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Abstract

We introduce a new approach to analyzing contest design questions in settings that

accommodate heterogenous prizes and many, possibly asymmetric contestants who may

have private information about their ability or prize valuations.

We use the approach to derive the prize structure that maximizes contestants’ effort.

Awarding numerous prizes of different values is optimal when players are risk averse

with linear effort cost, or risk neutral with convex effort cost. Awarding a small number

of maximal prizes is optimal when players are risk loving with linear effort cost, or risk

neutral with concave effort cost.

Our approach makes it possible to derive closed-form approximations of the effort-

maximizing prize structure for concrete utility functions and distributions of players’

types. This facilitates further analysis of large contests.
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1 Introduction

This paper presents a novel approach to the design of optimal contests with many con-

testants.1 The goal of the approach is to address a central challenge in the analysis of

contest design questions, namely, how to optimize over the set of feasible contests when solv-

ing even a single contest is difficult or impossible. The idea is to solve a different optimization

problem, which is more manageable and whose solution approximates the optimal contest.

This is made possible by the results of Olszewski and Siegel (2016) (henceforth: OS), who

showed that for large contests players’ equilibrium behavior and resulting allocation of prizes

are approximated in a strong sense by a particular single-agent mechanism that allocates a

continuum of prizes to a continuum of agent types. The problem of optimizing over a set of

contests can be translated to optimizing over the set of mechanisms that approximate the

equilibria of these contests, so that the solution to the mechanism design problem approxi-

mates the one to the contest design problem. The rich set of tools available in the mechanism

design literature can be brought to bear on the mechanism design problem, which greatly

increases its tractability.

The contest environment we consider has many contestants, who may be ex-ante asym-

metric and may or may not have private information about their ability or prize valuations.

We model contests as multi-prize all-pay auctions, in which a player’s bid represents her

effort (or performance). Players’ prize valuations and effort costs need not be linear, and the

contest may award a combination of heterogeneous and identical prizes. Players’ type distri-

butions are independent, but need not be identical. Complete information is a special case.

All players choose their effort simultaneously. The player with the highest effort obtains the

highest prize, the player with the second-highest effort obtains the second-highest prize, etc.

The combination of asymmetric players, incomplete information, and heterogeneous prizes

makes most specifications of these contests impossible to solve, and thus particularly suitable

for our contest design approach.

We apply the approach to investigate effort-maximizing contests. Our first result con-

cerns settings in which the designer has some control over the composition of the pool of

1Settings with a large number of contestants who compete for prizes by expending resources include

college admissions (in 2012, 4-year colleges in the US received more than 8 mln applications and enrolled

approximately 1.5 mln freshmen), grant competitions (in each of the last several years, the National Science

Foundation (NSF) received more than 40,000 grant applications and awarded more than 10,000 grants),

sales competitions in large firms (Cisco, which has more than 15,000 partners in the US, holds several sales

competitions among its partners), and certain sports competitions (between 2010 and 2012, Tokyo, London,

New York, Chicago, and Sydney each hosted a marathon with more than 30,000 participants).
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contestants who may participate in the contest. Given any distribution of prizes awarded

in the contest, we show that a first-order stochastic dominance shift in the distribution of

abilities in the player population always leads to an increase in their aggregate equilibrium ef-

fort. This is true regardless of the asymmetry among players or the structure of their private

information. While this result may seem straightforward, it does not hold for asymmetric

contests with a small number of players. For some small contests, such a shift in the ability

distribution reduces the aggregate equilibrium effort. This is because in small contests there

are countervailing effects. On the one hand, more able players tend to exert more effort. On

the other hand, players may become more asymmetric, which discourages less able players,

who exert less effort, and consequently also reduces the effort of more able players, who now

face weaker competition. But in large contests the second effect disappears, because players

effectively compete against those with similar abilities.

Our main results identify the prize distribution that maximizes players’ aggregate equi-

librium effort given a prize budget and a population of possibly asymmetric and privately

informed players. Some results of this type exist in the literature, but they are often partial

or limited to environments with ex-ante identical players or identical prizes, and rely on

restrictive functional forms and informational assumptions.2 In reality, contestants are often

ex-ante asymmetric, their costs of effort and prize valuations may not be linear, and they

may have varying degrees of private information. When multiple prizes are awarded, they

need not be (and often are not) identical. Our approach shows that the mechanism design

problem corresponding to this contest design problem is to maximize the expected revenue in

the mechanism across all prize distributions that satisfy a budget constraint. We show that

this is in fact a calculus of variations problem, which can be solved by standard methods.

The solution to this problem demonstrates that the optimal prize distribution is closely

linked to the curvature of players’ effort cost and prize valuations. When effort costs are

convex (and prize valuations are linear) or when prize valuations are concave (and effort

costs are linear), which corresponds to risk-averse players when prizes are denominated in

monetary terms, it is optimal to award numerous prizes whose value gradually decreases

with players’ ranking. This is true regardless of the structure of players’ private information

or the distribution of abilities in the player population. The ability distribution, effort costs,

and prize valuations determine the precise optimal distribution of the prizes. In general,

many players do not obtain a prize, but if the marginal cost of the first unit of effort is 0, it

is optimal to award a prize to nearly all players, which induces participation by almost all

2See, for example, Glazer and Hassin (1988), Barut and Kovenock (1998), Clark and Riis (1998), and

Moldovanu and Sela (2001). Konrad (2007) provides an overview of the contest literature.
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player types. This shows that despite their similarities, the optimal prize distribution and

resulting player behavior when effort costs are linear and prize valuations are concave may

be qualitatively different than when effort costs are convex and prize valuations are linear.

We obtain a complete characterization of the prize distribution, which is described in closed

form once functional forms for the ability distribution in the player population and effort

costs or prize valuations are specified.3 Awarding numerous prizes of different value is also

optimal when players have a combination of convex costs and concave prize valuations.

When effort costs are linear or concave (and prize valuations are linear) or when prize

valuations are linear or convex (and effort costs are linear), a winner-take-all contest with

a single grand prize is optimal. In particular, one does not need to know the precise effort

costs, prize valuations, or distribution of abilities in the player population. Our qualitative

characterization of the optimal prize structure, which applies to all equilibria, is in line with

the findings of Moldovanu and Sela (2001) (henceforth: MS), who studied the symmetric

equilibrium of contests with ex-ante symmetric contestants with incomplete information

and linear prize valuations.4 A single grand prize remains optimal when players have a

combination of concave costs and convex prize valuations.

We also consider how restricting the size of the highest prize that may be awarded

affects the effort-maximizing prize distribution.5 This restriction can be the result of policy,

fairness considerations, or technological limitations.6 The optimal prize distribution under

this restriction is related to the one in the unrestricted case in a natural way: instead of a

single grand prize, multiple maximal prizes are awarded, and instead of a range of prizes of

different value, a range of prizes of different value along with multiple maximal prizes are

awarded. In both cases, if the prize budget is large enough relative to the restriction, some

of the budget will optimally remain unused. When this happens, even with concave prize

utility it is optimal to award only multiple maximal prizes (just like with convex prize utility

or concave costs), but with linear prize utility and convex costs in which the marginal cost of

3This is demonstrated by the examples in Sections 5.4 and 6.3.

4They showed that a single grand prize is optimal when effort costs are linear or concave, but may be

inferior to a set of two prizes of different values when effort costs are convex. Section 6.2 provides a more

detailed comparison of our results for linear prize valuations to those of MS.

5We derive the results in the previous paragraphs by solving the maximization problem with this constraint

and taking the restriction on the highest possible prize to infinity.

6For example, several NSF categories have maximal awards. In a college admissions setting, it may be

possible to fund additional admissions to existing universities, but creating another university to generate

prizes whose value exceeds the value of admission to the best existing universities is likely infeasible.
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the first unit of effort is 0 it remains optimal to award a range of heterogeneous prizes, along

with multiple maximal prizes. This is another qualitative difference between the optimal

prize distribution with concave prize utility and the one with convex effort costs. Regardless

of the prize budget or the restriction on the maximal prize, it is never optimal to award

multiple identical intermediate prizes - any identical prizes awarded must all be the highest

possible prize.7

In addition to characterizing the effort-maximizing prize structure, our approach char-

acterizes the equilibrium efforts of all players in the optimal contest. The approach also

uncovers a novel connection between effort-maximizing contests with many players who

have linear effort cost and Myerson’s (1981) optimal auction with a single buyer. Myerson’s

optimal auction and the mechanism that approximates the optimal contest both implement

monotone allocations that maximize the “virtual surplus” for each type, i.e., the alloca-

tion value minus the information rents accrued to higher types. The difference is in the

constraints: the approximating mechanism is subject to an overall prize budget constraint,

whereas Myerson’s mechanism is subject to a capacity constraint type by type, since a single,

exogenously given object is being auctioned.

The intuition why the approximating mechanism also maximizes the virtual surplus is as

follows. In small contests increasing the value of a prize affects players in complicated ways,

encouraging competition by some players and discouraging others (see MS). But in large

contests, increasing the value of a prize has only two, clear-cut effects. First, it increases

local competition for this prize by players with types close to the one who is allocated the

prize in equilibrium, and the increased competition precisely exhausts the entire increase in

the prize value. Second, it reduces the effort of all higher types, since they can now slack

off and obtain the same utility by winning a slightly lower prize than they previously did.

These two effect are captured by a “virtual effort” expression identical to Myerson’s virtual

surplus. This also helps to explain why our approach makes solving for the optimal prize

structure a tractable problem, at least when costs are linear.

