent type,

y is the single prize she obtains, and t ≥ 0 is her bid. The utility of obtaining no prize

by bidding 0 is normalized to 0, i.e., U (x, 0, 0) = 0 for all x. Higher prizes are better and

higher bids are more costly, so U(x, y, t) strictly increases in y for every x > 0 and t ≥ 0, and
strictly decreases in t for every x ≥ 0 and y ≥ 0. The utility satisfies strict single crossing,
i.e., if an agent of some type prefers to obtain a higher prize at a higher bid, then an agent

of any higher type strictly prefers to obtain the higher prize at the higher bid.3 Sufficiently

high bids are prohibitively costly, so U (x, 1, bmax) < 0 for some bmax and all x. We therefore

restrict the range of bids that agents can make to B = [0, bmax].

The utility is quasi-linear in bid if it can be written as

U(x, y, t) = v(x, y)− t.

An example that we will use throughout the paper is the quasi-linear utility

U(x, y, t) = xh (y)− t, (1)

where h (0) = 0 and h is continuous and strictly increasing. This functional form generalizes

many of the ones used in existing contest models, including those described in Section 3.

2.2 Contests

For every n, we define “the n-th contest,” in which n players compete for n known prizes

yn1 ≤ yn2 ≤ ... ≤ ynn (some of which may be no prize). Player i’s privately-known type

3That is, for any x1 < x2, t1 < t2, and y1 < y2 we have that U(x1, y2, t2) ≥ U(x1, y1, t1) implies

U(x2, y2, t2) > U(x2, y1, t1).

4



xni is distributed according to a CDF Fn
i , and these distributions are commonly known

and independent across players.4 In the special case of complete information, each CDF

corresponds to a Dirac measure. Each player, after learning her type, chooses a bid in B,

the player with the highest bid obtains the highest prize, the player with the second-highest

bid obtains the second-highest prize, and so on. Ties are resolved by a fair lottery. The

utility of player i from bidding t and obtaining prize ynj is U
¡
xni , y

n
j , t
¢
. A slight adaptation

of the proof of Corollary 1 in Siegel (2009) shows that when each player’s set of possible

types is finite the contest has at least one mixed-strategy Bayesian Nash equilibrium. For

general distributions Fn
i , equilibrium existence follows from Corollary 5.2 in Reny (1999).

We let Fn = (
Pn

i=1 F
n
i ) /n, so F

n (x) is the expected percentile ranking of type x given

the vector of players’ types. We denote by Gn the empirical distribution of prizes, which

assigns a mass of 1/n to each ynj (recall that each prize y
n
j is known). We assume that F

n

converges pointwise to a continuous and strictly increasing distribution F , and Gn converges

pointwise to some distribution G.5 We elaborate on this assumption in the next subsection.

If G strictly increases on Y , we say that G has full support, or that prizes have full support.

Note that G may have full support even if there are masses of identical prizes, i.e., G is

discontinuous, or, equivalently, G has atoms.

Our results are stronger and their proofs are simpler when prizes have full support. We

wish to emphasize, however, the importance of the results for general distributions G. One

reason is that without such general results our methods would be of limited use in studying

optimal contest design.6

2.3 Convergence of type and prize distributions

The convergence of F n and Gn to limit distributions F and G can be interpreted in several

ways. First, a modeler studying large contests may specify the limit distributions directly

and consider a sequence of discrete contests with distributions that converge to the limit

distributions. Examples include contests with complete information in which player i’s type

is xni = F−1 (i/n) and prize j is ynj = G−1 (j/n) = inf{y : G (y) ≥ j/n}, as well as contests
with incomplete information in which players have IID type distributions F n

i = F and prize

j is ynj = G−1 (j/n). The former specification appears in the examples of Section 3.

4All probability measures are defined on the σ-algebra of Borel sets.

5Our proofs only require pointwise convergence of Gn to G at points of continuity of G, which is equivalent

to convergence in weak*-topology.

6For example, it is plausible that in some settings the optimal prize structure is a mass of identical prizes.

5



Alternatively, the modeler may specify a sequence of contests using analytical formulas

that depend on the number of players and prizes, and take the limit of the associated sequence

of distributions F n and Gn as the number grows large.

