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Abstract We examine Popper’s falsifiability within an economic model in which
a tester hires a potential expert to produce a theory. Payments are contingent on
the performance of the theory vis-a-vis data. We show that if experts are strategic,
falsifiability has no power to distinguish scientific theories from worthless theories.
The failure of falsification in screening informed and uninformed experts motivates
questions on the broader concepts of refutation and verification. We demonstrate an
asymmetry between the two concepts. Like falsification, verification contracts have no
power to distinguish between informed and uninformed experts, but some refutation
contracts are capable of screening experts.

The publication of “The Logic of Scientific Discovery” by Karl R. Popper (1968,
first published in 1935) was a transformative event in the philosophy of science because
it expressed clearly the concept of falsifiability. Popper was interested in demarca-
tion criteria that differentiate scientific ideas from nonscientific ideas (and hence give
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meaning to the term scientific). He argued that science is not a collection of facts,
but a collection of statements that can be falsified (i.e., conclusively rejected by the
data). His leading example of a scientific statement was “All swans are white.” This
example shows the asymmetry between verification and refutation: no matter how
many white swans are observed, one cannot be certain that the next one will be white,
but the observation of a single nonwhite swan proves the statement to be false.

Popper’s work is essentially conceptual and not descriptive. He argued that fal-
sifiability is a criterion that should differentiate science from nonscience, but he did
not claim that falsifiability is the only criterion used in practice to guide science, nor
did he claim that theories produced by scientists are necessarily falsifiable. Indeed,
several critics contend that the history of science contains instances that are incon-
sistent with Popper’s criterion. Most notably, Thomas S. Kuhn (1962) argued that
theories conclusively refuted by the data are not necessarily discarded in practice,
that science sometimes makes use of nonfalsifiable theories, and that science often
progresses by comparing competing theories and not by the falsification of theories.1

In spite of these well-known limitations, falsifiability remains a central concept in the
philosophy of science for several reasons. First, it presents one guiding principle on
how science should be conducted: scientists should deliver falsifiable theories that can
be tested empirically. (One example of falsifiability as a guide to research is the de-
bate on whether general equilibrium theory is testable; see Andrés Carvajal, Indrajit
Ray and Susan K. Snyder (2004) for a review article.) Moreover, falsifiability delivers
criteria for what should be taught under the rubric of science. (One interesting appli-
cation is the ruling by U.S. District Court Judge William Overton, largely based on
falsifiability, against the teaching of intelligent design as science in Arkansas public
schools, “The Arkansas Balanced Treatment Act” in McLean v. Arkansas Board of
Education, Act 590 of the Acts of Arkansas of 1981.) Finally, falsifiability is an im-
portant requirement in the U.S. legal system’s Daubert standard, which is designed
to rule as inadmissible any testimony by expert witnesses that this standard evaluates
as “junk science.” (See the legal precedent set in 1993 by the Supreme Court, Daubert
v. Merrell Dow Pharmaceuticals, 509 U.S. 579.)

Although falsifiability has been employed as a guiding principle in legal proceed-
ings, economics, and science in general, it has not, to our knowledge, been formally
analyzed to determine whether it can distinguish useful ideas from worthless ones in
a full-fledged economic model in which agents may misreport what they know. An
objective of this paper is to deliver such a model. Before continuing with a description
of the model, we stress that what Popper means by falsifiability is the feasibility of
conclusive empirical rejection. This is often regarded as too strong because it dis-

1See also Imre Lakatos’ article in Lakatos and Alan Musgrave (1970) for an attempt to reconcile
Popper’s view on the logic of science with Kuhn’s view on its history.
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misses probabilistic statements that attach strictly positive probability to an event
and its complement. Falsifiable probabilistic statements must attach zero probability
to some event. Popper was aware of this objection. He wrote: “For although prob-
ability statements play such a vitally important rôle in empirical science, they turn
out to be in principle impervious to strict falsification. Yet this very stumbling block
will become a touchstone upon which to test my theory, in order to find out what it
is worth.” (See Popper (1968), pp. 133).

An adaptation of falsifiability designed to partially accommodate probabilities is
provided by Antoine Cournot’s (1843) principle, which states that unlikely events
must be treated as impossible.2 However, for reasons that will become clear at the
end of this introduction, we refer to falsifiability in the strict Popperian sense.

We study a contracting problem between an expert and a tester. The expert,
named Bob, announces a theory which is empirically tested by the tester named Alice.
Like Popper, we assume that the main purpose of a theory is to make predictions. We
define a theory as a mechanism that takes the available data as input and returns, as
output, the probabilities of future outcomes. Before data are observed, Bob decides
whether to announce a theory. If he does, he cannot revise his theory later. As data
unfold, Alice tests Bob’s theory according to the observed history.

Alice does not have a prior over the space of theories and is too ill-informed to
formulate probabilities over the relevant stochastic process (i.e., she faces Knightian
uncertainty). An expert could deliver these probabilities to her. If a theory is an
accurate description of the data-generating process, then she benefits from the theory
because it tells her the relevant odds (i.e., it replaces her uncertainty with common
risk).3 The difficulty is that Alice does not know if Bob is an informed expert who
can deliver the data-generating process, or if he is an uninformed agent who knows
nothing about the relevant process and who can deliver only theories unrelated to it.

We first assume that Alice takes Popper’s methodology seriously and demands a
falsifiable theory, i.e., a theory such that it predicts that some finite continuation of
any finite history has zero probability. Alice pays Bob a small reward which gives
utility u > 0, if he announces a falsifiable theory. In order to discourage Bob from
delivering an arbitrary falsifiable theory, Alice proposes a contract that stipulates a

2Cournot (1843) was perhaps the first to relate the idea that unlikely events will not occur to the
empirical meaning of probability. He wrote, “The physically impossible event is therefore the one
that has infinitely small probability, and only this remark gives substance - objective and phenomenal
value - to the theory of mathematical probability.”

3Risk refers to the case where available information can be represented by a probability. Un-
certainty refers to the case where the available information is too imprecise to be summarized by
a probability. This distinction is traditionally attributed to Frank H. Knight (1921). However,
Stephen F. LeRoy, and Larry D. Singell, Jr. (1987) argue that Knight did not have this distinction
in mind.
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penalty if Bob’s theory is falsified in the future, i.e., if some history deemed impos-
sible by the theory is eventually observed. This penalty gives Bob disutility d > 0.
Bob receives no reward and no penalty if he does not announce any theory or if he
announces a nonfalsifiable theory (in which case his utility is zero).

We now make a series of assumptions that are not meant to be realistic. Rather,
they should be interpreted as an extreme case in which our result will be shown to
hold, so that it will also be shown to hold under milder and more realistic conditions.
These assumptions are: Alice eventually has an unbounded data set at her disposal
and never stops testing Bob’s theory unless it is rejected. Bob does not discount the
future and so his contingent payoffs are u− d if his theory is eventually rejected, and
u if his theory is never falsified. Bob’s liabilities are not limited and so the penalty
d for having delivered a rejected theory can be made arbitrarily large, whereas the
payoff u for announcing a falsifiable theory can be made arbitrarily small. Bob has
no knowledge whatsoever of the data-generating process and so Bob, like Alice, also
faces uncertainty and cannot determine the probability that any falsifiable theory will
be rejected. Finally, Bob evaluates his prospects by the minimal expected utility he
may obtain given any possible future realization of data.

Our last assumption is so extreme that it seems to settle the matter trivially.
Assume that Bob announces any falsifiable theory f deterministically. Then many
histories falsify f . Given any history that falsifies f , Bob’s utility is u − d. Hence,
under uncertainty, Bob’s payoff for delivering any theory f deterministically is u− d.
As long as the penalty for delivering a theory rejected by the data exceeds the reward
for announcing a falsifiable theory, i.e., as long as d > u, Bob is better off not
announcing any theory deterministically. It thus seems as if Alice can avoid the
situation in which she receives a theory produced by an uninformed expert.

However, Bob still has one remaining recourse. He can randomize (only once) at
period zero and select his falsifiable theory according to this randomization. This
suffices. We show that no matter how large the penalty d, and no matter how low the
reward u, there exists a way to strategically select falsifiable theories at random (i.e.,
according to specific odds that we describe explicitly) such that given any possible
future realizations of the data, the expected utility of the random announcement of
a theory exceeds the utility of not announcing any theory at all. At the heart of
our argument is the demonstration that it is possible to produce falsifiable theories
(at random) that are unlikely to be falsified, no matter how the data unfold in the
future. Thus, Popper’s strict falsification criterion (which requires a theory to as-
sert that some events are impossible) cannot deter even the most ignorant expert
because the feasibility of conclusive empirical rejection can be removed by strategic
randomization.

There is a contrast between the case in which theories are exogenous (or delivered
honestly) and the case in which theories may have been strategically produced. For an
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honest (exogenous) theory, falsifiability makes a fundamental conceptual distinction:
falsifiable theories can be conclusively rejected while nonfalsifiable theories cannot.
In contrast, when theories are produced by a potentially strategic expert, falsifiability
does not impose significant constraints on uninformed experts and hence we cannot
determine whether the expert is informed about the data-generating process.

The failure of falsifiability to deliver a useful criterion (when experts are strategic)
motivates our analysis of the merits of verification and refutation as guiding principles
for empirical research. This motivation can be understood as follows: Verification is
typically a concern of those who view science as a source of explanations for observed
phenomena. In contrast, refutation is typically a concern of those who view science
as a source of testable hypotheses. Popper wanted to show a conceptual distinction
between refutation and verification. He claimed that although past data could not
deliver conclusive inferences about how the future will evolve, they could conclusively
refute some hypothesis. This asymmetry drives the idea of the feasibility of conclu-
sive rejection. However, in addition to the failure of Popper’s falsifiability criterion to
characterize the full range of actual science practice, our conceptual critique of Pop-
per’s falsifiability leads naturally to the question of whether there is any economically
meaningful distinction between refutation and verification. We address this question
in our general model where Bob is not restricted to announcing a falsifiable theory
and there are many different ways in which Alice can evaluate Bob’s theory.

