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Abstract

We study the problem of selecting an optimal portfolio out of a finite set of available assets. Assets

are characterized by their expected returns and the covariance matrix, and investors are assumed to

have a mean-variance utility, that is, their utility function is linear in the mean and variance of the

portfolio they hold.

When assets are negatively correlated, or even when a slightly more general condition is satisfied, we

provide an algorithm for selecting an optimal portfolio. We illustrate the usefulness of this algorithm

by some comparative statics result. When assets can be positively correlated, we deliver a negative

result regarding the existence of useful algorithms for selecting an optimal portfolio.

1 Introduction

Direct investment decisions take the form of choosing a portfolio out of a finite set of available assets. This

basic problem in economics and finance was first studied by Reiter (1963), who suggested some simple

algorithms for selecting portfolios, arguing by means of numerical examples that the values of portfolios

selected by those algorithms are close to the values of optimal portfolios. While the algorithms suggested

by Reiter are simple and perform well in some numerical examples, they do not in general select optimal

portfolios, even portfolios whose values are close to the optimal ones. In the present paper, we are concerned

with the existence of algorithms choosing an optimal portfolio in the general case.

The problem, as every discrete optimization problem, can in principle be solved by complete enumer-

ation of all portfolios, but this would not be useful. We approach the problem of searching for optimal

portfolios rigorously, adopting from discrete optimization the solution concept of polynomial-time algo-

rithm. Such algorithms evaluate a number of portfolios that is polynomial in the number of available
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assets, in contrast to complete enumeration, which requires the evaluation of a number of portfolios expo-

nential in the number of assets.1

The choice of solution concept should be understood as a rigorous formulation of finding a meaningful

solution, rather than the suggestion of approaching the problem numerically. Indeed, polynomial-time

algorithms for solving discrete optimization problems are typically fairly simple, and have numerous useful

features. The most striking examples of useful polynomial-time algorithms in economics are probably the

algorithms used in the literature on matching, such as the celebrated Gale and Shapley (1962) algorithm.

Other examples include recent research by Chade and Smith (2006) and Milgrom and Segal (2014), who

suggested using greedy algorithms in some search and auction settings, respectively.

We provide a polynomial-time algorithm, which we call the financing algorithm, in the case when the

returns of every pair of assets are negatively correlated. This algorithm is an instance of the Ford and

Fulkerson (1956) algorithm for solving the project selection problems. Our contribution is therefore in the

recognition that the portfolio selection is a special case of the project selection problem and in providing

an algorithm for it with natural economic interpretation.2

We also show that the problem of finding an optimal portfolio for arbitrary correlations is NP-hard.

Finally, our analysis of the optimal portfolio problem allows for comparative statics, i.e., for studying the

response of optimal portfolio to changes in parameters of the problem. As an example of this kind of

analysis, we will argue that the composition of the optimal portfolio is less sensitive to the changes in the

cost of investing into assets which are acquired to reduce the variance of the portfolio than to the changes

in the cost of investing into assets which are acquired for their high expected returns.

The rest of the paper is organized as follows. In Section 2, we describe the model. We briefly review

discrete optimization concepts in Section 3. That section also contains a description of the project selection

problems, and the algorithms for solving such problems. We discuss there some earlier related results, and

argue that polynomial-time algorithms for portfolio selection exist in a somewhat more general case than

for negatively correlated returns. In Section 4, we present our algorithm for selecting an optimal portfolio

when assets are negatively correlated. Section 5 contains a comparative statics exercise, and Section 6 a

negative result for the case when some correlations are positive. We conclude in Section 7.

2 Model

An investor assembles a portfolio from a set of n assets with random, possibly correlated returns. Let

N = {1, ..., n} be the grand set of assets. Let µi be the expected return of asset i, and (σij)
n
i,j=1 be the

1The idea is somewhat similar to first- and second-order conditions in calculus. Every optimization problem can in

principle be solved by comparing all values of the objective function. However, this method is typically not tractable or

useful, in contrast to first- and second-order conditions.