Finally, given a single discrete contest, a researcher can postulate limit distributions F

and G to which the empirical type and prize distributions would converge if the number

of players and prizes grew large; if the number of players and prizes in the given contest

is sufficiently large, our approximation results can be applied. Moreover, in many settings

(such as those of Corollaries 1 and 2 below) the empirical type and prize distributions of

the given contest can be used as the limit distributions, since a small change in the limit

distribution has a small effect on the approximation.7

2.4 Limit mechanism-design setting

An inverse tariff is a non-decreasing, upper semi-continuous function that maps bids to

prizes. Given an inverse tariff, a tariff mechanism prescribes for each type x a prize-bid pair

(y, t) that maximizes U (x, y, t) among the prize-bid pairs in the graph of the inverse tariff.

In addition, we require that U (x, y, t) ≥ U (x, yinf , 0) for each type x and its prescribed

prize-bid pair (y, t), with an equality for at least one type x, where yinf = inf {y : G (y) > 0}.
Note that if G has full support, then yinf = 0 and U (x, yinf , 0) = 0. Every tariff mechanism

is therefore incentive compatible and individually rational.

The assortative allocation maps to each type x prize y = G−1 (F (x)), where G−1(z) =

inf {y : G (y) ≥ z} for z > 0 and G−1 (0) = yinf . A tariff mechanism implements the assor-

tative allocation if it prescribes for each type x prize G−1 (F (x)).

3 Examples

We first demonstrate our approximation approach and results in two contest settings that

appeared in the literature, by comparing our approximating mechanism to the contest equi-

libria. We focus on complete-information contests, because no equilibrium characterization

exists for contests with incomplete information and more than two ex-ante asymmetric play-

ers.

7In the settings of Corollaries 1 and 2, a small change in F and G leads to a small change in the prize-

bid pair that the approximating mechanism specifies for each type (the pair is given by the “assortative

allocation,” defined in Section 2.4, and by (4)).
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3.1 Heterogeneous prizes and multiplicative utilities

Consider (1) with h (y) = y, let xni = i/n (so Fn
i is a Dirac measure), and let y

n
j = j/n.

Thus, the limit distributions F and G are uniform. (Note that prizes have full support.)

The n-th contest is an all-pay auction with n players and n prizes, and the value of prize

j to player i is ij/n2. These contests were studied by Bulow and Levin (2006), henceforth

B&L, who considered hospitals that have a common ranking for residents and compete for

them by offering identity-independent wages. Hospitals are players, their posted wages are

bids, and residents are prizes. The best resident goes to the hospital with the highest wage,

and so on.8

Consider the assortative allocation in the limit setting, which assigns prize x to an agent

of type x. This allocation is implementable by a tariff mechanism that prescribes for every

type x prize x and bid x2/2. The corresponding inverse tariff is continuous, and maps

every bid t ∈ [0, 1] to prize
√
2t. Corollary 1 below shows that for large n this mechanism

approximates the equilibrium outcome, in that every player i obtains a prize close to i/n

and bids close to (i/n)2 /2.

This simple approximation contrasts with the algorithm developed by B&L to derive the

unique mixed-strategy equilibrium of the n-th contest.

...........................

n-1
n

1
2

0
Bid

Figure 1: The support of players’ strategies (dots represent atoms) in the unique equilibrium

B&L show that, in equilibrium, each player chooses a bid from an interval. The intervals

are staggered, so a higher player has an interval with (weakly) higher lower and upper

bounds. (The intervals are depicted in Figure 1.) In particular, if a bid t is contained in

some player’s bidding interval, then it is contained in the bidding intervals of consecutive

8The outcome coincides with that of Gale and Shapley’s (1962) deferred acceptance algorithm when

hospitals rank residents by their ability and residents rank hospitals by their wages.
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players l, l + 1,..., m, where l is the lowest player whose interval contains t, and m is the

highest player whose interval contains t.

B&L show that

l = argmin
q

(
1

m− q

mX
k=q

n2

k
− n2

q
> 0

)
, (2)

and the density of the strategy of player q, l ≤ q ≤ m, at bid t that belongs to her bidding

interval is
1

m− l

mX
k=l

n2

k
− n2

l
. (3)

By iteratively applying (2) and (3), B&L compute the endpoints of players’ bidding intervals

and the densities of their bidding strategies.

For the rate of convergence of our approximation, because m− l is of order
√
2l (Lemma

3 in B&L), any player i is outbid with certainty by every bidder j > i, except for a number

of players j that is of order
√
n. Thus, player i obtains a prize that differs from i/n by at

most an expression of order 1/
√
n. A similar but slightly more involved argument shows

that the bidding interval of player i shrinks quickly, so that any bid in the interval differs

from (i/n)2/2 by at most an expression of order 1/
√
n.