So, now consider a general contract between Alice and Bob. If Bob accepts the
contract, then he must deliver a theory before any data are observed. After the data
is observed, Bob’s theory is evaluated. In a verification contract, Alice pays Bob when
his theory performs well in light of the evidence (e.g., the observed data are deemed
consistent with Bob’s theory), but Bob may pay Alice when he announces his theory.
We make no restrictions on which data the contract can define as consistent with
each theory. In a refutation contract, Bob pays Alice if his theory performs poorly
in light of the evidence (e.g., the observed data are deemed inconsistent with Bob’s
theory), but Alice may pay Bob when he announces his theory. The falsification
contract is therefore just a special refutation contract in which Alice pays nothing for
nonfalsifiable theories, pays positive amounts for falsifiable theories, and Bob pays
Alice if his theory is conclusively rejected. In other refutation contracts, Bob may
pay Alice contingent on data that do not conclusively reject his theory.

We are interested in a screening contract which Bob, if informed, accepts, but if un-
informed, does not accept. If informed, Bob faces risk and evaluates his prospects by
his expected utility. If uninformed, Bob faces uncertainty and evaluates his prospects
based on the minimum expected utility he may obtain contingent on any possible
future realization of the data. A contract is accepted by the informed expert if Bob
gets positive expected utility if he announces the actual data-generating process. A
contract is accepted by the uninformed expert if Bob can select theories at random
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so that no matter which data are eventually observed, his expected utility will be
positive.

We show that if the informed expert accepts any verification contract, then the
uninformed expert also accepts this contract. This result has a basic implication: it
is possible to produce theories (at random) that are likely to prove to be supported
by the data, no matter how the data unfold. Hence, when experts are potentially
strategic, both Popper’s falsifiability and verification fail to provide useful criteria
for the same reason: they cannot screen between informed and uninformed experts.
In contrast, we show a refutation contract that can screen between informed and
uninformed experts (i.e., informed experts accept the contract and uninformed experts
do not accept it). This contract is based on an empirical test and a penalty for Bob if
his theory is rejected by the test. The method for determining how to refute theories
is novel and is not based on falsification or on any standard statistical test.

Popper was right to point out the asymmetry between verification and refuta-
tion. However, his argument is based on the idea that some empirical claims can be
conclusively rejected, but not conclusively demonstrated. This asymmetry becomes
immaterial when refutation is understood as (strict) falsification, and theories are
produced by strategic experts. If refutation is understood more broadly (as it is in
this paper), then, even if experts are strategic, the asymmetry can be established
by proving the existence of a screening refutation contract and the nonexistence of a
screening verification contract.

These two results deliver an original argument supporting the fundamental idea
that refutation is a better maxim for empirical research than verification. In addition,
the same asymmetry between verification and refutation still holds in some cases
where permitted theories are restricted to be highly structured (e.g., if it is assumed
that theories must be exchangeable). However, there exist restrictions on the set of
permitted theories (e.g., the requirement that conditional probabilities must be fixed,
independent of past evidence) which make possible the existence of both verification
and refutation contracts that screen between informed and uninformed experts. In
general, no matter which theories are allowed, if there exists a screening contract,
then there exists a screening refutation contract.

Related literature

The idea that an ignorant agent can strategically avoid being rejected by an em-
pirical test can be found in a number of papers (see Dean P. Foster and Rakesh V.
Vohra (1998), Drew Fudenberg and David K. Levine (1999), Ehud Lehrer (2001),
Alvaro Sandroni (2003), Sandroni, Rann Smorodinsky and Vohra (2003), Vladimir
Vovk and Glenn Shafer (2005), and Wojciech Olszewski and Sandroni (2007, 2008)).
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Some of these results are reviewed in Nicolò Cesa-Bianchi and Gábor Lugosi (2006).4

However, the idea that the concept of falsification can be analyzed as an empirical
test, and that this test can be manipulated by ignorant experts, is novel. The classes
of tests considered in the literature have not yet included the empirical test defined
by falsification. In addition, the main issue analyzed in this paper - the merits of the
concepts of verification and refutation for guiding research - is also not addressed in
this literature.

Motivating Idea: Strategic Randomization

Consider a simple two-period model. In period one, a ball is drawn from an urn.
The balls are of n possible colors. Alice does not know the composition of the urn.
If informed, Bob has seen the composition of the urn. If uninformed, he has not.

Alice is willing to pay to become informed (i.e., to learn the composition of the
urn), but she is concerned that Bob may be uninformed and would just give her an
arbitrary distribution. Alice wants to discourage such a fraud. One difficulty is that if
Bob tells Alice that any color is possible, then she cannot reject Bob’s claim. So Alice
takes Popper’s advice and proposes a contract to Bob. If he accepts, he must deliver
a falsifiable distribution (i.e., a probability measure over the n colors that assigns zero
probability to at least one color) at period zero. That is, Bob must claim that at
least one color is impossible. If none of the (allegedly) impossible colors is observed,
then Bob’s utility is u > 0. If an (allegedly) impossible color is observed, then Bob’s
utility is u− d < 0. If Bob does not accept Alice’s contract, then his payoff is zero.

By requiring a falsifiable distribution, Alice may induce Bob to misrepresent what
he knows (when all colors are possible). However, no matter what the composition
of the urn, the probability of some color must be smaller than or equal to 1/n. So,
as long as

u ≥
d

n
, (1)

Bob, whenever informed, is better off accepting Alice’s contract and asserting that
some color, among those least likely to occur, is impossible, than he is by not accepting
Alice’s contract. In addition, Bob has no incentive to misrepresent the relative odds
of any colors other than the one he must claim to be impossible.

Now assume that Bob is uninformed. Then, he faces uncertainty and cannot
determine the relevant odds of the colors. Let us assume that, under uncertainty,
Bob determines the value of Alice’s contract by the minimum expected utility he
obtains, among all future realizations of the data.

4See Eddie Dekel and Yossi Feinberg (2006), Ehud Kalai, Lehrer and Smorodinsky (1999), Aldo
Rustichini (1999), Lehrer and Eilon Solan (2003), Sergiu Hart and Andreu Mas-Colell (2001), Ol-
szewski and Sandroni (2009a-b), Nabil I. Al-Najjar and Jonathan L. Weinstein (2008), Feinberg and
Colin Steward (2008), and Lance J. Fortnow and Vohra (2009) for related results.
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Assume that Bob announces any falsifiable distribution deterministically. For
some outcomes, Bob is rejected and his utility is negative. Hence, under uncertainty,
Bob’s payoff is negative. It follows that Bob cannot accept Alice’s contract and deliver
a falsifiable distribution deterministically. This seems to suggest that Alice can screen
between informed and uninformed experts at least when Bob is sufficiently averse to
uncertainty. However, this is not true. Bob can produce a falsifiable distribution, at
random, and obtain an expected positive payoff, no matter what the true composition
of the urn might be.

Let pi be a probability distribution that is falsified if and only if color i is realized
(i.e., pi assigns zero probability to i and positive probability to j = 1, ..., n, j �= i).
Assume that Bob selects each pi, i = 1, .., n, with probability 1/n. For any given
color, Bob’s realized probability measure is falsified with probability 1/n. Hence,
conditional on any composition of the urn, Bob’s expected utility is nonnegative
when (1) is satisfied. If Bob, when informed, accepts Alice’s contract, then Bob, even
if completely uninformed and averse to uncertainty, also accepts Alice’s contract.

The argument above is simple, but it leads to an important implication. As
pointed out earlier in the introduction, falsifiability is a criterion proposed by Popper
to differentiate scientific ideas from nonscientific ideas. Namely, a falsifiable distribu-
tion can be conclusively rejected by the data and a nonfalsifiable one cannot. However,
when theories are produced by experts who can misrepresent what they know, it is
unclear whether falsifiability constitutes a useful criterion.

The argument in above was simple because Alice had only one data point at her
disposal. In most relevant cases, however, Alice has many data points available to her.
The puzzle of which criteria can be used (when experts are strategic) to distinguish
useful from worthless theories then becomes far more interesting. We discuss the case
of multiple data points in proposition 1 of section II (while the present example is
offered as a simple illustration of proposition 1). However, before addressing the case
of larger data sets, let us continue to consider the case of one data point, but with
the additional requirement that Bob identify at least two colors that are impossible.
The motivation here is to indicate (as we will show in detail in the formal parts of the
paper) that additional criteria that may seem prima facie to be sensible for guiding
research also suffer from the inability of screening between informed and uninformed
experts. Let us say that Bob must assert that j colors are impossible. Then, an
informed expert always accepts Alice’s contract if (1) is satisfied when 1/n is replaced
with j/n. However, under this assumption, we can show that an uninformed expert
can randomize and obtain a positive expected payoff no matter what the composition
of the urn is. Hence, the additional requirements for falsification may not suffice for
screening between informed and uninformed experts.

I. Basic Definitions
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We now consider a model with many periods so that Alice will eventually have a
large data set available to her. Each period, one outcome, out of a finite set S with
n elements, is observed. Let ∆(S) denote the set of probability measures on S. An
element of ∆(S) is called a distribution over outcomes. Let St denote the Cartesian

product of t copies of S, and let S =
⋃

t≥0

St be the set of all finite histories.5 We also

define Ω = S∞ as the set of paths, i.e., infinite histories, and we define ∆(Ω) as the
set of probability measures over Ω.6

Any function f : S −→ ∆(S) that maps finite histories into distributions over
outcomes can be interpreted as follows: f takes data (outcomes up to a given period)
as input and returns a probabilistic forecast for the following period as output. To
simplify the language, any such function f is called a theory. Thus, a theory is defined
by its predictions. Let T be the set of all theories.

