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We choose an equilibrium for each contest, and refer to the sequence in which the n-th

element is the equilibrium of the n-th contest as the sequence of equilibria. For both our the-

orems, we will show that every subsequence of this sequence contains a further subsequence

that satisfies the statement of the theorem. This suffices, because the following observation

can be applied with Zn being the set of equilibria of contest n.

(Subsequence Property) Given a sequence of sets {Zn : n = 1, 2, . . .}, suppose that for
every subsequence {Znk : k = 1, 2, . . .}, every sequence {znk : k = 1, 2, . . .} with znk ∈ Znk

contains a subsequence {znkl : l = 1, 2, ...} such that every element znkl has some property.
Then there exists an N such that for every n ≥ N every element in Zn has this property.1

1 Proof of Theorem 1

We begin with an outline of the proof. Given a subsequence of equilibria, each equilibrium in

the subsequence induces for each player a mapping from bids to expected percentile rankings.

We consider the average of those mappings, and G−1 composed with this average gives a

mapping Tn from bids to prizes. As n increases, this mapping approximates the equilibrium

mappings from bids to prizes of all players in the n-th contest. We then use Helly’s (1912)

selection theorem to find a subsequence of T n that converges to some limit mapping T from

bids to prizes. We show that T is continuous and the subsequence of Tn converges uniformly

to T . Then, for each agent type we define the set of optimal bids when T is treated as an
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inverse tariff, and define the correspondence from agent types to sets of optimal bids. We

consider a small neighborhood of the graph of this correspondence, and show that for large n

every player i’s best responses in the n-th contest are in the “xni -slice” of this neighborhood.

Such a slice could in principle be large even if the set of optimal bids of the corresponding

agent type is small (this would happen if the set of optimal bids of a nearby agent type

is large). We show, however, that under strict single crossing each agent type has a single

optimal bid, which is continuous and weakly increases in the agent type. This implies that

every player’s best response set, and therefore the support of her equilibrium strategy, is

bounded within an arbitrarily small interval as n increases. We then conclude that the

unique mechanism induced by T implements the assortative allocation. This demonstrates

part (b) in the statement of the theorem; part (a) then follows easily.

For the proof, we take the subsequence of equilibria to be the sequence of equilibria (this

simplifies notation and has no effect on the proofs). We denote the equilibrium of the n-th

contest by σn = (σn1 , . . . , σ
n
n), where σ

n
i is player i’s equilibrium strategy; a strategy of player

i is a random variable taking values in X × B whose marginal distribution on X coincides

with the distribution of player i’s types Fn
i . By referring to player i bidding with some

probability in a subset S of B, we mean the probability of the set X×S, i.e., the probability

of S measured by the marginal distribution of player i’s strategy on B.

We denote by Rn
i (t) the random variable that is the percentile location of player i in the

ordinal ranking of the players in the n-th contest if she bids slightly above t and the other

players employ their equilibrium strategies.2 That is,

Rn
i (t) =

1

n

Ã
1 +

X
k 6=i
1{σnk∈X×[0,t]}

!
,

where 1{σ∈X×[0,t]} is 1 if σ ∈ X × [0, t] and 0 otherwise. Let

An
i (t) =

1

n

Ã
1 +

X
k 6=i
Pr (σnk ∈ X × [0, t])

!
be the expected percentile ranking of player i. Then, by Hoeffding’s inequality, for all t in

B we have

Pr (|Rn
i (t)−An

i (t)| > δ) < 2 exp
©
−2δ2 (n− 1)

ª
. (1)

Finally, let

An (t) =
1

n

nX
i=1

An
i (t)

2This is the infimum of her ranking if she bids above t, which is equivalent to bidding t and winning any

ties there. If ties happen with probability 0, then this is equivalent to bidding t.
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be the average of the expected percentiles rankings of the players in the n-th contest if they

bid t and the other players employ their equilibrium strategies.

Let T n be the mapping from bids to prizes induced byAn. That is, Tn (t) = (Gn)−1 (An (t)),

where (Gn)−1 (z) = inf {y : Gn (y) ≥ z} for z > 0, and (Gn)−1 (0) = inf {y : Gn (y) > 0}. (In
words, (Gn)−1 (z) is the prize of an agent with percentile ranking z when prizes are distrib-

uted according to Gn.) Since every Tn is (weakly) increasing, by Helly’s (1912) selection

theorem for monotone functions the sequence Tn contains a subsequence that converges

pointwise to a function T : B → Y . For the rest of the proof, denote this subsequence by

Tn.

We first describe some properties of inverse tariff T :

(1) T is (weakly) increasing, because every Tn is (weakly) increasing.

(2) T (0) = 0, otherwise players bidding 0 would have profitable deviations.3

(3) T (bmax) = 1, because An (bmax) = 1 and therefore Tn (bmax) = 1.

In addition, we will use the following property of discrete contest equilibria:

(No-Gap Property) In any equilibrium, there is no interval (a, b) ∈ B of positive length

in which all players bid with probability 0 and some player bids in [b, bmax] with positive

probability.

Proof: Suppose the contrary, and consider such a maximal interval (a, b). A player would

only bid b or slightly higher than b if some other player bids b with positive probability.

But the player who bids b with positive probability would be better off either by slightly

increasing her bid (if another player bids b and winning the tie leads to a higher prize) or by

decreasing her bid (in the complementary case).

Our first lemma shows that T is continuous. (In order not to obscure the structure of

the proof, we relegate to the end of the section the proofs of all lemmas.)

Lemma 1 For any t ∈ B and any sequences qm ↑ t and rm ↓ t in B, we have limT (qm) =

limT (rm) = T (t).

The idea of the proof is that if T were discontinuous at some t, then for large n it would

be better to bid slightly above t than slightly below t. But if no player bids slightly below

t, then by the No-Gap Property no player bids t or above.

3Indeed, suppose to the contrary that T (0) > 0. This means that for some δ > 0 and large enough n,

An (0) > Gn(0) + δ. Thus, a fraction of at least Gn(0) + δ players bid 0 in the n-th contest with positive

probability. Any one of them would be better off bidding slightly above 0, and winning against all other

players who bid 0, than bidding 0 and with positive probability losing to all other players who bid 0.
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Continuity and monotonicity of T imply the following result.

Lemma 2 Tn converges to T uniformly on B.

We now relate the inverse tariff T to players’ behavior in the equilibria that correspond

to the sequence T n. Denote by BRx type x’s set of optimal bids given T , i.e., the bids

t that maximize U(x, T (t), t). Denote by BR (ε) the ε-neighborhood of the graph of the

correspondence that assigns to every type x the set BRx.4 Denote by BRx (ε) the set of bids

t such that (x, t) ∈ BR (ε).

Note that BR (ε) is a 2-dimensional open set, while each BRx (ε) is a 1-dimensional

“slice” of BR (ε). Using sets BRx (ε), we can characterize players’ equilibrium behavior.

Lemma 3 For every ε > 0, there is an N such that for every n ≥ N , in the equilibrium of

the n-th contest every best response of every type xni of every player i belongs to BRxni
(ε).

Strict single crossing implies several properties of BRx.