With convex costs, a similar expression describes the effect of increasing a prize on the

aggregate cost of effort, but this does not provide a simple expression for the effect on the

aggregate effort, because for every type the slope of the inverse cost function depends on

that type’s equilibrium effort. Nevertheless, this intuition helps to explain the qualitative

differences between the optimal prize distribution with concave prize utility and linear effort

7Multiple identical intermediate prizes may be part of an effort-maximizing prize distribution when play-

ers’ effort costs or prize valuations are not convex or concave. Our characterization of the conditions for the

optimal prize distribution can be easily used to analyze such settings.
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costs and the one with linear prize utility and convex costs in which the marginal cost of the

first unit of effort is 0. In the former case, the virtual effort per unit of prize utility for types

below a certain threshold is negative, so the number of prizes is always optimally restricted,

whereas that of types above the threshold is positive, so any awarded prizes are increased

as much as the budget and the restriction on the highest possible prize allow. In the latter

case, the effect on the aggregate effort of awarding a small prize even to a low type is always

positive, since for a small amount of prize utility a marginal effort cost of 0 implies that the

level of effort that exhausts the prize utility is larger than the corresponding decrease in the

effort of higher types who exert positive effort, because they have positive marginal effort

costs.

Finally, our approach can be used to investigate contests that are optimal with respect

to other goals.8 One example, which we analyze in the appendix, is maximizing the highest

efforts, rather than the aggregate, or average, effort. We show that the optimal prize distri-

bution with many contestants is a small number of prizes of the highest possible value. This

is true regardless of players’ effort costs, prize utilities, private information, or distribution

of abilities. This prize distribution is consistent with many crowd-sourcing contests, which

involve a large pool of contestants and typically award a small number of prizes. Examples

of other questions that can be investigated using our approach include how to maximize

effort when prizes are costly (instead of having a fixed budget) and how to maximize social

welfare when contestants’ effort may be productive or wasteful. We leave these and other

potential questions for future work.

The rest of the paper is structured as follows. Section 2 describes the contest environment.

Section 3 describes the mechanism design framework and OS’s approximation result. Section

5 analyzes the optimal prize structure when players have linear costs. Section 6 analyzes the

optimal prize structure when players have linear prize valuations. Section 7 concludes. The

appendix contains the proofs omitted from the main text.

2 Asymmetric contests

In the contests we consider,  players compete for  prizes of known value. Each player

is characterized by a type  ∈  = [0 1], and each prize is characterized by a number

 ∈  = [0] with  ≥ 1.9 Prize  is the highest possible prize. As discussed in the

8Bodoh-Creed and Hickman (2015) study affirmative action by investigating a different large contest

model.

9The restriction  ≥ 1 is a convenient but inessential normalization.
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introduction, such a prize restriction arises naturally in some settings. The results we obtain

apply to settings in which such a restriction is not imposed by letting  diverge to infinity.

Prize 0 is “no prize.” The prizes are denoted 1 ≤ 2 ≤ · · · ≤ , some of which may be

0, i.e., no prize, so it is without loss of generality to have the same number of prizes as

players. Player ’s privately known type  is distributed according to a cdf 
 , and these

distributions are commonly known and independent across players. In the special case of

complete information, each cdf corresponds to a Dirac (degenerate) measure.

In the contest, each player chooses her effort level , the player with the highest effort

obtains the highest prize, the player with the second-highest effort obtains the second-highest

prize, and so on. Ties are resolved by a fair lottery. The utility of a type  player from

exerting effort  ≥ 0 and obtaining prize  is

(  ) =  ()− (), (1)

where  (0) =  (0) = 0, and prize utility function  and cost function  are continuously

differentiable and strictly increasing.10 Notice that (1) can accommodate private information

about ability by dividing each player’s utility by  to obtain  ()− () , which has no effect
on the results. We assume that sufficiently high effort levels are prohibitively costly, that is,

for large enough  we have  (1)   (), so no player chooses effort higher than −1 ( (1)).

The functional form (1) and special cases thereof have been assumed in numerous existing

papers (see, for example, Clark and Riis (1998), henceforth: CR, Bulow and Levin (2006),

henceforth: BL, MS, and Xiao (2016)). We will be interested primarily in concave functions

 and convex functions , which capture risk aversion (assuming that  is a monetary prize,

while  stands for effort, not for a monetary bid) and typical costs of effort. However, most

of our analysis does not require these assumptions, and Sections 5.3 and 6.2 provide results

also for convex  and concave .

Our analysis will focus on large contests, that is, contests with a large . We will consider

sequences of contests, and refer to a contest with  players and  prizes as the “-th contest”

in the sequence. Every contest has at least one (mixed-strategy) Bayesian Nash equilibrium.11

10We also allow for 0 (0) =∞, where the derivative is a right-derivative.
11This follows from Corollary 5.2 in Reny (1999), because the mixed extension is better-reply secure.
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3 Using mechanism design to study the equilibria of

large contests

The optimal design of asymmetric contests of the kind described in Section 2 is difficult or

impossible, because no method currently exists for characterizing their equilibria for most

type and prize distributions. And even in the few cases for which a characterization exists,

the equilibria have a complicated form, or can be derived only by means of algorithms (BL,

Siegel (2010), and Xiao (2016)). Our approach to contest design builds on the technique for

studying the equilibria of large contests, which was developed in OS. We now describe this

technique, which allows us to approximate the equilibrium outcomes of large contests by

considering the mechanism that implements a particular allocation of a continuum of prizes

to a continuum of agent types.

3.1 Limit distributions

We first formalize a requirement that the contests in the sequence be “sufficiently similar”

as the number of players  grows large. Let  = (
P

=1 

 ) , so 

 () is the expected

percentile ranking of type  in the -th contest given the random vector of players’ types.

Denote by  the empirical prize distribution, which assigns a mass of 1 to each prize

 (recall that there is no uncertainty about the prizes). We require that 
 converge in

weak∗-topology to a distribution  that has a continuous, strictly positive density  , and

that  converge to some (not necessarily continuous) distribution .12 Notice that the

restriction on  does not imply a similar restriction on distributions 
 of players’ types, so

these distributions may have gaps and atoms.13

In particular, the convergence of   and  to limit distributions  and  accommo-

dates as a special, extreme case sequences of complete-information contests with asymmetric

players, in which each player ’s type distribution 
 in the -th contest is a Dirac measure.

A simple way to see this is to first choose the desired limit distributions  and  and then

set player ’s deterministic type in the -th contest to be  = −1 () and prize  in the

-th contest to be  = −1 (), where

−1() = inf{ ∈ [0] :  () ≥ } for 0 ≤  ≤ 1.
12Convergence in weak∗-topology can be defined as convergence of cdf s at points at which the limit cdf is

continuous (see Billingsley (1995)).

13The restriction on  precludes a limit mass of players that have an atom at a particular type, as is the

case when there is a non-vanishing fraction of identical players in a contest with complete information.
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Then, the -th contest is one of complete information,  converges to  , and  converges

to .

One example is contests with identical prizes and players who differ in their valuations for

a prize. For this, consider  () = ,  uniform, and  that has () = 1− for all  ∈ [0 1)
and (1) = 1, where  ∈ (0 1) is the limit ratio of the number of (positive) prizes to the
number of players. Then  =  and  = 0 if  ≤ 1−  and  = 1 if   1− . The

-th contest is an all-pay auction with  players and pq identical (non-zero) prizes, and
the value of a prize to player  is . These contests were studied by CR, who considered

competitions for promotions, rent seeking, and rationing by waiting in line.

Another example with complete information is contests with heterogeneous prizes and

players who differ in their constant marginal valuation for a prize. For this, consider  () = 

and  and  uniform. Then  =  and  = . The -th contest is an all-pay auction

with  players and  heterogeneous prizes, and the value of prize  to player  is 2.

These contests were studied by BL, who considered hospitals that have a common ranking

for residents and compete for them by offering identity-independent wages.14

Many other complete-information contests with asymmetric players can be accommo-

dated, including contests for which no equilibrium characterization exists. One example is

contests with a combination of heterogeneous and identical prizes.

Another special, extreme case of the convergence of   and  is incomplete-information

contests with ex-ante symmetric players that have the same iid type distributions  
 =  .

This case includes the setting of MS. Beyond these extreme cases, our setting accommo-

dates numerous incomplete-information contests with many ex-ante asymmetric players. No

equilibrium characterization exists for such contests.

3.2 Assortative allocation and transfers

As will be stated in the next subsection, the mechanism that approximates the equilibrium

outcomes of large contests implements the assortative allocation, which assigns to each type

 prize  () = −1 ( ()). That is, the location in the prize distribution of the prize

assigned to type  is the same as the location of type  in the type distribution. It is well

known (see, for example, Myerson (1981)) that the unique incentive-compatible mechanism

that implements the assortative allocation and gives type  = 0 a utility of 0 specifies for

14Xiao (2016) presented another model with complete information and heterogenous prizes, in which

players have increasing marginal utility for a prize. He considered quadratic and exponential specifications,

which are obtained in our model by setting  () = 2 and  () =  and  and  uniform.
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every type  effort

 () = −1
µ

¡
 ()

¢− Z 

0


¡
 ()

¢


¶
. (2)

For example, in the setting corresponding to CR the assortative allocation assigns no prize

to each type  ≤ 1− and assigns a positive prize to each type   1−, and the associated
efforts are  () = 0 for  ≤ 1 −  and  () = 1 −  for   1 − . In the setting

corresponding to BL, the assortative allocation assigns prize  to type , and the associated

efforts are  () = 22.

3.3 The approximation result

Corollary 2 in OS, which we state as Theorem 1 below, shows that the equilibria of large

contests are approximated by the unique mechanism that implements the assortative allo-

cation.

Theorem 1 (OS) For any   0 there is an  such that for all  ≥  , in any equilibrium

of the -th contest each of a fraction of at least 1−  of the players  obtains with probability

at least 1−  a prize that differs by at most  from  ( ), and chooses effort that is with

probability at least 1−  within  of  ( ).

Theorem 1 implies that the aggregate (expected) effort in large contests can be approxi-

mated by Z 1

0

 ()  () , (3)

where  is the density of the limit aggregate type distribution  . More precisely, we refer

to the aggregate expected effort divided by  in an equilibrium of the -th contest as the

average effort. We then have the following corollary of Theorem 1.

Corollary 1 For any   0 there is an  such that for all  ≥  , in any equilibrium of

the -th contest the average effort is within  of (3).