2Note, in addition, that we somewhat simplified the original Ford and Fulkerson algorithm, which was possible due to the

specific structure of the portfolio selection problem.
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covariance matrix of the available assets. By definition, σ2i = σii. It costs ci to invest in asset i.

The investor has a mean-variance utility function, as is often assumed in finance, which is a linear

function aµ−bσ2 of the mean µ and variance σ2 of a portfolio. The coefficients a and b are positive. Thus,

the investor’s utility of a portfolio S ⊂ N is

U(S) = a

(
∑

i∈S

µi −
∑

i∈S

ci

)

− b
∑

i,j∈S

σij. (1)

It will be convenient to define asset i’s individual (net) return as

xi = a (µi − ci)− bσii,

asset i’s hedging value for asset j �= i as αij = −bσij, and asset i’s hedging value for portfolio S as

αiS = −
∑

i �=j∈S

bσij .

The investor’s objective is to assemble a portfolio S that maximizes the utility U(S). In order to

illustrate the concepts, we conclude this section with a simple example of investment problem, in which

an optimal portfolio will be found by inspection.

Example 1 Let: N = 5, a = b = 1, µ1 = 10, µ2 = µ3 = µ4 = µ5 = 1, and the covariance matrix

(σij)
n
i,j=1 be given by 



5 −1 −1 −1 −1

−1 1 0 0 0

−1 0 1 0 0

−1 0 0 1 0

−1 0 0 0 1





.

Finally, let c1 = 1, c2 = 1/2, c3 = 3/2, c4 = 5/2, and c5 = 7/2.

Then the optimal portfolio must contain asset 1, since its individual return x1 = 4 is positive. The

individual returns of other assets are negative, since 1 (1− ci)− 1 = −ci. However, it pays back to include

assets 2 and 3 together with asset 1, since their hedging value for asset 1 is 1, and the hedging value of

asset 1 for each of them is also 1. This hedging value of 2 exceeds the cost ci for i = 2 and 3 but not for

i = 4 and 5. Thus, the optimal portfolio has the form of an asset generating high net returns, and two

assets included for the purpose of hedging.

In Example 1, finding an optimal portfolio was easy due to the simple structure of means, costs and

covariance matrix. However, if the structure of these parameters is more complicated, finding an optimal

portfolio by inspection may not be possible. So, one would like to have a more systematic method of

searching for an optimal portfolio. We will provide such a method in the Section 4.
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3 A review of related discrete optimization results

The problem of selecting a discrete portfolio is a special case of what might be called project or activity

selection problems. Such problems are interesting only when the projects or activities interact with each

other. There are three basic ways in which these interactions can take place. The first is when different sets

of projects compete for common resources. Framed this way, the project selection problem is no different

from a generic integer program. Positive results can be obtained only if the underlying constraint matrix

has suitable structure.

The second is when the a project becomes feasible or available provided some other subset of projects

has already been selected. Thus, associated with each project i is a set P (i) of predecessors all of which

must be selected before project i becomes available. The classic paper on this subject is Rhys (1970). The

main result in that paper was to show that this version of the problem could be solved as a linear program.

In other words, the linear programming relaxation of the natural integer programming formulation of the

problem had integer optima. Subsequent authors showed that this linear program could be represented

as a maximum flow problem and solved more rapidly using special purpose algorithms. Hochbaum (2004)

surveys a range of ostensibly different problems that can be represented as instances of this version of the

project selection problem. All these problems can be solved using algorithms for finding maximum flows

in networks.

The third is when there are complementarities or correlations in the returns (or costs) of the projects. In

a sense the sequencing version just described can be seen as an extreme case of this. The returns on project

i are zero unless all projects in P (i) are completed in which case they become positive. The problem we

consider falls in this third class. When all assets are negatively correlated the problem of finding a portfolio

that maximizes the payoff function given by (1) is a special case of the problem considered by Rhys (1970),

i.e., a maximum flow problem. Our algorithm for selecting an optimal portfolio is a simplified instance of

the Ford-Fulkerson (1956) algorithm for maximum flow that has a natural economic interpretation.