Lemma 4 For every x the set BRx is a singleton. In addition, the function br that assigns

to x the single element of BRx is continuous and weakly increasing.

Lemma 4 implies that for every ε > 0 there is a δ > 0 such that BRx (δ) ⊆ [br (x) −
ε, br (x) + ε] for every type x. We therefore have the following corollary of Lemmas 3 and 4.

Corollary 1 For every ε > 0, there is an N such that for every n ≥ N , in the equilibrium

of the n-th contest every best response of every type xni of every player i belongs to (br (x
n
i )−

ε, br (xni ) + ε).

To prove part (b) of the theorem we need to show that T ◦br is the assortative allocation.
This is done by the following lemma.

Lemma 5 G−1 (F (x)) = T (br (x)) for all types x.

Thus, the mechanism that prescribes for type x prize T (br (x)) and bid br (x) is a tariff

mechanism that implements the assortative allocation. Moreover, every type can get at least

0 by bidding 0, and type 0 gets no more than 0 (because T (br (0)) = 0).

To complete the proof, it remains to show part (a) of the theorem. In short, this part

follows from Corollary 1 and Hoeffding’s inequality (see Appendix 1.6).

4That is, BR (ε) is the union over all types x and bids t ∈ BRx of the open balls of radius ε centered at

(x, t).
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1.1 Proof of Lemma 1

Suppose first the lemma is false for some t ∈ (0, bmax] and qm ↑ t. Let y0 = limT (qm) and

y00 = T (t) (the limit exists by the monotonicity of T ), and let γ = (y00 − y0) /2.

Suppose first that U (0, y, t) strictly increases in y. (Recall that we assumed U (x, y, t)

strictly increases in y only for x > 0.) Then, by uniform continuity of U , there exist δ,∆ > 0

such that every type x gains at least ∆ from obtaining a prize higher by γ at a bid higher

by δ. More precisely,

U (x, y + γ, t+ δ)− U (x, y, t) ≥ ∆ (2)

for all x, y, and t such that y + γ and t+ δ belong to the domain of U . This implies, as U

is bounded, that every type x strictly prefers bidding t + δ and obtaining with sufficiently

high probability a prize sufficiently close to y+γ to bidding t and obtaining with sufficiently

high probability a prize sufficiently close to y, independently of the prizes obtained with the

remaining probability.

Choose t0 = qm such that t−t0 < δ. Next, choose n large enough so that |T n (t)− T (t)| <
γ/2 and |Tn (t0)− T (t0)| < γ/2. This implies that Tn (t)− T n (s) > γ for any bid s ≤ t0.

By choosing n large enough, we guarantee (see (1), which applies uniformly to all bids)

that Rn
i (s), the percentile ranking of player i who bids s in the n-th contest, is close to A

n (s)

with high probability, and Rn
i (t) is close to A

n (t) with high probability. Thus, every type

x obtains a prize sufficiently close to Tn (t) with a sufficiently high probability by bidding

(slightly above) t, and obtains a prize that is with a sufficiently high probability at most

slightly higher than Tn (t0) by bidding (slightly above) any s ≤ t0.5 Therefore, because

t − t0 < δ, no player bids any s ∈ (t − δ, t0] with positive probability, so by the No-Gap

Property Tn (t0) = 1. But T n (t0)→ T (t0) ≤ y0 < y00 ≤ 1, a contradiction.
When U (0, y, t) only weakly increases in y, the argument above shows that for any

ε > 0 there exist δ,∆ > 0 for which (2) holds for every type x ∈ [ε, 1]. There also exists
t0 = qm such that t − t0 < δ and Tn (t) − T n (t0) > 3γ/2 for large enough n. Letting

t00 = inf {s : Tn (s) ≥ Tn (t)− γ} ∈ (t0, t] we see that only players with types lower than ε

can bid in [t0, t00). Thus, for small enough ε (by continuity of G−1 and convergence of (Gn)−1

to G−1), in order to increase T n (t0) to Tn (t0) + γ/2 multiple players with types ε or higher

must bid t00 with positive probability and therefore tie there. But then any one of these

players could profitably deviate to bidding slightly above t00.6

5For t = bmax, bidding “slightly above bmax” is impossible. But by bidding bmax a player wins with

probability 1, because bmax is strictly dominated by 0 for all players.

6By doing so such a player would obtain with high probability a prize of at least Tn (t0) + γ/2 instead of

losing the tie with positive probability and then obtaining with high probability a prize of at most Tn (t0)+ε.
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The argument is analogous if we suppose that the lemma is false for some t ∈ (0, bmax)
and rm ↓ t. If t = 0, then the above proof shows that for large n no player bids t = 0 with
positive probability. This means, in turn, that sufficiently small bids give lower payoffs than

t0 = rm such that t0 − t < δ. Thus, no player bids close to t = 0 with positive probability,

which contradicts the No-Gap Property.

1.2 Proof of Lemma 2

Suppose the contrary. Then, there is some δ > 0 and a sequence of integers n1, n2, . . . such

that for every nk there is some bid tk with |T nk (tk)− T (tk)| > δ. Passing to a subsequence

if necessary, we assume that tk → t.

Consider numbers q0 and q00 such that q0 < t < q00 and T (q00)−T (q0) < δ/2; such numbers

exist because T is continuous.7 For large enough values of k, we have that |Tnk (q0)− T (q0)| <
δ/2 and |Tnk (q00)− T (q00)| < δ/2.

For any t0 ∈ [q0, q00], either (a) Tnk (t0) ≥ T (t0), or (b) T nk (t0) ≤ T (t0).

By monotonicity of T and Tnk , we have

T nk (t0)− T (t0) ≤ T nk (q00)− T (q0) ≤ |Tnk (q00)− T (q00)|+ |T (q00)− T (q0)| < δ

in case (a), and

T (t0)− T nk (t0) ≤ T (q00)− T nk (q0) ≤ |T (q00)− T (q0)|+ |T (q0)− T nk (q0)| < δ

in case (b).

Since tk ∈ [q0, q00] for large enough k, we obtain a contradiction to the assumption that

|T nk (tk)− T (tk)| > δ for all such k.

1.3 Proof of Lemma 3

Suppose to the contrary that for arbitrarily large n, in the equilibrium of the n-th contest

some type xni of some player i has a best response that belongs to the complement ofBRxni
(ε).

Passing to a convergent subsequence if necessary, we assume that xni → x∗.

Note that for every x there is a δx > 0 such that (under the inverse tariff) any bid from

the complement of BRx (ε) gives type x a payoff lower by at least δx than any element of

BRx does. Let δ = δx∗ .

We have that:

7If t = 0 set q0 = 0, and if t = bmax set q00 = bmax.
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1. The maximal payoff of type x, attained at any bid from BRx, is continuous in x.

This follows from Berge’s Theorem.

2. For every ρ > 0, for sufficiently large n the highest payoff that type xni can obtain by

bidding in the complement of BRxni
(ε) cannot exceed by ρ the highest payoff that type x∗

can obtain by bidding in the complement of BRx∗ (ε).

