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Abstract

We show that the equilibria of asymmetric contests with many players and prizes

are approximated by certain single-agent mechanisms. This complements the work of

Olszewski and Siegel (2015), who considered a more restricted environment in which

players’ utility function satisfies a single crossing condition. Relaxing single crossing en-

larges the set of approximating mechanisms, and weakens the notion of approximation.

When the approximating mechanism is unique, the stronger notion of approximation

is recovered.

1 Introduction

We study contests with many, possibly heterogeneous, players and prizes that include many

existing contest models as special cases. We show that the equilibria of such contests are

approximated by certain incentive-compatible and individually-rational mechanisms in an

environment with a single-agent that has a continuum of possible types. This makes it

possible to approximate the equilibria of contests whose exact equilibrium characterization

is complicated, as well as the equilibria of contests for which there is no existing equilibrium

characterization. This facilitates contest design, welfare analysis, and comparative statics.
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Our analysis complements that of Olszewski and Siegel (2015), henceforth: OS, who

considered a similar environment, with the added assumption that players’ utility function

satisfies a single crossing condition. Relaxing this assumption, as we do here, is valuable

because the assumption does not hold in some applications. One example is the contest

studied in Barut and Kovenock (1998), henceforth: BK, which we discuss in Section 3;

perhaps other applications in which single crossing does not hold have not yet been studied

because their analysis has proven difficult.

The cost of relaxing single crossing is that the set of approximating mechanisms may

not be a singleton, even for contests that have a unique equilibrium, and the notion of

approximation is weaker than in OS. Nevertheless, multiple approximating mechanisms may

share common features, as is the case in the setting of BK. And when the approximating

mechanism is unique, the approximation is as strong as in OS.

The rest of the paper is organized as follows. Section 2 introduces the basic terminology

and notation. Section 3 contains our main result, illustrates the result in the setting of BK,

and compares it to the results of OS. The Appendix contains the proof of the result.

2 Terminology and notation

2.1 Agents and prizes

An agent is characterized by a type x ∈ X = [0, 1]. We will use the terms “player” for discrete

contests and “agent” for the limit case. A prize is characterized by a number y ∈ Y = [0, 1].

Prize 0 is “no prize.”

Agents’ utilities are given by a continuous function U (x, y, t), where x is the agent type,

y is the single prize he obtains, and t ≥ 0 is his bid. The utility of obtaining no prize by

bidding 0 is normalized to 0, i.e., U (x, 0, 0) = 0 for all x. Higher prizes are better and

higher bids are more costly, so U(x, y, t) strictly increases in y for every x > 0 and t ≥ 0,

and strictly decreases in t for every x ≥ 0 and y ≥ 0. Sufficiently high bids are prohibitively

costly, so U (x, 1, bmax) < 0 for some bmax and all x. We therefore restrict the range of bids

that agents can make to B = [0, bmax]. Unlike OS, we do not assume that the utility satisfies
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strict single crossing.1

2.2 Contests

For every n, we define “the n-th contest,” in which n players compete for n known prizes

yn1 ≤ yn2 ≤ ... ≤ ynn (some of which may be no prize). Player i’s privately-known type

xni is distributed according to a CDF Fn
i , and these distributions are commonly known

and independent across players.2 In the special case of complete information, each CDF

corresponds to a Dirac measure. Each player, after learning her type, chooses a bid in B,

the player with the highest bid obtains the highest prize, the player with the second-highest

bid obtains the second-highest prize, and so on. Ties are resolved by a fair lottery. The

utility of player i from bidding t and obtaining prize ynj is U
¡
xni , y

n
j , t
¢
. A slight adaptation

of the proof of Corollary 1 in Siegel (2009) shows that when each player’s set of possible

types is finite the contest has at least one mixed-strategy Bayesian Nash equilibrium. For

general distributions Fn
i , equilibrium existence follows from Corollary 5.2 in Reny (1999).

We let Fn = (
Pn

i=1 F
n
i ) /n, so F

n (x) is the expected percentile ranking of type x given

the vector of players’ types. We denote by Gn the empirical distribution of prizes, which

assigns a mass of 1/n to each ynj (recall that each prize y
n
j is known). We assume that F

n

converges in weak∗-topology to a continuous and strictly increasing distribution F , and Gn

converges to some distribution G.3 See OS for a detailed discussion of this assumption.

Given an equilibrium of the n-th contest, we denote by Dn
i the distribution on X×Y ×B

that describes player i’s type, the prize she obtains, and her bids. We refer to the distribution

Dn = (
Pn

i=1D
n
i ) /n as the equilibrium outcome, and later relate the sequence of distributions

D1, D2, . . . to probability distributions D that describe the outcomes of some mechanisms.