Corollary 1 implies that the structure of players’ private information has a vanishing effect

on the aggregate effort in large contests, since (3) depends on players’ type distributions only

through the limit distribution  .
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4 Changing the distribution of players’ types

We begin the contest design analysis by considering how changing the distribution of players’

types affects their aggregate equilibrium effort. This is relevant to settings in which the de-

signer has some control over the composition of the pool of contestants who may participate

in the contest. A reasonable conjecture is that opting for players with higher types increases

aggregate equilibrium effort. This is, however, not always the case in contests with a small

number of players. To see this, consider a two-player all-pay auction with complete informa-

tion and one prize. The prize is  = 1, the prize valuation function satisfies  (1) = 1, and

the cost function is  () = . Players’ publicly observed types satisfy 0  1  2  1. It

is well known (Hillman and Riley (1989)) that in the unique equilibrium player 2 chooses a

bid by mixing uniformly on the interval [0 1] and player 1 bids 0 with probability 1−12

and with the remaining probability mixes uniformly on the interval [0 1]. The resulting ag-

gregate effort is 12+ (1)
2
 (22), which monotonically increases in 1 and monotonically

decreases in 2. Thus, an increase in player 2’s type, even when accompanied by a small

increase in player 1’s type, decreases aggregate effort. The intuition is that the increased

asymmetry between the players, which discourages competition, outweighs the increase in

their types, which encourage higher effort.

This example shows that a first-order stochastic dominance (FOSD) shift in players’

aggregate type distribution may increase or decrease aggregate effort. Moreover, since solving

for the equilibria of asymmetric contests with a small number of players and multiple prizes

or incomplete information is difficult or impossible, it is likely difficult to obtain general

conditions under which a FOSD shift increases aggregate effort in such contests.

The following result shows that in large contests a FOSD shift in players’ aggregate type

distribution always increases the aggregate equilibrium effort.

Proposition 1 Take a sequence of contests with limit type distribution  , and for every

contest in the sequence leave the set of prizes unchanged but change the set of players to

obtain a new limit type distribution e that FOSD  . Then, for large enough  and any

 ≥  , the aggregate effort in any equilibrium of the -th contest in the modified sequence

exceeds the aggregate effort in any equilibrium of the -th contest in the original sequence.

Proof : By Corollary 1, it suffices to show that a FOSD shift in  increases the value of

(3). By (2) and the definition of , this value isZ 1

0

µ
−1

µ

¡
−1 ( ())

¢− Z 

0


¡
−1 ( ())

¢


¶¶
 ()  = (4)Z 1

0

µ
−1

µ
 ()−

Z 

0

 () 

¶¶
 () , (5)
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where  () =  (−1 ( ())). By looking at the areas below the graphs of  and −1 in the

rectangle [0 ]×[0  ()], we have that R ()
0

−1()+
R 
0
 ()  =  ().15 Substituting

into (5) we obtainZ 1

0

Ã
−1

ÃZ ()

0

−1 () 

!!
 ()  =

Z 1

0

Ã
−1

ÃZ (−1())

0

−1 () 

!!
, (6)

where the equality follows from the change of variables  =  ().16 Since a FOSD shift in

 decreases  and therefore  pointwise, it increases −1 and −1 pointwise, and therefore

increases (6).

The intuition for Proposition 1 is that in a large contest competition is “localized” in the

sense that players compete against players with similar types.17 Therefore, any decrease in

local competition between some types resulting from a FOSD shift in players’ type distribu-

tion is more than compensated for by an increase in local competition between some higher

types.

5 Optimal prize distribution when players may not be

risk neutral

We now investigate the prize distributions in large contests that maximize the aggregate effort

subject to a budget constraint, taking the distribution of contestants’ abilities as given. The

budget constraint says that the average prize, or the prize per contestant, cannot exceed

a certain value. We will present the main steps of our analysis, and relegate the technical

details to the appendix.

Our first result shows that in order to solve the design problem for large contests it is

enough to identify the prize distributions that maximize (3) in the limit setting subject to

the budget constraint that the expected prize does not exceed a certain value   0. To

formulate this result, consider a sequence of contests whose corresponding sequence of average

type distributions  converges to a distribution  with a continuous, strictly positive

density  . The corresponding empirical prize distributions 
max are ones that maximize the

aggregate effort. That is, 
max describes a set of  prizes that lead to some equilibrium with

15The definition of −1 is −1 () = inf{ ∈ [0 1] :  () ≥ }.
16Even though −1 may be discontinuous, because −1 may be discontinuous, it is monotonic, so the

change of variables applies.

17A discussion of this phenomenon appears in Bulow and Levin (2006).
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maximal aggregate effort, subject to the budget constraint that the average prize does not

exceed some value  that converges to .18. Formally,


max ∈ argmax



⎧⎪⎪⎪⎨⎪⎪⎪⎩
X
=1

Z 1

0

 () 

 () :

 are an equilibrium of the contest with

type distributions 
 and prizes 


1 ≤ · · · ≤ 

described by  with
³P

=1 



´
 ≤ 

⎫⎪⎪⎪⎬⎪⎪⎪⎭ .
Denote by 

max the corresponding maximal aggregate effort attained by 

max.

We would like to characterize 
max and


max for large  by solving for the corresponding

objects in the limit setting. For this, denote byM the set of prize distributions that maximize

(3) subject to the budget constraint
R 
0
 () ≤ . An upper hemi-continuity argument,

given in the appendix, shows thatM is not empty. Denote by the corresponding maximal

value of (3) subject to the budget constraint. Finally, consider any metrization of the weak∗-

topology on the space of prize distributions.

Proposition 2 1. For any   0, there is an  such that for every  ≥  , 
max is within

 (in the metrization) of some distribution in M. In particular, if there is a unique prize

distribution max that maximizes (3) subject to the budget constraint, then 
max converges

to max in weak
∗-topology. 2. 

max converges to  . 3. For any   0 and any  inM,

there are an  and a   0 such that for any  ≥  and any empirical prize distribution

 of  prizes that is within  of , the average effort in any equilibrium of the -th contest

with empirical prize distribution  is within  of 
max.

Part 1 of Proposition 2 shows that the optimal prize distributions in large contests are

approximated by the prize distributions that maximize (3) subject to the budget constraint.

Part 2 shows that the maximal aggregate equilibrium effort is approximated by the maximal

value of (3) subject to the budget constraint. Part 3 shows that any prize distribution that

is close to a prize distribution that maximizes (3) subject to the budget constraint generates

aggregate equilibrium effort (in any equilibrium) that is close to maximal. For example,

given a prize distribution  that maximizes (3) subject to the budget constraint, the set of

 prizes defined by  = −1 () for  = 1   generates, for large contests, aggregate

18That a maximizing set of prizes exists can be shown by a straightforward upper hemi-continuity argument

of the kind used, for example, to prove Corollary 2 in Siegel (2009). We note, however, that our results do

not depend on the existence of such a maximizing set of prizes. For example, none of the analysis changes

if 
max is instead chosen to correspond to a set of  prizes that lead to some equilibrium with aggregate

equilibrium effort that is within 1 of the supremum of the aggregate equilibrium efforts over all sets of 

prizes (subject to the budget constraint) and all equilibria for any given set of prizes.
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equilibrium effort that is close to maximal; moreover, the average prize  for the so defined

distributions  converges to the expected prize  for the distribution .19

For the remainder of the section, we consider players who have linear effort costs but

may not be risk neutral, so (  ) =  ()− . The curvature of  captures players’ risk

attitudes regarding lotteries over prizes. In Section 6, we obtain corresponding results for

(  ) =  − (). Our analysis will show that different risk attitudes and curvatures

of cost functions play a similar (but not identical) role in contest design. The beginning of

Section 6 explains how our analysis extends to the general utility function (1).

5.1 Reduction to a calculus of variations problem

By Proposition 2, we can focus on solving the following problem:

max
R 1
0
 ()  () 

s.t.
R 
0
 () ≤ .

The parameter   0 should be interpreted as the budget per contestant, denominated in

units of the prize  = 1. Similarly, prizes are denominated in units of the prize  = 1, that

is, prize  costs . Thus, the expected prize cannot exceed .

To solve this problem, we will show that it is equivalent to a calculus of variations problem

in variable −1. For this, we first transform the objective function. By substituting (2) into

(3) and integrating by parts, we obtain the following expression for the aggregate effort in

the mechanism that implements the assortative allocation:Z 1

0

 ()  ()  =

Z 1

0


¡
 ()

¢µ
− 1−  ()

 ()

¶
 () . (7)

To gain some intuition for why (7) approximates the average effort in large contests,

observe that (7) coincides with the expected revenue from a bidder in a single-object inde-

pendent private-value auction if we replace 
¡
 ()

¢
with the probability that the bidder

wins the object when his type is  (Myerson (1981)). In the auction setting, increasing the

probability that type  obtains the object along with the price the type is charged allows the

auctioneer to capture the entire increase in surplus for this type, but requires a decrease in

the price that higher types are charged to maintain incentive compatibility. This net increase

in revenue, or “virtual value,” also coincides with a monopolist’s marginal revenue (Bulow

and Roberts (1989)). In a large contest, increasing the prize that type  obtains also allows

19It is easy to see that for any , distributions  close to  can always be chosen so that  does not

exceed .
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the designer to capture the entire increase in surplus for this type, because the higher prize

increases this type’s competition with nearby types until the gain from the higher prize is

exhausted. But the prize increase also decreases the competition of higher types for their

prizes, since the prize of type  becomes more attractive to them.

For the remainder of the analysis, we make the following assumption, which is standard

in the mechanism design literature.20 The assumption guarantees that the effort-maximizing

functions−1 we will derive are non-decreasing, without imposing a monotonicity constraint.

Assumption 1. − (1−  ())  () strictly increases in .

We rewrite (7) using the change of variables  =  () to obtainZ 1

0


¡
−1 ()

¢µ
−1 ()− 1− 

 (−1 ())

¶
 =

Z 1

0


¡
−1 ()

¢
 () , (8)

where  () = −1 () − (1− )  (−1 ()).21 The value  () can be interpreted as the

marginal “virtual effort.” That is, the additional aggregate effort that can be extracted by

a marginal increase in the prize utility  resulting from an increase in the prize assigned by

the assortative allocation to the type whose percentile ranking is  in the limit aggregate

type distribution. This additional effort is the combination of the increase in effort of the

agent type with percentile ranking  and the decrease in effort of agents of all higher types.