This financing algorithm as described will not run in polynomial time. One needs to define the search

order for a refinancing opportunity by adapting the breadth-first search algorithm. With this modification

our algorithm is guaranteed to run in polynomial time. This version of the Ford-Fulkerson algorithm was

proposed independently by Dinic (1970), and Edmonds and Karp (1972). Because we are interested in a

method of selecting an optimal portfolio, rather than its computational properties, we omit the discussion

of the breadth-first search algorithm.

The assumption that all assets are negatively correlated can be relaxed slightly to the case when the

covariance matrix of the assets is sign balanced. To define the notion of sign-balance, construct a graph

G that has an edge between i and j if and only if σij �= 0. The edges which correspond to positive (resp.

negative) σij are called positive edges (resp. negative edges). This graph G is sign-balanced if it does

not contain any cycle with an odd number of positive edges. To this end, one can use the algorithm from

Hansen and Simeone (1986).
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4 Financing algorithm for selecting optimal portfolio

The financing algorithm assembles a portfolio as follows:

Step 0. All assets i with positive individual returns xi ≥ 0 are included to the portfolio. Each asset

such that xi < 0 is assigned a number di = −xi, which will be called i’s deficit ; if xi ≥ 0, set di = 0. If an

investor decides to acquire asset i, this asset alone will generate a negative return of −xi. However, it may

pay to acquire asset i together with other assets for the purpose of hedging. Each pair of assets i and j is

assigned a number sij = αij + αji. (By ij, we will denote the set {i, j}, that is, we assume that ij = ji.)

This is an increment in the utility of the investor who acquires the two assets together; she obtains this

increment on top of the two assets’ individual returns. This increment is the result of each asset providing

some hedging against the risk imposed by the other asset, and it will be called ij’s (mutual) surplus.

While describing our algorithm, we will illustrate its particular steps by the following example, which

is depicted in Figure 1.

Example 2 Let N = {1, 2, 3}, a = b = 1, µ1 = 4, µ2 = 1, µ3 = 0, and the covariance matrix (σij)
n
i,j=1 be

given by 




2 −1/2 −1/2

−1/2 2 −1

−1/2 −1 2





.

Finally, let c1 = c2 = c3 = 1.

In Example 2, we have x1 = 1, d2 = −x2 = 2, d3 = −x3 = 3, s12 = 1, s23 = 2, and s13 = 1. That is,

in step 0, asset 1 (and only asset 1) is included to the portfolio. This is depicted in the upper diagram of

Figure 1.

Consecutive steps (1, 2, etc.), financing opportunity. In each consecutive step of our algorithm,

we first check for what we call a “financing opportunity”, i.e., whether there are pairs i and j with xi < 0

and sij > 0. If we find such i and j,3 we “transfer” the surplus from ij to reduce the deficit of i up to

the maximum possible amount; this amount is simply the larger of the two numbers: −xi and αij + αji.

More precisely, both di and sij take new values. If sij ≤ di, then di becomes di − sij , and sij becomes 0;

and if sij > di, then sij becomes sij − di, and di becomes 0.

So, due to the transfers, deficits are reduced or “financed”. It will be important that the algorithm

remembers from which surpluses each deficit was financed.

3For now, take an arbitrary pair with the required property if multiplicity arises. We will return at the end of our

description of financing algorithm to the issue which pair to choose if multiplicity arises.
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Figure 1. Pairs of assets are represented by dots on the left-hand side, and individual assets are

represented by dots on the right-hand side, with the corresponding surpluses and deficits marked next to

the dots. Arrows indicate transfers with their size marked on the arrows.
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In Example 2, pair 23 has the property that x2 < 0 and s23 > 0, so there is a financing opportunity. In

step 1, both values d2 and s23 become 0. This is depicted in the upper diagram of Figure 1 by the arrow

from 23 to 2. In Step 2, we first check for a financing opportunity, exactly as in step 1. In Example 2,

there is another financing opportunity, depicted by the arrow from 13 to 3 in Figure 1. The new values of

surpluses and deficits obtained by making the two transfers (form 23 to 2 and from 13 to 3) are marked

next to the dots in the middle diagram of Figure 1. As we have said, the algorithm remembers that 2’s

deficit was financed from 23’s surplus, and that 3’s deficit was financed from 13’s surplus.