1Strict single crossing means that for any x1 < x2, t1 < t2, and y1 < y2 we have that U(x1, y2, t2) ≥
U(x1, y1, t1) implies U(x2, y2, t2) > U(x2, y1, t1).

2All probability measures are defined on the σ-algebra of Borel sets.

3Convergence of probability measures in weak∗-topology is equivalent to pointwise convergence at points

of continuity of the limit distribution. See Billingsley (1995) for the definition of this topology and its

properties.

3



2.3 Limit mechanism-design setting

A consistent allocation is a probability distribution H on X × Y whose marginal on X

coincides with F and whose marginal on Y coincides with G. With a continuum of agents

and prizes distributed according to F and G, this condition says that all the prizes are

allocated to agents, and each agent obtains exactly one prize (which can be no prize). The

conditional distribution Hx is interpreted as the lottery over prizes faced by an agent of type

x.

A (direct) mechanism prescribes for each reported type x a joint probability distribution

Qx(y, t) over prizes and bids. A mechanism is incentive compatible (IC) if the expected

utility of each agent is maximized by reporting truthfully, i.e.,Z
y∈Y

Z
t∈B

U(x, y, t)dQz(y, t)

is maximized at z = x. A mechanism is individually rational (IR) if the expected utility

of each agent from reporting truthfully is at least as high as the utility from bidding 0 and

obtaining the “lowest” available prize, i.e.,Z
y∈Y

Z
t∈B

U(x, y, t)dQx(y, t) ≥ U (x, yinf , 0) ,

with an equality for at least one type x, where yinf = inf {y : G (y) > 0}.

An inverse tariff is a non-decreasing, upper semi-continuous function that maps bids to

prizes. Given an inverse tariff, a tariff mechanism is an IR mechanism that prescribes for

each type x a distribution Qx(y, t) that assigns probability 1 to the set of prize-bid pairs

that maximize U (x, y, t) among the prize-bid pairs in the graph of the inverse tariff. A tariff

mechanism is clearly IC.

A mechanism implements an allocation H if the marginal of Qx on Y coincides with Hx

for almost every type x. Distributions H and {Qx : x ∈ X} may not determine a probability

distribution on X × Y × B.4 When such a distribution D exists, which will be the case in

our result, we say that the mechanism that implements H is regular, and refer to D as the

outcome of the mechanism.

4For example, take some non-measurable function f : X → [0,∞), have H distributed uniformly on, and

assigning probability 1 to, the diagonal {(x, x) : x ∈ X}, and have Qx assigning probability 1 to the pair

(x, f (x)). That is, type x is prescribed prize x and bid f (x).
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3 Result

We can now formulate our result, whose proof is in the Appendix.

Theorem 1 For any ε > 0 and any metrization of the weak∗-topology, there is an N such

that for all n ≥ N , for any equilibrium of the n-th contest there is a regular tariff mechanism

that implements a consistent allocation whose outcome is ε-close (in the metrization) to the

outcome of the equilibrium.

Unlike the results in OS, Theorem 1 applies to settings in which the utility function may

not satisfy strict single crossing. As an example, consider U (x, y, t) = y− t, let xni = i/n (so

Fn
i is a Dirac measure), and let y

n
j = j/n. The limit distributions F and G are uniform. The

n-th contest is an all-pay auction with n symmetric players and n heterogeneous prizes, and

the value of prize j to all players is j/n. Players are symmetric because their type does not

enter the utility function (in particular, single crossing fails). Such contests were studied by

BK, who considered grading, promotions, procurement settings, and political competitions.

BK showed that the n-th contest has a unique equilibrium, in which all players randomize

uniformly across all bids t ∈ [0, 1]. For the approximation, consider the uniform allocation,

whose density is h(x, y) = 1 for all values of x and y. The unique IC-IR mechanism that

implements this allocation has Qx(y, t) distributed uniformly on the diagonal y = t. This is

a tariff mechanism with a continuous inverse tariff that maps every bid t ∈ [0, 1] to prize t.

This mechanism approximates the unique equilibrium in the sense of Theorem 1.

The approximation in Theorem 1 is in general weaker than in OS, because it only provides

an approximation of the aggregate behavior of players. In particular, it may be that even

for large n the approximating mechanism does not approximate the behavior of any player

individually. To illustrate this possibility, consider a version of the setting of BK, in which

there are half as many prizes as players, and the prizes are identical. That is, the limit

type distribution F is uniform on [0, 1] and the limit prize distribution is G(y) = 1/2 for

all y ∈ [0, 1) and G(1) = 1. Let U(x, 1, t) = 1 − t and U(x, 0, t) = −t. Let Fn
i be the

Dirac measure on F−1(i/n), and let ynj = G−1(j/n) for i, j = 1, ..., n. For n = 2k + 1, the

n-th contest has an equilibrium in which the k even players 2, 4, . . . , 2k bid 0 and obtain no

prize, and the k + 1 odd players 1, 3, . . . , 2k + 1 employ the same mixed strategy on [0, 1].
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As n increases, the mixing players bid close to 1 and obtain a prize with probability close

to 1. Therefore, the distributions Dn converge in weak∗-topology to the distribution D in

which every type x bids 0 and obtains 0 with probability 1/2 and bids 1 and obtains 1

with probability 1/2. Consequently, the individual strategies of all players in every contest

qualitatively differ from the conditionals of D.