Any theory f ∈ T defines a probability measure Pf . The probability of each finite
history (s1, ..., sm) ∈ Sm can be computed as follows: Given a finite history s ∈ S
and an outcome s ∈ S, let the probability of s conditional on s be denoted by f(s)[s].
Then the probability Pf of (s1, ..., sm) is equal to a product of probabilities

Pf(s
1, ..., sm) = f (∅) [s1] ·

m∏

k=2

f
(
s1, ..., sk−1

)
[sk]. (2)

Definition 1. A theory f is falsifiable if every finite history (s1, ..., st) ∈ St has an
extension (s1, ..., st, st+1, ..., sm) such that

Pf(s
1, ..., sm) = 0. (3)

A theory is falsifiable if, after any finite history, there is a finite continuation
history that the theory deems impossible.7 Let F ⊂ T be the set of falsifiable
theories. Given f ∈ F , let Rf be the set of all finite histories to which Pf assigns zero
probability. So, Rf is the set of all finite histories that contradict (or, equivalently,
falsify) the theory f ∈ F .

5By convention, S0 = {∅}.
6We need a σ−algebra on which probability measures are defined. Let a cylinder with base on

(s1, ..., sm) be the set of all paths such that the first m elements are (s1, ..., sm). We endow Ω with
the smallest σ−algebra that contains all such cylinders and with the product topology (the topology
that comprises unions of cylinders). We also endow ∆(Ω) with the weak−* topology.

7One could say that conclusive rejection only requires some finite history to be impossible. Pop-
per makes no comment on whether theories should remain falsifiable after data is observed. In
proposition 1, we show that strategic experts can avoid rejection even if theories are required (by
definition 1) to remain permanently falsifiable. If we adopt a transient (and hence weaker) concept
of falsifiability (i.e., theories need to falsified just once), then our manipulability result still holds.
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Assume that Alice demands a falsifiable theory. Alice pays for the theory, but if it
is rejected (i.e., if Bob announces theory f ∈ F and data in Rf is observed), then Bob
receives a large penalty that gives a disutility greater than the utility of the payment.
The question is whether the falsifiability requirement dissuades an uninformed expert
(who does not know the data-generating process) from announcing a theory.

We show next that an uninformed expert can strategically produce falsifiable
theories, at random, with odds designed so that, with arbitrarily high probability, the
realized falsifiable theory will not be falsified, regardless of which data are eventually
observed. Hence, the feasibility of falsification is virtually eliminated by strategic
randomization.

II. Falsification and Strategic Randomization

In this section, we maintain the basic infinite horizon model in which Alice adopts
Popper’s method and demands a falsifiable theory f ∈ F . As an incentive, Alice
pays Bob a (small) amount of money (which gives Bob utility u > 0) if Bob delivers
a falsifiable theory. However, if a finite history in Rf is observed, then Bob’s theory
is falsified and he pays a penalty which gives him disutility d > 0. Liabilities are not
limited and so d can be arbitrarily large.

Bob does not have to deliver a theory, but if he accepts Alice’s conditions, he
must deliver a falsifiable theory before any data are observed. We assume that Bob
does not discount the future (although our result still holds if he does). So Bob’s
contingent payoffs are u > 0 if his theory is never falsified, and u− d if his theory is
contradicted at some time t. Formally, consider the contract in which only falsifiable
theories can be delivered, and delivering a theory which is (later) contradicted by
data is punished. If Bob accepts the contract, he announces a theory f ∈ F . If a
path s = (s1, s2, ...) ∈ Ω is observed, Bob’s contingent net payoff, at period zero, is

U(f, s) =

{
u− d if, for some period t, (s1, ..., st) ∈ Rf ;
u otherwise.

(4)

We call this contract the falsification contract. If Bob does not accept the falsifi-
cation contract, then no theory is announced and his payoff is zero.

We assume that Bob is utterly ignorant about the relevant probabilities. So, like
Alice, Bob cannot determine the odds according to which any given theory will be
falsified. However, Bob can select his theory randomly according to a probability
measure ζ ∈ ∆(F). Given that Bob randomizes only once (at period zero), Alice
cannot tell whether the theory she receives was produced deterministically or selected
randomly. Finally, we assume that when Bob faces uncertainty, he evaluates his
prospects based on the future data path s ∈ Ω that gives him minimal expected
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utility. Formally, Bob’s payoff is

V (ζ) = inf
s ∈ Ω

EζU(f, s), (5)

where Eζ is the expectation operator associated with Bob’s randomization device
ζ ∈ ∆(F).

If Bob announces any theory f ∈ F deterministically, then his payoff is u − d
because for every theory f ∈ F , there are many paths (i.e., those in Rf) at which
f will be falsified. Hence, as long as the punishment d is greater than the reward
u, Bob finds that announcing any falsifiable theory deterministically is strictly worse
than not announcing any theory at all. Formally, as long as d > u,

inf
s ∈ Ω

U(f, s) < 0 for every f ∈ F . (6)

However, Bob can randomize and, as Proposition 1 shows, randomization alters Bob’s
prospects completely.

Proposition 1. For any payoffs u > 0 and d > 0, and for any ρ > 0 smaller than u,
there exists a randomization device ζ̄ ∈ ∆(F) such that, given any future realization
of the data, Bob’s expected utility is strictly positive and bounded away from zero.
That is,

V (ζ̄) > u− ρ > 0. (7)

Proposition 1 shows that no matter how small the rewards for delivering a falsi-
fiable theory, no matter how large the penalties for having a theory falsified, and no
matter how much data Alice might have at her disposal, Bob is strictly better off by
accepting her contract and producing a theory at random. Even if Alice demands
a falsifiable theory, she will not dissuade the most ignorant expert from delivering
a fraudulent theory to her. This holds even in the extreme case that this ignorant
expert evaluates his prospects based on the minimum expected utility he receives
among all possible realizations of the data.

The striking contrast between the case of an honestly revealed theory and the case
of strategically produced theories conveys the first part of our argument. Falsifiability
can be, and often is, used as a relevant criterion. In some cases, this criterion may
seem intuitively weak (e.g., when there are too many possible outcomes and only a
single one must be ruled out). In other cases, this criterion may seem stronger (e.g.,
when a future outcome must be ruled out in every period). Still, whether intuitively
weak or strong, if an expert is honest and wants his theory rejected (when false), then
falsifiability is a useful criterion because only falsifiable theories can be conclusively
rejected.

11



In contrast, the requirement that theories must be falsifiable becomes near irrel-
evant when theories are produced by a potentially strategic expert, because if we
only require theories to be falsifiable, then we cannot discredit experts who are com-
pletely uninformed about the data-generating process. This result casts doubt on
the idea that falsifiability can demarcate legitimate theories from worthless theories.
As long as theories are produced by experts capable of strategic randomization, the
falsification criterion cannot screen informed from uninformed experts.

A. Intuition that underlies Proposition 1

Given a random generator of falsifiable theories ζ ∈ ∆(F) and a path s =
(s1, ..., st, ...) ∈ Ω, the odds that the selected theory f will be contradicted at some
point in the future are

pζ(s) = ζ
{
f ∈ F | there exists t such that (s1, ..., st) ∈ Rf

}
. (8)

The key argument is that for every ε > 0 there exists a random generator of
falsifiable theories ζ̄ ∈ ∆(F) such that the odds of selecting a theory that will be
falsified is smaller than ε, for every path s ∈ Ω. That is,

pζ̄(s) ≤ ε for every path s ∈ Ω. (9)

No matter which data are realized in the future, a falsifiable theory selected by ζ̄
will not be falsified, with arbitrarily high probability. Hence, by randomizing accord-
ing to specific probabilities, Bob is near certain that his theory will not be falsified.

To construct ζ̄, we first consider an increasing sequence of natural numbers Zt,
t = 1, 2.... Let Xt = S(Zt+1−Zt) be the set of outcome sequences of length (Zt+1 − Zt).
Given any sequence x = (xt)

∞
t=1, where each xt ∈ Xt consists of (Zt+1 − Zt) outcomes,

we define a falsifiable theory fx which is falsified if and only if xt occurs between
periods Zt and Zt+1. The random generator of theories ζ̄ is then defined as follows:
an xt, t = 1, 2, ..., is chosen from a uniform probability distribution over Xt, and the
sequence x = (xt)

∞
t=1 (thus chosen) determines the theory fx that is announced.

If Zt grows sufficiently fast (and if z1 is sufficiently large), the chance that xt will be
realized at least once is small. Any path s can be written in the form s = (y1, ..., yt, ...),
where yt consists of (Zt+1 − Zt) outcomes. So the announced theory fx is contradicted
along s if and only if xt = yt for some period t. By construction, this is an unlikely
event.

B. Extension of Proposition 1 to Multiple Testers

In proposition 1, Alice is the only tester. More generally, there could be multiple
testers l = 1, ....L. Each tester eventually has an arbitrarily large stream of data at
her disposal. Let s(l) = (s1(l), s2(l), ...) ∈ Ω be a data path obtained by tester l. Let
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(s(1), ..., s(L)) ∈ ΩL be a profile of data paths obtained by the L testers. Now assume
that Bob must deliver a single falsifiable theory f at period zero to all testers. If, at
any period t, Bob’s theory f is falsified by the t−history (s1(l), s2(l), ...st(l)) obtained
by any tester l, then Bob’s theory is rejected.

Proposition 1 extends to the case of multiple testers. As in proposition 1, the
central argument is the demonstration that it is possible to produce falsifiable theories
(with a single, properly chosen randomization device) that are unlikely to be falsified
by any data of the L testers.

