
Calibration and Expert Testing, prepared for the Handbook of

Game Theory, Volume IV∗

Wojciech Olszewski†

January 15, 2014

1 Introduction

Probabilistic estimates of future events have long been playing a significant role in human activity. Proba-

bilistic models are common in science, and are often used in weather forecasting. Many economic markets

also rely on probabilistic forecasts, including the forecasts of financial analysts, safety assessors, earthquake

locators, traffic flow managers, and sports forecasters.

Probability forecasts can be judged by several criteria (see Murphy and Epstein (1967) for an early study

on the topic). Among of most reasonable and objective ones is the criterion of calibration. This criterion has

some similarity with the frequency definition of probability, but does not require a background of repeated

trials under constant conditions. Dawid (1982) is one of the first theoretical studies of calibration. It shows

that if data are generated by a probabilistic model, then forecasts generated by that model are (almost

surely) calibrated. Murphy and Winkler (1977) argue that experienced weather forecasters are calibrated.

However, Foster and Vohra (1998) show that one need not know anything about the data-generating

process, or be an experienced weather forecaster, in order to be able to produce calibrated forecasts. This

is a surprising result. Foster recalls that “this paper took the longest to get published of any I have worked

on. I think our first submission was about 1991. Referees simply did not believe the theorem — so they

looked for amazingly tiny holes in the proof. When the proof had been compressed from its original 15-20

pages down to about 1, it was finally believed.”

The follow-up literature shows that the feature of calibration observed by Foster and Vohra generalizes

to a large number of other objective criteria for judging probabilistic models or forecasting. Indeed, suppose

that a criterion for judging probabilistic forecasts (which I will call a test) has the property that if data
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sky, Colin Stewart, and Peyton Young for comments on an earlier draft of this survey. I thank the National Science Foundation

for research support (CAREER award SES-0644930).
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are generated by a probabilistic model, then forecasts generated by that model pass the test. It, then,

turns out an agent who knows only the test by which she is going to be judged, but knows nothing about

the data-generating process, is often able to pass the test by generating forecasts strategically.

However, this follow-up literature also delivers tests which can be passed by true probabilistic models,

but cannot be passed without knowledge of the data-generating process. One can compare the literature

surveyed in this paper to non-Bayesian statistics.1 More specifically, statistics is centered around hypothesis

testing. It (implicitly) assumes that the hypotheses being tested were born out of thin air, and were

completely unlinked to the hypothesis testing methodology. In particular the hypothesis generating entity

had no incentives of its own (or at least they were ignored). The research on testing experts presented in

this chapter is all about ‘strategic hypothesis testing’. In these papers, we specifically endow the hypothesis

generating entity with incentives (and strategies), which is that of passing the ‘test’. We rebuilt the notion

hypothesis testing, eluding to criteria such as errors of types I and II.

The paper is organized as follows: I first introduce some basic terminology and notation. In Section 3,

I present some examples which show how some simple tests can be passed without any knowledge about

the data-generating process. Section 4 is entirely devoted to calibration. In Section 5, I continue the

exposition of what I call negative, or impossibility results, i.e., the results which say that some tests can

be passed without any knowledge about the data-generating process. Positive results, i.e., the results that

provide, or prove the existence of, “good” tests are discussed in Section 6. The following three sections

are devoted to some results which contrast with the negative results from Section 5, and which have been

obtained in slightly different settings. Finally, Section 10 contains some results on philosophy of science

and financial markets which are related to, and inspired by the results on testing experts.

2 Terminology and notation

Each period, one out of two possible outcomes 0 or 1 is observed.2 Define Ω = {0, 1}∞ as the set of infinite

sequences of outcomes. We will call each ω ∈ Ω a data set, or simply, data. We will denote the outcome

in period t by ωt, and the history of outcomes up to period t by ωt. That is, ωt = (ω1, ..., ωt−1) for t > 1,

and ω1 means the empty history.

Denote by∆(Ω) the set of all probability measures over Ω. Measures P ∈ ∆(Ω) will sometimes be called

stochastic processes. We need a σ−algebra on which the probability measures are defined. A cylinder with

base on (ω1, ..., ωn) is the set of all data sets ω with the first n elements ω1, ..., ωn. We endow Ω with the

Borel σ−algebra, that is, the smallest σ−algebra that contains all cylinders. We also endow Ω with the

product topology, that is, the topology that comprises unions of cylinders.

More generally, for every compact and metrizable space S, denote by ∆(S) the set of probability

1 I thank Rann Smorodinsky for suggesting this comparison, wth which I fully agree.

2The generalization of the model and all results to any finite set of outcomes is straightforward.
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measures on S. We endow ∆(S) with the weak*-topology and with the σ−algebra of Borel sets (i.e., the

smallest σ−algebra which contains all open sets in weak∗−topology). The weak∗−topology is defined by

the condition that Pn →n P if

EPnh→n EPh,

for all real-valued and continuous functions h on S, where E is the expected-value operator. In particular,

∆(∆(Ω)) denotes the set of probability measures on ∆(Ω). It is well-known that ∆(S) equipped with the

weak*-topology is a compact and metrizable space.

Let {0, 1}t denote the Cartesian product of t copies of {0, 1}, and let

Ωfinite =
�

t≥0

{0, 1}t

be the set of all finite histories.3 Any function

f : Ωfinite −→ ∆({0, 1})

that maps finite sequences of outcomes into distributions over outcomes will be called a theory. A theory

takes finite data sets (the outcomes up to a certain period) as inputs, and returns a probabilistic forecast

over outcomes for the following period as an output.

It is well-known that every theory f uniquely induces a probability measure Pf ∈ ∆(Ω). More precisely,

given a finite history ωk = (ω1, ..., ωk−1) and an outcome ωk, let the probability of ωk conditional on ωk

be denoted by f(ωk)[ωk]. Then, the probability Pf of the cylinder C with base (ω1, ..., ωn) is equal to the

product of probabilities

Pf (C) =
n�

k=1

f
�
ωk
�
[ωk].

We will often identify theory f with probability measure Pf .

Also, any probability measure P ∈ ∆(Ω) determines a theory f by defining f(ωk)[ωk] as the probability

of ωk conditional on ωk. That is, if P (C(ω1, ..., ωk−1)) > 0, then

f(ωk)[ωk] =
P (C(ω1, ..., ωk))

P (C(ω1, ..., ωk−1))
,

where C(ω1, ..., ωk) and C(ω1, ..., ωk−1) denote the cylinders with base (ω1, ..., ωk) and (ω1, ..., ωk−1),

respectively. And f(ωk)[ωk] is defined in an arbitrary manner if P (C(ω1, ..., ωk−1)) = 0.
4

We consider two types of testing. The general definition requires the expert to provide a theory up

front, at time 0. But an important class of tests asks for forecasts only along the sequence of observed

outcomes. That is, the expert is supposed to provide at the beginning of period t = 1, 2, ... the probability

3By convention, {0, 1}0 = {∅}.

4This last part of the definition means that there are multiple theories f determined by some probability measures P but,

as will become clear shortly, this lack of uniqueness will be irrelevant for our purposes.
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of outcome 1 in period t; the expert provides this forecast after observing the outcomes in all previous

periods. The expert’s forecast of outcome 1 for period t will be denoted by ft.

Definition 1 A test is a function

T : ∆(Ω)×Ω→ {PASS,FAIL}.

A test is therefore an arbitrary function that takes as an input a theory (more precisely, the probability

measure induced by the theory) and the observed sequence of outcomes, and returns as an output a PASS-

or-FAIL verdict. In particular, we assume that the verdict is the same for any pair of theories f1 and f2

which induce the same probability measure Pf1 = Pf2 over sequences of outcomes.

We study only measurable tests T . That is, {ω ∈ Ω : T (P, s) = PASS} (or equivalently, set {ω ∈ Ω :

T (P, s) = FAIL}) is assumed to be a measurable set for every theory P . The former set will be called the

acceptance set, and the latter set will be called the rejection set for theory P .

We say that the test is prequential if the expert is required to give predictions only along the actual

sequence of outcomes, i.e., if the verdict of test T depends only on (f1, f2, ...). In such a case, we will often

write T (f1, f2, ..., ω) instead of T (P, ω).

We shall now state two basic properties of empirical tests. They are versions of type I and type II

errors from statistics. An important conceptual difference (compared to the classic definition of type II

error) is that the second property refers to strategic behavior; instead of requiring a false theory to be

rejected, we require that an ignorant but strategic expert be rejected.

Definition 2 Given an ε ≥ 0, a test T does not reject the truth with probability 1−ε if, for any P ∈ ∆(Ω),

P ({ω ∈ Ω : T (P, ω) = PASS}) > 1− ε.

Suppose that there actually is a stochastic process P ∈ ∆(Ω) that generates data. Definition 2 says

that a test does not reject the truth if, with high probability, the actual data-generating process P , no

matter what that process is, is not rejected. A theory that fails such a test can reliably be viewed as false.