Indeed, suppose that for a sequence nk diverging to∞ type xnki obtains by bidding some tk
in the complement of BRx

nk
i
(ε) a payoff at least ρ higher than the highest payoff that type x∗

can obtain by bidding in the complement of BRx∗ (ε). Passing to a convergent subsequence if

necessary, we assume that tk → t. Since every (xnki , tk) belongs to the complement of BR (ε),

so does (x∗, t); thus, (x∗, t) belongs to the complement of BRx∗ (ε). However, by continuity

of the payoff functions, bidding t gives type x∗ a payoff by at least ρ higher than the highest

payoff that type x∗ can obtain by bidding in the complement of BRx∗ (ε), a contradiction.

By 1 and 2, for sufficiently large n, any bid in the complement of BRxni
(ε) gives type

xni a payoff lower by at least δ/2 than any bid in BRxni
. Indeed, by 2 applied to ρ = δ/4,

any bid in the complement of BRxni
(ε) gives type xni a payoff at most δ/4 higher than the

highest payoff that type x∗ can obtain by bidding in the complement of BRx∗ (ε). This last

payoff is in turn lower than the payoff that type x∗ obtains by bidding in BRx∗ by at least

δ. And by 1, the payoff that type xni obtains by bidding in BRxni
cannot be lower by more

than δ/4 than the payoff that type x∗ obtains by bidding in BRx∗.

By uniform convergence of Tn to T , the analogous statement, with δ/2 replaced with

some smaller positive number and T replaced with Tn, is also true. This means, however,

that for sufficiently large n, player i would be strictly better off bidding slightly above any bid

in BRxni
when her type is xni than bidding in the complement of BRxni

(ε). This is because

(1) implies that for sufficiently large n, by bidding slightly above t the player obtains a prize

arbitrarily close to Tn(t) with probability arbitrarily close to 1.

1.4 Proof of Lemma 4

Observe that for any x0 < x00, strict single crossing implies that if t0 ∈ BRx0 and t00 ∈ BRx00,

then t0 ≤ t00. Suppose that BRx0 contained two bids, t1 < t2, for some type x. The first

observation and Lemma 3 imply that for any 0 < ε < (t2 − t1)/4, for sufficiently large

n only players with types in I = [max {x0 − ε, 0} ,min {x0 + ε, 1}] may bid in the interval
[t1 + (t2 − t1)/4, t2 − (t2 − t1)/4].

Consider obtaining a prize that is ∆ higher in the limit prize distribution8 by increasing

8More precisely, given an initial prize y0, the prize that is ∆ higher in the limit prize distribution is the

prize y00 such that ∆ = G(y00) − G(y0). The prize that is ∆ higher in the prize distribution Gn is defined
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the bid from t1 + (t2 − t1)/4 to t2 − (t2 − t1)/2. If ∆ is sufficiently small, then by continuity

of G−1 the increase in the prize is small as well, so the associated increment in utility is

negative for all types, and uniformly bounded away from 0.

Therefore, taking ∆/2 = F (min {x0 + ε, 1})− F (max {x0 − ε, 0}), if ε > 0 is sufficiently

small, then for sufficiently large n every type of every player is better off bidding t1+(t2−t1)/4
than bidding t2− (t2− t1)/2. This is because with high probability the higher bid leads to a

prize that is approximately only ∆/2 higher in the prize distribution Gn.9 By convergence

of (Gn)−1 to (G)−1, for sufficiently large n this prize is not much more than ∆/2 higher in

the limit prize distribution.

Moreover, every type of every player is better off bidding t1+(t2−t1)/4 than bidding any
bid in interval (t2−(t2−t1)/2, t2−(t2−t1)/4), because such bids are even more costly than t2−
(t2− t1)/2, and enable a player to obtain a prize that is with high probability not much more
than ∆/2 higher in the limit prize distribution than the prize the player obtains by bidding

t2− (t2− t1)/2. Therefore, no player bids in the interval ((t2 − (t2 − t1)/2, t2 − (t2 − t1)/4))

with positive probability, so by the No-Gap Property T n (t2 − (t2 − t1)/4) = 1 for sufficiently

large n. Thus, T (t2 − (t2 − t1)/4) = 1, so t2 cannot be in BRx, because bidding slightly

above t2 − (t2 − t1)/4 gives type x a higher payoff.

Consequently, BRx is a singleton for any x, and by strict single crossing, br is weakly

increasing. An argument analogous to the argument used to show that BR is a singleton

also shows that br is continuous.10

1.5 Proof of Lemma 5

Consider an arbitrary type x. Let xmin = min {z : br (z) = br (x)} and xmax = max{z :
br (z) = br (x)} (xmin and xmax are well defined because br is continuous).

First, observe that G−1(F
¡
xmin

¢
) = G−1(F (xmax)). Indeed, by Corollary 1, for suffi-

ciently large n all types in the interval [xmin, xmax] bid in the n-th contest close to br (x).

Suppose that G−1(F
¡
xmin

¢
) < G−1(F (xmax)), and consider the players whose type belongs

similarly.

9This follows from the convergence of Fn to F and Hoeffding’s inequality applied to random variables

Zn
i =

½
1 if min {x0 + ε, 1} ≤ xni ≤ max {x0 − ε, 0} ,

0 otherwise,

for i = 1, ..., n.

10More precisely, suppose that br is discontinuous at some x, and apply the argument to t1 = br(x1) and

t2 = br(x2) where x1 and x2 are slightly lower and higher, respectively, than x.
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to [xmin, xmax] with positive probability.11 Among these players, the one whose expected prize

is the lowest contingent on having a type in this interval can profitably deviate to bidding

slightly above br (x), thereby outbidding the other players with a type in this interval and

obtaining a discretely higher prize.

Suppose that xmin > 0. By Corollary 1 for any δ > 0, there is an N such that if n ≥ N ,

then the equilibrium bids of every player with type lower than xmin − δ are lower than

br(xmin), and the equilibrium bids of every player with type higher than xmin are higher than

br
¡
xmin − δ

¢
. Therefore, a player who bids br

¡
xmin

¢
outbids all players with types lower than

xmin − δ, so T n(br
¡
xmin

¢
) ≥ (Gn)−1(Fn

¡
xmin − δ

¢
), and a player who bids br

¡
xmin − δ

¢
is

outbid by all players with types higher than xmin, so T n
¡
br
¡
xmin − δ

¢¢
≤ (Gn)−1(F n

¡
xmin

¢
).

Since Tn converges to T , T and br are continuous, (Gn)−1 converges to (G−1), Fn converges

to F , and F and G−1 are continuous, we obtain T
¡
br
¡
xmin

¢¢
= G−1

¡
F
¡
xmin

¢¢
.

Similarly, if xmax < 1, we obtain that T (br (xmax)) = G−1 (F (xmax)).

Thus, since br(x) = br(xmin) = br(xmax) andG−1(F (x)) = G−1(F (xmin)) = G−1(F (xmax)),

we have that T (br (x)) = G−1 (F (x)) when xmin > 0 or xmax < 1. Finally, it cannot be that

xmin = 0 and xmax = 1, because 0 = G−1(F (0)) < G−1(F (1)) = 1.