Fix ε > 0. Let ζ̄
L
∈ ∆(F) be the random generator of falsifiable theories such that

(9) holds with ε replaced by ε/L. Given any data path profile (s(1), ..., s(L)) ∈ ΩL, the

odds that a theory f (selected by ζ̄
L
) is rejected by any tester is p

ζ̄
L(s(1), ..., s(L)) =

ζ̄
L {

f ∈ F | for some period t and tester l, (s1(l), ...., st(l)) ∈ Rf
}
. (10)

The event in which theory f is falsified by some tester l is the union of the
events in which f is falsified by tester l = 1, ..., L. Hence, for any data path profile
(s(1), ..., s(L)) ∈ ΩL,

p
ζ̄
L(s(1), ..., s(L)) ≤ ε. (11)

It is thus unlikely that the (single) theory produced by ζ̄
L
will be rejected by the

data obtained by any of the L testers at any point in time, no matter how their data
unfold in the future.

C. Popper’s Falsifiability Revisited

Science is sometimes identified with a collection of ideas that have been partially
confirmed by facts, and are capable of providing some explanation for observed phe-
nomena. As mentioned in the introduction, Popper contrasted this popular view
of science with the notion that science must only propose conjectures that can be
empirically refuted. Hence, a central question for Popper is whether there exists a
meaningful distinction between verification and refutation. He answered this ques-
tion affirmatively by revisiting the classic problem of induction and pointing out that
while, under suitable conditions, one can use past data to argue that some outcome is
likely to occur, it is difficult to argue conclusively from past observations that it must
occur. In contrast, some claims can be conclusively refuted with a single observa-
tion. Hence, in Popper’s work, the fundamental asymmetry between verification and
refutation lies in the concept of falsifiability: the feasibility of conclusive rejection.

Popper’s ideas have been intensively debated. One important critique is that
falsifiability rules out probabilistic statements that attach strictly positive probability
everywhere (i.e., all finite events). This difficulty with falsification can be mitigated
by the Cournot principle. If Bob’s theory is not falsifiable, then he can still satisfy
Popper’s criterion by reporting a modified theory that attaches zero probability to
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some unlikely events. Falsification can therefore be understood as giving Bob some
flexibility in the determination of which data can reject his theory.

If Bob is an honest expert who reports sufficiently implausible events to merit
rejection of his premises, then his theory may be refuted. However, this intuition
does not extend to the case of strategic experts who may deliver falsifiable theories
that claim that only few events (out of all possible events) are impossible and then,
by properly randomizing among these falsifiable theories, virtually eliminate the odds
of rejection.

The failure of Popper’s falsifiability to discredit false, but strategic, experts mo-
tivates an analysis of alternative criteria for guiding scientific inquiry. One natural
direction is to allow any probabilistic statements, but to give the tester more discre-
tion regarding how to evaluate each theory. In the next section, we formally define the
broader concepts of verification and refutation as properties of the empirical methods
that Alice may use. The central question is whether there exists an economically
meaningful distinction between the two methods.

III. Verification and Refutation Contracts

In this section, we consider general contracts. The section is organized as follows:
We first define a general contract, and two important subclasses of the class of all
contracts: verification and refutation contracts. We show that verification contracts
cannot screen informed and uninformed expects, and give experts very poor incentives
for information acquisition. We discuss this, perhaps surprising, result in section II
B. Next, we show that in contrast some refutation contracts can screen informed and
uninformed expects, and discuss this result in sections II D and E. One important
conclusion coming out of this discussion is that the asymmetry between verification
and refutation holds true not only when theories are unrestricted, but also for some
highly structured theories, such as exchangeable processes. Finally, we show that
restricting attention to refutation contracts, as opposed to studying general contracts,
involves no loss of generality in terms of the possibility of screening experts.

Bob decides whether to accept a contract at period zero. If Bob does not accept
a contract, then he does not deliver a theory and his payoff is zero. If Bob accepts a
contract, then he delivers a theory f ∈ T , which is now not required to be falsifiable,
to Alice at period zero (before any data are observed). An initial transfer may occur
at period zero (after the theory is announced). This transfer gives utility u(f,∅) to
Bob. At period t, if data st ∈ S, st = (s

1, ..., st), are observed, then a new transfer
may occur. Bob’s payoff, evaluated at period zero, for this contingent transfer is
u(f, st). So, given a path s ∈ Ω, Bob’s contingent payoff at period zero is
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U(f, s) = u(f,∅) +
∞∑

t=1

u(f, st), where s = (s1, ..., st, ...). (12)

The utility functions u and U are assumed to be bounded. Therefore, Bob can-
not receive unboundedly large contingent payoffs (either positive or negative) in any
single period or in total. This assumption is maintained throughout the paper unless
otherwise specified, but no other restrictions, such as continuity, are imposed on the
utilities associated with Alice’s contract.8

In this model, the payoffs are defined very generally. Hence, a variety of ways to
evaluate theories can be accommodated by this framework. Alice may judge some
theories to be prima facie more useful than others; in addition, Bob’s initial payoff
u(f,∅), which is contingent only on his theory, may partially reflect judgments about
theories without data. In addition, the contract specifies payoffs u(f, st) contingent
on the announced theory f and the observed data st. Some contracts may specify
which evidence disproves each theory and prescribe a negative payoff if the theory
is disproved, while other contracts may specify which evidence confirms each theory
and prescribe a single positive payoff if the theory is confirmed. Still other contracts
may never disprove or confirm theories. Instead, they specify positive payoffs when
the weight of the evidence leans in favor of the theory and negative payoffs when the
weight of the evidence leans against the theory. In general, contracts in our model
may not rely on any notion of whether the evidence does or does not supports each
theory, but rather on how helpful for Alice the theory is, contingent on observed
evidence. The key assumption is that experts receive different payoffs depending on
the announced theory and how it performs in light of future evidence, but the way in
which theories are evaluated is quite flexible and intentionally left to be specified by
the contract.

We now consider two fundamentally different types of contracts. If u(f, st) ≥ 0
for every st ∈ S̄, st �= ∅, then the contract is said to be a verification contract. If
u(f, st) ≤ 0 for every st ∈ S̄, st �= ∅, then the contract is said to be a refutation
contract. So, although Bob may receive a (positive, negative, or zero) payoff at
period zero when the theory is delivered, the distinction between verification contracts
and refutation contracts depends only on the payoffs after the data are observed.
Verification contracts are those in which, after the data are revealed, Bob receives
either no payoff or a positive payoff, contingent on the performance of the theory vis-
a-vis the data. Refutation contracts are those in which, after the data are revealed,
Bob receives either no payoff or negative payoffs contingent on how his theory performs
vis-a-vis the data. The terminology reflects the idea that in a verification contract

8Naturally, we must impose standard measurability conditions to study Bob’s expected payoffs.
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Bob is paid when his theory performs well, while in a refutation contract it is Bob
who pays when his theory performs poorly.

The distinction between falsification and refutation can be understood as follows.
Falsifiability is a specific restriction on the set of allowed theories, coupled with an
indication of how to reject each permitted theory. So, of all possible theories only the
subset of falsifiable theories F ⊂ T is allowed. Bob receives utility u for announcing
any falsifiable theory. Each falsifiable theory is rejected when an event deemed im-
possible by the theory is observed. Bob receives disutility d if his theory is falsified.
In contrast, refutation (and also of verification) contracts need not, by themselves,
restrict the set of allowed theories. Unlike falsification, a refutation contract does
not necessarily dismiss a nonfalsifiable theory, or indeed any theory, before data are
observed. It may still pay for the nonfalsifiable theory and punish Bob later if his
theory does not perform adequately vis-a-vis the data in the sense defined by the
refutation contract.

However, it is possible to combine the idea of verification contracts and refutation
contracts with restrictions on the set of allowed theories. Any contract could restrict
the set of allowed theories to some set (or class) A ⊂ T . In this paper, the set of
allowed theories take this form: f ∈ A is permitted if and only if Pf ∈ Θ ⊆ ∆(Ω),
where Θ is a set of stochastic processes. So, we may refer to Θ as a restriction on
permitted theories. In the case thatΘ = ∆(Ω), we say that theories are not restricted.

Given a theory f ∈ T and a probability measure P ∈ ∆(Ω), we define

ŪP (f) = EPU(f, s), (13)

where EP is the expectation operator associated with P . If Bob is informed at period
zero and announces a theory f , then his expected payoff is Ū(f) = ŪPf (f). We say
that an informed expert accepts the contract if, for all allowed theories f ∈ A,

Ū(f) > 0. (14)

So, if Bob is informed, he knows the odds of future events (i.e., the real process
that will generate s), and (strictly) prefers to announce what he knows rather than
to refuse the contract.9

Now assume that Bob faces uncertainty and does not know anything about the
data-generating process. In this case, we say that Bob is uninformed. As in the case
of the falsification contract, Bob can select his theory by randomizing once (at period
zero) according to a random generator of theories ζ ∈ ∆(A). If uninformed, Bob

9It is convenient to assume that, he is indifferent between accepting and rejecting the contract,
the expert (whether informed or not) rejects the contract. Similar results can be obtained (from the
authors upon request) under the opposite convention in which experts, when indifferent, accept the
contract.
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evaluates his prospects based on the process P ∈ Θ that gives him minimal expected
utility. Formally, Bob’s payoff is

V (ζ) = inf
P ∈ Θ

EPEζU(f, s), (15)

where Eζ is the expectation operator associated with ζ ∈ ∆(A). In the case of
unrestricted theories, Bob’s payoff is simply

V (ζ) = inf
s ∈ Ω

EζU(f, s). (16)

We say that the uninformed expert accepts the contract if there exists a random
generator of theories ζ̄ ∈ ∆(A) such that

V (ζ̄) > 0. (17)

So, an uninformed expert accepts the contract if he can randomly select theories such
that, contingent on any possible realization of the data, his expected payoff with the
contract is positive.