Definition 3 A test T can be ignorantly passed with probability 1 − ε if there exists a ξ ∈ ∆∆(Ω) such

that for every sequence of outcomes ω ∈ Ω,

ξ({P ∈ ∆(Ω) : T (P, ω) = PASS}) > 1− ǫ.

We will call every ξ ∈ ∆∆(Ω) a random generator of theories. The random generator of theories

may depend on test T , but not on any other knowledge, such as knowledge of the actual data-generating

process. If a test can be ignorantly passed, we also say that an ignorant expert can pass the test. If a test

can be ignorantly passed, then an ignorant but strategic expert can randomly select theories that, with

4



probability 1− ε (according to the expert’s randomization device), will not be rejected, no matter which

data set is realized.

In the case of prequential tests, it will sometimes be more convenient to talk about forecasting rules,

instead of random generators of theories. A forecasting rule specifies, for any history of outcomes ωt and

any history of forecasts f t = (f1, ..., ft−1), a probability distribution over forecasts ft. Then, a test can be

ignorantly passed if, for every sequence of outcomes ω ∈ Ω, the forecasts (f1, f2, ...) along ω generated by

the rule are such that T (f1, f2, ..., ω) = PASS with high probability.

Suppose that for every random generator of theories ξ ∈ ∆(∆(Ω)), there exists at least one data set ω

such that, with probability greater than ε, the realized theory is rejected on ω. Then, by definition, the

test cannot be ignorantly passed with probability 1− ε. However, a stronger property may be demanded.

A tester may be interested in the existence of data sets such that an ignorant expert fails the test with

near certainty (as opposed to probability greater than ε), or may be interested in the existence of a larger

number of data sets on which an ignorant expert fails the test.

We will sometimes call a test good if it does not reject the truth and cannot be ignorantly passed.

3 Examples

The possibility of ignorantly passing reasonable tests seems quite surprising. Therefore, before presenting

more general results, I will use three simple examples to illustrate how this can be achieved.

3.1 Example 1

Consider the following simple test. Let

R(f, ωm+1) =
1

m

m�

t=1

(f(ωt)− ωt),

where ωt = (ω1, ..., ωt−1)marks the difference between the average forecast of 1 and the empirical frequency

of 1. The test rejects theory f if the average forecast of 1 is not equal to the empirical frequency of 1.

That is, theory f is passed on data sets ω such that

lim
m

R(f, ωm+1) = 0.

It readily follows from the law of large numbers that the test does not reject the truth. I omit the

details of this proof. The test can, however, be ignorantly passed by using the random generator of

theories that assigns probability 1 to the single theory f which predicts 1 with certainty in periods in

which R(f, ωm+1) < 0, and predicts 0 with certainty in periods in which R(f, ωm+1) > 0. More precisely,

f(ωm+1) = 1 if R(f, ωm+1) < 0,

f(ωm+1) = 0 if R(f, ωm+1) > 0,

f(ωm+1) = 0.5 if R(f, ωm+1) = 0.
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The intuition is that when R(f,ωm+1) is negative, the forecast of 1 makes R(f, ωm+2) closer to zero,

no matter whether ωm+1 is equal to 0 or 1. Similarly, when R(f, ωm+1) is positive, the forecast of 0 makes

R(f, ωm+2) closer to zero, no matter whether ωm+1 is equal to 0 or 1. I omit the obvious details of the

formal proof.

Alternatively, the test can be ignorantly passed by the single theory g which predicts 1 with certainty

in periods m such that ωm−1 = 1, and predicts 0 with certainty in periods m such that ωm−1 = 0; or,

more precisely, f(ωm) = ωm−1. Notice finally that the ignorant expert must know the test in order to be

able pass it ignorantly. One can easily show that no random generator of theories will pass all tests at the

same time.

3.2 Example 2

Consider for a moment the setting in which there is only one period, and consider all probability distri-

butions from ∆({0, 1}). Any test which does not reject the truth (with probability 1− ε) does not reject

the truth when the true P assigns equal probabilities to 0 and 1. This implies that

T (P, 0) = T (P, 1) = PASS

for any ε < 1/2. Thus, in this case, the test can be ignorantly passed by giving theory P .

Suppose now that there are n periods, where n is such that 1/2n < ε. Denote by {0, 1}n the set of

all sequences of outcomes ω = (ω1, ..., ωn) of length n. Consider test T to be defined as follows: Let m

be the lowest number such that 1/2m < ε. For a theory P ∈ ∆({0, 1}n), pick any set consisting of 2n−m

sequences of outcomes ω such that the probability of this set is the lowest among all sets consisting of

2n−m sequences of outcomes ω. Theory P fails if one of these sequences is observed. By definition, this

test passes the truth with probability 1− ε.

Since for every P , there exists an ω such that T (P, ω) = FAIL, test T cannot be ignorantly passed by

using a degenerated random generator of theories, i.e., by giving a single theory P . Nevertheless, the test

can be ignorantly passed. For any history ωm+1 = (ω1, ..., ωm), take the theory that assigns probability

0 to history ωm+1, and probability 1/(2m − 1) to any other history of the first m outcomes. Randomize

uniformly over all such histories or, equivalently, over all such theories.

Given a sequence ω, a theory P that corresponds to some ωm+1 fails if the first m outcomes of ω

coincide with ωm+1. The probability that the random generator of theories selects such a P is 1/2m < ε.
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3.3 Example 3

Consider now the following likelihood ratio (prequential) test. For any theory f , define the alternative

theory fA by letting

fA(ωt) = f(ωt) + 0.4 if f(ωt) < 0.5,

fA(ωt) = f(ωt)− 0.4 if f(ωt) > 0.5,

fA(ωt) = 0.6 if f(ωt) = 0.5, and t = 1, 3, ...

fA(ωt) = 0.4 if f(ωt) = 0.5, and t = 2, 4, ....

Define the likelihood of outcome ωt according to theory f by

l(ωt) = f(ωt) if ωt = 1, and l(ωt) = 1− f(ωt) if ωt = 0,

and let lA(ωt) be defined similarly. For any sequence of outcomes ωt+1 = (ω1, ..., ωt), let

L(ωt+1) =
l(ω1) · ... · l(ωt)

lA(ω1) · ... · lA(ωt)

be the likelihood ratio of ωt+1 according to f compared to the alternative theory.

Finally, define test T by letting T (f1, f2, ..., ω) = PASS if

lim
t
L(ωt+1) =∞, (1)

and T (f1, f2, ..., ω) = FAIL otherwise. That is, test T passes theory f if the observed sequence of outcomes

is infinitely more likely according to theory f than according to theory fA.

It readily follows from the law of large numbers that the test does not reject the truth. I omit the

details of this proof. The test can be ignorantly passed by the forecasting rule that predicts ft = 0.4 with

probability 1/2 and ft = 0.6 with probability 1/2, independent of the history of outcomes up to period t.

The intuition is that if the observed outcome was predicted by the expert as more likely (i.e., ωt = 0

and ft = 0.4, or ωt = 1 and ft = 0.6), then the ratio l(ωt)/lA(ωt) is 0.6/0.2 = 3, while if the observed

outcome was predicted by the expert as less likely (i.e., ωt = 0 and ft = 0.6, or ωt = 1 and ft = 0.4),

then the ratio l(ωt)/l
A(ωt) is only 0.4/0.8 = 1/2. This gives the expert’s theory an advantage over the

alternative theory. In order to satisfy condition (1), it suffices that the expert predicts with frequency 1/2

the outcome which is later observed as more likely.

The fact that the likelihood test can be ignorantly passed follows from the law of large numbers. I

again omit the details of the formal proof.

4 Calibration

4.1 Definition and result

The existing literature contains several similar definitions of calibration; they are not all equivalent. In

this survey, calibration is defined as follows: Just before time t, after all previous outcomes have been
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observed, a forecast ft is made of the probability that ωt = 1. It is assumed that this forecast takes on

values that are the midpoints of one of the intervals: [0, 1/m], [1/m, 2/m], ..., [(m− 1)/m, 1]. That is,

ft =Mi =
2i− 1

2m
, i = 1, ...,m.

Let

Ift=Mi
= 1 if ft =Mi, and Ift=Mi

= 0 if f(ωt) �=Mi

be the indicator function of the set {ωt : ft = Mi}. The empirical frequency ρTi of outcome 1, where

i = 1, ...,m, is defined as
T�

t=1

ωtIft=Mi

T�

t=1

Ift=Mi

,

if Ift=Mi
= 1 for some t; and

ρTi =
2i− 1

2m

if Ift=Mi
= 0 for all t, where ωt is the outcome observed in period t. The empirical frequency ρTi is the

frequency with which outcome 1 is observed in those periods t < T for which the forecast is ft =Mi.

Finally, let

I
T

ft=Mi
=
1

T
·
T�

t=1

Ift=Mi

be the frequency of forecast Mi. A sequence of forecasts (ft)∞t=1 is (1/m)−calibrated if

lim sup
T

��ρTi −Mi

�� ≤
1

2m

for every i = 1, ...,m such that

lim sup
T

I
T

ft=Mi
> 0.