Consecutive steps (1, 2, etc.), the opportunity of refinancing. If we exhaust all financing

opportunities, as now happens in Example 2, then we check for what we will call an “opportunity of

refinancing”. That is, we check whether there exists i and j, and a sequence of assets i, k0, k1, ..., , km, j

such that sik0 > 0, dj > 0, di = 0 and dkl = 0 for l = 1, ...,m, skmj = 0, sik1 = 0 and sklkl+1 = 0 for

l = 1, ..., m− 1; moreover, we check if the original deficit of i is (entirely or partially) financed from ik1’s

surplus, the original deficit of kl is financed from klkl+1’s surplus for l = 1, ...,m − 1, and the original

deficit of km is financed from kmj’s surplus.

If such a refinancing opportunity arises, we transfer surplus from i back to ik1, replacing it with a

the surplus returned to i from ik0; we transfer surplus from kl back to klkl+1 replacing it with surplus

returned to kl from kl−1kl for l = 1, ...,m − 1, and we transfer surplus from km back to kmj replacing it

with surplus returned from km−1km. Finally, we transfer surplus from kmj to j. The transfers are made

up to the maximum possible amount. We change the values of deficits and surpluses according to the

described transfers. An opportunity of refinancing opportunity is illustrated in Figure 2.

In Example 2, there is a possibility of refinancing. See the middle diagram of Figure 1. Namely, a

surplus of 1 can be transferred to 2 from 12, which allows for transferring a surplus of 1 back to 23, and

this surplus can be transferred to 3. We reach the bottom diagram in Figure 1. As it is clear from the

figure, this exhausts all financing possibilities and the possibilities of refinancing.

Final step. When all financing possibilities and the possibilities of refinancing are exhausted,4 we

remove some assets from the grand set N . The set of assets which remain will turn out to maximize the

payoff function given by (1).

4Clearly, we must reach such a stage, since in every step of the procedure the sum of all surpluses and the sum of all

deficits become lower.
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Figure 2. An opportunity of refinancing: solid arrows illustrate new transfers, and dashed lines illustrate

transfer returns.

First, we remove any asset i which is not fully financed, that is, every asset with di > 0 in the moment

in which all possibilities are exhausted. Then, we remove any other asset k, that was (entirely or partially)

financed by a transfer from ik. We continue removing assets k which are financed by a transfer from ik for

some previously removed assets i. We stop when no other asset can be removed. The remaining portfolio

is the one selected by our algorithm, and will be denoted by S∗.

Returning to Example 2, asset 2 is fully financed, but asset 3 is not. Thus, we remove asset 3. However,

we must now remove asset 2 as well, because asset 2 was partially financed by a transfer from 23. Thus,

the optimal portfolio S∗ consists only of asset 1.

Although the optimality of portfolio S∗ selected by the financing algorithm follows from the optimality

of the project selected by the Ford and Fulkerson algorithm (see Section 3), it is instructive to provide a

simple direct proof of this result.
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Proposition 1 The financing algorithm selects a portfolio S∗ which maximizes the payoff function given

by (1).

Proof. First, notice that

a

(
∑

i∈S∗

µi −
∑

i∈S∗

ci

)

− b
∑

i,j∈S∗

σij ≥ 0,

because the deficits of all assets from S∗ are financed by the surpluses of ij for i, j ∈ S∗. Thus, (at least)

some optimal portfolio contains as a subset the portfolio selected by the financing algorithm.

Next, observe that when no financing opportunity and no opportunity of refinancing exist, then at the

time the algorithm stops, we have that sik = 0 for all pairs i and k, except possibly pairs i, k ∈ S∗. Indeed,

suppose that sik > 0 for a pair i, k, such that, say, i /∈ S∗. Consider the following two cases:

(i) If di > 0 (again, at the time the algorithm stops), then there would exist a financing opportunity,

since i’s deficit could be financed from ik’ surplus;

(ii) Suppose that di = 0, and consider the set of all j with the following property:

(*) there exists a sequence i, k0, k1, ..., , km, j, where k0 = k, such that i’s deficit is (entirely or partially)

financed from ik1’s surplus, kl’s deficit is financed from klkl+1’s surplus for l = 1, ..., m−1, and km’s deficit

is financed from kmj’s surplus.