A contract screens between informed and uninformed experts if the informed expert
accepts the contract, but the uninformed expert does not accept it.

Under uncertainty, Bob’s payoff is given by (15). His payoff is determined under
the worst-case scenario, i.e., the path that gives him minimum expected utility with
his random strategy ζ. The worst-case scenario is computed ex-ante (i.e., before Bob
randomizes) and not ex-post (after Bob selects his theory). Indeed, if Bob were to
compute his payoff under the worst-case scenario after he randomizes, then he would
not take any contract such that, for every theory f , there is some path s such that
the payoff U(f, s) is negative.

While there may be more than one way of providing a rationale for the payoffs
in (15) and (16), in the case of unrestricted theories, choice-theoretic foundations
can be provided by the axiomatic framework of Itzhak Gilboa and David Schmeidler
(1989). In the case of restricted theories, Olszewski (2007), David S. Ahn (2008) and
Thibault Gajdos, Takashi Hayashi, Jean-Marc Tallon and Jean-Christophe Vergnaud
(2008) developed models in which the subjective range of probabilities is a subset of
the set of all objectively possible probabilities.

In Gilboa and Schmeidler (1989) maxmin expected utility model, Bob chooses as
if he had preferences represented by

inf
P ∈ Θ̃

EPEζU(f, s), (18)

where Θ̃ ⊆ ∆(Ω) is a closed and convex set of probability measures. So, (16) is
equivalent to the special, and polar case of (18) in which Θ̃ = ∆(Ω) is the set of all
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measures. Hence, if the uninformed expert with payoffs (16) accepts a contract, then
he accepts the contract in any maxmin expected utility model. But if the uninformed
expert rejects the contract, he rejects the contract only in some such models.

The critical axiom in Gilboa and Schmeidler is uncertainty aversion: if Bob is
indifferent between acts f and g, then he prefers any mixture of the two acts to both
f and g. We exploit this property in our results. The uninformed expert will accept
some contracts because a randomization over theories gives a positive payoff, even
though any single theory gives a negative payoff. We now describe our results.

Proposition 2. Assume that theories are unrestricted.10 If an informed expert ac-
cepts a verification contract, then an uninformed expert also accepts this verification
contract.

Proposition 2 shows that verification contracts cannot screen between informed
and uninformed experts. This result shows a fundamental limitation on verification
as a guiding principle for empirical analysis. No verification contract can mitigate
Alice’s adverse selection problem.

Now consider the following moral hazard problem: Bob is uninformed, but can
become informed before any data are revealed, if he acquires sufficient information
that allows him to formulate probabilities (i.e., to transform his uncertainty into risk).
The cost (i.e., his disutility) of acquiring this information is c > 0. When Bob decides
whether to become informed, he does not know the data-generating process and he
does not have a prior over the space of data-generating processes (otherwise he would
use this prior to assess the odds of the data). Hence, Bob makes a decision under
uncertainty. As before, we assume that Bob evaluates his prospects based on the
minimum expected utility he may obtain. Therefore, Bob’s net value for becoming
informed is

V (I, c) = inf
f ∈ A

ŪPf (f)− c. (19)

That is, V (I, c) is Bob’s smallest expected utility when informed, minus the cost c
of becoming informed. On the other hand, if Bob remains uninformed and produces
a theory according to ζ, then his payoff is still V (ζ).

We say that the expert prefers not to become informed if there exists a random
generator of theories ζ̄ such that V (ζ̄) > V (I, c). In that case, Bob prefers to announce
theories at random (selected by ζ̄) to becoming informed at cost c.

Proposition 3. Assume that theories are unrestricted.11 Consider any verification
contract and any positive (possibly arbitrarily small) cost c > 0 of acquiring informa-
tion. Then, the expert prefers not to become informed.

10More generally, theories may be restricted by any closed and convex set Θ ⊆ ∆(Ω).
11As in proposition 2, this result also holds with restricted theories where Θ is closed and convex.
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Proposition 3 shows that no matter how low the cost of acquiring information is,
the expert prefers not to acquire it. Instead, the expert chooses to present a randomly
selected theory.

To underscore these results, assume that for every theory f , a set of finite histories
Af are deemed consistent with f . Also assume that Af has probability 1− ε, ε > 0,
under theory f (i.e., Pf(Af ) = 1− ε).12 Hence, if the announced theory is indeed the
data-generating process, then the data are likely to be deemed consistent with the
theory, but no other restrictions are placed on which histories are deemed consistent
with each theory.

Now consider the contract in which Bob receives zero payoff in period zero, when
the theory is announced, but receives payoff 1whenever the observed history is deemed
consistent with Bob’s theory. (Formally, u(f,∅) = 0, u(f, st) = 1 if st ∈ Af , and
u(f, st) = 0 if st /∈ Af .) At period zero, Bob’s net value of becoming informed,
V (I, c), is 1− ε− c because, if informed, Bob gets payoff 1 with probability 1− ε. By
proposition 3, V (ζ̄) is higher than 1− ε− c for some ζ̄ ∈ ∆(T ). This implies that no
matter how the data unfold, a theory selected by ζ̄ will be deemed consistent with
the data, with probability sufficiently close to 1− ε. Formally, there exists ζ̄ ∈ ∆(T )
such that for all s ∈ Ω,

ζ̄{f ∈ T | st ∈ Af for some t} > 1− ε− c. (20)

Thus, no knowledge over the data-generating process is necessary to produce theo-
ries that will, in the future, prove to be supported by the data. The widespread practice
of supplying theories that account for the facts is vulnerable to the usual reproach
centered at the existence of alternative theories that also explain the data. However,
as we have demonstrated, even without knowing the data, uninformed “experts” can
fabricate theories that will be supported by the data. This result makes the standard
critique salient.

A. Intuition underlying Propositions 2 and 3

Although the main contribution of this paper is conceptual, we wish to point
out that the proofs of propositions 2 and 3 use novel arguments, but rely heavily
on a combination of analytical techniques developed in the strategic experts litera-
ture (particularly in Olszewski and Sandroni (2007) and (2009b)). The former paper
considers a class of contracts that cannot screen informed and uninformed experts.
These contacts may be verification contracts, refutation contracts or none of these
two types (the verification/refutation distinction is not made and addressed in these

12For example, if Bob’s theory asserts that 1 has probability p ∈ [0, 1] in all periods, then an
acceptance set could comprise all histories in which the relative frequency of 1 is between p− δ and
p+ δ, after sufficiently many periods.
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papers). The latter paper focus on test-based contracts and contains a result which
is subsumed by proposition 2.

The proofs of propositions 2 and 3 are similar, and so we focus on the intuition
for proposition 3. Consider the zero-sum game between Nature and the expert such
that Nature’s pure strategy is a path s ∈ Ω and the expert’s pure strategy is a theory
f ∈ T . The expert’s payoff is U(s, f). For every mixed strategy of Nature P , there
exists a strategy for the expert (to announce a theory f such that Pf = P ) that gives
the expert an expected payoff of at least V (I, c)+ c. So, if the conditions of Ky Fan’s
(1953) minmax theorem are satisfied, there is a mixed strategy for the expert, ζ̄, that
gives him an expected payoff higher than V (I, c), no matter which path s ∈ Ω Nature
selects.

A key condition in Fan’s minmax theorem is the lower semi-continuity of the
expert’s payoff. In refutation contracts, the expert’s payoff is not necessarily lower
semi-continuous; in contrast, the positive payoffs in verification contracts suffice to
make U(f, s) a lower semi-continuous function of s. By definition, U(f, s) is a lower
semi-continuous function of s = (s1, ..., st, ...) if for every path s′ which coincides with
s on a sufficiently long initial history (i.e., st = (s1, ..., st) = s′t if t is sufficiently
large), U(f, s′) is not much lower than U(f, s). If U(f, s) is bounded, then, when t is
sufficiently large, U(f, s) is approximately equal to the sum of the utilities u received
up to period t. Since these utilities depend only upon the history up to period t and
st = s′t, the sum of the utilities received up to period t is the same on paths s and
s′. The payoffs received after period t on path s′ can be significant, so U(f, s′) may
not be approximately equal to the sum of the utilities received up to period t. In a
verification contract, however, the payoffs received after period t are positive, so they
can make U(f, s′) only higher.

The assumption of lower semi-continuity plays a role in Fan’s minmax theorem
that is similar to the role of all sorts of continuity conditions on payoff functions
for the existence of Nash equilibrium in games. (See Philip J. Reny (1999), among
many others, for existence of Nash equilibrium results in some discontinuous games.)
Similarly, the role of the assumption that the set of allowed theories is unrestricted
is that the strategy space for the expert is compact and convex. So, as mentioned in
footnotes 12 and 13, propositions 2 and 3 still hold even if the expert is not allowed
to announce any theory, but is instead restricted to announcing a theory f such that
Pf belongs to some closed and convex Θ. We exploit this extension of propositions 2
and 3 in the next section.

B. Verification Contracts, Experimentation, and Structured Theories

Consider first the case in which Alice can replicate identical experiments. So, in
each period Alice conducts the same experiment, and in each period she obtains an
outcome that is assumed to be generated with the same probability distribution. In

20



this environment, Alice can eventually uncover, to a certain degree of precision, all
relevant probabilities from the data (even without any need for Bob). The relative
frequencies of outcomes will reveal the probabilities of outcomes. Now, consider a
verification contract in which Bob must deliver the fixed probability of each outcome
at period zero, and gets paid if and only if at a sufficiently distant period, the relative
frequencies of outcomes are sufficiently close to the announced probabilities. Bob
is then likely to get paid if and only if he announces nearly correct probabilities at
period 0. A formal verification contract, based on a proper match between announced
probabilities and observed frequencies, can be written such that the informed expert
accepts the contract and the uninformed expert rejects it. Analogously, a screening
refutation contract can also be constructed if multiple identical experiments can be
conducted.