By Assumption 1,  () strictly increases in .

We now transform the budget constraint to obtain an equivalent constraint as a function

of−1. Since is a probability distribution on [0], we have
R 
0
 () = −R 

0
 () 

(by integrating by parts) and
R 
0
 () +

R 1
0
−1 ()  =  (by looking at the areas below

the graphs of  and −1 in the square [0] × [0 1]). Thus, the budget constraint can be
rewritten as Z 1

0

−1 ()  ≤ . (9)

This is the desired form of our maximization problem, because maximizing (8) subject to (9)

is a calculus of variations problem in variable −1. Because the allocation is assortative, the

inverse prize distribution −1 specifies for each location  ∈ [0 1] in the type distribution
the prize −1 () ∈ [0] allocated to the type in that location, that is, to type  such that
 () = .

20The assumption is implied, for example, by a monotone hazard rate for distribution  .

21Even though −1 may be discontinuous, it is monotonic, so the change of variables applies.
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5.2 Conditions describing the solution

We now derive the conditions that must be satisfied by an optimal inverse prize distribution

−1. Because in the assortative allocation higher types obtain higher prizes, there are

percentile locations min ≤ max in [0 1] such that types in percentile locations  ≤ min in the

limit distribution  are each allocated the prize −1 () = 0 (no prize),22 types in locations

  max are each allocated the highest possible prize 
−1 () = , and types in intermediate

locations  ∈ (min max) are allocated positive, non-maximal prizes −1 () ∈ (0).
If the range of intermediate types is non-trivial, that is, min  max, then the product of

the marginal prize utility and the marginal virtual effort must be equal for all the intermediate

types. Otherwise, a slight increase the prize allocated to an intermediate type with a higher

product accompanied by an equal decrease in the prize allocated to an intermediate type

with a lower product would increase the aggregate effort. The product must also be non-

negative, otherwise slightly decreasing the prize for intermediate types would increase the

aggregate effort. For similar reasons, weak inequalities hold for the lowest and highest types

in this range. If there are no intermediate types, that is, min = max, then the product for

the highest type allocated no prize must be weakly lower than the product for the lowest

type allocated the highest possible prize. These two cases are formally summarized as follows

(a rigorous proof is provided in the appendix).

Case 1 (min  max): Then, there exists a  ≥ 0 such that 0 (−1 ())  () =  for

 ∈ (min max]; in addition, 0 (0)  (min) ≤ , and 0() (max) ≥  if max  1.

Case 2 (min = max): Then, 
0 (0)  (min) ≤ 0 ()  (max).

If 0 (0) =∞, then similar arguments show that  (min) = 0 holds instead of the inequal-
ities in Case 1 and Case 2 that involve 0 (0).

5.3 Risk averse, risk neutral, and risk loving players

We now use the conditions of Section 5.2 to characterize the optimal prize distribution for

risk averse, risk natural, and risk loving players, who have concave, linear, and convex prize

utility functions . We first show that players’ risk attitude does not affect the optimal

prize distribution when the budget constraint does not bind, and then show how players’

risk attitudes affect the optimal prize distribution when the budget constraint binds.

Suppose that  ≥  (1−  (∗)), where ∗ ∈ (0 1) is the unique type that satisfies
∗ − (1−  (∗))  (∗) = 0. This is the type for whom the marginal virtual effort is 0.

22The inequality  ≤ min is weak because
−1 is left-continuous as the inverse of a probability distribution.
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Such a type exists because, by Assumption 1, − (1−  ())  () strictly increases in ,

and  is continuous and strictly positive on [0 1]. Types   ∗ have negative marginal

virtual effort, so the value of the integrand in (7) is negative, and types   ∗ have positive

marginal virtual effort, so the value is positive. Denote by ∗ =  (∗) ∈ (0 1) the percentile
location in the type distribution of type ∗, so  (∗) = 0. Then, since the marginal prize

utility is always positive, optimizing the integrand in (8) separately for each  ∈ [0 1] leads
to assigning the lowest possible prize −1 () = 0 to types in locations  ≤ ∗, and assigning

the highest possible prize  to types in locations   ∗.23 This −1 is left-continuous and

monotonic, so the corresponding  is a prize distribution and is therefore optimal. We thus

obtain the following result.

Proposition 3 If  ≥  (1−  (∗)), then for any function  the optimal prize distribution

consists of a mass 1 −  (∗) ∈ (0 1) of the highest possible prize  and a mass  (∗) of

prize 0.

Proposition 3 shows that when the budget constraint does not bind, it is optimal to award

a set of identical prizes, as in the all-pay auctions studied by CR, rather than, for example,

heterogeneous prizes, as in the all-pay auctions studied by BL, or a combination of identical

and heterogeneous prizes. Moreover, some of the budget is optimally left unused. This is

analogous to a monopolist limiting the quantity sold. Relaxing the constraint on the highest

possible prize (increasing) optimally leads to an increase in the value of the awarded prizes,

but does not change their quantity. Of course, for a fixed budget , a sufficient increase in

 would cause the budget constraint to bind.

We now consider a binding budget constraint, which seems more relevant in practice. So,

for the remainder of the section we make the following assumption:

Assumption 2.    (1−  (∗)).

This assumption implies that for the optimal prize distribution the budget constraint (9)

holds with equality. We now derive the form of the optimal prize distribution for convex and

concave functions , and show that the binding budget constraint leads to a qualitatively

different optimal prize distribution in each case, in contrast to the finding with an unlimited

budget. We first present the simpler result for convex functions .

Proposition 4 If  is weakly convex, so players are risk neutral or risk loving, then the

optimal prize distribution consists of a mass  of the highest possible prize and a mass

1−  of prize 0.

23This corresponds to Case 2 in Section 5.2, with min = max = ∗.
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Proof : Weak convexity implies that min = max. Indeed, since 
0 and −1 are weakly in-

creasing and  is strictly increasing, for any 0  00 in (min max)we would have 0 (−1 (0))  (0) 

0 (−1 (00))  (00), which would violate 0 (−1 (0))  (0) = 0 (−1 (00))  (00) = .

Proposition 4 shows that awarding identical prizes remains optimal when the budget

constraint binds, provided that agents’ marginal prize utility is non-decreasing. If the highest

possible prize, , is increased, fewer maximal prizes are optimally awarded. The limit as 

grows arbitrarily large corresponds to a single grand prize.

We now consider concave functions .

Proposition 5 1. If  is weakly concave (but not linear on [0]), so players are weakly

risk averse (but not risk neutral), then any optimal prize distribution assigns a positive mass

to the set of intermediate prizes (0). In addition, any optimal prize distribution may have

atoms only at 0 (no prize) and  (the highest possible prize). 2. If  is strictly concave,

then any optimal prize distribution awards all prizes up to the highest prize awarded. That

is,  strictly increases on [0 −1 (1)].

Proof : Weak concavity implies that min  max. Indeed, since 
0(0)  0(), we cannot

have that min = max and 0 (0)  (min) ≤ 0 ()  (max), unless  (min) =  (max) ≤ 0.
But  (max) ≤ 0 implies that max ≤ ∗, so −1 () = 1 for   max violates the budget

constraint (9). This yields the first part of 1. For the second part, notice that −1 () strictly

increases in  on interval (min max), so  does not have atoms there. This follows from the

fact that 0 (−1 ())  () =  on (min max] and the fact that  () strictly increases in .

For 2, the same observation shows that if 0 is strictly decreasing, then −1 is continuous on

(min max]. If 
−1 were not right-continuous at min, then the fact that 0 (0)  (min) ≤ 

and 0 is strictly decreasing would violate 0 (−1 ())  () =  on (min max].
24 Thus, 

strictly increases on [0 −1 (max)]. If max = 1, we are done. If max  1, then −1 (max) =

−1 (1) = , otherwise the fact that 0() (max) ≥  and 0 is strictly decreases would

violate 0 (−1 (max))  (max) = .

It may be tempting to attribute the qualitative difference between the optimal prize

distributions with convex and concave prize valuations to the difference in players’ risk

attitudes: lotteries between no prize and the highest possible prize may be riskier than

lotteries over a range of intermediate prizes, so the former can elicit more effort when players

24If 0 (0) =∞, then  (min) = 0, so if−1 were not right-continuous at min the product 0
¡
−1 ()

¢
 ()

would be strictly positive for any  ∈ (min max] but approach 0 as  ↓ min, so could not be constant on
(min max].
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are risk loving, and the latter when they are risk averse. This intuition is misleading, however,

because in large contests almost all player types are nearly certain of the prize they receive

in equilibrium (Theorem 1).25 Instead, what drives the qualitative difference is how the

marginal prize utility changes as the prize increases. Because the marginal prize utility is

always positive, absent the budget constraint it is optimal to award the lowest possible prize

to types with negative marginal virtual effort and the highest possible prize to types with

positive marginal virtual effort. The budget constraint introduces a tradeoff between the

prizes allocated to different types. This tradeoff is optimally resolved by comparing the

product of the marginal prize utility and the marginal virtual effort across types. Since the

marginal virtual effort increases in type, what determines the comparison is whether the

marginal prize utility increases or decreases in the prize, which correspond to convex and

concave prize valuations. In the former case, increasing the prize increases the product, so

it is optimal to allocate the highest possible prize to the highest types. In the latter case,

increasing the prize decreases the product, so continuity of the marginal virtual effort implies

that as we increase the prizes awarded to some types, it becomes increasingly attractive to

award prizes to slightly lower types. The optimal prize distribution equates the product

across all types allocated intermediate prizes. Such types exist, because the budget constraint

implies that not all types can be awarded the highest possible prize.

Our next result, whose proof is in the appendix, shows that as the highest possible prize,

, becomes arbitrarily large, weak risk aversion (but not risk neutrality) implies that any

optimal prize distribution becomes “continuous” on all non-zero prizes.