If, however, for every type x there is a unique prize-bid pair (y(x), t(x)) that maximizes

U (x, y, t) among the prize-bid pairs from the graph of the inverse tariff, then convergence in

weak∗-topology implies convergence in a sense similar to that of Theorem 2 in OS. Namely,

for any ε > 0 and sufficiently large n, for a fraction 1 − ε of the players, with probability

1− ε the prize that player i obtains differs from y(xni ) by at most ε and the bid of player i

differs from t(xni ) by at most ε.

Another limitation of Theorem 1 is that the set of tariff mechanisms that implement

a consistent allocation may be quite large, even if every contest has a unique equilibrium.

For example, in the setting of BK there is a continuum of consistent allocations and tariff

mechanisms that implement them. All of them, however, are associated with the same inverse

tariff that maps each bid t ∈ [0, 1] to prize t, so much can be gleaned from the approximation

about the structure of equilibria despite the indeterminacy in the approximating mechanism.

Finally, we conjecture that Theorem 1 is the strongest general convergence result that one

can obtain, because some contests have many equilibria, and different sequences of equilibria

may be approximated by different mechanisms. For example, consider again the version

described above of the setting of BK with a mass 1/2 of identical prizes. For n = 2k + 1,

the n-th contest has an equilibrium in which players 1, . . . , k bid 0 and obtain no prize,

and players k + 1, . . . , n employ the same mixed strategy on [0, 1]. As n increases, the

mixing players bid close to 1 and obtain a prize with probability close to 1. Therefore,

the distributions Dn converge in weak∗-topology to the distribution D in which every type

x < 1/2 bids 0 and obtains no prize and every type x ≥ 1/2 bids 1 and obtains a prize.

Similarly, there is a sequence of equilibria with a limit distribution in which every type

x ≤ 1/2 bids 1 and obtains a prize and every type x > 1/2 bids 0 and obtains no prize, as

well as many other sequences of equilibria with different limit distributions.
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A Proof of Theorem 1

We denote an equilibrium by σn = (σn1 , . . . , σ
n
n), where σ

n
i is player i’s equilibrium strategy

in the n-th contest. In order to prove Theorem 1, it suffices to show every subsequence σnk of

sequence σn contains a further subsequence such that the equilibrium outcomes of this further

subsequence converge in weak∗-topology to the outcome of a regular tariff mechanism that

implements a consistent allocation. With no loss of generality, we can take the subsequence

σnk to be the entire sequence σn.

We denote by Rn
i (t) the random variable that is the percentile location of player i in the

ordinal ranking of the players in the n-th contest if she bids slightly above t and the other

players employ their equilibrium strategies.5 That is,

Rn
i (t) =

1

n

Ã
1 +

X
k 6=i
1{σnk∈X×[0,t]}

!
,

where 1{σ∈X×[0,t]} is 1 if σ ∈ X × [0, t] and 0 otherwise. Let

An
i (t) =

1

n

Ã
1 +

X
k 6=i
Pr (σnk ∈ X × [0, t])

!

be the expected percentile ranking of player i. Then, by Hoeffding’s inequality, for all t in

B we have

Pr (|Rn
i (t)−An

i (t)| > δ) < 2 exp
©
−2δ2 (n− 1)

ª
. (1)

Finally, let

An (t) =
1

n

nX
i=1

An
i (t)

be the average of the expected percentiles rankings of the players in the n-th contest if they

bid t and the other players employ their equilibrium strategies.

Let T n be the mapping from bids to prizes induced byAn. That is, Tn (t) = (Gn)−1 (An (t)),

where (Gn)−1 (z) = inf {y : Gn (y) ≥ z} for z > 0, and (Gn)−1 (0) = inf {y : Gn (y) > 0}. (In

words, (Gn)−1 (z) is the prize of an agent with percentile ranking z when prizes are distrib-

uted according to Gn.)

5This is the infimum of her ranking if she bids above t, which is equivalent to bidding t and winning any

ties there. If ties happen with probability 0, then this is equivalent to bidding t.
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For expositional simplicity, we prove the theorem assuming that G is strictly increasing,

which implies that G−1 is continuous. This assumption can be relaxed by applying analogous

(almost identical) arguments to those used in OS to obtain their Theorem 2 from Theorem

1.