1.6 Proof of Part (a) of Theorem 1

Consider a type x ∈ X. Let t = br (x), and let t0 and t00 be such that T (t0) = T (t)− ε/3 and

T (t00) = T (t) + ε/3. Finally, let x0 and x00 be such that t0 = br (x0) and t00 = br (x00). (Take

x0 = 0 and t0 = 0 if T (t)− ε/3 < 0, and x00 = 1 and t00 = br(1) if T (t) + ε/3 > 1.)

By Lemma 3, for sufficiently large n, every player with type no higher than x0 bids less

than the player with type x, and every player with type no lower than x00 bids more than

the player with type x. By Hoeffding’s inequality, the player of type x outbids with high

probability at least a fraction of players close to Fn (x0).

Since F n converges to F , she outbids with high probability at least a fraction of players

close to F (x0). So, since (Gn)−1 converges to G−1, she obtains (with high probability) a prize

no lower than G−1 (F (x0))− ε/3 = T (t)− 2ε/3. Similarly, for sufficiently large n a player of
type x outbids with high probability at most a fraction of players close to F (x00), and so she

obtains (with high probability) a prize no higher than G−1 (F (x00)) = T (t) + 2ε/3. (These

bounds are immediate if y − ε/2 < 0 or if y + ε/2 > 1.) Thus, type x obtains (with high

probability) a prize which differs from G−1(F (x)) by at most 2ε/3.

11For large n, at least a fraction of players close to F (xmax)−F
¡
xmin

¢
have types that belong to [xmin, xmax]

with positive probability.
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This proves part (a) for a single x, but we must show that there is an N such that for any

n ≥ N part (a) holds for all x simultaneously. Such an N can be obtained by taking a finite

grid of types x, and the corresponding grid of bids br (x) such that |T (t1)− T (t2)| < ε/3

for any pair of neighboring elements t1, t2 of the grid, and taking the largest N among the

N ’s corresponding to x’s from the grid.

2 Proof of Theorem 2

Recall that G−1 (z) = inf {y : G (y) ≥ z} for z > 0 and G−1 (0) = inf {y : G (y) > 0}, and
note that G−1 may be discontinuous (but is left-continuous). Discontinuities require modify-

ing almost all the arguments used in the proof of Theorem 1. As in Appendix 1, we relegate

to the end of the section the proofs of all intermediate results.

Let I0 = (yl0, y
u
0 ) be a longest interval in [0, G

−1 (1)] to which G assigns measure 0; let

I1 = (y
l
1, y

u
1 ) be a longest such interval disjoint from I1, and so on. Then, every open interval

of prizes that has measure zero is contained in one of the intervals I0, I1, .... And for any

ε > 0, there is a K such that the lengths of IK+1, IK+2, ... sum up to less than ε.

The definitions of Rn
i , A

n
i , A

n, and Tn are as in Appendix 1. The definition of T , however,

must be changed. First, by Helly’s selection theorem, we take a converging subsequence of

the sequence An; denote its limit by A : B → [0, 1]. This function is weakly increasing

(because each An is). For the rest of the proof, denote this converging subsequence by An

(with the corresponding sequence T n = (Gn)−1 ◦An).

Let T = G−1 ◦ A. Since G may not have full support, we now have that T (0) = inf{z :
G(z) > 0} and T (bmax) = G−1 (1); in addition, T is still (weakly) increasing (compare to

properties (1)-(3) from Appendix 1).

In addition, Fn converges pointwise to F , but (Gn)−1 may not converge pointwise to

G−1. It is, however, easy to check that limn(G
n)−1(r) = G−1(r) unless r is the value of G on

an interval Ik = (ylk, y
u
k); moreover, limn(G

n)−1(r) ≥ G−1(r) for every r that is the value of

G on an interval Ik = (ylk, y
u
k), but it can happen that limn(G

n)−1(r) = yuk and G
−1(r) = ylk.

The discontinuities in G−1 imply that T may not be continuous, so Lemma 1 does not

hold. Points of discontinuity, however, correspond to open intervals of prizes that have

measure zero. More precisely, we have the following result.

Lemma 6 For any t > 0 in B, one of the following conditions holds:

1. T is continuous at t, that is, for any sequences qm ↑ t and rm ↓ t, we have limT (qm) =

limT (rm) = T (t).
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2. There is some k = 1, 2, ... such that for any sequences qm ↑ t and rm ↓ t, we have

limT (qm) = ylk and limT (rm) = yuk . Moreover, limA (qm) = G(ylk) and limA (rm) =

G(yuk).

Using Lemma 6, we define another function T ∗ on B by setting T ∗ (t) = limT (r) for some

sequence r ↓ t (and T ∗ (bmax) = G−1 (1)). The monotonicity of T guarantees that T ∗ (t) is

well-defined. In addition, it is easy to check that T ∗ is (weakly) increasing, right-continuous,

and continuous at every bid t such that condition 1 from Lemma 6 holds. Note that T ∗ may

not be an extension of T , because when limT (r) 6= T (t), we have that T ∗(t) = limT (r) 6=
T (t).

Consider now a bid t > 0 such that condition 2 from Lemma 6 holds. Denote this

bid t by tk, where k is described in condition 2. Then, there is a bid t0 < tk such that

A (t0) = A (t) = G
¡
ylk
¢
, so A is constant on an interval below tk. Indeed, if A(t0) < G

¡
ylk
¢

for all t0 < tk, then, as in the proof of Lemma 6, for large n no player would bid any t0 slightly

below tk. This would be so, because bidding slightly above tk would almost certainly give

a prize no lower than yuk , whereas bidding t0 would almost certainly give a prize no higher

than ylk. Let

tlk = inf
©
t0 : A (t0) = G

¡
ylk
¢ª

< tk.

It is also true that every maximal interval on which T ∗ is constant with a value lower

than G−1 (1) is
£
tlk, tk

¢
for some k. Indeed, consider a maximal nontrivial interval with lower

bound tl and upper bound tu on which the value of T ∗ is y < G−1 (1). It suffices to show

that T ∗ (tu) > y, because then condition 2 from Lemma 6 applies to tu, which implies that

tu = tk for some k; and the maximality of
£
tl, tu

¢
yields tl = tlk. Suppose that T

∗ (tu) = y.

Then, for large enough n bidding tu almost certainly gives a prize at most slightly higher

than y, whereas bidding slightly above tl almost certainly gives a prize not much lower than

y. But then, for large enough n, no player bids in some neighborhood of tu, because bidding

slightly above tl leads to a higher payoff. This contradicts the No-Gap Property, because

y < G−1 (1).

Because G−1 may be discontinuous, Tn need not converge uniformly to T or T ∗, even

on the set of points at which they are continuous. In particular, for a t ∈
£
tlk, tk

¢
it may

be that Tn (t) = (Gn)−1 (An (t)) ≥ yuk for arbitrarily large n, whereas T (t) = T ∗ (t) = ylk.

Nevertheless, Tn “converges uniformly” except on some neighborhoods of a finite number of

intervals [tlk, tk]. More precisely, we say that T
n converges uniformly to T ∗ up to β on a set

C if there exists an N such that for every n ≥ N and t ∈ C we have that

|T n(t)− T ∗(t)| < β.

We then have the following modification of Lemma 2.

11



Lemma 7 For every β > 0, there exists a number K such that for every γ > 0, T n converges

uniformly to T ∗ up to β on the complement of

Oγ =
K[
k=1

(tlk − γ, tk + γ).