3.2 Identical prizes

Consider (1) with h (y) = y, let xni = i/n (so F n
i is a Dirac measure), and let y

n
j = 0 if

j/n ≤ 1/2 and ynj = 1 if j/n > 1/2. Thus, the limit distribution F is uniform, and the limit

distribution G has G(y) = 1/2 for all y ∈ [0, 1) and G(1) = 1. (Note that G does not have

full support.) The n-th contest is an all-pay auction with n players and m ≡ pn/2q identical
(non-zero) prizes, where p·q is the ceiling function,9 and the value of a prize to player i is
i/n. These contests were studied by Clark and Riis (1998), who considered competitions for

promotions, rent seeking, and rationing by waiting in line (see also Siegel (2010)).

Consider the assortative allocation in the limit setting, which assigns a prize to each agent

with a type higher than 1/2. This allocation is implementable by the tariff mechanism that

prescribes for every type x ≤ 1/2 prize 0 and bid 0, and for every type x > 1/2 prize 1 and

bid 1/2. The corresponding inverse tariff is discontinuous (but upper semi-continuous), and

maps bids t ∈ [0, 1/2) to prize 0 and bids t ≥ 1/2 to prize 1. Corollary 2 below shows that
for large n this mechanism approximates the equilibrium outcome, in that all but a small

fraction of players i with i/n > 1/2 obtain a prize and bid close to 1/2 with high probability,

and all but a small fraction of players i with i/n < 1/2 obtain no prize and bid close to 0

9The analysis of this example applies to any fixed limit ratio p ∈ (0, 1) of prizes to players.
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Figure 2: The support of players’ strategies (dots represent atoms) in the unique equilibrium

with high probability. The approximation does not apply to all players as in Section 3.1,

because G does not have full support, but the fraction of players it applies to converges to

1 as n grows large.

This simple approximation contrasts with the closed-form equilibrium characterization

derived by Clark and Riis (1998).

As depicted in Figure 2, in the equilibrium of the n-th contest the n−m−1 players with
the lowest valuations bid 0, and each of the m + 1 players with the highest valuations bids

on an interval, so m of them obtain a prize. (Recall that m = pn/2q.) The common upper
bound of the intervals is 1−m/n ∈ {1/2, 1/2 + 1/2n}, and the lower bound of the interval
of player i > n−m is ³

1− m

n

´Ã
1−

iY
k=n−m+1

k

i

!
,

which increases in i.

Thus, for every ε > 0, as n grows large the number of players with valuations greater

than 1/2 who bid on [ε, 1−m/n] grows large. This may appear to contradict the equilibrium

approximation for large n. The apparent discrepancy is overcome by noting that the lower

bound of the bidding interval of a player with valuation approximately 1/2+ ε is for large n

approximately

1

2

Ã
1−

1
2
·
¡
1
2
+ 1

n

¢
· ... ·

¡
1
2
+ εn

n

¢¡
1
2
+ ε
¢εn

!
=
1

2

Ã
1−

1
2
· ... ·

¡
1
2
+ εn

2n

¢¡
1
2
+ ε
¢ εn
2

·
¡
1
2
+ εn

2n
+ 1

n

¢
· ... ·

¡
1
2
+ εn

n

¢¡
1
2
+ ε
¢ εn
2

!
.

The first fraction in parenthesis on the right-hand side is bounded above by ((1/2+ε/2)/(1/2+

ε))εn/2, and the second fraction is bounded above by 1, so as n increases the lower bound of
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the bidding interval approaches 1/2 as fast as 1− bn approaches 1, where b < 1. Therefore,

for any ε > 0, for sufficiently large n at most a fraction ε of the players bid more than ε

away from what the mechanism prescribes for the types that correspond to them.

4 Results

We show that the equilibria of large contests are approximated by tariff mechanisms that

implement the assortative allocation. We first consider settings in which prizes have full

support, so G−1 is continuous. This guarantees that when the number of players and prizes

is large, it is enough to know the approximate rank-order of a player’s bid to know the

approximate prize she obtains.