That is, if forecast ft = Mi is being made in a positive fraction of periods, then the limit empirical

frequency ρTi must be as close to Mi as possible, given the assumption that the forecasts must have the

form ft = Mi for some i = 1, ...,m. If number m is sufficiently large, then we say that the forecasts are

approximately calibrated.

Proposition 1 (Foster and Vohra (1998)) For every m, there exists a forecasting rule ξ such that for

every ω, the sequence of forecasts (ft)
∞
t=1 generated by ξ along the sequence of outcomes ω is almost surely

(1/m)−calibrated.

4.2 Calibrated forecasting rule

A forecasting rule with the required property is fairly easy to define. Given a theory f , and a history ωT ,

let
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d
i
= (

i− 1

m
− ρTi ) · I

T

f(ωt)=Mi

and

ei = (ρTi −
i

m
) · I

T

f(ωt)=Mi
.

We define ξ by specifying a probability distribution over forecasts at each ωT as follows:

(1) If there exists an i such that ρTi ∈ [(i − 1)/m, i/m] (or, equivalently, d
i
≤ 0 and ei ≤ 0), then

f(ωT+1) =Mi for any i with this property.

(2) Otherwise, there exists an i such that d
i
> 0 and ei−1 > 0. Then f(ωT+1) =Mi with probability

ei−1

d
i
+ ei−1

,

and f(ωT+1) =Mi−1 with probability

d
i

d
i
+ ei−1

.

A simple inductive argument shows that if there is no i such that ρTi ∈ [(i− 1)/m, i/m], then there exists

an i such that d
i
> 0 and ei−1 > 0. Indeed, from the definition of d

1
, we have that d

1
≤ 0. So if e1 ≤ 0,

condition (1) is satisfied by i = 1. If e1 > 0 and d
2
> 0, then condition (2) is satisfied by i = 2. Otherwise,

d
2
≤ 0, and one can apply the previous argument again. Finally, if d

m
≤ 0, then by the definition of em,

we have that em ≤ 0, and so condition (1) is satisfied by i =m.

This forecasting rule, which achieves a high calibration score, can be best understood in the case of

m = 2. If the current empirical frequency of outcome 1 over the periods in which the forecast was 1/4

happens to belong to [0, 1/2], then predict that the current-period outcome will also belong to [0, 1/2],

that is, predict 1/4. Similarly, predict 3/4 if the current empirical frequency of outcome 1 over the periods

in which the forecast was 3/4 happens to belong to [1/2, 1]. Choose either of the two forecasts if both

empirical frequencies belong to the appropriate intervals.

Otherwise, the former empirical frequency is higher than 1/2, and the latter empirical frequency is

lower than 1/2. In this case, randomize over forecasts 1/4 and 3/4. Assign to each of the two forecasts

a probability that is inversely proportional to the distance of the empirical frequency to the appropriate

interval, namely, e1/(d
2
+ e1) and d

2
/(d

2
+ e1), respectively.

4.3 Sketch of proof

Although the forecasting rule is simple, the proof that it actually achieves a high calibration score (that

is, the proof of Proposition 1) is not that simple. I will sketch the proof which comes from Foster (1999)

in the case of m = 2. This proof is a simplification of the general by Sergiu Hart and Andreu Mas-Colell

proof for the case in which in every period only two outcomes are possible. In order to prove Proposition

1, we need to recall the concept of approachability and the celebrated theorem from Blackwell (1956).
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Consider a two-person, zero-sum game in which each player takes actions from a finite set. Each

player’s payoff is an L−dimensional vector. For our purposes, it is convenient to denote the actions by

i = 1, 2, ...,m and x ∈ X, and the payoff of the first player, who will be called player I, by c(i, x). This

game is played repeatedly over time. Let C be a closed and convex subset of RL. We call C approachable

by player I if there exists a repeated-game strategy of player I which guarantees that the average payoff of

player I almost surely converges to set C, regardless of the actions of player I’s opponent, as the number

of repetitions converges to infinity.

Theorem 1 (Blackwell (1956)) A set C is approachable if and only if for all a ∈ RL, there exists a vector

w ∈ ∆({1, ...,m}) such that for all x ∈ X,

m�

i=1

wi(c(i, x)− b)T · (a− b) ≤ 0, (2)

where b is the closest point to a in C.5

Moreover, it follows from the proof that C is approachable if condition (2) is satisfied for all vectors

a that have the form of average payoffs of player I up to time T = 1, 2, .... Then, wi is the probability

of taking action i in period T , when the average payoff up to period T is a. I will sketch the proof of

Blackwell’s theorem at the very end of this section.

For our purposes, L = 2 (since we are sketching the proof for m = 2), and

C = {z = (z1, z2) ∈ R2 : z1, z2 ≤ 0}. (3)

Player I is the expert, action i = 1, 2 represents forecast Mi. One can think of player I’s opponent as

nature, and the set of outcomes X = {0, 1} as nature’s actions. The payoff vector c(i, x) is defined as

c(i, x) = (d2(i, x), e1(i, x)), (4)

where

d2(i, x) =

�
0 if i = 1

1/2− x if i = 2

and

e1(i, x) =

�
x− 1/2 if i = 1

0 if i = 2
.

In order to prove Proposition 1, we need to show that condition (2) is satisfied. Notice that given

a = (a1, a2),

b = (b1, b2) = (min{0, a1},min{0, a2})

and

a− b = (max{0, a1},max{0, a2});

5By (c(i, x)− b)T · (a − b) we denoted the inner product of vectors (c(i, x) − b)T and (a − b), and the distance between

two points in RL is measured in the standard manner.
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since max{0, ai}· min{0, ai} = 0,

2�

i=1

wi(c(i, x)− b)T · (a− b) =
2�

i=1

wic(i, x)
T · (a− b) =

=
2�

i=1

wi[d
2(i, x)max{0, a1}+ e1(i, x)max{0, a2}].

By the definition of d2(i, x) and e1(i, x), this is equal to

w1(x− 1/2)max{0, a2}+w2(1/2− x)max{0, a1}

This expression is equal to zero if we take w1 = 1 and a2 = e1(1, x) ≤ 0, or if we take w2 =

1 and a1 = d
2
(2, x) ≤ 0. Otherwise, d

2
(2, x) > 0 and e1(1, x) > 0. Then, since we take w1 =

e1(1, x)/
�
d
2
(2, x) + e1(1, x)

	
and w2 = d

2
(2, x)/

�
d
2
(2, x) + e1(1, x)

	
, the expression becomes

d
2
(2, x)

d
2
(2, x) + e1(1, x)

(1− x)e1(1, x) +
e1(1, x)

d
2
(2, x) + e1(1, x)

(x− 1)d
2
(2, x) = 0.

This completes the proof that condition (2) is satisfied.

4.4 Sketch of proof of Blackwell’s theorem

The idea of the proof behind Blackwell’s theorem can be explained as follows: Denote player I’s average

payoff at time t by At, the expected average payoff at time t + 1 contingent on At by E[At+1 | At], and

the expected average payoff at time t+ 1 from the perspective of period 0 by E[At+1]. Then,

E[At+1 | At] =
t

t+ 1
At +

1

t+ 1
E[c(i, x) | At].

Since the strategy of player I has the property that the inner product of At −Bt and E[c(i, x) | At]−Bt

is nonpositive (Bt stands for the point in C that is closest to At), it follows that E[At+1 | At] is closer to

set C than At is (see Figure 1).

Moreover, E[At+1] converges to C, because the norm of the second component of E[At+1 | At] is at

least of order 1/t of the norm of the first component. Together with the fact that the inner product of the

two components is nonpositive, this implies that the distance between E[At+1] and C shrinks in period t

at least by order 1/t. But if E[At+1] did not converge to C, this would mean that the series

�

t

1

t

was convergent.
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Figure 1

Now, some form of the law of large numbers (more precisely, the strong law of large numbers for

dependent variables) implies that At+1 converges to C almost surely.

5 Negative results

Early follow-up papers generalize the Foster and Vohra (1998) result to “other forms” of calibration. Other

papers provide simpler proofs of their result. More specifically, a history-based checking rule is an arbitrary

function of finite sequences of outcomes (histories) to the set {active, inactive}. Given a history-based

checking rule and a theory, a forecast-based checking rule is active if the history-based checking rule is

active and the forecast takes a value from a given set D ⊂ [0, 1]. The calibration score assigned to a theory

by a checking rule (either history- or forecast-based) is the difference between the frequency of an outcome

and the average probability assigned to this outcome by the forecasts of the theory, where the averages are

taken across the periods in which the checking rule was active. We follow here the terminology introduced

in Sandroni et al. (1999).