We now relate players’ equilibrium behavior in large contests to the inverse tariff T ∗.

Define BRx, BR (ε), and BRx (ε) as in Appendix 1 with T ∗ instead of T (the maximal

payoff is achieved because T ∗ is increasing and right-continuous, so is upper semi-continuous).

Define the mass expended (in the n-th contest) in an interval of bids I by players with type

x ∈ S as (
Pn

i=1 Pr (σ
n
i ∈ S × I)) /n. We then have the following result, which we use in

proving the remaining results.

Lemma 8 For all k and any ε > 0 and L > 0, there exists γ > 0 such that for sufficiently

large n we have that:

(i) The mass expended in (tlk − γ, tlk + γ) by players with types x for which tlk /∈ BRx (ε)

is less than ε/3L;

(ii) The mass expended in (tk − γ, tk] by players with types x for which tk /∈ BRx (ε) is

less than ε/3L.

In addition, for any α > 0, for sufficiently large n we have that:

(iii) The mass expended in
£
tlk + α, tk − α

¤
by all players is less than ε/3L.

Lemma 3 must also to be modified.

Lemma 9 For every ε > 0, there exist K such that for every γ > 0, there is an N such that

for every n ≥ N in the equilibrium of the n-th contest every best response of every type xni
of every player i belongs to

BRxni
(ε) ∪

K[
k=1

(tlk − γ, tk).

Strict single crossing no longer implies that BRx is a singleton. Instead, we have the

following result.

Lemma 10 If strict single crossing holds, then for all but a countable number of types the
set BRx is a singleton. For those types for which it is not a singleton, BRx contains precisely

two elements: tlk and tk for some k. The correspondence that assigns to type x the set BRx

is weakly increasing (i.e., for any x0 < x00, if t0 ∈ BRx0 and t00 ∈ BRx00, then t0 ≤ t00) and

upper hemi-continuous.
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Let br (x) = minBRx, and note that br is increasing and left continuous, and is not right

continuous precisely at types x for which BRx is not a singleton. We then have the following

corollary of Lemmas 8, 9, and 10, which is a modification of Corollary 1.

Corollary 2 For every ε > 0, there is an N such that for n ≥ N at least a fraction 1− ε of

of players i bid in (br (xni )− ε, br (xni ) + ε) with probability at least 1− ε.

To prove part (b) of the theorem it remains to show that T ∗ ◦ br is the assortative
allocation. This is done by the following lemma, which is a modification of Lemma 5 that

accommodates the discontinuities in T ∗ and br.

Lemma 11 G−1 (F (x)) = T ∗ (br (x)) for any type x > 0.

To complete the proof, it remains to show (a) in the statement of the theorem. To do so,

we use the following result.

Lemma 12 For every ε, δ > 0, there is an N such that for n ≥ N , each type x from a set

whose F n-measure is at least 1−ε bids at least with probability 1−ε a t, and obtains at least
with probability 1− ε a y such that for some r in BRx,

|t− r| < δ and |y − T ∗(r)| < δ.

To see that Lemma 12 implies (a) in the statement of the theorem, choose some ε > 0.

Lemma 12 shows that for every δ > 0, there is an N such that for n ≥ N and for a fraction

1 − ε of players i, the F n
i -measure of their types x

n
i that satisfy the condition of Lemma

12 is at least (1− ε). This means that each such player i obtains with probability at least

1− ε a prize y that differs by at most δ from the prize T ∗(r) for some optimal bid r of the

player’s type. For types xni > 0 such that br (xni ) is a unique optimal bid, this yields (a)

by Lemma 11. However, by Lemma 9 and strict single crossing, there is only a countable

number of other types xni . And the F -measure of such types is 0 since F has no atoms, so

the Fn-measure of such types is arbitrarily small for sufficiently large n.

2.1 Proof of Lemma 6

Let limT (qm) = y0 and limT (rm) = y00. Both limits y0 and y00 exist and y0 ≤ y00 by

monotonicity. Suppose that y0 < y00. If G assigns a positive measure to (y0, y00), then it

assigns a positive measure to any interval with endpoints sufficiently close to y0 and y00. In

13



such a case, we obtain a contradiction by arguments similar to those used in the proof of

Lemma 1. Indeed, for sufficiently large n no bidder would bid slightly below t, because

bidding slightly above t would almost certainly give a better prize.

Thus, G assigns measure zero to (y0, y00). This implies that (y0, y00) ⊆ (ylk, yuk) for some
k. By definition, T takes values in [0, ylk] ∪ [yuk , 1], so y0 = ylk and y00 = yuk . Moreover, the

monotonicity of T implies that k is the same for any sequences qm ↑ t and rm ↓ t. It remains
to show that limA (qm) = G(ylk) and limA (rm) = G(yuk).

For this, note that if limA (qm) > G(ylk), then limT (qm) > ylk. Similarly, if limA (rm) >

G(yuk), then limT (rm) > yuk . The inequalities limA (qm) < G(ylk) and limA (rm) < G(yuk)

can be ruled out similarly if G does not have atoms at ylk or y
u
k . Suppose that G has an atom

at yuk and limA (rm) < G(yuk). Since limT (rm) = yuk , A (r
m) > G(ylk) for sufficiently large

m. Take two numbers rm such that G(ylk) < A (rm) < G(yuk); denote them by t
0 < t00. Then,

for sufficiently large n any player obtains a prize close to yuk with arbitrarily high probability

by bidding any t ∈ [t0, t00]. Thus, for sufficiently large n, no player would bid in the interval
[(t0 + t00)/2, t00] with positive probability. This contradicts the No-Gap Property.

Suppose that G has an atom at ylk and limA (qm) < G(ylk). Then, for sufficiently large n

bidding qm almost certainly gives a prize at most slightly better than ylk. In contrast, bidding

rm almost certainly gives a prize at least as good as yuk . This follows directly from (1) if G

has an atom at yuk . If G does not, then this again follows from (1) for large enough n, because

A (rm) > G (yuk) for any m. For large enough n a contradiction with the No-Gap Property is

obtained similarly to the last part of the proof of Lemma 1 that deals with U (0, y, t) strictly

increasing in y.

2.2 Proof of Lemma 7

The proof is analogous to the proof of Lemma 2. Take a K such that the lengths of IK+1,

IK+2, ... sum up to less than β/2. Take any γ > 0, and suppose to the contrary that there is

an increasing sequence of integers n1, n2, . . . , nm, . . . such that for every nm there is some bid

tm /∈ Oγ with |Tnm (tm)− T ∗ (tm)| ≥ β. Passing to a subsequence if necessary, we assume

that the sequence tm → t. Take q0 and q00 such that q0 < t < q00 and T ∗ (q00)−T ∗ (q0) < β/2,12

and

[q0, q00] ⊂ B −
K[
k=1

[tlk, tk].

This is possible, since the lengths of IK+1, IK+2, ... sum up to less than β/2. In addition, for

large enough k we have that |Tnk (q0)− T ∗ (q0)| < β/2 and |T nk (q00)− T ∗ (q00)| < β/2, since

12If t = 0, take q0 = 0.
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the length of each IK+1, IK+2, ... is less than β/2. The rest of the proof coincides with the

proof of Lemma 2.