Proposition 6 Let 
max be an optimal prize distribution when  is the highest possible

prize. If  is weakly concave (but not linear on [0]), then when  diverges to infinity


max converges to a distribution that may have an atom only at 0 (no prize).

The proof of Proposition 6 also shows that min and max (weakly) increase as increases;

and for any 0  00, we have 00
max() ≥ 0

max() for   0 and 00
max() ≤ 0

max() for

 ≥ 0.

We now show that when players are risk averse, so  is strictly concave, the constrained

maximization problem has an explicit, closed-form solution. As shown in the proof of Propo-

sition 6, 0 (0)  (min) = . Thus,

min = −1(0 (0)). (10)

25In addition, if the intuition were correct, we would expect the optimal prize distribution to vary with

players’ risk attitudes also when the budget constraint does not bind, in contrast to the statement of Propo-

sition 3.
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Since 0 (−1 (max))  (max) =  and 0 is decreasing, 0 ()  (max) ≤ . If max  1,

then we also have 0() (max) ≥  (because we are in Case 1 of Section 5.2), so we obtain

0 ()  (max) = . Thus,

max = 1 or 
−1(0 ()). (11)

In addition,

−1 () = (0)
−1
( ()) for  ∈ (min max] (12)

and

−1 () =

⎧⎨⎩ 0  ≤ min

   max

.

Thus, −1 is pinned down by . The value of  is determined by the binding budget

constraint.

5.4 Example of the optimal prize distribution for risk averse play-

ers

To illustrate our solution, let  be uniform and let  () =
√
, so players are risk averse.

Then  () = 2 − 1, ∗ = ∗ = 12, 0 (0) = ∞, 0 () = 1 (2
√
), and (0)

−1
() =

1(42). The budget constraint is binding if    (1−  (∗)) = 2. Since 0 (0) = ∞,
min = 12. Suppose first that max = 1. By (12) and the binding version of (9), we

have
R 1
12
(2 − 1)2 (42) = . Solving for , we obtain  = 1

√
24. This yields

−1 () = 6 (2 − 1)2; in particular, max = 1 implies  ≤ 6. Thus, we have that

 () =

⎧⎨⎩ 1
2
+
p



24
 ∈ [0 6]

1  ∈ [6]
.

This is a continuous distribution over an interval of positive intermediate prizes (along with

a mass 12 of no prize). The corresponding aggregate effort, given by (8), is
√
66.

Suppose now that max  1. By (11), max = 
√
 + 12. The binding version of (9)

implies that
R √+12
12

((2 − 1)2 (42)) + R 1

√
+12

 = . Solving for , we obtain

 = (34 − 32) (√). This implies that −1 () = 0 for  ∈ [0 12], −1 () =
4 (2 − 1)23(3 − 6)2 for  ∈ (12 (54 − 32)], and −1 () =  for  ∈
((54− 32) 1]. Since max = 

√
+ 12  1, we have   6. Thus,

 () =

⎧⎨⎩ 1
2
+

q
(3−6)2

163  ∈ [0)
1  = 

.
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This is a continuous distribution over an interval of positive intermediate prizes, along with

a mass (6 −) 4 of the highest possible prize (and a mass 12 of “no prize”). The

corresponding aggregate effort, given by (8), is (12 (− ) +2)  (16
√
).

The following figure depicts these results for  = 1.26

Figure 1: The optimal prize distribution as  increases from 0 to 12 (left), and the resulting aggregate effort (right)

To summarize, for  ∈ (2 6) the optimal prize distribution awards a mass of 0 prizes
and a mass of the highest possible prize , and is continuous and strictly increasing on the

interval of prizes  ∈ (0). As  increases, the mass of the highest possible prize awarded

decreases (the same happens if  decreases). When  = 6, the optimal prize distribution

awards a mass of 0 prizes and is continuous and strictly increasing on the interval of prizes

 ∈ (0 6). The same distribution is also the optimal one for any   6. The resulting

aggregate effort increases in  ∈ (2 6), which is the region in which the bound on the
highest possible prize binds, and is constant in  ≥ 6.27

6 Optimal prize distribution when players may have

non-linear costs

We now consider risk-neutral players with non-linear costs of effort, so (  ) = − (),
where  (0) = 0 and the cost function  is continuously differentiable and strictly increasing.

26While in this paper we do not consider the budget as an optimization variable, the right panel in Figure 1

illustrates that our analysis can be used to determine the optimal budget by equating the marginal aggregate

effort to the marginal cost of increasing the budget.

27For ≤ 2 the optimal prize distribution has atoms at  = 0 and  =  of size 12 each (by Proposition

3).
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The discrete contests of MS correspond to this utility function. To simplify the analysis,

we assume that the limit type distribution  is uniform, so type  is in percentile location

 = . The characterization we derive in Section 6.1 can be extended to general  and 

as long as a condition that involves  and  (but not ) holds. This condition coincides

with the monotone hazard rate condition when  is linear, and holds for any  if  is weakly

decreasing.28 In particular, the qualitative results we derive for concave costs also hold when

players are in addition weakly risk loving, and the ones for convex costs also hold when

players are in addition weakly risk averse.

6.1 Conditions describing the solution

The arguments from the beginning of Section 5, including Proposition 2, also apply to the

present case. Thus, the effort-maximizing prize distributions in large contests are approx-

imated by the prize distributions that maximize (3) subject to (9). But proceeding as in

Section 5.1 to obtain a simple calculus of variations problem is not possible. A key step

in Section 5.1 was to obtain (7). This step relied on the linearity of the cost function  to

separate (5), obtained by substituting (2) into (3), into the sum of an integral and a double

integral on which integration by parts is performed. This delivered a convenient expression

for the virtual effort, which allowed us to consider type by type the effect of the prize al-

located to this type on the aggregate effort, since this effect did not depend on the prizes

allocated to other types. With a non-linear effort cost, this effect depends on the prizes

allocated to other types, since these prizes determine each type’s effort level, which in turn

determines the marginal cost of effort. Put differently, even with a non-linear effort cost

the prize allocated to a given type leads to utility increases for all higher types that are

independent of all other types’ prizes,29 but the corresponding decreases in effort requires

inverting the cost function, and therefore depend on the higher types’ utilities, which are

determined by other types’ prizes.

To characterize the optimal prize distribution, we will use (6), which the proof of Propo-

sition 1 shows is equivalent to (3). Since  () =  (−1 ( ())) = −1 (), (6) is equal

28The condition is that R 1


¡
−1
¢0
( ()) 

 (−1 ())

weakly decreases in , where

 () =

Z ()

0

−1 () .

29This follows from the derivation of (7) performed for the variable  () instead of .

21



to Z 1

0

−1
ÃZ −1()

0

()

!
. (13)

Notice that (13) contains  and−1, unlike (8), which contained only−1. In particular,

(13) does not contain a simple expression for the virtual effort. Nevertheless, conditions

similar to those in Section 5.2 can be provided in this case as well. For this, it is convenient

to denote by  () =
R −1()
0

() the cost of the effort of type . The objective function

is then Z 1

0

−1 ( ())  (14)

subject to

Z 1

0

−1 ()  ≤ .

We now heuristically develop the conditions that the marginal virtual efforts must satisfy

given an optimal prize distribution. To this end, recall that a marginal increase in the prize

that a type  obtains increases his effort but decreases the effort of all higher types. From

(2) we have that type ’s utility in the mechanism is
R 
0
−1 () , which is independent

of his prize. Thus, a marginal increase in his prize must be accompanied by an increase in

effort that precisely offsets the increase in prize utility. This gives

0 =
 ( −  ( ()))


=  − 0 ( ()) 0 ()⇒

0 () =


0 ( ())
= 

¡
−1
¢0
( ( ())) = 

¡
−1
¢0
( ()) ,

where  () is type ’s effort as a function of his prize , and the last equality follows from

the definition of  (). The utility of a type 0   is
R 0
0
−1 () , so a marginal increase in

type ’s prize  = −1 () increases type 0’s utility by . We therefore have

 =
 (00 −  (̄ ()))


= −0 (̄ ()) ̄0 ()⇒

̄0 () = − 1

0 (̄ ())
 = − ¡−1¢0 ( (̄ ()))  = − ¡−1¢0 ( (0)) ,

where ̄ () is type 0’s effort as a function of type ’s prize . Consequently, the effect on the

aggregate effort of a marginal increase in the prize of type , that is, the marginal virtual

effort, is

(−1)0(()) −
Z 1



(−1)0(()). (15)

Equipped with (15), we obtain the analogues of the two cases in Section 5.2, for precisely

the same reasons, where min and max are the lower and upper bound of the range of types

that obtain intermediate prizes. (A rigorous proof is provided in the appendix.)
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Case 1 (min  max): Then, there exists a  ≥ 0 such that

(−1)0(()) −
Z 1



(−1)0(()) =  (16)

for  ∈ (min max]; in addition,

(−1)0(0)min −
Z 1

min

(−1)0(()) ≤ , and (−1)0 ( (1)) (2max − 1) ≥  if max  1. (17)

Case 2 (min = max): Then,

(−1)0(0) ≤ (−1)0 ( (0)) . (18)

If 0 (0) = 0, so (−1)0 (0) = ∞, then Case 2 cannot arise, because the arguments that
underlie Case 2 would require  (0) = 0, i.e., min = 0, so every type would obtain the highest

possible prize, which would lead to 0 aggregate effort. For Case 1, the proof of Proposition

8 below shows that the first inequality in (17) is replaced with the condition min = 0.

6.2 Convex, linear, and concave functions 

We now characterize the optimal prize distribution for players with increasing or decreasing

marginal effort cost. We will see that even when the budget constraint does not bind the

optimal distribution depends on the curvature of the cost function, unlike in Section 5.3,

where the curvature of the prize valuation did not affect the optimal prize distribution when

the budget constraint did not bind.

We first present the result for concave costs, which shows that the optimal prize distrib-

ution coincides with the one for convex prize valuations (Propositions 3 and 4).

Proposition 7 If players’ cost function  is weakly concave, then the optimal prize dis-

tribution consists of a mass min { 12} of the highest possible prize and a mass 1 −
min { 12} of prize 0.