Theorem 1 Suppose that prizes have full support. Then, for any ε > 0, there is an N such

that for all n ≥ N in any equilibrium of the n-th contest,

(a) every player i obtains with probability at least 1− ε a prize that differs by at most ε

from G−1(F (xni ));

(b) there is a tariff mechanism with a continuous inverse tariff that implements the as-

sortative allocation, such that the bid of every player i differs with probability 1 by at most ε

from the bid that the mechanism prescribes for type xni .

When there is a unique mechanism that implements the assortative allocation (and satis-

fies the requirement that U (x, y, t) ≥ U (x, yinf , 0) for each type x and its prescribed prize-bid

pair (y, t), with an equality for at least one type x), this mechanism coincides with the tariff

mechanism in part (b) of Theorem 1. For example, if U is quasi-linear and satisfies the con-

ditions of Milgrom and Segal’s (2002) envelope theorem,10 then their Corollary 1 shows that

the unique mechanism that implements the assortative allocation prescribes for type x bid

br (x) = v
¡
x,G−1 (F (x))

¢
−
Z x

0

vx
¡
z,G−1 (F (z))

¢
dz − v(0, yinf). (4)

In this case, (4) provides an explicit formula for the tariff mechanism in part (b) of Theorem

1.11 We therefore obtain the following corollary of Theorem 1, which applies to the setting

of Section 3.1.

10The conditions are that v is differentiable and absolutely continuous in x, and supy∈Y |vx (x, y)| is
integrable on X.

11Other sufficient conditions for (4) are described in Krishna and Maenner’s (2001) Proposition 1.
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Corollary 1 Suppose that prizes have full support and U is quasi-linear and satisfies the

conditions of the envelope theorem. Then, for any ε > 0 there is an N such that for all

n ≥ N , in any equilibrium of the n-th contest every player i obtains with probability at least

1− ε a prize that differs by at most ε from G−1 (F (xni )), and bids with probability 1 within

ε of br (xni ) given by (4).

For complete-information contests, such as those in Section 3.1, the proof of Theorem 1

shows that the 1− ε in Theorem 1 and Corollary 1 can be replaced with 1.

When prizes do not have full support G−1 is discontinuous, so the approximate rank-

order of a player’s bid may be insufficient to determine the approximate prize she obtains.

Consequently, some players’ bids may be significantly different from what the limit mech-

anism specifies, even when the contest is large. For example, in the setting of Section 3.2,

when the percentile rank-order of a player’s bid is slightly above 1/2 she obtains G−1 of the

rank-order, which is 1, and when it is slightly below 1/2 she obtains G−1 of the rank-order,

which is 0. And for large n there are many players with valuations greater than 1/2 who bid

substantially less than 1/2. Thus, Theorem 1 does not hold.

Nevertheless, even when prizes do not have full support, the approximation of Theorem

1 holds for all but a small fraction of players.

Theorem 2 For any ε > 0, there is an N such that for all n ≥ N in any equilibrium of the

n-th contest,

(a) a fraction of at least 1−ε of the players i obtain with probability at least 1−ε a prize

that differs by at most ε from G−1 (F (xni ));

(b) there is a tariff mechanism that implements the assortative allocation, such that the

bid of each of a fraction of at least 1− ε of the players i differs with probability at least 1− ε

by at most ε from the bid that the mechanism prescribes for type xni .

We also have an analogue of Corollary 1, which applies to the setting of Section 3.2.

Corollary 2 Suppose that U is quasi-linear and satisfies the conditions of the envelope the-

orem. Then, for any ε > 0 there is an N such that for all n ≥ N , in any equilibrium of the

n-th contest each of a fraction of at least 1 − ε of the players i obtains with probability at

least 1 − ε a prize that differs by at most ε from G−1 (F (xni )), and bids with probability at

least 1− ε within ε of br (xni ) given by (4).

The approximation results apply to many contests for which there is no existing equilib-

rium characterization. For example, consider (1) with F and G uniform. The assortative

allocation assigns prize x to type x, and (4) shows that br (x) = xh (x) −
R x
0
h (y) dy. By
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Corollary 1, for xni = i/n (so F n
i is a Dirac measure) and ynj = j/n, when n is large a player

with type x bids close to x −
R x
0
h (y) dy and obtains a prize close to x. While h (y) = y

corresponds to the setting of Section 3.1 and h (y) = y2 and h (y) = ey correspond to

Xiao’s (2013) quadratic and geometric prize sequences, for which he provides an equilibrium

characterization,12 no equilibrium characterization exists for other, non-trivial functions h

(including h (y) = ym for m > 2). The same implication of Corollary 1 holds for contests

with ex-ante asymmetric players and incomplete information for which Fn converges to the

uniform distribution. No equilibrium characterization exists for such contests.