2.3 Proof of Lemma 8

First, observe that the maximal payoff of type x, attained at any bid in BRx, is still contin-

uous in x. Indeed, upper semi-continuity of T ∗is all that is needed for the continuity of the

maximal payoff. This observation implies that there exists a δ > 0 such that for any type x

any bid in the complement of BRx (ε) gives type x a payoff lower by at least δ than any bid

in BRx.

For (i), suppose the contrary that for any γ > 0 there are arbitrarily large n such that

the mass expended in (tlk − γ, tlk + γ) by players with types x for which tlk /∈ BRx (ε) is

at least ε/3L. Take γ small enough so that the payoff that such players obtain by bidding

slightly more than any bid in BRx is higher by δ/2 than the payoff that they would obtain

by bidding tlk − γ and getting ylk.
13

Suppose first that tlk > 0. By monotonicity of A and the definition of tlk, we have that

A
¡
tlk − γ

¢
< G

¡
ylk
¢
. Take a positive α < ε/6L such that A

¡
tlk − γ

¢
< G

¡
ylk
¢
− α. For

any t ≥ tlk − γ and sufficiently large n, if An (t) < G
¡
ylk
¢
− α/2, then no player of type x

such that tlk /∈ BRx (ε) bids t, because by bidding t such a player would obtain with high

probability a prize no higher than ylk, and therefore would obtain a higher payoff by bidding

slightly more than any bid in BRx.

Let γn be defined by t
l
k−γn = inf

©
t : An (t) ≥ G

¡
ylk
¢
− α

ª
. SinceA

¡
tlk − γ

¢
< G

¡
ylk
¢
−α

and An (t) is right-continuous, we have that γn < γ (for sufficiently large n). And since for

every t < tlk − γn we have A
n (t) < G

¡
ylk
¢
− α/2 (by definition of γn), players with types x

for which tlk /∈ BRx (ε) must expend the mass of at least ε/3L in [tlk − γn, t
l
k + γ).

If more than half of this mass is expended in
¡
tlk − γn, t

l
k + γ

¢
, then we have that

An
¡
tlk + γ

¢
> An

¡
tlk − γn

¢
+ ε/6L ≥ G

¡
ylk
¢
− α + ε/6L > G

¡
ylk
¢
. This cannot happen

13To see why bidding slightly above any t ∈ BRx gives at least a payoff close to U (x, T ∗ (t) , t), consider

the following two cases:

(a) G−1(A(r)) > T ∗ (t) for all r > t; in this case, since limn(G
n)−1(A(r)) ≥ G−1(A(r)), for any r > t, if

n is sufficiently large, then (Gn)−1(A(r)) > T ∗ (t). This implies that a player obtains a prize higher than

T ∗ (t) with arbitrarily high probability by bidding r.

(b) G−1(A(r)) = T ∗ (t) for r > t close enough to t; in this case, T ∗ (r) = T ∗ (t) for all such r. This implies

that t = tlk0 for some k
0. The claim now follows from left-continuity of G−1 and the fact that limn(G

n)−1(q) ≥
G−1(q) for any q.
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for sufficiently large n, because for t ∈
£
tlk, tk

¢
is A(t) = G

¡
ylk
¢
. Thus, the players with

types x for which tlk /∈ BRx (ε) bid precisely tlk − γn with probability at least ε/6L. Since

these players tie with each other at tlk − γn, by bidding t
l
k − γn they must obtain a prize of

a specific type y with probability 1, even if they lose all ties at tlk − γn. (Otherwise, each

of them could obtain a higher payoff by bidding slightly above tlk − γ + γn and winning the

ties at tlk − γn.) But a player who loses all ties at t
l
k − γn has rank order no higher than

G
¡
ylk
¢
− α, by definition of γn, so y ≤ ylk. Therefore, such a player would obtain a strictly

higher payoff by bidding slightly more than any bid in BRx.

Now suppose that tlk = 0. Then A(tlk) ≤ G
¡
ylk
¢
. The case A(tlk) < G

¡
ylk
¢
is handled

as in the case tlk > 0 above. Suppose that A(tlk) = G
¡
ylk
¢
. Then, for any γ > 0 such that

tlk + γ < tk, for sufficiently large n the mass expended in
¡
tlk, t

l
k + γ

¢
by all players is smaller

than ε/6L, because A (t) = G
¡
ylk
¢
for any t ∈

¡
tlk + γ, tk

¢
. Thus, if (i) does not hold, for

sufficiently large n the mass expended precisely at tlk by the players with types x for which

tlk /∈ BRx (ε) is at least ε/6L, and so the ranking of a player who ties at tlk and loses is at

most G
¡
ylk
¢
− ε/12L. But in this case each player of type x for which tlk /∈ BRx (ε) would

strictly prefer bidding slightly more than any bid in BRx to bidding tlk, a contradiction.

To show (ii), note that if tk = tlk0 for some k
0, then (ii) follows from (i). Thus, suppose

that tk 6= tlk0 for any k
0. Suppose the contrary that for any γ > 0 there is an arbitrarily large

n such that the mass expended in (tk − γ, tk] by players with types x for which tk /∈ BRx (ε)

is at least ε/3L. Take γ small enough so that the payoff that such players obtain by bidding

slightly more than any bid in BRx is higher by δ/2 than the payoff that they would obtain

by bidding tk − γ and getting yuk . Observe that for sufficiently large n, by bidding tk any

player almost certainly obtains a prize at most slightly better than T ∗ (tk) = yuk . This is so,

because tk 6= tlk0 and so A(tk) 6= G(ylk0) for any k0. Therefore, for large enough n a player

with type x for which tk /∈ BRx (ε) would be better off bidding slightly above any t ∈ BRx

than bidding in (tk − γ, tk].

Part (iii) follows immediately from the fact that the value of A on
£
tlk, tk

¢
is G

¡
ylk
¢
, by

the definition of tlk.

2.4 Proof of Lemma 9

Take a δ > 0 such that for any type x any bid in the complement of BRx (ε) gives type x a

payoff lower by at least δ than any bid in BRx. Take β > 0 such that for any type x, bid t,

and prizes y0 and y00 with |y0 − y00| ≤ β we have

|U (x, y0, t)− U (x, y00, t)| ≤ δ

3
.
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Next, take a K guaranteed by Lemma 7 for this β. In addition, take K large enough so the

lengths of IK+1, IK+2, ... sum up to less than β/2. Finally, for any λ > 0 take an Nλ that

satisfies the definition of uniform convergence up to β on the complement of Oλ. (Note that

K is the same for all λ.)

Suppose to the contrary of the statement of the lemma that there is a γ > 0 and a

subsequence of contests such that a type xni of player i in the n-th contest has a best response

tn to the strategies of the other players that does not belong to BRxni
(ε)∪

[K

k=1
(tlk− γ, tk).

As usual, we assume that the subsequence is the entire sequence; moreover, we assume that

xni → x∗ and tn → t∗.