Proof : In this case, we have min = max. Indeed, since (
−1)0 and  are weakly increasing,

(−1)0(()) strictly increases in ; in turn,
R 1

(−1)0(()) weakly decreases in . Therefore,

the left-hand side of (16) strictly increases in . Thus, only the highest and lowest possible

prizes are awarded. If the budget constraint binds, then a mass  of prize  is awarded.
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If the budget constraint does not bind, then the monotonicity of the marginal virtual effort

in  also implies that type  = min = max  0 is determined by

(−1)0() −
Z 1



(−1)0() = 0,

because  () =
R −1()
0

() =
R 
0
(0) =  for any   . Since (−1)0 ()  0, this

is equivalent to  − (1− ) = 0, or equivalently to  = 12.

Proposition 7 mirrors Propositions 2 and 4 in MS, which show that when the cost function

is linear or concave it is optimal to award the entire budget as a single prize. The discrepancy

between MS’s single prize and the mass of identical highest prizes prescribed by Proposition

7 arises because MS do not impose a bound on the highest possible prize. Increasing the

highest possible prize, , in our setting leads to optimally awarding a smaller mass of this

prize. This corresponds, in the limit, to awarding the entire budget as a single prize.

We now turn to convex cost functions .

Proposition 8 1. Regardless of whether the budget constraint binds, if  is weakly convex but

not linear on any interval with lower bound 0, then any optimal prize distribution assigns

a positive mass to the set of intermediate prizes (0). In addition, any optimal prize

distribution may have atoms only at 0 (no prize) and  (the highest possible prize). 2. If

 is strictly convex, then any optimal prize distribution awards all prizes up to the highest

prize awarded. That is,  strictly increases on [0 −1 (1)]. 3. If the marginal cost of the

first unit of effort is 0, that is, 0 (0) = 0, then min = 0, so almost every type is awarded a

positive prize.

Proof : The first part of 1 is true because it follows from (18) that min  max. For the

second part of 1, an atom at some intermediate prize would mean that −1 () = −1 ()

for some min      max. Then, however, () = (), so (−1)0(())  (−1)0(());

in turn,
R 1

(−1)0(()) ≥ R 1


(−1)0(()). Thus, the left-hand side of (16) with  = 

would be higher than with  = , which contradicts (16). For 2, notice that  () increases

discontinuously when−1 () does, so if (−1)0 is strictly decreasing, a discontinuity in−1 ()

would leads to a discontinuous decrease in the left-hand side of (16). Thus, −1 is continuous

on (min max]. If min = 0, then min = lim↓min 
−1 () = 0, otherwise −1 () for   0

can be “shifted down” to −1 ()− min. This would reduce the cost of providing the prizes

without affecting players’ incentives, leading to the same aggregate equilibrium effort and

relaxing the budget constraint, which would allow to increase the prizes for the highest types

and increase aggregate effort. Suppose min  0.
30 If −1 were not right-continuous at min,

30The proof of part 3 shows that min = 0 if
¡
−1
¢0
(0) =∞.
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then the first inequality in (17) and the discontinuous decrease of (−1)0 at min would violate

(16). Thus,  strictly increases on [0 −1 (max)]. If max = 1, then 2 holds, because −1 (1)

is the highest prize awarded. If max  1, then −1 (max) = −1 (1) = , otherwise the

second inequality in (17), the discontinuity of () at  = max, and the strict monotonicity

of (−1)0 would imply that (16) cannot be satisfied for  smaller than but close enough to

max. For 3, suppose that min  0. Then (16) implies that −1 is discontinuous at min.31

But then the left-hand side of first inequality in (17) would equal ∞, and the arguments
that underlie the first inequality in (17) for finite (−1) (0) would imply that −1 is not effort

maximizing.

This result highlights two differences between the optimal prize distribution for convex

costs and the one for concave prize valuations. First, convex costs lead to intermediate

prizes being awarded even if the budget constraint does not bind, unlike with concave prize

valuations. This is because with convex costs a slight increase in a type’s prize induces

strictly more effort when his prize, and therefore effort, is 0 than when his prize is , but

such an increases reduces higher types’ effort by the same amount. Thus, it cannot be

optimal for some type to obtain prize 0 and a slightly higher type to obtain prize . Second,

if the marginal cost at 0 is 0, then almost every type is awarded a positive prize. This is

because a marginal cost of 0 implies that a slight increase of a type’s prize from 0 leads to

an effort increase that outweighs the decrease in higher types’ efforts. In other words, it is

optimal to have almost every type put in positive effort, unlike with linear costs, which lead

to negative marginal virtual effort for low types.

Proposition 8 is related to Proposition 5 in MS, which shows that with a convex cost

function splitting the budget into two prizes is sometimes better than awarding the entire

budget as a single prize. Our results go beyond showing that it may not be optimal to award

the entire budget as a single prize, and instead characterize the optimal prize distribution.

In addition, while Propositions 7 and 8 are related to the results in MS, the set of

contests and equilibria to which they apply are different from those studied by MS. While

MS studied contests with any finite number of players, the players were restricted to being

ex-ante symmetric and having private information about their cost, and the analysis focused

on the symmetric equilibrium. Our results apply to all equilibria of contests with a large

number of players. The players may be ex-ante symmetric or asymmetric, and may or may

not have private information.

31If lim↓min 
−1 () = 0, then lim↓min

¡
−1
¢0
( ()) = ∞, so for any   , for  slightly

higher than min we have (
−1)0(()) (min2) −

R +min2


(−1)0(())  0 and (−1)0(()) (min2) −R 1
+min2

(−1)0(())  , contradicting (16).

25



The next result shows that Proposition 6 extends to the setting with a convex cost

function .

Proposition 9 Suppose the budget constraint binds, and let 
max be an optimal prize dis-

tribution when  is the highest possible prize. If  is weakly convex (but not linear on any

interval with lower bound 0), then as  diverges to infinity, 
max converges to a distribution

that may have an atom only at 0 (no prize).

Similarly to Proposition 6, the proof of Proposition 9 also shows that min and max

(weakly) increase as  increases; and for any 0  00, we have 00
max() ≥ 0

max() for

  0 and 00
max() ≤ 0

max() for  ≥ 0.

6.3 Example of the optimal prize distribution for players with

convex effort cost

To illustrate our solution, and also show that for specific utility functions we can derive

the corresponding optimal prize distributions  in closed form, let  be uniform and let

 () = 2. Proposition 8 shows that min  max and the optimal prize distribution  may

have atoms only at 0 and . For simplicity, let  = 1.

Define an auxiliary function  () = (−1)0(()). Plug  () into (16), and differentiate

with respect to  to obtain the differential equation 0() + 2() = 0 for ().32 Solving
this equation, and substituting back into (16), we obtain (−1)0(()) = 2. By the defi-

nition of  (), and using the equality
R −1()
0

() = −1 ()− R 
0
−1 () , we obtain

((−1)0)−1 (2) = −1 () − R 
0
−1 () . Assuming differentiability of −1, we obtain

(−1)0() = (−24)(((−1)0)−1)0(2).33
Since −1 () =

√
, (−1)0 () = 1 (2

√
),
¡
(−1)0

¢−1
() = 1 (42), and

³¡
(−1)0

¢−1´0
() =

−1 (23). Thus, −1 () = 3(32) + min, where min is the “lowest prize” awarded. Since

(−1)0(0) = ∞, min = 0. We must therefore have min = 0, otherwise the same equilib-

rium effort can be achieved with a lower budget by “shifting down” −1 () for   0 to

−1 ()− min.

32The solution can be verified to be differentiable.

33We will show that an optimal prize distribution  with differentiable inverse −1 exists. No other prize

distribution will lead to higher aggregate effort, since the aggregate effort corresponding to any prize distri-

bution can be approximated arbitrarily closely by the aggregate effort corresponding to a prize distribution

with a differentiable inverse.
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Suppose first that max = 1. Substituting the expression for −1() into the binding

budget constraint, we obtain  = 1
√
12, which gives −1 () = 43, so  ≤ 14.

Substituting −1 into the target function, the aggregate effort is
√
33, which increase in

the budget .

Now suppose that max  1. The binding budget constraint gives  = 2max(12( −
1 + max))

12, so 1 = −1 (max) = 12 ( − 1 + max)  (3max), which implies that max =

4(1 − )3. Since max  1, we must have that   14. Substituting the expression for

max into the expression for , and substituting the resulting expression into the expression

for −1, gives −1 () = 273
¡
64 (1− )

3
¢
. Substituting into the target function, the

aggregate effort is
p
(1− ) (1− 8 (1− ) 9). This expression increases for  in (14 58],

and decreases for  in [58 1]. Notice that the value of this expression at  = 14 coincides

with the one for max = 1.

We therefore conclude that the budget constraint binds for  ≤ 58. For  ≤ 14 the
maximal aggregate effort is

√
33, and the optimal prize distribution is  () = 3

p
4

for  ≤ 4 and  () = 1 for   4. For  in (14 58] the maximal aggregate effort isp
(1− ) (1− 8 (1− ) 9), and the optimal prize distribution is  () = 3

√
4 (1− ) 3

for   1 and  () = 1 for  = 1.

Notice that regardless of the budget , the prizes awarded increase continuously from the

lowest prize  = 0, but in contrast to the case of concave  studied in Section 5.4, there is no

atom at the lowest prize, so every player gets a positive prize. This is because the marginal

cost of effort at 0 is 0 (so (−1)0(0) =∞). In addition, even when the budget constraint does
not bind, there is a positive mass of intermediate prizes.

The following figure depicts these results.

Figure 2: The optimal prize distribution as  increases from 0 to 58 (left), and the resulting aggregate effort (right)

The two solved examples,  () =
√
 and  () = 2, demonstrate the differences and

the similarities between concave valuations and convex costs. One difference is that with
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2 every player obtains a positive prize, while with
√
 there is a mass 12 of players who

get a prize of 0. Another difference is that as the prize budget increases, with
√
 the prize

distribution approaches a mass 12 of the highest possible prize, whereas with 2 the prize

distribution with an unrestricted budget is still a range of prizes, plus an atom at the highest

possible prize.