According to this terminology, Foster and Vohra (1998) demonstrate the existence of a forecasting

rule that (almost surely) calibrates the forecast-based checking rules associated with the always active

history-based rule and sets Dk = [k/m, (k + 1)/m] (where k = 0, ...,m − 1). The concept of checking

rules other than calibration (i.e., other notions of calibration) was introduced in Kalai et al. (1999),

which also demonstrates equivalence between notions of calibration and merging. Lehrer (2001) shows

that there exists a forecasting rule which simultaneously calibrates any countable number of history-based
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checking rules; Sandroni et al. (1999) generalizes this result to the forecast-based checking rules associated

with a countable number of history-based checking rules and a countable number of sets D. Lehrer also

shows that for any probability distribution over history-based checking rules, there exists a forecasting rule

which simultaneously calibrates almost all these rules. All these results allow for any finite set of possible

outcomes, not only 0 and 1.

Sergiu Hart first suggested a simpler proof of Foster and Vohra’s result based on the minmax theorem

(see the discussion in Foster and Vohra (1998) and Sandroni (2003)). A constructive version of Hart’s

proof has been derived independently by Fudenberg and Levine (1999). Foster (1999) contains the simple

and elegant proof that has been discussed in the previous section. (See also Foster and Vohra (1997) and

Hart and Mas-Colell (2000).)6 The last two authors have suggested using Blackwell’s theorem. Foster and

Vohra’s original argument is close to the proof based on Blackwell’s theorem — but uses a direct potential

function instead of Blackwell’s theorem. Sandroni (2003) first observed that the Foster and Vohra result

generalizes well beyond calibration and scoring rules. (See also Vovk and Shafer, 2005, and Vovk 2007.) I

discuss Sandroni’s result, and the generalizations of thereof, in the following section.

5.1 Generalizations of Foster and Vohra’s result

Theorem 2 (Fan (1953)) Let X be a convex subset of a compact, Hausdorff, linear topological space, and

Y be a convex subset of a linear space (not necessarily topologized). Let f be a real-valued function on

X×Y such that for every y ∈ Y , f(x, y) is lower semi-continuous on X. If f is convex on X and concave

on Y , then

minx∈Xsupy∈Y f(x, y) = supy∈Yminx∈Xf(x, y). (5)

Theorem 2 is illustrated in Figure 2, where X = Y = [0, 1], and f is a linear function of x and a linear

function of y. The nontrivial part of the theorem says that the right-hand side can be as large as the

left-hand side. Suppose that the left-hand side of (5) is “large.” This means that for every x there is a y

such that f(x, y) is large. In Figure 2, y = 1 for x = 0 and y = 0 for x = 1. The linearity and continuity

of f(x, y) imply that there is a value of x (between 0 and 1) such that f(x, y) is a constant function of y

for this x, and is depicted in bold on the graph of function f . This constant must be large, since there

must exist a y for this x such that f(x, y) is large. However, by analogous arguments, there also exists

a value of y such that f(x, y) is a constant function of x for this y. This is also depicted in bold on the

graph of function f . And this constant is large, because the two bold lines on the graph intersect. Thus,

the right-hand side of (5) must also be large.

6Foster’s proof allows for only two outcomes: 0 and 1. A simple proof which allows for any finite number of outcomes is

provided in Mannor and Stoltz (2010).
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Figure 2

I have stated the minmax theorem in its original form. However, I will not define Hausdorff spaces or

lower semi-continuity. It is enough to know that all spaces considered in this survey will be metrizable,

and therefore Hausdorff, and all functions will be continuous.

We will call a test T finite if for every P ∈ ∆(Ω), there exists an n such that for any ω(1), ω(2) ∈ Ω

such that ωn(1) = ωn(2), we have

T (P, ω(1)) = T (P, ω(2)).

That is, the verdict of a finite test T depends only on the a finite number n of observed outcomes. Notice,

however, that I allow this finite number to depend on theory P .

Fix ε ∈ [0, 1] and δ ∈ (0, 1− ε].

Proposition 2 (Sandroni (2003), Olszewski and Sandroni (2008))7 Let T be a finite test that does not

reject the truth with probability 1− ε. Then, the test T can be ignorantly passed with probability 1− ε −δ.

Proof. To provide the intuition for Proposition 2 consider the following zero-sum game between nature

and the expert. Nature chooses a probability measure P ∈ ∆(Ω). The expert chooses a random generator

7Sandroni (2003) proved this result for tests which are finite in a slightly stronger sense, namely, he assumes that the

number n in the definition of a finite test is the same for all theories P .
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of theories ξ. The expert’s payoff is

EξEPT (Q,ω),

where PASS = 1 and FAIL = 0, and Eξ and EP are the expectation operators associated with ξ and

P , respectively. By assumption, test T does not reject the truth with probability 1− ε. Thus, for every

strategy P of nature, there is a strategy ξP for the expert (that assigns probability one to P ) such that

the expert’s payoff is

EξPEPT (Q,ω) = P{ω ∈ Ω : T (P, ω) = 1} ≥ 1− ε.

Hence, if the zero-sum game has value, then there is a strategy ξT for the expert that ensures a payoff

arbitrarily close to 1 − ε, no matter which strategy nature chooses. In particular, nature can use Pω,

selecting a single sequence of outcomes ω with certainty. Therefore, for all ω ∈ Ω,

EξTEPωT (Q,ω) = ζT {Q ∈ ∆(Ω) : T (Q,ω) = PASS} ≥ 1− ǫ− δ.

Fan’s minmax theorem guarantees that the zero-sum game between nature and the expert has value.

More precisely, let X be ∆(Ω), and let Y be the subset of ∆(∆(Ω)) consisting of all random generators

of theories with finite support. That is, an element ξ of Y can be described by a finite sequence of

probability measures Q1, ..., Qn and positive weights π1, ..., πn that add up to one such that ξ selects Qi

with probability πi,i = 1, ..., n. Let function f : X × Y → R be defined by

f(P, ξ) = EξEPT (Q,ω) =
n�

i=1

πi



T (Qi, ω)dP (ω).

All the conditions of the minmax theorem are satisfied. In particular, function f is continuous in P and

linear, as the sum of continuous and linear functions. The continuity of functions of the form

EPT (Qi, ·) =



T (Qi, ω)dP (ω)

follows immediately from the assumption that test T is finite and from the definition of weak*-topology;

this guarantees that T (Qi, ω) is a continuous function of ω.

5.2 Prequential principle

I conclude this section with two recent results, which show that if there is a good test, it must make use

of counterfactual forecasts, which cannot be verified by any observed data.

We will say that a test rejects theories in finite time if sets {ω ∈ Ω : T (P, s) = FAIL} are unions of

cylinders.

For every theory, such a test specifies a collection of finite sequences of outcomes, which sequences

contradict the theory according to the test; it therefore fails the theory if one of these sequences is observed.

Two theories f1 and f2 are equivalent up to period m if

f1
�
ωk+1

�
= f2

�
ωk+1

�
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for any ωk+1 = (ω1, ..., ωk) such that k < m. Two theories are therefore equivalent up to period m if they

make the same predictions for periods 1, ...,m.

Definition 4 A test T is future-independent if, for any pair of theories f1 and f2 that are equivalent up

to period m, and for any sequence of outcomes ωm+1 = (ω1, ..., ωm), theory f1 is rejected at ωm+1 if and

only if theory f2 is rejected at ωm+1.

A test is future-independent if, whenever a theory f1 is rejected in period m, another theory f2, which

makes exactly the same predictions as f1 up to period m, must also be rejected in period m. In other

words, if a finite sequence of outcomes contradicts a theory, then it also contradicts any theory equivalent

to it.

Proposition 3 (Olszewski and Sandroni (2008)) Every future-independent test which rejects theories in

finite time, and which, with probability 1 − ε, does not reject the truth, can be ignorantly passed with

probability 1− ε −δ.

Recall that a test is prequential if it requires the expert to give predictions only along the actual

sequence of outcomes.

Proposition 4 (Shmaya (2008)) Every prequential test T that, with probability 1− ε, does not reject the

truth, can be ignorantly passed with probability 1− ε −δ.

Propositions 3 and 4 are independent in that neither of them implies the other. There exist future-

independent tests whose verdicts depend on counterfactual, “off-equilibrium” predictions. There also exist

tests which require the expert to give predictions only along the actual sequence of outcomes, and which

may not reject theories in finite time. Tests that reject theories in finite time have the property that sets

{ω ∈ Ω : T (P, ω) = PASS} are closed in Ω. Shmaya’s result allows for tests such that these sets are Borel,

but may not be closed.

5.3 Interpretations

There are two interpretations of the results on testing experts. One is literal and involves informed versus

ignorant experts. Informed experts know precisely the probability distribution P that generates data, and

ignorant experts are completely ignorant, without even any prior over probability distributions. Although,

this language is very convenient, and I am using it throughout this survey, I would argue that it should

not be taken too literally.

The literal interpretation faces a number of conceptual problems. For example, what does it mean

to know the probabilities of future events? But even if the concept of probability is taken as given, it is

unclear whether the existence of a random generator of theories which satisfies Definition 3 really helps

an ignorant but strategic expert.
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To see the point, assume, as the literature often does, that an ignorant expert must make the decision

whether to provide her forecasts. These forecasts will be tested. The expert receives a positive utility u

from providing the forecasts, but if she fails the test, she also receives a disutility −d, such that u− d < 0.