Consider the following two cases:

A. (t∗ 6= tk for any k = 1, ..., K) In this case, for some λ > 0 there is a neighborhood of

t∗ that is disjoint from Oλ. By uniform convergence of T n to T ∗ up to β on the complement

of Oλ,

U (xni , T
n (tn) , tn)− U (xni , T

∗ (tn) , tn) ≤ δ

3

for n ≥ Nλ. And because tn /∈ BRxni
(ε), for any t ∈ BRxni

we have

U (xni , T
∗ (t) , t)− U (xni , T

∗ (tn) , tn) ≥ δ.

Thus, we obtain

U (xni , T
∗ (t) , t)− U (xni , T

n (tn) , tn) ≥ 2δ
3
.

Observe that any bid t0 higher than t guarantees, for sufficiently large n, a prize not much

worse than T ∗(t) with arbitrarily high probability.14

We will now show that by bidding tn, for sufficiently high n type xni obtains with arbi-

trarily high probability a prize no better than Tn (tn) + β. Indeed, since t∗ does not belong

to
£
tlk, tk

¤
for any k ≤ K, we have that A (t0) is bounded away from G

¡
yl1
¢
, . . . , G

¡
ylK
¢
for

t0 sufficiently close to t∗. Therefore, An (tn) is also bounded away from G
¡
yl1
¢
, . . . , G

¡
ylK
¢

for sufficiently large n. And for sufficiently large n, bidding tn gives with arbitrarily high

probability a rank order arbitrarily close to An (tn). Since the lengths of IK+1, IK+2, ... sum

up to less than β/2, and for any r other than G
¡
yl1
¢
, . . . , G

¡
ylK
¢
and sufficiently large n the

difference between (Gn)−1(r) and G−1(r) is no larger than the length of IK+1, by bidding tn

a player obtains with arbitrarily high probability a prize no better than (Gn)−1 (An (tn))+β.

Therefore, by definition of β, we have that by bidding tn type xni obtains a payoff that

is higher than U (xni , T
n (tn) , tn) by at most slightly more than δ/3. Consequently, for

sufficiently large n player i would obtain by bidding some t0 > t a payoff strictly higher

than by bidding tn, a contradiction.

14To see why, see the previous footnote.
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B. (t∗ = tk for some k = 1, ...,K) Then, consider a t∗∗ slightly higher than t∗, such that

t∗∗ does not belong to [tlk, tk] for k = 1, ...,K, and such that: (i) for sufficiently large n the

payoff (of any player) in the n-th contest of bidding t∗∗ is not much lower than the payoff

of bidding tn; (ii) for sufficiently large n, we have that the difference between U(xni , T
∗(t), t)

for any t in BRxni
and U(xni , T

∗(t∗∗), t∗∗) is not much lower than δ. This latter condition is

possible because, by definition, (x∗, t∗) /∈ BR (ε), and by right continuity of T ∗ at t∗. Now,

using (ii), apply an argument analogous to that from case A with t∗∗ playing the role of tn,

with a contradiction obtained by referring to (i).

2.5 Proof of Lemma 10

Monotonicity of the correspondence follows from strict single crossing, and upper hemi-

continuity follows from standard arguments.15

Suppose that BRx contains a pair of bids t1 < t2. Below we will show that for any

ε > 0 and any interval [a, b] such that t1 < a and b < t2, for sufficiently large n the mass

expended in [a, b] by all players is at most ε. This implies that the function A, and therefore

T ∗, is constant on every such interval [a, b], and therefore on (t1, t2). But T ∗ (t2) > T ∗ (t1)

because t1 < t2 are in BRx, so by definition of the discontinuity points tk of T ∗ we must have

(t1, t2) ⊆
¡
tlk, tk

¢
for some k. And because BRx ⊆ B\ ∪

[∞

k=1
(tlk, tk), we have that t1 = tlk

and t2 = tk.

It remains to show that for any ε > 0, for sufficiently large n the mass expended in [a, b] by

all players is at most ε. We will show this for ε/2 and players of types lower than x (a similar

argument applies to types higher than x). Choose x0 < x such that F (x) − F (x0) < ε/3.

For sufficiently small λ > 0, sup∪z≤x0BRz (λ) < a. (This is because x0 < x and t1 ∈ BRx,

so every bid in BRz is at most t1 < a.)

Therefore, by Lemma 9, there is some K such that for every γ > 0 and sufficiently large

n any bid in [a, b] made by a player of type z ≤ x0 in the n-th contest is in
[K

k=1
(tlk − γ, tk).

Consider one of theseK intervals for which (tlk−γ, tk)∩ [a, b] 6= ∅. Since sup∪z≤x0BRz (λ) <

a ≤ tk, tk is not in BRz (λ) for any z ≤ x0. If tlk > sup∪z≤x0BRz (λ), then by (i) of Lemma 8

there exists a γ such that for sufficiently large n the mass expended in
¡
tlk − γ, tk

¢
by players

of type z ≤ x0 is less than ε/6K. If tlk ≤ sup∪z≤x0BRz (λ), then by (ii) and (iii) of Lemma

8, for sufficiently large n the mass expended in [a, tk) by players of type z ≤ x0 is less than

ε/6K.

15More precisely, this follows from the fact that BRx is the set of all t such that (t, T ∗(t)) maximizes type

x’s utility over the closure of the graph of T ∗, which is a compact set.
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Therefore, for large enough n the mass expended in [a, b] by players of type z ≤ x0 is

smaller than ε/6, and because F (x)− F (x0) < ε/3, the mass expended in [a, b] by players

of type z ≤ x is smaller than ε/2.

2.6 Proof of Corollary 2

Choose ε > 0. Lemma 10 implies that there is a finite number of intervals of types

with total F -mass ε/2, such that for every type x not in one of these intervals, BRx ⊆
(br (x)− ε, br (x) + ε).16 Consider the F -mass 1 − ε/2 of types x with the last property,

and let K be the one in the statement of Lemma 9. Then, by Lemma 9 and Lemma 8

for L = K, for sufficiently large n, at most an F -mass ε/2 of those types bid outside of

(br (x)− ε, br (x) + ε).

2.7 Proof of Lemma 11

The proof is analogous to that of Lemma 5. Consider an arbitrary type x. Define xmin =

min {z : br (x) ∈ BRz} and xmax = max {z : br (x) ∈ BRz}. By strict single crossing, BRz

has only one element br(z) = br(x) for all z ∈ (xmin, xmax); it may have two elements for
z = xmin or xmax, in which cases br(x) is the higher one and the lower one of the two,

respectively.

The claim that G−1(F
¡
xmin

¢
) = G−1(F (xmax)) is obtained by the same argument as in

the proof of Lemma 5. The rest of the proof requires the following minor changes when

BRxmin has two elements (and analogous changes when BRxmax has two elements):

1. Instead of xmin, we consider xmin = min
©
z : br

¡
xmin

¢
∈ BRz

ª
, and compare the

equilibrium bids of every player with type lower than xmin−δ to br(xmin), and the equilibrium
bids of every player with type higher than xmin to br

¡
xmin − δ

¢
. This change does not affect

the arguments, since G−1(F
¡
xmin

¢
) = G−1(F

¡
xmin

¢
).