It follows that screening contracts exist if Alice can replicate identical experiments,
or the allowed stochastic processes are independent and identically distributed (i.i.d.).
However, in several relevant situations, it may be difficult to produce identical ex-
periments, or it is unclear whether relevant variables must follow an i.i.d. process.
Examples include weather forecasting, or predicting basic economic variables such as
inflation and unemployment. Therefore, let us consider instead the still strong, but
less demanding restriction to exchangeable processes. In this case, the probabilities
of data sequences must not depend on the order of the entries of the data.13

Exchangeable processes need not be i.i.d., but they are still highly structured,
stationary processes (e.g., a Polya’s urn) which are amenable to specific types of
empirical investigation.14 For example, if the process is exchangeable, then relative
frequencies must converge. (See David M. Kreps (1988) for a more detailed discussion
on the central role of exchangeable processes in economics.)

Bruno De Finetti (1937) celebrated result shows that exchangeable processes are
mixtures of independent, identically distributed processes and form a closed and
convex set. It is for this reason that propositions 2 and 3 hold even if the expert
is restricted to announcing an exchangeable process at period zero. The substantive

13Formally, a exchangeable theory can be defined as follows : Let a one-to-one mapping π : N → N

from the set of natural numbers onto the set of natural numbers be called a permutation. Given a
permutation π, let Y π : Ω→ Ω be defined by

Y π(s1, s2, ...) = (sπ(1), sπ(2), ...).

A theory f is exchangeable if given any permutation π,

Pf (A) = Pf (Y
π(A))

for any measurable event A.
14Note that exchangeable processes may not be falsifiable, and we do not restrict them to be

falsifiable.
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point here is that verification contracts may remain incapable of screening between
informed and uninformed experts even in some cases where Bob is required to deliver
highly structured theories such as an exchangeable process, or a mixture of other
well-known processes like Markov processes. (See Persi Diaconis and David Freedman
(1987) for a series of De Finetti’s type results.)

We conclude this section with some simple examples of a class of processes for
which there exist both verification and refutation screening contracts, and a class of
processes for which no screening contract of either type exists. Assume that there
are only two possible outcomes, 0 and 1, in each period, and theories are restricted
to predict either 0 in every period or 1 in every period (with certainty in both cases).
The set of allowed theories is then not closed and convex. In addition, one data
point perfectly identifies the underlying process. Thus, both screening verification
and refutation contracts can be written. For a verification contract, assume that Bob
pays 0.5 in period 0, and gets 1 if and only if his forecast in period 1 is correct. If
informed, Bob’s total payoff is 0.5. If uninformed, Bob’s total payoff is −0.5. Hence,
the informed expert accepts the contract while the uninformed expert does not.

Mixtures of these two processes are theories such that any probability of outcome
1 in the first period is allowed, combined with the condition that 1 (or 0) must occur
thereafter if and only if 1 (or 0) has been observed in the previous periods. This is a
closed and convex class of processes. If Bob’s theory (and the data-generating process)
are restricted to this class, then the data will not perfectly reveal the underlying
process. In addition, Alice will effectively have only one data point at her disposal
(either 0 or 1 in the first period) to evaluate Bob’s probability of 1 in the first period.
In this case, no screening contracts (verification, refutation, or other) exist.

Finally, one can argue that in practice the forecasters may often not know in ad-
vance how they will be rewarded or penalized for their forecast contingent on the data
that will be observed in the future. The assumption that Bob knows the contract
before announcing any forecasts can be replaced with the assumption that Bob cor-
rectly anticipates the future rewards and penalties. However if Bob is uninformed, and
also ignorant regarding the future rewards and penalties, then there exist verification
contracts which screen informed and uninformed experts.

C. Refutation Contracts

We now return to the case of unrestricted theories, where verification contracts do
not deliver an effective way to determine whether Bob’s theory is based on any rele-
vant knowledge of the data-generating process. However, in this section, we consider
refutation contracts.

Proposition 4. Assume that theories are not restricted. Then there exists a refuta-
tion contract (with bounded payoffs) that screens between informed and uninformed
experts.
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Propositions 2, 3, and 4 show a basic asymmetry between verification and refuta-
tion contracts: no verification contract can screen between informed and uninformed
experts, but some refutation contracts can. In order to prove proposition 4, we now
construct a screening refutation contract. This contract is constructed in the context
of Popper’s main example.

Assume that in every period a swan is observed. This swan can be white or
of another color. Let 1 denote white color, and 0 any other color. Let 1t be the
(t+ 1)−history of white swans in all periods until period t, but a non-white swan at
period t + 1. Let 1̄m consist of the union of 1t, t ≥ m. So, 1̄m are the histories in
which only white swans are seen for at least m periods (starting at the initial period)
after which a nonwhite swan is observed in the period following the initial sequence
of white swans.

Now, we return to the classic induction problem: a long sequence of white swans
does not prove that all swans are white. For some data-generating processes, a long
consecutive sequence of white swans may be followed by a nonwhite with positive
probability. However, for every process, the pattern of a sufficiently long consecutive
sequence of white swans followed by a nonwhite swan is unlikely. This can be shown
as follows: note that 1̄m ↓ ∅ as m goes to infinity (because 1̄m+1 is contained in 1̄m
and the interception of all sets 1̄m is empty). So, for every probability measure P ,
P (1̄m) ↓ 0 as m goes to infinity. Hence, for any data-generating process, the pattern
1̄m (in which only white swans are seen until period t ≥ m and a nonwhite swan is
seen at period t+ 1) is unlikely if m is large enough.

We define a contract in which Bob pays if he announces a theory f and Alice ob-
serves the pattern of more than m(f) consecutive white swans followed by a nonwhite
swan, where m(f) is long enough so that this pattern is unlikely, i.e., Pf(1̄m(f)) ≤ ε,
ε > 0. So, the Cournot principle is implicitly used here because negative payoffs
are triggered not by conclusive rejection, but by the observation of events deemed
unlikely by the theory.

Consider the following contract: At period 0, Bob receives δ ∈ (ε, 0.5) for an-
nouncing any theory f. Bob also receives disutility 1 contingent on 1̄m(f), and no
disutility otherwise. Formally,

u(f,∅) = δ;
u(f, st) = −1 if st ∈ 1̄m(f);
u(f, st) = 0 if st /∈ 1̄m(f).

(21)

Call this contract a simple refutation contract.
This contract is an example of a test-based contract, in which a set of finite histories

Rf (called the rejection set) is defined as inconsistent with theory f , and Bob incurs
a disutility of 1 if the observed history belongs to Rf , i.e., is inconsistent with his
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theory. The parallel to testing is clear: 1 is a disutility incurred when the theory is
rejected. In the simple refutation contract, Rf is defined as 1̄m(f).

The properties of this contract can be checked as follows: first note that

U(f, s) =

{
δ − 1 if for some period t, st ∈ 1̄m(f), s = (st, ...);
δ if for every period t, st /∈ 1̄m(f), s = (st, ...).

(22)

Bob’s utility function U takes only two values. Bob can be punished (i.e., receive
a negative payoff) only once. Punishment occurs if after period m(f), a nonwhite
swam is observed for the first time. Nonwhite swans observed for the second time
(or before m(f)) do not trigger a negative payoff. Hence, the assumption of bounded
utility functions u and U is satisfied.

Assume that Bob claims (based on a theory f̄) that all swans are white. The
simple refutation contract then punishes Bob only if a nonwhite swan is observed.
This intuitive property suffices for payoffs U(f, s) not to be lower semi-continuous
in s. To see this, consider the path s = (1, 1, ...) in which only white swans are
observed. Then, U(f̄ , s) = δ because Bob is never punished. Now consider any
path s(t) such that the first t outcomes are white swans and the (t + 1)-st outcome
is a nonwhite swan. By definition, s(t) converges to s as t goes to infinity, but
U(f̄ , s(t)) = δ− 1 is significantly lower than U(f̄ , s) = δ. As we argued in section III
A, lower semi-continuity is the critical feature of verification experts that makes them
incapable of screening between informed and uninformed contracts. However, lower
semi-continuity is also a strong condition that is naturally denied in several refutation
contracts. Informally, lack of semi-continuity may hold because a single observation
may not change a large data set topologically, but may have a strong negative impact
on the evaluation of some theories.

An informed expert accepts the simple refutation contract because if the data-
generating process is announced, the punishment is unlikely. More precisely,

ŪPf (f) = δ − Pf(1̄m(f)) ≥ δ − ε > 0. (23)

On the other hand, an uninformed expert turns down the simple refutation con-
tract. Let Tm ⊆ T be the set of all theories such that 1̄m ⊂ Rf , i.e.,

Tm = {f ∈ T : 1̄m ⊂ Rf} . (24)

That is, Tm are the theories that may be rejected at period m. Since Rf = 1̄m(f),
and 1̄m+1 ⊆ 1̄m, it follows that Tm ⊆ Tm+1. Moreover, any theory f ∈ T belongs
to Tm for some m, because m ≥ m(f) for sufficiently large values of m; as a result,
Tm ↑ T as m goes to infinity. That is, as the period m increases, more theories can
be rejected, and every theory can be rejected at some point in time. Thus, for every
random generator of theories ζ ∈ ∆(T ), there exists a period m∗ such that
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ζ(Tm∗) ≥ 1− δ. (25)

Indeed, Tm ↑ T implies ζ(Tm) ↑ ζ(T ) = 1. If s = (1m∗, ...), then

EζU(f, s) = δ − ζ(Tm∗) ≤ −1 + 2δ < 0, (26)

since δ < 0.3. Hence, V (ζ) < 0 for all random generators of theories ζ ∈ ∆(T ). This
shows that an uninformed expert turns down this contract, completing the proof of
proposition 4.