That is, the expert’s utility depends on the verdict of the test, and thus on her forecasts and the observed

sequence of outcomes. The ignorant expert does not know which sequence of outcomes will be observed

at the time the forecasts are provided; moreover, the expert is completely ignorant, which means that she

does not even have any prior over the sequences of outcomes. In other words, the expert faces Knightian

uncertainty (also known as modern uncertainty or ambiguity). Suppose that the expert is most uncertainty-

averse in the sense of Gilboa and Schmeidler (1989); this means that she evaluates prospects according to

the worst possible scenario, i.e., the sequence of observed outcomes which gives her the lowest utility.

The existence of a random generator of theories ξ that makes the probability of passing the test

high, even without any knowledge regarding the data-generating process, seemingly makes the option of

providing forecasts more attractive. Put another way, if the expert forecasts according to ξ, then for every

possible sequence of observed outcomes, she will end up, according to ξ, with utility u − d with a low

probability, and with utility u with a high probability.

However, this argument is no different from Raiffa’s (1961) critique of the concept of uncertainty. Raiffa

claimed that an appropriate randomization can remove uncertainty and replace it with common risk, and

therefore the presence of uncertainty should have no more impact on a decision maker’s utility than the

presence of common risk. Subsequent studies on decision theory tend to disagree with Raiffa’s critique.

Intuitively, the reason for this disagreement is that the expert can randomize only before the uncertainty

regarding sequence ω is resolved; as a result, once lottery ξ is resolved and a probability distribution P is

selected, the decision maker faces uncertainty again. If, given the P selected, she again evaluates prospects

according to the sequence of observed outcomes that gives her the lowest utility, she will typically end up

with utility −d, because nontrivial tests fail every P on some ω.

Of course, some tests (for example, the test from Example 1) can be passed without randomizing over

theories, and passing of some other tests requires “little” randomization. However, the literal interpretation

of the negative results on testing experts seems to require that random generators of theories have some

properties in addition to the property from Definition 3, and therefore future is necessary.

In my opinion, this literature is about the philosophy of science, or more precisely, about probabilistic

models; this is the alternative to the literal interpretation. One may disagree about the way we should

interpret the concept of probability, but probabilistic models are nevertheless commonly used in scientific

practice. So, if we want to test them, which is also a common scientific practice, we would do better to

have tests that do not reject them when they are correct. That is, if we can generate data according to a

probabilistic model, the test should not reject the model with high probability. For example, if we agree

that we have a fair coin, then flipping it repeatedly should generate data sequences such that the i.i.d.

fifty-fifty model will pass the test most of the time. This is the way I interpret the condition that the test
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passes the truth.

In my view, the major drawback in having a test that can be ignorantly passed is not that such a test

cannot differentiate between informed and ignorant decision makers, but rather that the test is vulnerable

to the kind of actions of malicious agents that computer scientists study. Actually, I believe that scientific

testing methods should be designed so as to exclude any test that can be ignorantly passed, i.e., no

test should be passable by a person with malicious intent, who is ignorant about a particular forecasting

problem but who is otherwise smart.

6 Positive results

6.1 Category tests

After the initial wave of negative results, described in Section 5, few new results appear for a short period.

The revitalizing paper was Dekel and Feinberg (2006), which offered an intuitive idea of constructing a

good test. Their starting point was a well-known result from measure and category theory. To get to this

result, consider first the following definition:

Definition 5 A subset of a compact metric space is topologically large (i.e., residual) if it contains the

intersection of a countable family of open and dense sets. A subset is topologically small (i.e., first-Baire

category) if it is contained in a set whose complement is topologically large.

I refer the reader to Oxtoby (1980) for a more complete exposition of the basic concepts of category.

Theorem 3 For every measure P defined on the σ−algebra of Borel subsets of a compact metric space,

there exists a topologically large subset G of the metric space such that

P (G) = 0.

Since set G contains the intersection of a countable family of open and dense sets, it follows that for

every ε > 0, there also exists an open and dense subset U such that P (U) ≤ ε.

Dekel and Feinberg assume that the expert must give a theory at time 0, and suggest a class of tests

that they call category tests, which pass any theory only on a topologically small set. By Theorem 3, there

exist tests in this class which pass the truth with probability 1, and the intuition suggests that the ignorant

expert should find passing a category test difficult. For strategic reasons, the expert picks a topologically

small set on which she wants to pass. So, for any data, the expert must pick with high probability a

topologically small set containing that data, without knowing anything about the data-generating process.

To support this intuition, Dekel and Feinberg show that for every topologically small set S, the set of

theories P such that P (S) > 0 is topologically small. Their intuition is, however, not entirely correct, since

Olszewski and Sandroni (2011) exhibits a category test that can be ignorantly passed. In spite of that,
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Dekel and Feinberg provide an example of good category test. To construct such a test, they use a Lusin

set, which is a subset of Ω with certain “exotic” properties. The existence of Lusin sets is independent of

the usual axioms of set theory, and for this reason, I omit the details of Dekel and Feinberg’s construction.

I will provide another good category test later, but it will be useful to first provide a simpler good test

with somewhat weaker properties.

6.2 A simple example of a good test

This simple example of a good test is provided in Olszewski and Sandroni (2011): Consider any sequence

of pairwise-disjoint, nonempty sets Cn ⊂ Ω. For concreteness, let set Cn be cylinders C(ω
n+1), n = 0, 1, ...,

where ωn+1 is the finite history in which outcome 1 was observed in periods 1, ..., n− 1, and outcome 0 is

observed in period n. For any theory P , consider the sets of the form

Cn =
∞�

k=n

Ck.

There exist a number n such that P (Cn) < ε, because

∞�

n=1

∞�

k=n

Ck = ∅.

Define R(P ) as Cn for the lowest number n such that P (Cn) < ε.

The test requires the expert to provide a theory P up front (at time 0), and rejects the theory when

data ω ∈ R(P ) are observed. In other words, theory P is rejected if outcome 0 is observed after observing

a sufficiently long sequence of outcomes 1.

By definition, the test rejects the truth with probability no higher than ε. It turns out that the test

cannot be ignorantly passed. Indeed, for any random generator of theories ξ ∈ ∆(∆(Ω)), consider sets

Qn =

�

Q ∈ ∆(Ω) : R(Q) :=
∞�

k=n

Ck




.

Notice that the family of sets Qn is a partition of ∆(Ω). It follows that

m�

n=1

ξ(Qn) ≥ 1− ε

when m is sufficiently large. And thus,

ξ ({Q ∈ ∆(Ω) : T (Q,ω) = PASS}) ≤ ε

for any data set

ω ∈
∞�

k=m

Ck;

we denote this set of data sets ω by Rm. That is, by generating theories according to any ξ, the ignorant

expert (like the informed expert) passes the test with probability ε or lower, if the tester observes 0 after a
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sufficiently long sequence of 1’s. However, unlike the informed expert, the ignorant expert does not know

how likely it is that the tester will observe data on which she will fail the test.

This simple test has a number of drawbacks. One of them is that although the ignorant expert cannot

make sure that she will pass the test on all data sets, she has strategies enabling her to pass the test on

“almost all data sets.” More precisely, there exists a sequence of random generators of theories (ξm)
∞

m=1

such that by generating theories according to ξm, the ignorant expert fails only on set Rm, and (Rm)
∞

m=1

is a descending sequence of sets with empty intersection. Indeed, by reporting a theory Q ∈ Qm, the

expert fails only on set Rm.

6.3 Other good tests

If we combine the simple idea for constructing a good test from the previous section, with the Dekel

and Feinberg (2006) concept of category, we obtain tests with much stronger properties; in particular, we

obtain tests that cannot be ignorantly passed on almost all data sets.

Proposition 5 (Olszewski and Sandroni (2009c)) (a) For every ε > 0, there exists a test T that passes

the truth with probability 1− ε, and cannot be ignorantly passed. Moreover, for every random generator of

theories ξ ∈ ∆(∆(Ω)), there is an open and dense set U ⊂ Ω such that

ξ ({Q ∈ ∆(Ω) : T (Q,ω) = PASS}) ≤ ε, ∀ ω ∈ U .

(b) There also exists a test T that passes the truth with probability 1 such that for every random

generator of theories ξ ∈ ∆(∆(Ω)), there is a topologically large set G ⊂ Ω such that

ξ ({Q ∈ ∆(Ω) : T (Q,ω) = PASS}) = 0, ∀ ω ∈ G.

Proof. I will prove part (a) only. The proof of part (b) is analogous, although slightly more involved. Let

D = {ω(1), ω(2), ...} ⊂ Ω be any countable and dense subset of Ω. For concreteness, one can assume that

D consists of all data sets such that, from some period on, only outcome 1 is observed.

For any theory P , take the lowest n such that

P
�
C(ωn+1(k))− {ω(k)}

�
<

ε

2k
. (6)

That is, I consider cylinders with base on ωn+1(k),8 from which the point ω(k) has been removed, and

take such a cylinder whose measure P is appropriately small. There exists an n with property (6), because

∞�

n=0

�
C(ωn+1(k))− {ωk}

�
= ∅.