Another example is contests that combine heterogeneous and identical (non-zero) prizes,

which have not been studied in the literature. Consider ynj = 2j/n for j/n ≤ 1/2 and ynj = 1
for j/n > 1/2, so G (y) = y/2 for y < 1 and G (1) = 1, with (1), h (y) = y, and F uniform.

The assortative allocation assigns prize 2x to type x < 1/2, and prize 1 to type x ≥ 1/2.
Corollary 1 and (4) show that for large n a player with type x bids close to min {x2, 1/4}
and with high probability obtains a prize close to min {2x, 1}.
In addition, the approximation results hold for quasi-linear utilities in which v (x, y) is

not multiplicatively separable, and for utilities that are not quasi-linear.

5 Intuition for the results and contribution to the analy-

sis of large games

The intuition for our results is as follows. As the number of players increases, the competition

they face becomes similar. That is, the mappings between players’ bids and the distributions

of their percentile rankings (given the other players’ equilibrium strategies) become similar

for all players, and coincide in the limit. This is because the rankings of two players who

make the same bid differ by at most 1. This “almost” implies that also the mappings between

bids and the distributions of prizes become similar, and coincide in the limit. Moreover, by

the law of large numbers, the common limit mapping is deterministic, so each bid maps to

a single prize. This “almost” yields an inverse tariff such that in the limit players choose

their bids as in a mechanism-design setting in which a single agent faces the inverse tariff.

Since a player can always bid 0 and secure the lowest prize, we obtain a tariff mechanism.

Strict single crossing guarantees that higher types choose higher prizes, so the mechanism

implements the assortative allocation.

12Xiao’s (2013) characterization is considerably more complicated than B&L’s, because in his setting some

players’ equilibrium bidding strategies have non-interval supports.
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This intuition is incomplete for two reasons. First, it assumes that the equilibrium

outcomes converge. To show convergence we apply Helly’s (1912) selection theorem for

monotone functions, which implies that the average of players’ mappings between bids and

expected equilibrium prizes has a converging subsequence. This does part of the work,

but does not directly imply the strong notion of convergence we are able to obtain for the

equilibrium outcomes.13 Second, for some bids the distributions of prizes may not be similar

across players even when the percentile rankings are. That is, while a player’s bid is sufficient

for determining approximately the player’s percentile ranking, it may not be sufficient for

determining approximately the player’s prize. This is what happens in the setting of Section

3.2, in which there are half as many identical prizes as players and the limit percentile ranking

of a bid t is 1/2. By bidding slightly above t some players obtain a prize with relatively high

probability and other players obtain a prize with relatively low probability, even when the

number of players is large.

This indeterminacy of the distributions of prizes corresponding to bids is a consequence

of the discontinuity in the limit supply of prizes, i.e., the fact that there are no intermediate

prizes between y = 0 and y = 1. Theorem 2 shows that such discontinuities affect the

equilibrium strategies of only a small fraction of players, which vanishes as the number of

players grows large. Our method of dealing with discontinuities may be useful for studying

other auction-like settings, in which such discontinuities naturally appear but are typically

assumed away in the existing literature on large games (see Section 1.1).

Another advantage of our approach, compared to the existing literature on large games,

is that it approximates the equilibrium outcomes of discrete contests by the outcomes of

mechanisms with continuum of agent types, which can be characterized by applying methods

from the mechanism-design literature, and not by the equilibrium outcomes of contests (or

other games) with a continuum of agents.

6 Rates of Convergence

The proofs of Theorems 1 and 2 do not address the issue of how quickly the contest equilibria

outcomes converge to the outcome of the approximating mechanism. We now present a

conceptually simpler proof of our approximation results, which provides rates of convergence

but applies to a more restricted environment. This environment satisfies (1), and F , G−1,

and h are differentiable with derivatives that are bounded and bounded away from 0, i.e.,

0 < f ≤ F 0(x) ≤ f , 0 < g ≤ (G−10)(r) ≤ g, and 0 < h ≤ h0(y) ≤ h for all x, y, and