Now, let Tn be the mapping from bids to prizes induced by An. That is, Tn (t) =

G−1 (An (t)). OS show that the sequence T n contains a subsequence that uniformly converges

to a continuous T . We will assume again that this subsequence is the entire sequence Tn.

OS relates players’ equilibrium behavior in large contests to the inverse tariff T in the

following way. For every x, denote by BRx type x’s set of optimal bids given T , i.e., the

bids t that maximize U(x, T (t), t). Denote by BR (ε) the ε-neighborhood of the graph of the

correspondence that assigns to every x ∈ [0, 1] the set BRx, i.e., BR (ε) is the union over all

types x and bids t ∈ BRx of the open balls of radius ε centered at (x, t). For every type x

denote by BRx (ε) the set of bids t such that (x, t) ∈ BR (ε).

Note that BR (ε) is a 2-dimensional open set, while each BRx (ε) is a 1-dimensional

“slice.” Note also that BR (ε) is in general larger than the union across x of the pairs (x, t)

for which the distance between t and some bid in BRx is less than ε. In particular, BRx (ε)

may contain bids whose distance from every bid in BRx is more than ε. Using the sets

BRx (ε), players’ equilibrium behavior is characterized by the following lemma.

Lemma 1 (OS) For every ε > 0, there is an N such that for every n ≥ N , the equilibrium

bid of any player i = 1, ..., n of type xni in the n-th contest belongs to BRxni
(ε) with probability

1.

This result appears as Lemma 3 in the Online Appendix of OS. OS prove this lemma, as

well as uniform convergence of Tn to T and continuity of T , without assuming their single

crossing condition.

From the sequence of equilibria that corresponds to the sequence T n that converges

uniformly to T , choose a subsequence such thatDn converges to some probability distribution

D in weak∗-topology. We will now show thatD assigns probability 1 to the set C = {(x, y, t) :

t ∈ BRx and y = T (t)} ⊂ X × Y ×B.
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By standard arguments the correspondence that assigns BRx to type x is upper hemi-

continuous. Therefore, the set {(x, t) : t ∈ BRx} ⊂ X × B is closed, and by continuity of

T , the set C is also closed. Suppose to the contrary that D assigns a positive probability

to the complement of C. Then, for some ε > 0, D assigns a positive probability to the

complement of the 2ε-neighborhood O of C, that is, to the set X×Y ×B−O. Consider the

ε-neighborhood V of C and its closure V̄ (which is contained in O), and take a continuous

function f : X × Y ×B → [0, 1] such that f(V̄ ) = 1 and f(X × Y ×B −O) = 0. Then,Z
fdD < 1.

But by Lemma 1, for sufficiently large n every player i with probability 1 bids t such that

(xni , T (t), t) is close to C. By uniform convergence of T n to T , also (xni , T
n(t), t) is close to

C. Finally, by (1) and continuity of G−1, for sufficiently large n player i obtains with high

probability a prize y such that (xni , y, t) ∈ V . Thus,Z
fdDn → 1, (2)

a contradiction.

Thus, the limit mechanism determined by D prescribes for each of a measure 1 of types

x bids t ∈ BRx and corresponding prizes T (t) with probability 1. This implies that D

determines a tariff mechanism.6 It is regular, because each Dn is regular, and it implements

a consistent allocation, because each Dn implements a consistent allocations. We show this

last statement for the marginal with respect to x; the proof for the marginal with respect to

y is analogous.

Consider a continuous function fε : X × Y × B → [0, 1] whose value is 1 on the set of

all (x, y, t) such that x ≤ x∗ and 0 on the set of all (x, y, t) such that x ≥ x∗ + ε, for some

ε > 0. Then, by the definition of weak∗-convergence,Z
fεdD

n →
Z
fεdD.

For large enough n the integrals on the left-hand side belong to [F (x∗)− ε, F (x∗ + ε) + ε].

These integrals would belong to [F (x∗), F (x∗ + ε)] if the marginals of Dn with respect to x

6If needed, change D on a measure 0 set of types x so that it assigns to every type x bids t ∈ BRx and

corresponding prizes T (t).
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were equal to F . But the marginal of Dn with respect to x is not equal to F ; rather, it is

a measure that assigns probability 1/n to every xni . These measures, however, converge in

weak∗-topology to F , which implies that the integrals belong to [F (x∗)− ε, F (x∗ + ε) + ε].

Therefore,
Z
fεdD also belongs to [F (x∗)− ε, F (x∗ + ε) + ε]. Taking the limit for ε → 0,

and applying right-continuity of CDFs, we obtain that F is the marginal of D with respect

to x.
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