Denote by Ck(P ) the cylinder C(ω
n+1(k)) with property (6).

8Recall that history ωn+1(k) consists of the first n outcomes of ω(k).
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Let

R(P ) =
∞�

k=1

[Ck(P )− {ω(k)}].

The test T rejects theory P when ω ∈ R(P ) is observed.

The test rejects the truth with probability no higher than ε, because

P (R(P )) ≤
∞�

k=1

P (Ck(P )− {ω(k)}) <
∞�

k=1

ε

2k
= ε.

Now, take any random generator of theories ξ ∈ ∆(∆(Ω)), and consider sets

Qk,n =
�
Q ∈ ∆(Ω) : Ck(Q) = C(ωn+1(k))

�
.

Notice that the family of sets Qk,n, n = 1, 2, ..., is a partition of ∆(Ω). It follows that

∞�

n=m(k)+1

ξ(Qk,n) ≤ ε

for any sufficiently large m(k).

Let

U =
∞�

k=1

�
C(ωm(k)+1(k)))− {ω(k)}

�
.

Set U is an open and dense in Ω. Take any ω ∈ U . Then, ω ∈ C(ωm(k)+1(k))− {ω(k)} for some k, which

means that

{Q ∈ ∆(Ω) : T (Q,ω) = PASS} ⊂
∞�

n=m(k)+1

Qk,n,

because any Q ∈ Qk,n for n ≤ m(k) is rejected on C(ωn+1(k)) − {ω(k)} ⊃ C(ωm(k)+1(k)) − {ωk}. It

follows that

{Q ∈ ∆(Ω) : T (Q,ω) = PASS} ≤ ε.

6.4 Good “prequential” tests

Proposition 4 assumes that the expert must give a theory at time 0. The negative results from Section

5 seem to suggest the necessity of this assumption. Interestingly, and perhaps a little surprisingly, there

exist good prequential tests. However, these are tests belonging to a slightly broader category than the

ones studied in the previous sections.

Shmaya (2008) shows that there exists such a test T , which passes the truth with probability 1, and

cannot be ignorantly passed. This test is, however, not Borel, that is, the sets

{ω ∈ Ω : T (f1, f2, ..., ω) = PASS}

are not Borel. We can still talk about the probability of a theory being accepted or rejected, because these

sets have the form of the union of a Borel set B and a subset of a Borel set of measure 0. Therefore, like the
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definition of Lebesgue measure, we can extend any probability measure defined on the Borel σ−algebra by

assigning to any such set the measure of set B. Shmaya uses ideas similar to those of Dekel and Feinberg,

but in his construction replaces Lusin sets with universally null sets. I refer the reader to Shmaya’s paper

for the details of his construction.

As reported in Olszewski and Sandroni (2009c),9 Peter Grünwald has shown that there exists a random

test Tλ(Q,ω), where λ is a random variable, whose verdict depends only on forecasts (f1, f2, ...)made along

the actual sequence of outcomes; this test passes the truth with probability 1, and cannot be ignorantly

passed. More precisely, this random test takes as input the observed sequence of outcomes, the sequence

of forecasts made along this sequence of outcomes, and the realization of random variable λ; it returns as

output a PASS-or-FAIL verdict.

Test T passes the truth with probability 1 for all realizations of λ. And for any random generator of

theories ξ, with probability 1 the realization of λ has the property that there exists a topologically large

set of data sets G ⊂ Ω such that

ξ
��
Q ∈ ∆(Ω) : Tλ(Q,ω) = PASS

��
= 0, ∀ ω ∈ G.

Given any value of λ, test Tλ is a category test similar to that constructed in the proof of Proposition

5. I again refer the reader to the original paper for the details of this construction.

7 Restricting the class of allowed data-generating processes

One response to the negative results reported in Section 5 is that the set of allowed data-generating

processes (or theories) ∆(Ω) is too “large” and too “abstract.” Stochastic processes studied in many

fields of empirical research have much simpler forms, e.g., the outcomes are identically and independently

distributed (i.i.d.). In other words, one may argue that the requirement that a test does not reject any

true P ∈ ∆(Ω) should be replaced with the requirement that the test does not reject true P ’s that belong

to a smaller class of processes. And indeed, for many classes of processes, it is straightforward to separate

informed and ignorant experts. In the deterministic world in which the informed expert knows with

certainty the outcome that will occur, one can pass the expert’s theory if the outcome predicted by him

or her indeed occurs. Similarly, if one believes that the outcomes are i.i.d., a good test asks the expert

for the probability distribution over outcomes, and gives the PASS verdict if the observed frequency of

outcomes matches the expert’s distribution. In fact, good tests exist for many classes of parametric and

semi-parametric probabilistic models studied in econometrics.

However, the claim that the negative results are possible only when abstract data-generating processes

are allowed does not seem to be fully justified. Olszewski and Sandroni (2008, 2009a,b) show that many

9The result has been published in Olszewski and Sandroni, but was suggested to the authors by Peter Grünwald.
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of their negative results hold true when one replaces ∆(Ω) with the class of exchangeable processes, i.e.,

processes which can be represented as mixtures of (i.e., probability distributions over) i.i.d. processes.

It is, however, interesting to see for what classes of data-generating processes good tests exist. For

example, how large can such a class be? Consider again the one-period setting discussed in Section 3. In

this setting, one can only allow for the distributions that assign a probability higher than 1− ε to one of

the outcomes. But with many periods, this bound can be much lower than 1− ε. Olszewski and Sandroni

(2009b) provide a simple test which cannot be ignorantly passed, and which rejects the truth only when

the forecasts are often close to fifty-fifty.

More interestingly, Stewart (2011) constructs a prequential test that rejects the truth only when the

true probability distribution P has the property that the uniform probability distribution Q, which assigns

equal probabilities to 0 and 1 contingent on any previously observed sequence of outcomes, weakly merges

with P with positive probability.10 This set of distributions P is topologically small in the space ∆(Ω).

Al Najjar et al. (2010) make the point that the restrictions on the theories that the expert is allowed

to submit should not be guided by what seems intuitively abstract, or by what seems large in the set-

theoretic sense. Instead, they should be aligned with normative standards, such as those typically expected

of scientific theories and statistical models. They formalize this idea by restricting attention to theories

that are learnable and predictive.

They assume that any theory is represented as a probability distribution on a set of parameters Θ,

with each θ ∈ Θ indexing a stochastic process. These representations are assumed to have the property

that, as data accumulate, the expert is eventually able to forecast as if he knew the true parameter θ to

any desired degree of precision. In addition, given a parameter θ and an integer t, the outcomes of the

next t periods hardly improve predictions of outcomes in the distant future.

Sandroni et al. (1999) show that the class of learnable and predictive theories is “testable.” Specifically,

there is a finite test T such that: (1) T does not reject any (learnable and predictive) data-generating

process; and (2) for any random generator of (learnable and predictive) theories, there is a (learnable and

predictive) data-generating process such that the ignorant expert using this random generator of theories

is rejected by T with arbitrarily high probability.

Fortnow and Vohra (2009) indicate another kind of restriction: they claim that even if there exist

random generators of theories that enable ignorant experts to pass a test, the generators may not be

implementable for computational reasons. For example, they construct a finite test T ,11 which can be

10Given distributions P and Q, we say that Q weakly merges with P at ω if for every δ > 0, there exists some T such that

the probability of ωt contingent on ωt is lower than δ for all t > T .

The distribution Q is said to weakly merge with P with probability π if

P (ω ∈ Ω : Q weakly merges with P at ω) = π.

11This test is finite in the stronger sense of Sandroni (2003). Specifically, there exists a number n such that for all P , the
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implemented in polynomial time, such that for any ε > 0, for sufficiently large integer m, test T passes the

truth with probability 1 − ε, and any random generator of theories that can ignorantly pass test T with

probability 1− ε can be used to factor m into prime integers.

The existence of an efficient (i.e., probabilistic polynomial-time) algorithm for factoring composite num-

bers is generally considered unlikely. For example, many commercially available cryptographic schemes

take advantage of this fact. However, the problem of computational restrictions seems to be more compli-

cated than it may appear from Fortnow and Vohra’s analysis. In particular, Fortnow and Vohra assume

that nature gives the informed expert “on a piece of paper” all the probabilities of future events, which

enable her to factorize the required numbers. In practice, the informed expert may know just the method of

generating correct forecasts, but may face computational restrictions similar to those faced by the ignorant

expert.

Finally, it should be mentioned that Tai-Wei Hu and Eran Shmaya have just announced (in the paper

not yet available) that if theories and tests are required to be computable (in the sense that they can be

described by Turing machines), then there is a future-independent and prequential test that passes the

truth with high probability, and cannot be ignorantly passed.

8 Multiple experts

Some researchers (e.g., Al-Najjar and Weinstein (2008) and Feinberg and Stewart (2008)) argue that the

negative results depend crucially on whether a single expert is tested in isolation, or multiple experts are

tested at the same time. They point out, however, that some limitations on single-expert testing still have

force in the multiple-expert setting.