7 Conclusion

This paper introduced a new approach to analyzing contest design questions. The approach

applies to contests with many contestants, and circumvents the difficult problem of solving for

equilibria of contests with possibly asymmetric, privately informed players and heterogeneous

prizes. We used the approach to investigate effort maximization in all-pay contests with

asymmetric players and heterogeneous prizes. Such contests are often difficult or impossible

to solve when the number of players is small, which makes contest design intractable. We

first showed that for any prize distribution a FOSD shift in the ability distribution increases

aggregate effort. We then investigated the optimal prize distribution. Our key qualitative

finding is that contestants’ risk aversion and convex effort cost call for numerous prizes of

different value. In contrast, risk neutrality or love call for a small number of prizes of the

highest possible value, or a single grand prize. The same is true for concave effort costs.

The analysis enables deriving closed-form approximations of the effort-maximizing prize

distributions for concrete utility functions and distributions of player types. This facilitates

further analysis of large contests.

Our approach can be used to investigate many other contest design questions. One

example is identifying the prize structure that maximizes the highest efforts, rather than

the aggregate, or average, effort. This is relevant, for example, in innovation contests whose

goal is to generate the best inventions, products, or technologies. In the appendix we show

that the optimal prize distribution in such settings with many contestants is a small number

of prizes of the highest possible value. This is true regardless of players’ effort costs, prize

valuations, private information, and type distributions.

28



8 Appendix

Proof of Corollary 1. Theorem 1 shows that for large , in any equilibrium of the -th

contest the average effort is within 2 ofP

=1

R 1
0
 () 

 ()


=

Z 1

0

 ()  () ,

where the equality follows from the definition of . In addition,Z 1

0

 ()   ()→

Z 1

0

 ()  () ,

which follows from the fact that  is monotonic and the assumption that  is continuous,

because

Z
  →

Z
 for any bounded and measurable function  for which distribu-

tion  assigns measure 0 to the set of points at which function  is discontinuous. (This fact

is established as the first claim of the proof of Theorem 25.8 in Billingsley (1995).) Thus,

for large ,
R 1
0
 ()   () is within 2 of

R 1
0
 ()  ().

Proof thatM 6= ∅. Let ()∞=1 be a sequence on which (3) converges to its supremum,

and which satisfies the budget constraint. By passing to a convergent subsequence (in the

weak∗-topology) if necessary, assume that  converges to some . We will show below

that ()−1 converges almost surely to −1. This will imply that ()() = ()−1( ())

converges almost surely to () = −1( ()), and since functions  and −1 are continuous,

also that ()() given by (2) with  replaced with  converges almost surely to ()

given by (2). This will in turn imply that the value of (3) with ()−1 instead of −1

converges to the value of (3). Finally, as  satisfies the budget constraint with , and

 converges to , we have that  satisfies the budget constraint with . Indeed, the

budget constraints are integrals of a continuous function (mapping  to ) with respect to

distributions  and 
max, respectively, and weak

∗-topology may be alternatively defined by

convergence of integrals over continuous functions.

Thus, it suffices to show that ()−1 converges to −1, except perhaps on the (at most)

countable set  = { ∈ [0 1] : there exist 0  00 such that () =  for  ∈ (0 00)}.
Suppose first that for some  ∈ [0 1] and   0 we have that ()−1() ≤ −1()−  for

arbitrarily large . Passing to a subsequence if necessary, assume that the inequality holds

for all , and that ()−1() converges to some  ≤ −1()− . Then, there exists a prize

 such that     −1() and  is continuous at . We cannot have that () = , since

this would imply that −1() ≤ . Thus, ()  . Since () converges to (), as 
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is continuous at , we have that ()   for large enough . This yields  ≤ ()−1(),

contradicting the assumption that ()−1() converges to   .

Suppose now that for some  ∈ [0 1]− and   0 we have that ()−1() ≥ −1()+ 

for arbitrarily large . Passing to a subsequence if necessary, assume that the inequality

holds for all , and that ()−1() converges to some  ≥ −1() + . Then, there exists

a prize  such that −1()     and  is continuous at . We have that   (), as

 ∈ . Since () converges to (), as  is continuous at , we have that  ≤ ()

for large enough . This yields ()−1() ≤ , contradicting the assumption that ()−1()

converges to   .

Proof of Proposition 2. Since every sequence of distributions has a converging sub-

sequence in weak∗-topology, suppose without loss of generality that 
max converges to some

distribution . Denote the value of (3) under distribution  by  . If Part 1 is false, then

 ∈M, so    . The distribution  satisfies the budget constraint, since distributions


max satisfy the budget constraint.

Consider a distribution max ∈M, and for every  consider an empirical distribution 

of a set of  prizes, such that  converges to max in weak
∗-topology. For example, such a

set of  prizes is defined by  = −1max () for  = 1  .

Corollary 1 shows that for large  the average effort in any equilibrium of the -th contest

with empirical prize distribution  exceeds 2 ( +) 3. On the other hand, Corollary

1 also shows that for large  the average effort in any equilibrium of the -th contest with

empirical prize distribution 
max falls below ( +) 3. This contradicts the definition of


max for large .

For Part 2, Corollary 1 applied to the sequence defined above implies that lim inf
max ≥

 . If lim sup
max   , then there is a corresponding subsequence of 

max. A converg-

ing subsequence of this subsequence has a limit . For this , the value of (3) is by Corollary

1 strictly larger than  , a contradiction.

Part 3 follows from part 2 and the fact that Corollary 1 shows that the average effort in

any equilibrium of the -th contest with empirical prize distribution  converges to  .

Proof for the conditions in Cases 1 and 2 from Section 5.2. To simplify notation,

we assume that  = 1.

We will show that in Case 1 the condition 0 (−1 ())  () = 0 (−1 (0))  (0) holds for

all  0 ∈ (min max). For this, we first approximate−1 by a sequence of inverse distribution
functions (()−1)∞=1 that satisfy the budget constraint and whose value of (8) converges

30



to that for −1. We then show that if the condition fails there exists a sequence of inverse

distribution functions (()−1)∞=1 that satisfy the budget constraint such that for large 

the value of (8) for ()
−1
exceeds that for ()−1 by a positive constant independent of ,

and therefore improves upon −1. The second condition in Case 1 and the condition in Case

2 are obtained by analogous arguments, noticing that since  is increasing and continuous,

the inequality 0 ()  () ≥  for   max is equivalent to 
0() (max) ≥ .

To define ()
−1
, partition interval [0 1] into intervals of size 12, and set the value of

()−1 on interval (2 ( + 1)2] to be constant and equal to the highest number in the

set {0 12 22  (2 − 1)2 1} that is no higher than −1(2). By left-continuity of

−1, ()−1 converges pointwise to −1, so the value of (8) for ()−1 converges to that for

−1.

Suppose that 0 (−1 ())  ()  0 (−1 ())  () for some   ∈ (min max). By

left-continuity of −1, and continuity of 0 and , the previous inequality also holds for

points slightly smaller than  and . Thus, there are   0,  , and intervals (2  ( +

1)2 ] and (2  ( + 1)2 ], such that for every  ≥  we have 0 (()−1 ())  () −
0 (()−1(0)) (0)   for any  ∈ (2  ( + 1)2 ] and 0 ∈ (2  ( + 1)2 ].
Denote the infimum of the values 0 (()−1()) () for  ≥  and  in the former

interval by , and the supremum of the values 0 (()−1()) () for  ≥  and  in the

latter interval by . Now, define functions ( e)−1 by increasing the value of ()−1 on

(2  (+1)2 ] by , and decreasing the value of ()−1 on (2  (+1)2 ] by , so the

budget constraint is maintained. For sufficiently small   0, the former change increases (8)

at least by
¡
2

¢
( − 3), and the latter change decreases (8) at most by

¡
2

¢
( + 3).

This increases the value of (8) by at least 2 (for all  ≥ ).

If functions ( e)−1 are monotonic, they are inverse distribution functions, so it suffices

to set ()−1 = ( e)−1. Otherwise, define ()
−1
by setting its value on interval (0 12]

to the lowest value of ( e)−1 over intervals (0 12] (12 22]  ((2 − 1)2 1], set-
ting its value on interval (12 22] to the second lowest value of ( e)−1 on these intervals,

etc. The value of (8) is higher for ()−1 than for ( e)−1 because  is an increasing function.

Proof of Proposition 6. Assume first that 0 (0) ∞. Let min, max, and  denote

min, max, and  for a given . The proof of Proposition 5 shows that min  max for all

. We claim that  weakly increases with . Suppose to the contrary that 
0
 

00
for

some 0  00.

Since 0
¡
(

max)
−1
()
¢
 () =  for all  ∈ (min max] and 0 is decreasing, 0 (0)  () ≥

 for all  ∈ (min max], and since  is continuous, we have 0 (0)  (min) ≥ . Since

we also have 0 (0)  (min) ≤  (because we are in Case 1 of Section 5.2), we obtain
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0 (0)  (min) = . Since  is increasing, this implies that 
0

min  
00

min. In particular, we

have (a): (0
max)

−1 () = 0 ≤ (00
max)

−1 () for all  ≤ 
0

min, and the inequality is strict

for  ∈ (00
min 

0
min). Since 

0 ¡(
max)

−1
()
¢
 () =  for all  ∈ (min max] and 0 is de-

creasing, we have (b): (0
max)

−1 () ≤ (00
max)

−1 () for all  ∈ (0
minmin{

0
max 

00
max}]. If


0

max ≥ 
00

max, then we have (c): (
0
max)

−1 () ≤ (00
max)

−1 () for   min{0
max 

00
max}, because

(0
max)

−1 () ≤ 0 and (00
max)

−1 () = 00. If 
0

max  
00

max, then (c) follows from (b). Now,

(a), (b), and (c) imply that the budget constraint cannot be satisfied with equality by both

0
max and 00

max, which completes the argument.

By 0 (0)  (min) = , we obtain that min also weakly increases with .