13A sketch of the proof of Theorem 1 appears at the beginning of the Online Appendix.
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r ∈ [0, 1].14 For simplicity, we consider complete-information contests in which player i’s

type is xni = F−1 (i/n) and prize j is ynj = G−1 (j/n).15

The idea underlying the simpler proof is that for any type x, the expected fraction of

players with types lower than x− ε who outbid the player with type x falls below ε as the

number of players grows large. Indeed, suppose this fraction were bounded below by ε. Then,

the highest-bidding player with a type lower than x−ε outbids this fraction with her highest
bid t, which she weakly prefers to an equilibrium bid of the player with type x, which is

outbid by this fraction. The improvement of order ε in the prize lottery associated with the

bid t would increase the utility of the player with type x at least by an expression of order

ε2 more than it increases the utility of the player with type lower than x− ε. The lotteries

that the two players obtain by placing the same bid may differ, but since the corresponding

rankings of the two players differ by at most 1, this difference vanishes when the contests

become sufficiently large. Moreover, it is of order 1/n. So, the player with type x would

strictly prefer bid t to her equilibrium bid.

By an analogous argument, the expected fraction of players with types higher than x+ ε

who lose to the player with type x falls below ε as the number of players grows large. This

proves that for large n the expected equilibrium prize allocation is approximately assortative.

In fact, if 1/n is smaller than an expression of order ε2, then the expected prize of a player

with type x will differ from the corresponding prize in the assortative allocation by at most

ε. Together with Hoeffding’s inequality, this implies that the actual prize of a player with

type x will differ from the corresponding prize in the assortative allocation by at most ε,

with probability P such that 1− P is bounded by an expression of order ε if 1/n is smaller

than an expression of order −ε2/ ln ε.
Once this is established, the fact that no player prefers to mimic the bidding behavior of

“adjacent” players with higher or lower types and obtain their prize lottery shows that the

equilibrium bids satisfy an “approximate envelope formula,” and are therefore approximated

by (4). We show that the difference between equilibrium bids and (4) is with probability 1

bounded by an expression of order ε if 1/n is smaller than an expression of order −ε2/ ln ε.
Formally, let

P n(ε) = 1− 4 exp{−ε2(n− 1)/2g2(f + 1)2} and Rn(ε) = 2h[εP n(ε) + 1− P n(ε)] + 2hg/n,

14It will follow from the proof that there is no conceptual difficulty in extending the arguments to an

arbitrary quasi-linear utility v(x, y) − t whose derivatives ∂2v(x, y)/∂x∂y = ∂2v(x, y)/∂y∂x are bounded

and bounded away from 0. The assumption that all derivatives are bounded and bounded away from 0 is

essential for the proof.

15Analogous results can be obtained for contests with incomplete information.
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and notice that 1−P n(ε) and Rn(ε) are bounded by expressions of order ε if 1/n is smaller

than an expression of order −ε2/ ln ε; in particular, if 1/n is smaller than an expression of
order ε3.

Theorem 3 Let n > 2hg/hgε2. Then, in any equilibrium of the n-th contest,

(a) every player i obtains with probability P n(ε)→n→∞ 1 a prize that differs by at most

ε from G−1(F (xni ));

(b) the bid of every player i differs with probability 1 by at most Rn(ε) →n→∞ 2hε from

br(xni ).

Fix any equilibrium of the n-player contest, and any player i. Let br−i and br+i denote

the lowest and highest equilibrium best responses of player i. Let σnk denote the equilibrium

strategy of player k, which is a distribution over bids. Our first lemma says that few players

k < i bid more than br−i , and few players k > i bid less than br+i .

Lemma 1 For any ε0 > 0 and n > 2hg/hg(ε0)2, we have that

E

⎡⎣1
n

X
k:xnk≤xni −ε0

1{br−i ≤σnk}

⎤⎦ ≤ ε0

2
and E

⎡⎣1
n

X
k:xnk>x

n
i +ε

0

1{σnk≤br
+
i }

⎤⎦ ≤ ε0

2
.