2. It may not be true that the equilibrium bids of every player with type lower than

xmin − δ are lower than br(xmin), or the equilibrium bids of every player with type higher

than xmin are higher than br
¡
xmin − δ

¢
, because players may bid in

[K

k=1
(tlk−γ, tk)−BR(ε)

(see Lemma 9). However, this happens only with vanishing probability as n grows large, so

the arguments are again not affected.

16There is a K > 0 such that
P

k>K

¡
tk − tlk

¢
< ε. For each k ≤ K such that BRxk =

©
tlk, tk

ª
for some

type xk, consider the interval of types [xk − λ, xk + λ]∩ [0, 1], where λ is such that (continuous) F increases

by no more than ε/2K on any interval no larger than 2λ. The sum of the F -mass of these intervals is no

larger than ε/2, and the sum of the “jumps” of br on the complement of these intervals is smaller than ε.
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2.8 Proof of Lemma 12

Take any λ > 0. By Lemma 9, there is a large K such that for any γ > 0, if n is sufficiently

large, the equilibrium bid of every player i in the n-th contest belongs with probability 1 to

BRxni
(λ) ∪

K[
k=1

(tlk − γ, tk).

Assume that K is, in addition, large enough so that the lengths of IK+1, IK+2, ... sum up to

less than δ/2.

We first claim that for any t /∈ (tlk−γ, tk) for all k = 1, ...,K, there exists an Nt such that

for every n ≥ Nt, a player who bids t in the n-th contest obtains (with high probability) a

prize y such that |y − T ∗(t)| < δ/2. We will also show that there exists an N = Nt that is

common for all such bids t.

Suppose first that t 6= tk for any k = 1, ..., K. Since A (t) differs from G(ylk) and G(yuk)

for any k = 1, ...,K, any rank order close to A (t) also differs from G(ylk) and G(y
u
k). By (1),

for sufficiently large n, a player who bids t has (with high probability) a rank order close

to A (t); in particular, this rank order differs from G(ylk) and G(yuk). By the assumption

that the lengths of IK+1, IK+2, ... sum up to less than δ/2, this implies that the difference

between T ∗ (t) and the prize obtained by a player who bids t is lower than δ/2 (with high

probability).

Suppose that t = tk for some k = 1, ...,K. By an argument analogous to the one used in

the previous case, the prize obtained by a player who bids t cannot, as n increases, exceed

T ∗(t) by δ/2 with a probability that is bounded away from 0. And T ∗(t) cannot exceed this

prize by δ/2 with a probability that is bounded away from 0 as n increases, because the

player would profitably deviate by bidding slightly above t, which would guarantee a prize

no worse than T ∗(t) with arbitrarily high probability.

Now, note that the number Nt that was chosen for any bid t has the required property

also for all bids close enough to t; in the case of t = tk for some k = 1, ..., K, we mean bids

close enough and higher than t. That is, for every t there is a neighborhood Wt of that t

with Nt that is common for all bids from this neighborhood. The family of sets Wt is an

open covering of the compact set of bids t that satisfy t /∈ (tlk− γ, tk) for k = 1, ...,K. Thus,

it contains a finite subcovering, and any number N that exceeds numbers Nt for all elements

of this finite subcovering has the required property.

This yields the lemma for bids t /∈ (tlk − γ, tk) for all k = 1, ...,K. Indeed, note that

BRx is a singleton, and br(x) is its only element, for all except a countable number of types

x. Since F has no atoms, the set of such types has F -measure 1. And for such types x,

equilibrium bids t /∈ (tlk − γ, tk) for all k = 1, ...,K belong to (br (x)− λ, br (x) + λ). If λ
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is sufficiently small, and x is bounded away from 0, then |t− r| < δ for r = br (x), and

T ∗(t)− T ∗(r) ≤ δ/2.17 And if λ is sufficiently small, then also T ∗(r)− T ∗(t) ≤ δ/2, because

t /∈ (tlk − γ, tk) for all k = 1, ...,K and the lengths of IK+1, IK+2, ... sum up to less than δ/2.

Finally, by our first claim, the prize y obtained by bidding t must satisfy |y − T ∗(t)| < δ/2,

so |y − T ∗(r)| < δ.

Now consider bids t such that t is in (tlk− γ, tk) for some k = 1, ..., K. By (iii) of Lemma

8, we can disregard bids t in [tlk + γ, tk − γ]. Suppose that t is in (tk − γ, tk) and tk 6= tlk0 for

all other k0 = 1, ..., K. By (ii) of Lemma 8, one can assume that tk ∈ BRxni
.18 We will show

that for sufficiently small γ and for sufficiently large n, player i obtains by bidding t (with

arbitrarily high probability) a prize y in (T ∗(tk) − δ, T ∗(tk) + δ). First, note that player i

cannot obtain by bidding t a prize lower than T ∗(tk) − δ (with probability bounded away

from 0), because for small enough γ it would be profitable to deviate to bidding slightly

above tk, and obtain a prize not much lower than T ∗(tk) with high probability. Player i

cannot obtain by bidding t a prize higher than T ∗(tk) + δ (with probability bounded away

from 0), because by (1), for any r > tk and sufficiently large n the rank order of player i is

with arbitrarily high probability bounded above by A(r) . Thus, the upper bound on the

prize follows from the assumption that tk 6= tlk0 for all other k
0 = 1, ..., K, and the lengths of

IK+1, IK+2, ... sum up to less than δ/2.

Finally, suppose that t is in
¡
tlk − γ, tlk + γ

¢
for some k = 1, ...,K. By (i) of Lemma 8, one

can assume that tlk ∈ BRxni
. We will show that for sufficiently small γ and for sufficiently

large n, equilibrium bidding in
¡
tlk − γ, tlk + γ

¢
leads (with arbitrarily high probability) to a

prize y ∈ (T ∗(tlk)− δ, T ∗(tlk) + δ), except a small probability event. Indeed, by an argument

similar to that from the previous case, such a bid cannot lead to a prize lower than T ∗(tlk)−δ
(with probability bounded away from 0). To obtain a prize higher than T ∗(tlk) + δ with a

nonvanishing probability, a player’s expected rank order when bidding t cannot be lower

than G
¡
ylk
¢
by a nonvanishing constant. But, if a nonvanishing fraction of players win a

prize higher than T ∗(tlk) + δ with a nonvanishing probability by bidding in
¡
tlk − γ, tlk + γ

¢
,

then the increase in expected rank order on the interval
¡
tlk − γ, tlk + γ

¢
is bounded away

17Indeed, for types bounded away from 0, and for sufficiently small λ, we have that U(x, y, t) > U(x, y0, t0)

whenever y − y0 > δ/2 and t − t0 < λ. (The assumption that types are bounded away fro 0 is essential,

because we did not assume that U(0, y, t) strictly increases in y.) However, since r = br (x), we cannot have

U(x, T ∗(t), t) > U(x, T ∗(r), r).

18The lemma says only that the mass expended in (tk − γ, tk] by types x for which tk /∈ BRx (λ) for some

small λ > 0 is small. However, if λ > 0 is sufficiently small, then the mass of types x such that tk /∈ BRx

but tk ∈ BRx (λ) is small.
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from 0 for all n, which contradicts the fact that An(tlk + γ) approaches G(ylk) as n increases.
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