The idea of comparative testing is very attractive. In practice, true probabilistic models may not exist,

but we, nevertheless, use probabilistic models. Some models may be better than others, and with the

help of data one may be able to determine which models are better (e.g., by comparing the likelihoods of

observed events).

The model in which there is no true data-generating process has not yet been examined. Instead, Al-

Najjar and Weinstein and Feinberg and Stewart argue that the possibility of comparative testing reverses

some of the negative results.

More precisely, Al-Najjar and Weinstein consider prequential tests whose verdict depends on only a

finite number n of forecasts and observed outcomes, and this number n is common for all theories P .

They restrict attention to situations in which one of two experts is informed and the other is ignorant,

and instead of a PASS-or-FAIL verdict their test indicates the expert which it finds to be informed. (They

also allow for the verdict to be inconclusive.) They show that some likelihood tests Tn have the following

property:

test needs only n outcomes in order to give a verdict.
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Proposition 6 If expert i is informed and truthful, then for every ε > 0, there is an integer K such that

for all integers n, data-generating processes P , and random generator of theories ξj of expert j �= i, the

probability of the event that

(a) Tn picks expert i, or

(b) the probabilities assigned to outcome 1 (or, equivalently, to outcome 0) by the two forecasts differ

by at most ε in all but K periods,

is no lower than 1− ε.12

Thus, the only way in which an ignorant expert can pass test Tn is for the expert to provide theories that

satisfy condition (b). This seems to be difficult to achieve for all data-generating processes P . However,

the test does not guarantee that an ignorant expert will fail it, even in the presence of an informed expert.

Moreover, the test is unable to reveal the type of the experts when both of them are ignorant. Indeed,

Al-Najjar and Weinstein show that there is no test that cannot be ignorantly passed and that can tell

whether there is at least one informed expert. (An analogous result was also obtained by Feinberg and

Stewart.)

Feinberg and Stewart define a cross-calibration test, under which m experts are tested simultaneously,

and which reduces to the calibration test in the case of a single expert, i.e., when m = 1. Intuitively, just

as the calibration test checks the empirical frequency of observed outcomes conditional on each forecast,

the cross-calibration test checks the empirical frequency of observed outcomes conditional on each profile

of forecasts.

They show the following proposition:

Proposition 7 (a) For every data-generating process P , if an expert predicts according to P , the

expert is guaranteed to pass the cross-calibration test with probability 1, no matter what strategies the other

experts will use.

(b) In the presence of an informed expert, for every random generator of theories ξ of an ignorant

expert, the subset of data-generating processes P under which the ignorant expert will pass the cross-

calibration test with positive probability is topologically small in the space of data-generating processes P .13

However, this test, like the test of Al-Najjar and Weinstein, may be unable to reveal the type of experts

when both of them are ignorant. Feinberg and Stewart modify the cross-calibration test to obtain another

test, which they call strict cross-calibration, and show that:

Proposition 7 (c) For any random generator of theories (ξ1, ..., ξm), which are independent random

variables, the set of realizations ω on which at least two ignorant experts simultaneously pass the strict

cross-calibration test with positive probability is a topologically small set in Ω.

12The probability is measured here according to the product measure P × ξj on the space Ω×∆(Ω).

13The probability is measured here according to the product measure P × ξ on the space Ω×∆(Ω).
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Unlike cross-calibration, however, the strict cross-calibration, rejects the informed expert on some

(albeit “small”) set of data-generating processes P . Therefore, one may ask whether the reversion of the

negative result is caused by allowing for simultaneous testing of multiple experts, or rather by allowing for

some possibility of rejecting informed experts. Olszewski and Sandroni (2009a) suggest that this is due to

the latter rather than the former reason.14

Before their result will be presented, it is important to comment on the condition that random gen-

erators of theories are independent random variables. In the interpretation, this assumption means that

experts cannot collude. If we allowed for correlated generators, experts could provide identical forecasts,

in which case multiple-expert tests could typically be ignorantly passed by virtue of the results for single

experts.

I will now describe how Olszewski and Sandroni generalize Proposition 3; I will present their result for

two experts, but the generalization to any number of experts is straightforward. They consider only tests

that reject theories in finite time. That is, they define comparative tests which reject theories in finite

time as functions that take as input pairs of theories and yield as output two collections of finite sequences

of outcomes (one collection for each expert), and which fail the expert’s theory if a sequence from her

collection is observed.

A test does not reject the truth if the actual data-generating process is, with high probability, not

rejected, no matter what theory is provided by the other expert. A test can be ignorantly passed if

both experts can randomly select theories, independent of one another, such that the theory selected by

each expert will be rejected only with small probability (no higher than ε+ δ), according to the experts’

randomization devices, no matter how the data will unfold. Finally, a test is future-independent if the

possibility that any expert’s theory is rejected in period m depends only on the data observed up to period

m and the predictions made by the theories of both experts up to period m.

Proposition 8 Every comparative future-independent test which rejects theories in finite time, and

which does not reject the truth with probability 1− ε, can be ignorantly passed with probability 1− ε −δ.

The proof of this result combines the proof of Proposition 7 with a fixed-point argument.

9 Bayesian and decision-theoretic approaches to testing experts

9.1 Bayesian approach

Unlike most of this survey, most of economics assumes that even purely informed agents have some correct

prior over future events. One may wonder whether such a prior will help a tester to separate informed

from ignorant experts. Of course, a tester equipped with a prior can make forecasts herself without the

14Olszewski and Sandroni study only tests which rejects theories in finite time. Therefore, their results have no direct

implications regarding calibration tests, which give the verdict at infinity.
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help of any expert. So, the tester will find the expert’s forecasts valuable only when these forecasts are

more precise than her own. And only in this case would testing experts seem to make any sense. However,

it seems intuitive that the likelihood-ratio test in which the tester compares her own forecasts with the

expert’s forecasts should reveal that the informed expert knows more than the tester. And the ignorant

expert, who knows no more than the tester, should be exposed to some risk of having low likelihood ratios

of her forecasts to the expert’s forecasts.

Stewart (2011) formalizes this idea as follows: Suppose the informed expert knows the probability

distribution P , and the tester knows only a probability distribution µ over probability distributions. Let

P be the probability distribution over outcomes induced by µ. That is,

P (A) =




∆(Ω)

P (A)dµ

for every Borel set A ⊂ Ω. Given a probability distribution P , let p(ωt)[ωt] be the probability of outcome

ωt conditional on history ωt; for our purposes, it will be irrelevant how f(ωt)[ωt] is defined when the

probability of ωt is zero. The conditional probabilities p(ωt)[ωt] are defined analogously. Let

ε =




∆(Ω)

P

��

ω ∈ Ω :
∞�

t=1

(p(ωt)[ωt]− p(ωt)[ωt])
2 converges


�

)dµ.

Notice that ε is a number, and is a function of µ. This number may not be small; for example, ε = 1 if

distribution µ is degenerated to a distribution P . However, ε is small, or even equal to zero, for many

distributions µ (for example for the uniform distribution over i.i.d. processes).15

Let T (P, ω) = PASS if p(ωt)[ωt] = 0 for some t. In addition, if p(ω
t)[ωt] > 0 for all t, then T (P,ω) =

PASS if

lim inf
t

p(ω1)[ω1]

p(ω1)[ω1]
· ... ·

p(ωt)[ωt]

p(ωt)[ωt]
> 1

and
∞�

t=1

(p(ωt)[ωt]− p(ωt)[ωt])
2 diverges.

In all other cases T (P, ω) = FAIL.

Stewart shows the following proposition:

Proposition 9 (i) The test passes the truth with probability 1− ε; and (ii) for any random generator

of theories ξ, the ignorant expert who selects a theory according to ξ passes the test with probability 0.

The ignorant expert’s probability is evaluated according to the product measure µ× ξ on the set of all

(P,Q), where P is the data-generating process and Q is the expert’s theory.

9.2 Decision-theoretic approach

Echenique and Shmaya (2008), Olszewski and Pęski (2011), and Gradwohl and Salant (2011) make the

point that in decision theory, information is only a tool for making better decisions. Of course, there is

15This fact is nontrivial, see Stewart for details.
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no conflict between this view and the literature on testing experts. Even if the decision problem is not

explicitly modelled, one may argue that when we know the expert’s type, we are able to make better

decisions.

However, the impossibility of separating informed and ignorant experts may depend critically on

whether the expert’s forecasts play the role of advice for a specific decision problem, or whether one

simply wishes to learn the expert’s type. Indeed, there are two conceptual differences: (1) a tester (a

decision maker) must take some default action even in the absence of any expert, and may not appreciate

forecasts that suggest the same (or similar) actions; and (2) if forecasts lead to better decisions, the deci-

sion maker may appreciate them, no matter what type of expert provides them. Thus, in an analysis of

forecasting in the context of a specific decision problem, it seems legitimate to relax both the requirement

that a “good” test should always pass informed experts, and the requirement that it should fail ignorant

ones.