Proof. We will prove the first inequality; the proof of the second inequality is analogous.
Suppose the contrary that

E

⎡⎣1
n

X
k:xnk≤xni −ε0

1{t<σnk≤t0}

⎤⎦ >
ε0

2
, (5)

where t = br−i and t0 = max{br+k : xnk ≤ xni − ε0} is the maximal best response of players k
such that xnk ≤ xni − ε0.16

Since some player k < i weakly prefers bidding t0 to bidding t, we have that

xnk {E [h(y) | k, t0]−E[h(y) | k, t]} ≥ t0 − t, (6)

where the expected values refer to the lottery over prizes faced by player k who bids t0 or t

against the equilibrium strategies of the other players. We will now show that player i strictly

16Notice that we replaced t ≤ σnk from the statement of the lemma with t < σnk . This is without loss of

generality, because no player k’s strategy can have an atom at br−i . If it had an atom, then player i would

strictly prefer to bid slightly more than br−i . Thus, the probability that σ
n
k = br−i for some k is zero.
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prefers bidding a t00 slightly higher than t0 to bidding t, which contradicts the definition of t

as a best response.

By bidding t00 player i outbids player k with probability 1, and for all realizations of

equilibrium bids of players other than i and k, player i outbids no fewer of those other

players than player k does by bidding t0. Thus, E[h(y) | i, t00] ≥ E[h(y) | k, t0]; and since
for all realizations of equilibrium bids of players other than i and k, by bidding t player i

outbids at most one more player than player k does by bidding t (namely player k), we have

that E[h(y) | i, t] ≤ E[h (y + g/n) | k, t]. These two inequalities and xnk ≤ xni − ε0 yield

xni {E[h(y) | i, t00]−E[h(y) | i, t]}

≥ xnk {E[h(y) | i, t00]−E[h(y) | i, t]}+ ε0 {E[h(y) | i, t00]−E[h(y) | i, t]}

≥ xnk {E[h(y) | k, t0]−E[h (y + g/n) | k, t]}+ ε0 {E[h(y) | i, t00]−E[h(y) | i, t]} .

By (5), this is at least

xnk {E[h(y) | k, t0]−E[h (y + g/n) | k, t]}+ (ε0)2hg/2

≥ xnk
©
E[h(y) | k, t0]−E[h (y) | k, t]− hg/n

ª
+ (ε0)2hg/2,

and by (6) and xnk ≤ 1, this is at least

(t0 − t)− hg/n+ (ε0)2hg/2 > t00 − t,

where the final inequality follows from n > 2hg/hg(ε0)2 for t00 converging to t0.

We can now derive part (a) of our result. Since

E

⎡⎣1
n

X
k:xnk≤xni −ε0

1{σnk≤br
−
i }

⎤⎦ = F (xni − ε0)−E

⎡⎣1
n

X
k:xnk≤xni −ε0

1{br−i <σnk}

⎤⎦ ≥ F (xni − ε0)− ε0/2,

by Hoeffding’s inequality,

Pr

⎧⎨⎩1n X
k:xnk≤xni −ε0

1{σnk≤br
−
i }

> F (xni − ε0)− ε0

⎫⎬⎭ ≥ 1− 2 exp{−(ε0)2(n− 1)/2}.
That is, player i obtains at least with probability 1−2 exp{−(ε0)2(n−1)/2} a prize no lower
than G−1(F (xni − ε0)− ε0) ≥ G−1(F (xni ))− g(f + 1)ε0.

Similarly, player i obtains at least with probability 1− 2 exp{−(ε0)2(n− 1)/2} a prize no
higher thanG−1(F (xni +ε

0)+ε0) ≤ G−1(F (xni ))+g(f+1)ε
0. Noticing that [1−2 exp{−(ε0)2(n−

1)/2}]2 ≥ 1− 4 exp{−(ε0)2(n− 1)/2}, and replacing ε0 with ε/g(f + 1), we obtain part (a)

of Theorem 3.

Our next lemma shows that the equilibrium utility of player i is close to that from

obtaining prize G−1(F (xni )) by bidding br(x
n
i ).
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Lemma 2 Player i’s equilibrium utility Un
i in n-th contest satisfies¯̄̄̄

Un
i −

Z xni

0

h(G−1(F (z)))dz

¯̄̄̄
≤ h[εP n(ε) + 1− P n(ε)] + 2hg/n.