Since there is no opportunity of refinancing, dj = 0 for every j with property (*). By definition, the

deficit of every j with property (*) was financed only from the surpluses of jk such that k also has property

(*). Thus, since dj = 0 for every j with (*), the set of all j with (*) should be included into S∗. This,

however, contradicts the assumption that i /∈ S∗.

Consider any portfolio S that contains S∗. Denote by S′ the portfolio obtained from S by including

all assets which were removed from the grand set N later than the first removed asset that belongs to

S; moreover, assume that every asset i included to S′ has cost c′i, possibly lower than its actual cost ci,

such that its deficit (at the time when the first asset from S was removed) is equal to 0. Observe that

U(S) ≤ U(S′). This follows from the fact that the deficits of all assets i ∈ S′−S (when their costs are c′i)

are fully financed from the surpluses of pairs ij such that i, j ∈ S′.

Finally, notice that U(S′) = U(S∗). This follows because sij = 0 for all pairs ij, possibly except pairs

i, j ∈ S∗.

5 An example of comparative statics

In this section, we provide an example of comparative statics. We consider an increase in the cost of

investing in an asset, and compare two assets: one with positive individual return but no hedging value,

and the other with positive hedging value but no individual return. We argue that if both assets belong to

the optimal portfolio, and the optimal portfolio contains a large number of assets, then the same increase
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of the cost is more likely to call for removing the former asset from the optimal portfolio than to call for

removing the latter asset.

The intuition can be roughly explained as follows: A larger number of assets in the portfolio increases

the chance that a given asset is highly correlated with another asset (or other assets), and so the chance

that the asset’s hedging value will exceeds the cost of investing in the asset, even when this cost increases

by a given value. In contrast, the individual return of an asset is unaffected by the number of other assets

in a portfolio.

This observation can be expressed in the form of the following proposition:

Proposition 2 Suppose that the expected values of assets are drawn from some interval, variances are

drawn from some interval, and covariances are drawn from an interval [−ρ, 0], where ρ ≥ 0; all draws are

independent and uniform.5 Consider two assets: 1 and 2 such that both assets cost c1 = c2 = c, and belong

to the optimal portfolio for some unobserved draw of expected values, variances and covariances. Suppose

that asset 1 has positive individual return and zero hedging value, while asset 2 has positive hedging value

and zero individual return.

If the number of assets in the optimal portfolio is sufficiently large, and cost c+∆c is sufficiently small,

then the chance that asset 1 will be removed from the optimal portfolio in response to an increase ∆c in

c1 is higher than the chance that asset 2 will be removed from the optimal portfolio in response to an equal

increase ∆c in c2.

Proof. It suffices to show that the probability of removing asset 2 tends to 0 as the number of assets

in the optimal portfolio tends to ∞. Indeed, the probability of removing asset 1 is a positive number,

independent the size of the optimal portfolio.

Let n be the number of assets in the optimal portfolio for the initial cost structure, that is, when the

cost of asset 2 is c. Denote by ρ1, ..., ρn−1 the realizations of covariances of asset 2 with other assets in

the optimal portfolio. For any r/b ∈ (0, ρ), if c+∆c < r/b, then the realizations of covariances for which

asset 2 will be removed from the optimal portfolio belong to the simplex

{(−ρ1, ...,−ρn−1) ∈ [−ρ, 0]
n−1 :

n−1∑

j=1

ρj < r/b}.

The volume of this simplex is
1

(n− 1)!

(r
b

)n−1
,

so the probability that the realizations of covariances belong to this simplex is

1

(n− 1)!

(r
b

)n−1 1

ρn−1
,

5We implicitly assume here that the intervals from which the parameters are drawn are such that every draw yields the

covariance matrix of some random variables.

10



and tends to 0 as n tends to ∞.