The general message of these three papers is that in the decision-theoretic setting, the tester is indeed

able to benefit almost fully from the possibility of obtaining the expert’s advice if the expert is informed,

without losing much if the expert is ignorant. The details of the model, various assumptions, and the

statements of results vary across the papers. In addition, the generally positive results coexist with some

negative ones (see Olszewski and Pęski (2011)). We will not discuss these papers one by one in the present

survey. Nevertheless, in order to give some flavor of this kind of analysis, we will describe one result from

Gradwohl and Salant (2011), which may show in the most convincing way the general message of these

papers and how they contrast with the literature on testing experts.

Gradwohl and Salant study a model in which the expert observes the realizations of some stochastic

process. These realization provide signals about the realizations of the data-generating process. In every

period, the decision maker decides whether to bet on the outcome of the data-generating process or stay

out. The decision maker has no knowledge of the data-generating process, the expert’s process, or any

relation between the two.

In every period, the expert provides a prediction that specifies, according to the expert’s signal, the

maximal expected value of betting in that period and the bet that achieves that expected value. If the

decision maker decides not to follow the expert’s advice, the period ends and both the decision maker

and the expert get the payoff of staying out. Otherwise, the decision maker pays the expert a fixed,

exogenous share of the maximal expected value of betting in that period, observes the realization of the

data-generating process, and obtains the payoff from betting.

Gradwohl and Salant show that if the expert’s process satisfies some condition (e.g., when that process

coincides with the data-generating process), then the decision maker has a strategy that approximates the

first best, that is, the payoff that the decision maker would obtain if she knew the expert’s process herself.

The strategy is common for all data-generating processes, and all processes of the expert that satisfy the

required condition. The approximation is in terms of the average per-period expected payoff, and for any
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given level of approximation, the interaction is assumed to last over a sufficiently long time horizon.

In addition, the decision maker can achieve this goal with a fixed and bounded amount of money, which

means that for a sufficiently long time horizon, the amount per period is sufficiently small. Therefore even

if the expert is “ignorant,” the decision maker will not lose much. Gradwohl and Salant show that this

result holds for truthful experts, and that the any strategic behavior of the expert (whose process satisfies

the required condition) that improves his own payoff over truthfulness can only increase the payoff of the

decision maker.16

10 Related topics

10.1 Falsifiability and philosophy of science

The literature on testing experts provides a number of insights, and stimulates a discussion on probabilistic

modeling, or more generally, the philosophy of science. Olszewski and Sandroni (2011) take the relation to

the philosophy of science more literally, and come up with two conclusions. First, they argue that celebrated

falsifiability of Karl Popper has no power to distinguish scientific theories from worthless theories when

theories can be produced by strategic experts. Second, they find formal support for the maxim that

theories should never be fully accepted, and that they should be rejected when proven inconsistent with

the data; this maxim clearly contrasts with an approach that accepts a theory once proven to fit the known

data.

More specifically, they define a theory P ∈ ∆(Ω) to be falsifiable if, for every history ωk = (ω1, ..., ωk−1),

there is an extension ωn = (ω1, ..., ωn−1) of ω
k such that

P (C(ωn)) = 0.

Thus, a theory is falsifiable if, after any finite sequence of observed outcomes, there is a finite sequence

of outcomes that the theory finds impossible to be observed. This falsifiability test rejects nonfalsifiable

theories out of hand (i.e., on all data sets), while any falsifiable theory is rejected only at all finite sequences

of outcomes which the theory finds impossible. Olszewski and Sandroni show that for every ε > 0, the

falsifiability test can be ignorantly passed with probability 1− ε.

Olszewski and Sandroni call tests which rejects theories in finite time, rejection tests. Recall that such a

test specifies for every theory a collection of finite sequences of outcomes, which sequences (according to the

test) contradict the theory; and the test fails the theory if one of these sequences is observed. Similarly,

acceptance tests specify for every theory a collection of finite sequences of outcomes, which sequences

16 It is worth pointing out that in Gradwohl and Salant (2011), which is typical for the entire literature, the optimal

strategies, or the best responses to the strategies of other agents, may not exist without imposing any conditions on the

stochastic processes.
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(according to the test) confirm the theory; and the tests pass the theory if one of these sequences is

observed.

They show that every acceptance test that, with probability 1 − ε, does not reject the truth can be

ignorantly passed with probability 1− ε −δ, while there exists a rejection test that, with probability 1−ε,

does not reject the truth but cannot be ignorantly passed with probability higher than ε. Moreover, for

any good test T 1, there exists a good rejection test T 2 that is harder than T 1, which means that

{ω ∈ Ω : T 2(P, ω) = PASS} ⊂ {ω ∈ Ω : T 1(P, ω) = PASS}, ∀P∈∆(Ω).

10.2 Gaming performance fees by portfolio managers

One example of experts providing probabilistic forecasts is financial analysts. It is tempting to apply

the results that ignorant experts cannot be separated from informed experts to managers of financial

institutions, especially since gaming returns by portfolio managers seems to be quite common in practice.

For example, it is well-known that treating gains and losses asymmetrically creates incentives for managers

for taking excessive risk. Lo (2001) examines a hypothetical situation in which a manager takes short

positions in S&P 500 put options that mature in one to three months, and showed that such an approach

would have generated very sizable excess returns relative to the market in the 1990s.

However, the difficulty in applying our negative results to financial markets is that managers typically

use their forecasts to make investment decisions. Therefore, the analysis of this application seems to be

closer to that of Section 9.2 rather than to that of Section 5. Yet, Foster and Young (2010) obtain negative

results similar in spirit to those from Section 5.

More specifically, suppose that a benchmark portfolio, such as the S&P 500, generates a sequence of

stochastic returns xt in each of T periods t = 1, ..., T , and let rt denote a risk-free rate in period t. A fund

has initial value s0 > 0, which, if passively invested in the benchmark portfolio, would generate the return

s0

T�

t=1

xt

by the end of the period T .

Suppose that a skilled manager can generate a sequence of “higher” returns mtxt. A compensation

contract over T periods is a sequence of functions ϕt, t = 1, ..., T , such that ϕt is a function of the

realizations of ms and xs, s ≤ t, that is, a function of the return of the benchmark portfolio and the excess

return generated by the manager. The functions represent payments to a manager, which are made at

the end of each period. The contract can also specify a payment in period 0, and the payments can be

negative.

Foster and Young show that there is no compensation contract that separates skilled from ignorant

managers. More precisely, for any compensation contract which attracts risk-neutral skilled managers,

there is a trading strategy for risk-neutral ignorant managers which yields them a higher expected payoff

than the benchmark portfolio.
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The argument can be explained as follows: Suppose that s0 = 1, T = 1 and the benchmark portfolio

yields the risk-free rate r. Since the benchmark return is deterministic, the compensation scheme ϕ is a

function of m. Suppose that the skilled manager is able to generate returns m∗ > 1 + r. Consider the

following strategy of the ignorant manager:

The ignorant manager invests s0 entirely in the benchmark risk-free asset at the beginning of the period.

Just before the end of the period, his capital will be (1 + r)s0. He uses this capital as collateral to buy a

lottery in the options market that is realized almost immediately, at the end of the period. The lottery is

constructed so as to pay m∗(1 + r)s0 with probability 1/m
∗ and to pay 0 with probability 1− 1/m∗.

Since the strategy of an ignorant manager generates only one of the two returns m∗ or 0, we need to

consider only ϕ(m∗) or ϕ(0), that is, the compensation of the skilled manager and the compensation in

the case of bankruptcy. Consider the case in which ϕ(0) < 0, that is, the manager is financially penalized

in the case of bankruptcy. The case of ϕ(0) < 0 is simpler. To deter the ignorant manager, the expected

fees earned during the period cannot be positive:

�
1

m∗

�
ϕ(m∗) +

�
1−

1

m∗

�
ϕ(0) ≤ 0. (7)

In order to make the penalty possible, the amount (1 + r)−1 |ϕ(0)| must be held in escrow in a safe

asset which earns the risk-free rate, and is paid out to the investors if the fund goes bankrupt.

Now consider the skilled manager who can generate the return m∗ with certainty. This manager must

also put the amount (1 + r)−1 |ϕ(0)| in escrow, because ex ante all managers are treated alike and the

investors cannot distinguish between them. However, this involves an opportunity cost for the skilled

manager, because by investing (1 + r)−1 |ϕ(0)| in her own private fund, she could have generated the

return m∗(1 + r)(1 + r)−1 |ϕ(0)| = m∗ |ϕ(0)|. The resulting opportunity cost for the skilled manager is

m∗ |ϕ(0)| − (1 + r)(1 + r)−1 |ϕ(0)| = (m∗ − 1) |ϕ(0)| .

Therefore, she will not participate if the opportunity cost exceeds the fee, that is, if

(m∗ − 1) |ϕ(0)| ≥ ϕ(m∗). (8)

However, inequality (8) is equivalent to inequality (7).
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