Proof. To establish this result we will show that

Un
i ≥

Z xni

0

h(G−1(F (x)))dx− h[εP n(ε) + 1− P n(ε)]− hg/n, (7)

and that

Un
i ≤

Z xni

0

h(G−1(F (x)))dx+ h[εP n(ε) + 1− Pn(ε)] + 2hg/n. (8)

It will be convenient to let tk = br+k for k = 1, ..., n. To show (7), notice first that since

player i can bid any t0 > ti−1, we have that

Un
i ≥ xni Eh(y | i, t0)− t0 ≥ xni Eh(y | i− 1, ti−1)− t0

= xni−1Eh(y | i− 1, ti−1)− t0 + (xni − xni−1)Eh(y | i− 1, ti−1)

= Un
i−1 − (t0 − ti−1) + (x

n
i − xni−1)Eh(y | i− 1, ti−1) > Un

i−1 + (x
n
i − xni−1)Eh(y | i− 1, ti−1),

where the second inequality holds because by bidding t0 player i outbids player i − 1 with
probability 1, and for all realizations of equilibrium bids of players other than i and i − 1,
outbids more of these players than player i− 1 does by bidding ti−1. The last expression is
equal to

Un
i−1 + (x

n
i − xni−1)h(G

−1(F (xni−1))) + (x
n
i − xni−1)E{h(y | i− 1, ti−1)− h(G−1(F (xni−1)))}

≥ Un
i−1 + (x

n
i − xni−1)h(G

−1(F (xni−1)))− (xni − xni−1)h[εP
n(ε) + 1− P n(ε)],

where the last inequality follows from part (a) of the theorem.

By repeating this argument, we obtain that

Un
i ≥

iX
k=1

(xnk − xnk−1)h(G
−1(F (xnk−1)))−

iX
k=1

(xnk − xnk−1)h[εP
n(ε) + 1− P n(ε)]

≥
iX

k=1

(xnk − xnk−1)h(G
−1(F (xnk−1)))− h[εP n(ε) + 1− Pn(ε)].
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The first part of the last expression is a familiar Riemann sum of h(G−1(F (x))) with

respect to the tagged partition 0 = xn0 , x
n
1 , . . . , x

n
i . This sum differs from the integral of

h(G−1(F (x))) over [0, xni ] by at most

iX
k=1

(xnk − xnk−1)[h(G
−1(F (xnk)))− h(G−1(F (xnk−1)))] ≤

iX
k=1

(xnk − xnk−1)hg/n ≤ hg/n.

Thus,
iX

k=1

(xnk − xnk−1)h(G
−1(F (xnk−1))) ≥

Z xni

0

h(G−1(F (x)))dx− hg/n,

which gives (7).

To show (8), notice that since player i− 1 can bid any t0 > ti, we have that

Un
i−1 ≥ xni−1Eh(y | i− 1, t0)− t0 = xni Eh(y | i− 1, t0) + (xni−1 − xni )Eh(y | i− 1, t0)− t0.

By bidding t0 player i − 1 outbids player i with probability 1, and for all realizations of
equilibrium bids of players other than i and i− 1, outbids more of these players than player
i does by bidding ti. Thus, Eh(y | i − 1, t0) ≥ Eh(y | i, ti). Now, by bidding any t0 player

i − 1 outbids at most one more player (player i) than player i does by bidding t0. Thus,

Eh(y | i− 1, t0) ≤ Eh(y + g/n | i, t0). These two inequalities yield

Un
i−1 ≥ xni Eh(y | i, ti) + (xni−1 − xni )Eh(y + g/n | i, t0)− t0.

Since this inequality holds for all t0 > ti, we obtain

Un
i−1 ≥ xni Eh(y | i, ti) + (xni−1 − xni )Eh(y + g/n | i, ti)− ti

≥ Un
i + (x

n
i−1 − xni )

©
Eh(y | i, ti) + hg/n

ª
.

(Recall that no strategy of player other than i can have an atom at ti. Therefore, Eh(y+g/n |
i, t0) converges to Eh(y + g/n | i, ti).) Thus,

Un
i ≤ Un

i−1 + (x
n
i − xni−1)

©
Eh(y | i, ti) + hg/n

ª
,

and we can proceed similarly to the proof of (7) to obtain (8).

We can now prove part (b) of our result. Let t denote any best response of player i to

the equilibrium strategies of the other players. Then,

|t− br (xni )| ≤
¯̄̄̄
Un
i −

Z xni

0

h(G−1(F (x)))dx

¯̄̄̄
+
¯̄
xni Eh(y | i, t)− xni h(G

−1(F (xni )))
¯̄

≤ h[εP n(ε) + 1− Pn(ε)] + 2hg/n+ h[εP n(ε) + 1− Pn(ε)],

where the first inequality follows from (4) and the definition of Un
i and the second inequality

follows from Lemma 2, part (a) of Theorem 3, and xnk , y ≤ 1.
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