The simple refutation contract screens between informed and uninformed experts.
In conjunction with inability of verification contracts to do the same, this delivers an
original argument in support of the idea that refutation is a better guiding principle
for empirical research than verification. At the core of this original argument is this
fundamental contrast between refutation contracts and verification contracts: there
exists a refutation contract that can screen between informed and uninformed experts,
but no verification contract can screen between these experts.

D. Refutation and Exchangeability

Propositions 2, 3, and 4 show an asymmetry between verification and refutation
when theories are not restricted. Now consider the case such that theories must be
exchangeable.

There is an important difference between the exchangeable and the unrestricted
cases: when processes are restricted to be exchangeable, it may be possible to learn
future odds from the observed data, but learning may not be possible when processes
are unrestricted. So, in the exchangeable case, both the expert and the tester will
eventually know the approximate odds of future events. However, if no restrictions are
placed a priori on the data-generating process, then there is no (known) way of making
accurate statistical inferences from the data. Despite this fundamental difference, a
screening refutation contract exists both in the case of unrestricted theories and also
in case of the restricted theories to being exchangeable.

Proposition 5. The simple refutation contract, with theories restricted to be ex-
changeable, still screens informed and uninformed experts.

Propositions 2 − 5 deliver a conceptual differentiation between verification and
refutation. Both in the case of unrestricted theories and also in the case of exchange-
able theories, no verification contract can screen between informed and uninformed
experts, but some refutation contracts can.

The proof of proposition 5 is as follows: Consider the simple refutation contract,
with theories restricted to be exchangeable. An informed expert accepts it because,
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by proposition 4, any informed expert accepts it. Now consider an uninformed expert
who produces theories with some random generator of theories ζ. As in the proof of
proposition 4, let m∗ be given by (25). Consider now the i.i.d. process PP ∈ ∆(Ω)
(hence, an exchangeable process) such that the probability p of a white swan satisfies

pm
∗

>
δ

1− δ
. (27)

Then,

P p(1̄m∗) =
∞∑

n=m∗

pn(1− p) = pm
∗

>
δ

1− δ
. (28)

Thus,
EPPEζU(f, s) ≤ (1− P p(1̄m∗))δ + P p(1̄m∗)(−1 + δ) < 0. (29)

So, for some exchangeable process, the uninformed expert total payoff is negative.
Hence, the uninformed expert turns down this contract.

It follows from the proof of propositions 4 and 5 that the simple refutation contract
screens informed and uninformed experts when theories are restricted to any class
which contains all deterministic processes (e.g., falsifiable theories) and also to any
class of processes that contains all i.i.d. processes.15 Hence, the asymmetry between
verification and refutation extends to several other classes of theories as well (see the
De Finetti’s type results in Diaconis and Freedman (1987)). However, as mentioned
in section III B, for some restrictions on the set of allowed theories, no screening
contracts exists. For other restrictions, there are both refutation and verification
screening contracts.

E. Additional Properties, and Drawbacks of the Simple Refutation Contract

Olszewski and Sandroni (2008), and Eran Shmaya (2008) consider a large class of
empirical tests ordinarily used in statistics (such as calibration and likelihood tests).
Like verification contracts, the contracts based on these tests cannot screen between
informed and uninformed experts even if theories are restricted to convex and closed
sets. Therefore the simple refutation contract and the contract in proposition 5 are
original ways of testing theories. That is, the criteria we propose do not follow from
standard results in statistics. Moreover, since ε (and hence, δ) can be made arbitrarily
small, it follows that Alice need only make a small payments to induce an informed
expert to accept the simple contract. Finally, if ε is very small, then it is almost
optimal for Bob, if informed, to reveal his theory truthfully. This follows because the
odds that Bob will incur any disutility can be made arbitrarily small (as long as he
is informed and truthfully reveals his theory).

15It is an open question whether propositions 2 and 3 still hold if theories are restricted to be
falsifiable.
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Finally, we wish to point out that although our results deliver a basic concep-
tual distinction between verification and refutation, but we do not claim that our
refutation contracts are immune to either practical or conceptual shortcomings. One
weakness of our tests, and of the contracts based on them, is that an uninformed
expert fails the test only in the case of few histories or processes. However, in the
case of unrestricted theories only, Olszewski and Sandroni (2009b) show a test-based
refutation contract (that can screen between informed and uninformed experts) such
that an uninformed expert fails the test, no matter how he randomizes, on a topo-
logically large set of histories. (See Dekel and Feinberg (2006) for an earlier work on
screening tests, and a follow-up work by Shmaya (2008) for other test-based refutation
contracts that can screen between informed and uninformed experts; all these con-
tracts are far more complex than the simple refutation contract. See also Al-Najjar,
Smorodinsky, Sandroni, and Weinstein (2009) for a very recent work on restricted
theories to a particular, non-closed set.) There are also additional difficulties with
refutation tests, such as the need for long data sets to reject theories, but these are
beyond the scope of this paper.

F. Contracts with arbitrary transfers

One could conjecture that verification and refutation contracts are equivalent,
because one may, for example, raise utilities u(f, st) by some constant and then
compensate for this change with a change in the initial utility u(f, ∅). There are,
however, some difficulties with this idea. Consider our simple refutation contract and
assume that we raise all utilities u(f, st) by 1. Now Bob receives positive payoff in
every period such that some number of white swans followed by a nonwhite swan
is not observed, and no payoff if such a pattern is observed. Then, along the path
s = (1, 1, ...), where only white swans are seen, Bob’s contingent net payoff at period
zero becomes infinite.

However, every screening contract can be transformed into a refutation screening
contract. Let UCi(f, s) denote Bob’s contingent payoff at period zero under contract
Ci, where i = 1, 2. We say that contract C2 is less beneficial (to Bob) than contract
C1 if

UC2(f, s) ≤ UC1(f, s) (30)

for all data sequences s and theories f .

Proposition 6. For every contract C1 which is accepted by an informed expert, there
exists a less beneficial refutation contract C2 that is also accepted by an informed
expert.

So, if an uninformed expert rejects contract C1, then he will also reject contract
C2. This result holds no matter how theories are restricted. In particular, no matter
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what the restrictions on theories, if a screening verification contract exists, then so
does a screening refutation contract.

IV. Conclusion

Falsifiability is a widely used guide in research and legal proceedings because it
is perceived as a requirement that could disqualify nonscientific theories. Indeed,
falsifiable theories can be conclusively rejected, whereas nonfalsifiable ones cannot.
However, we show that falsifiability imposes essentially no constraints when theories
are produced by strategic experts. Without any knowledge, it is possible to construct
falsifiable theories that are unlikely to be falsified, no matter how the data unfold in
the future.

Verification suffers from the same difficulty as falsification. Strategic experts, with
no knowledge of the data-generating process, can produce theories that are likely to
turn out consistent with the data. However, there are special ways of constructing
refutation contracts (by defining which data are inconsistent with each theory) that
can screen legitimate from worthless theories, even if experts are strategic.
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APPENDIX

A. Proof of Proposition 1

A cylinder with base on history st = (s
1, ..., st) is denoted by C(s1, ..., st). Take

any ε > 0. We will construct a ζ̄ ∈ ∆(F) such that for every path (s1, s2, ...) ∈ Ω,

ζ̄
{
f ∈ F | ∃t (s1, ..., st) ∈ Rf

}
< ε. (A1)

This will complete the proof since

V (ζ̄) ≥ (1− ε)u+ ε(u− d) > u− ρ (A2)

if ε is sufficiently small.

Take a number r > 0 so small that

∞∑

t=1

rt < ε, (A3)

and next take a sequence of natural numbers {Mt, t = 1, 2...} such that

1

nMt+1
< rt. (A4)

It will be convenient to represent Ω as the Cartesian product
∞∏

t=1

Xt of sets Xt =

SMt, t = 1, 2, .... Consider a sequence of independent random variables X̃t uniformly

distributed on the set Xt. Let X̃ be the product
∞∏

t=1

X̃t of random variables X̃t,

t = 1, 2, ...; that is, X̃ = (x1, ..., xt, ...), xt ∈ Xt, if and only if X̃t = xt for all
t = 1, 2, ....

Let

Zt =
t∑

j=1

Mj. (A5)

For x = (x1, ..., xt, ...) ∈ Ω, let

Sx = C(x1) ∪
∞⋃

t=1

⋃

zt∈SZt

C(zt, xt+1) (A6)

be the union of the cylinders with base on histories of the form (zt, xt+1), where zt is
an arbitrary element of SZt and xt+1 are Zt + 1, ..., Zt+1−period outcomes of infinite
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history x. Let fx be the theory which assigns equal probabilities to all outcomes
s ∈ S, contingent on all finite histories, except histories (zt, xt+1) ∈ Sx. Contingent
on histories (zt, xt+1) ∈ Sx, let theory fx assign equal probabilities to all outcomes
s ∈ S except one, denote by ωt+1, to which it assigns probability 0.

Observe that all theories fx, x ∈ Ω, are falsifiable. Indeed, for any history
(s1, ..., st) ∈ St, take a Zm ≥ t and any extension zm ∈ SZm of (s1, ..., sm). Then
(zm, xm+1) is also an extension of (s1, ..., st), and by definition, (zm, xm+1) ∈ Sx.
Thus, fx assigns probability 0 to outcome ωm+1 contingent on history (zm, xm+1). So,
Pfx(zm, xm+1, ωm+1) = 0.

Let ζ̄ ∈ ∆(F) be defined as follows. First a realization x of the random variable
X̃ is observed, and then theory fx that is announced.