Notice now that either (a) max = 1 for sufficiently large, or (b) 
 converges to some 

as diverges to infinity. Otherwise, the condition that 0() (max) ≥  if max  1 would

be violated for large enough . In case (a), the monotonicity of min and  implies that

 stabilizes at some  for sufficiently large ,34 and case (b) implies that max converges to

1 as  diverges to infinity, otherwise the budget constraint would be violated.35 Therefore,

in both these cases 
max converges to a distribution that may have an atom only at 0.

Suppose now that 0 (0) = ∞. Then, (min) = 0 for all ; let min = 
0

min = 
00

min. If


0
 

00
for some 0  00, then (a)-(c) hold, except that interval (

00
min 

0
min) on which

we had strict inequality (0
max)

−1 ()  (00
max)

−1 () is now empty. However, we must have

strict inequality (0
max)

−1 ()  (00
max)

−1 () for  ∈ (minmin{
0

max 
00
max}], since otherwise

0
¡
(

max)
−1
()
¢
 () =  could not be satisfied for both  = 0 and 00. The rest of the

proof is the same as for (−1)0(0) ∞.

Proof for the conditions in Cases 1 and 2 from Section 6.1. To simplify notation,

we again assume that  = 1.

The proof that −1 satisfies the conditions described in the two cases is analogous to

that for the conditions in Section 5.2. The argument is, however, more involved, because the

objective function (14) depends on  as well as on −1. For the argument, it is convenient

to extend the functional () to functions −1 that are not monotonic. We define () by

adding with the plus sign the area above the graph of −1 between 0 and  and below the

line  = −1(), and with the minus sign the area below the graph of −1 between 0 and 

34If  increases, then min increases, and 0
³
(

max)
−1
()
´
 () =  implies that (

max)
−1
() de-

creases for  ∈ (min max). Thus, once max stabilizes at 1,  can no longer increase, since (9) holds with

equality.

35If max were bounded away from 1 for sufficiently large , −1 () would be equal to  on an interval

of length bounded away from 0, so
R 1
0
−1 ()  would diverge to infinity.
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and above the line  = −1(). (This is illustrated in Figure 3, where () is equal to the

sum of the shaded areas taken with the signs marked on them.)

z = G(y)

+

+

-

y = G-1(z)

Figure 3: The definition of  ()

To derive the first condition in Case 1, consider some inverse distribution function −1

that takes values only in the set {0 12 22  (2 − 1)2 1}, and is constant on each
interval (0 12] (12 22]  ((2−1)2 1]. Suppose that we increase the value of ()−1
on an interval (2 ( + 1)2] by   0. (That is, we move the graph of ()−1 in Figure

4 to the right, by the shaded square.) This change does not affect the integrand in (14) on

intervals (2 (+1)2] for   . It increases
R −1()
0

() for  ∈ (2 (+1)2] by
(2) (the darkened rectangle in Figure 4), so to a first-order approximation it increases

the integrand in (14) on (2 ( + 1)2] by (−1)0(())(2). For any   , it decreasesR −1()
0

() by (12) (the shaded square in Figure 4) on (2 (+1)2], so to a first-

order approximation it decreases the integrand in (14) on (2 (+1)2] (for all   ) by

(−1)0(())(12). Letting  = 2, we have that, in total, (14) increases approximately

by

(12)

∙
(−1)0(()) −

Z 1



(−1)0(())

¸
.
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(l+1)/2n

G-1(l/2n)
before 
the 
increase

l/2n

G-1(l/2n)
after the 
increase

Figure 4: Increasing −1

Thus, if the first condition in Case 1 is violated for an optimal −1, we could construct

functions ()−1 that converge to −1 and functions ( e)−1, as in the proof for the condi-

tions from Section 5.2. If functions ( e)−1 are monotonic, we would obtain a contradiction

to the optimality of −1.

If a ( e)−1 is not monotonic, then there is a monotonic ()−1 whose value of (14) is

higher than that for ( e)−1. Indeed, consider two adjacent intervals (2 ( + 1)2] and

(2 ( + 1)2] (that is,  + 1 = ) such that ( e)−1() =  on (2 ( + 1)2] and

( e)−1 () =  on (2 ( + 1)2], where    . By changing the value of ( e)−1 on

(2 (+1)2] to , and changing the value of ( e)−1 on (2 (+1)2] to  , we raise

the value of (14). This is easy to see in Figure 5, in which the graph of ()−1 is obtained

from the graph of ( e)−1 by moving it to the left by the shaded square, and moving it to the

right by the darkened square. This makes the value of () on (2 (+1)2] higher than

its previous value on (2 ( + 1)2] by the shaded area. Similarly, the value of () on

(2 (+1)2] becomes higher than its previous value on (2 (+1)2] by the shaded

area. This increases the integrand of (14) on (2 (+1)2]. Finally, the value of () and

the integrand of (14) on other intervals of the partition stay the same.
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(k+1)/2n = l/2n

D

k/2n

U

(l+1)/2n

Figure 5: Making ( e)−1 monotonic

For the second condition in Case 1, notice that the inequality (−1)0(())−R 1

(−1)0(()) ≥

 for   max reduces to (
−1)0( (1))(2max − 1) ≥  by taking the limit as  tends to max.

For Case 2, notice that the left-hand side of (16) for  = min is equal to (
−1)0(0)min −R 1

min
(−1)0(()), and the limit of the left-hand side of (16) as  tends to max is (−1)0 ( (1)) max−R 1

max
(−1)0(()). This yields the condition in Case 2, as min = max implies  (1) =R −1(1)

0
 ()  =

R 
0
 (0)  =  (0).

Proof of Proposition 9. Assume first that (−1)0(0)  ∞. Notice that by (16), the
first part of (17), and the assumption that (−1)0 is decreasing, we have that

(−1)0(0)min −
Z 1

min

(−1)0(()) = . (19)

Let min, 

max, and  denote min, max, and  for a given . As argued in the proof of

Proposition 8, min  max for all . We claim that  weakly increases with . Suppose

to the contrary that 
0
 

00
for some 0  00.

By (19), 
0

min  
00

min. In particular, we have (a): (
0
max)

−1 () = 0 ≤ (00
max)

−1 () for all

 ≤ 
0

min, and the inequality is strict for  ∈ (
00

min 
0
min). By (16) and the fact that the left-

hand side of (16) is decreasing in −1(), we have (b): (0
max)

−1 () ≤ (00
max)

−1 () for all

 ∈ (0
minmin{

0
max 

00
max}]. If 

0
max ≥ 

00
max, then we have (c): (

0
max)

−1 () ≤ (00
max)

−1 () for

  min{0
max 

00
max}, because (0

max)
−1 () ≤ 0 and (00

max)
−1 () = 00. If 

0
max  

00
max ≤ 1,

then (c) follows from (b). Now, (a), (b), and (c) imply that the budget constraint cannot be

satisfied with equality by both 0
max and 00

max, which completes the argument.
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By (19), we obtain that min also weakly increases with .

Notice now that either (a) max = 1 for sufficiently large , or (b)  converges to

some  as  diverges to infinity. Otherwise, the condition (−1)0 ( (1)) (2max − 1) ≥  if

max  1 would be violated for large enough . In case (a), the monotonicity of 

min and 



implies that  stabilizes at some  for sufficiently large , and case (b) implies that max

converges to 1 as  diverges to infinity, otherwise the budget constraint would be violated.36

Therefore, in both these cases 
max converges to a distribution that may have an atom only

at 0

Suppose now that (−1)0(0) = ∞. Then, min = 0 for all . If 
0
 

00
for some

0  00, then (a)-(c) hold, except that interval (
00

min 
0
min) on which we had strict inequal-

ity (0
max)

−1 ()  (00
max)

−1 () is now empty. However, we must have strict inequality

(0
max)

−1 ()  (00
max)

−1 () on some interval ® 6= (0 00) ⊂ (0 1], since if (0
max)

−1 () were

equal to (00
max)

−1 () for all , (16) could not be satisfied for both 0 and 00. The rest of

the proof is the same as for (−1)0(0) ∞.

Proof of the claim from Section 7. To formalize the problem, we consider the prize

structure that maximizes the expected aggregate effort of the fraction  of the players with

the highest efforts. We then take  to 0. For any , it is straightforward to show that

the optimal prize distribution in the limit setting approximates the optimal prize structures

in large contests. Thus, it suffices to consider the optimal prize distributions in the limit

setting.

In this setting, we known that the measure  of agents with the highest efforts are those

with the highest types, i.e., those with types  for which  () ≥ 1− . Consider first linear

costs, i.e., (  ) =  ()− . From (2) we obtain that the aggregate effort of the mea-

sure  of the agents with the highest efforts are
R 1
∗
¡

¡
 ()

¢− R 
0

¡
 ()

¢

¢
 () ,

where  (∗) = 1 − . From this, it is clear that setting  () = −1 ( ()) = 0 for

  ∗ is optimal. We can therefore rewrite the target function as
R 1
∗(

¡
 ()

¢ −R 
∗ 

¡
 ()

¢
) () . From this, it is easy to see that for sufficiently small  it is optimal

to set  () = −1 ( ()) = 1 for  ≥ ∗. Indeed, changing the order of integration givesR 1
∗ (

 ())(()− (1−  ())), so increasing  () slightly increases the integrand by

at least 0( ())( ()− ), and  () is assumed continuous and positive on [0 1] and is

therefore bounded away from 0.

Now consider non-linear costs, i.e., (  ) =  () −  (). It is again optimal to

set  () = −1 ( ()) = 0 for   ∗, so we can again rewrite the target function as

36The arguments are analogous to those used in the proof of Proposition 6.
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R 1
∗ 

−1(( ()) − R 
∗ (

 ())) () . Assuming that (the positive and continuous)

(−1 ())0 lies in an interval [],   0, for  in [0  (1)], we can apply the same intuition

and conclude that for sufficiently small  it is optimal to set  () = −1 ( ()) = 1 for

 ≥ ∗. This is because increasing  () slightly increases the target function by at least

0
¡
 ()

¢
( ()− ).
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