Fix a path y = (s1, s2, ...) ∈ Ω; it can also be represented as y = (y1, ...., yt, ...)
where yt ∈ Xt; so, y1 consists of the first M1 outcomes of (s1, s2, ...), and yt+1 consists
of Zt + 1, ..., Zt+1−period outcomes. By definition, (y1, ...., yt, ...) ∈ Rfx if and only if
yt+1 = xt+1 for some t ∈ 0, 1, ..., and sm = ωt+1 in period m = Zt+1 + 1. Hence,

ζ̄
{
f ∈ F | ∃t (s1, ..., st) ∈ Rf

}
=
1

n
P̂
(
Sy
)
, (A7)

where P̂ is the uniform probability distribution on Ω.
Since

P̂
(
Sy
)
≤

∞∑

t=0

P̂




⋃

zt∈SZt

C(zt, xt+1)



 =
∞∑

t=0

1

nMt+1
≤ n

∞∑

t=1

rt, (A8)

ζ̄
{
f ∈ F | ∃t (s1, ..., st) ∈ Rf

}
≤

∞∑

t=1

rt < ε.

B. Proof of Propositions 2 and 3

Let X be a metric space. Recall that a function g : X → R is lower semi-
continuous at an x ∈ X if for every sequence (xn)

∞
n=1 converging to x:

∀ε>0 ∃n ∀n≥n g(xn) > g(x)− ε. (A9)

The function g is lower semi-continuous if it is lower semi-continuous at every x ∈ X.
As mentioned in footnote 6, we endow ∆(Ω) with the weak−* topology and with

the σ−algebra of Borel sets, (i.e., the smallest σ−algebra which contains all open
sets in weak−* topology). We endow the set of all theories T with the pointwise
convergence topology; in this topology, a sequence of theories (fn)

∞
n=1 converges to

a theory f if fn(st) →n f(st) for every history st ∈ S. Let ∆(T ) be the set of
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probability measures on T . We also endow ∆(T ) with the weak−* topology. It is
well-known that Ω, ∆(Ω), T , and ∆(T ) are compact metrizable spaces.

Recall that if ∆(X) is endowed with the the weak−* topology, then if h : X → R
is a continuous function, then H : ∆(X)→ R defined by H(µ) = Eµ(h), where Eµ is
the expectation operator associated with µ ∈ ∆(X), is also a continuous function.

Lemma A1. Assume that an informed expert accepts a verification contract.
Then, there exists δ > 0 such that for every probability measure P ∈ ∆(Ω) there
exists a theory f(P ) such that ŪP (f(P )) ≥ δ.

Proof : Suppose, by contradiction, that there exists a sequence of probability
measures P1, P2, ....such that ŪPi(f) ≤ 1

i
for every theory f . Let fi be a theory

such that Pfi = Pi, i = 1, 2, .... Let f̄ and Pf̄ be the limits of some subsequences
(also indexed by i). So, fi →i f̄ and Pi →i Pf̄ as i goes to infinity. It follows that
ŪPi(f̄) ≤ 1/i. We now show that ŪPf̄ (f̄) ≤ 0.

Let Xt(f̄ , s) = u(f̄ , st), where s = (s1, ..., st, ...), for t ≥ 1, and let X0(f̄ , s) =
u(f̄ ,∅). Then,

U(f̄ , s) =
∞∑

t=0

Xt(f̄ , s). (A10)

By the monotone convergence theorem,

EPf̄

{
m∑

t=0

Xt(f̄ , s)

}

−→
m→∞

ŪPf̄ (f̄). (A11)

Since each Xt(f̄ , s) is a continuous function of s, by the definition of the weak−*
topology,

EPi

{
m∑

t=0

Xt(f̄ , s)

}

−→
n→∞

EPf̄

m∑

t=0

Xt(f̄ , s) (A12)

for every m.16 In addition,

EPi

{
m∑

t=0

Xt(f̄ , s)

}

≤ ŪPi(f̄) ≤
1

i
. (A13)

Hence,

EPf̄

{
m∑

t=0

Xt(f̄ , s)

}

≤ 0 (A14)

16Function Xt(f̄ , s) is continuous in s, because its value depends only on st, and any function
with this property is continuous.
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for every m. It now follows that ŪPf̄ (f̄) ≤ 0, this is a contradiction with the assump-
tion ŪPf (f) > 0 for every theory f .

Consider an arbitrary verification contract. Let H : ∆(T ) × ∆(Ω) −→ � be a
function defined by

H(ζ, P ) = EζEPU(f, s). (A15)

Step 1: Assume that H(ζ, P ) <∞ for every ζ ∈ ∆(T ) and P ∈ ∆(Ω), and that
for every st ∈ S̄, u(f, st) is a bounded function of f . Then, for every ζ ∈ ∆(T ),
H(ζ, P ) is a lower semi-continuous function of P .
Proof: Let againXt(f, s) = u(f, st) where s = (s

1, ..., st, ...), t ≥ 1, andX0(f, s) =
u(f,∅). Then,

U(f, s) =
∞∑

t=0

Xt(f, s). (A16)

By the monotone convergence theorem,

EPU(f, s) =
∞∑

t=0

EPXt(f, s) and H(ζ, P ) =
∞∑

t=0

EζEPXt(f, s). (A17)

Fix ε > 0 and assume that Pn converges to P (in the weak−* topology) as n goes to
infinity. Then, by the definition of the weak−* topology, EPnXt(f, s) −→

n→∞
EPXt(f, s)

for every t. By the dominated convergence theorem, and the assumption that u(f, st)
is a bounded function of f , EζEPnXt(f, s) −→

n→∞
EζEPXt(f, s) for every t.

Now, since H(ζ, P ) <∞, there exists m∗ such that

∞∑

t=m∗+1

EζEPXt(f, s) <
ε

2
. (A18)

If n is sufficiently large,

m∗∑

t=0

EζEPnXt(f, s) ≥
m∗∑

t=0

EζEPXt(f, s)−
ε

2
(A19)

and, therefore,

H(ζ, Pn) ≥
m∗∑

t=0

EζEPnXt(f, s) ≥ H(ζ, P )− ε. (A20)

Step 2: The sets ∆(T ) and ∆(Ω) are compact sets in the weak−* topology and
H(ζ, P ) is a linear function on ζ and P . Hence, it follows from Fan’s (1953) minmax
theorem that if H(ζ, P ) is lower semi-continuous in P , then

inf
P

sup
ζ

H(ζ, P ) = sup
ζ

inf
P
H(ζ, P ). (A21)
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Proof of proposition 2: For a given P take an f(P ) such that ŪP (f(P )) ≥ δ.
The existence of an f(P ) with this property is guaranteed by Lemma A.1. Take ζ
such that ζ({f(P )}) = 1. Then, the left-hand side of (A21) exceeds δ. So, the right-
hand side of (A21) exceeds δ. This yields ζ̄ ∈ ∆(∆(Ω)) such that H(ζ̄, P ) > δ/2 for
every P . Now, for any s ∈ Ω, take the probability measure Ps such that Ps({s}) = 1.
So, H(ζ̄, Ps) > δ/2 for every s. Hence, V (ζ̄) > δ/2 > 0.
Proof of proposition 3: For a given P take a ζ such that ζ({f}) = 1 for some

f such that Pf = P . Then, the left-hand side of (A21) exceeds V (I, c) + c. So, the
right-hand side of (A21) exceeds V (I, c) + c. This yields ζ̄ ∈ ∆(∆(Ω)) such that
H(ζ̄, Ps) > V (I, c) + 0.5c for every s ∈ Ω. Hence, V (ζ̄) ≥ V (I, c) + 0.5c > V (I, c).

Remark 1. Proposition 2 and 3 are shown in the case of unrestricted theories. The
proof for the case of Θ closed, compact is, however, very similar. The critical property
of ∆(Ω) used in the proofs is that ∆(Ω) is compact and convex set.

C. Proof of Proposition 6

Given a sequence of numbers an and a sequence of pairwise disjoint measurable
sets An ⊂ Ω, where n = 1, ...,N , define a step-wise function Y : Ω→ R by

Y (s) =
N∑

n=1

anIAn , (A22)

where IAn is the indicator function of An, i.e.,

IAn(s) =

{
1 if s ∈ An
0 if s /∈ An

. (A23)

Fix a theory f , let P = Pf , and let X(s) = UC1(s). Since X is a measurable and
bounded function of s, and EPX(s) > 0, there exist numbers an and pairwise disjoint
measurable sets An such that

Y (s) ≤ X(s) for every s ∈ Ω, and EPY (s) > 0. (A24)

Let b = max{a1, ..., aN}, and let bn = b− an, n = 1, ...,N . Then

Y (s) = b−
N∑

n=1

bnIAn. (A25)

Since sets An are measurable, for any ρ > 0, there exist an open sets Un ⊂ Ω such that
An ⊂ Un and P (Un) < P (An) + ρ.17 This yields that there exist open sets Un ⊂ Ω

17This is the place in the proof in which it is essential that we construct a refutation contract.
If we were trying to prove, in a similar manner, the counterpart of proposition 6 for verification
contracts, we would have to find open sets Un ⊂ Ω such that Un ⊂ An and P (An) < P (Un)+ ρ, but
such sets may not exist in general.
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such that An ⊂ Un and EPZ(s) > 0, where

Z(s) = b−
N∑

n=1

bnIUn ; (A26)

of course, since bn ≥ 0, n = 1, ...,N , Z(s) ≤ Y (s) ≤ X(s) for every s ∈ Ω.
Each open set Un can be represented as a union of pairwise disjoint cylinders Ck

n.
Define contract C2 as follows: let

uC2(f,∅) = b, (A27)

and for every finite history s ∈ S, let

uC2(f, s) =
N∑

n=1

{
−bn : C

k
n = C(s) for some k

}
. (A28)

That is, Bob receives payment b when he announces a theory, and then he has to pay
bn when history s that is the base of a cylinder Ck

n is observed.
By definition, C2 is a refutation contract, and

UC2(f, s) = Z(s) for every s ∈ Ω. (A29)

Thus, contract C2 is less beneficial than contract C1, but is still accepted by an
informed expert.
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