We conjecture that the assumption that c +∆c is sufficiently small is dispensable. The conjecture is

likely to follow from an analogous argument. The only difficulty is that the proof would require computing

the measure of some n-dimensional polytopes contained in the unit cube of more complicated form than

simplices.

6 Positive correlations

In this section, we show that for the general covariance matrix, the problem of selecting an optimal portfolio

is in NP-hard. More specifically, we will reduce our problem to the following partition problem, which is

well-known to be NP-hard. In the partition problem, we are given a set {b1, b2, . . . , bm} of positive integers

and we would like to know if there is a subset S of this set such that

∑

i∈S

bi =
∑

i/∈S

bi.

Given an instance of the partition problem, we construct an instance of portfolio selection whose solution

will also resolve the partition problem. So, given positive integers b1, b2, . . . , bm, consider the grand set of

n = 2m assets, and an agent with mean-variance utility function µ− σ2, where µ is the mean and σ2 is

the variance of the portfolio the agent holds. (That is, in terms of our model, we set a = b = 1.) Let the

means, costs and covariance matrix be such that:

1. (a) µi−σ
2
i = 1 and ci = 0 for all i = 1, . . . ,m; (b) µi−σ

2
i = 0 and ci = b

2
i−m for all i = m+1, . . . ,2m.

2. (a) σij = 0 for i �= j and i, j = 1, ...,m; (b) σij = bi−mbj−m for i �= j and i, j = m + 1, ...,2m;

(c) σij = −bibj−m/2 if i = 1, ...,m, j = m + 1, ..., 2m, and j − i �= m; (d) σij = −bi−mbj/2 if

i = m+ 1, ...,2m, j = 1, ...,m, and i− j �=m.

3. (a) σij = −(σ
2
j + bibi)/2 if i = 1, ...,m, j =m+1, ...,2m, and j− i = m; (b) σij = −(σ2i + bjbj)/2 if

i = m+ 1, ...,2m, j = 1, ...,m, and j − i =m.

That is, the covariance matrix (σij)
n
i,j=1 has the following form





σ21 ... 0 −(σ2m+1 + b1b1)/2 ... −b1bm

... ... ... ...

0 ... σ2m −bmb1 ... −(σ22m + bmbm)/2

−(σ2m+1 + b1b1)/2 ... −b1bm σ2m+1 ... b1bm

... ... ... ...

−bmb1 ... −(σ22m + bmbm)/2 bmb1 ... σ22m





.

Note that we have not specified the variances of our assets. They must only be sufficiently large. This guar-

antees that (σij)
n
i,j=1 is positive semi-definite. And since (σij)

n
i,j=1 is also symmetric, it is the covariance

matrix of a set of n = 2m random variables.
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Suppose that we solved this particular instance of portfolio selection. Let

B =
m∑

i=1

bi.

Since, assets 1, ...,m belong to the optimal portfolio, no matter what other assets are included, our problem

reduces to finding a set S ⊆ {m+ 1, . . . ,2m} that maximizes

U({1, ...,m} ∪ S) = m+ 2
∑

i∈S

bi(B −
∑

i∈S

bi).

Observe that if the answer to the partition problem is ‘YES’, then the utility of optimal portfolio for this

particular instance of portfolio selection will be m+B2/2. If the answer to the partition problem is ‘NO’,

then the utility of optimal portfolio will be strictly less than m + B2/2. That is, knowing the optimal

portfolio, we can immediately say if the answer to the partition problem is ‘YES’ or ‘NO’.

7 Conclusions

We conclude with spelling out the contribution of the present paper. First, the paper offers a rigorous

analysis of what we think is a basic issue in economics and finance: how to choose a portfolio out of a

finite set of available assets. This question was studied by Reiter (1963), but no formal solution concept

was applied, and no formal result was proved. Reiter’s pioneering analysis is restricted to showing that

some simple algorithms perform very well in some numerical examples. Our paper also offers an algorithm

that solves the portfolio problem in an important class of cases, when all pairs of assets are negatively

correlated. This algorithm is a special case of the Ford and Fulkerson algorithm, and the contribution

is rather in the recognition that the portfolio selection problem is a special case of the project selection

problem. Note, in addition, that the original Ford and Fulkerson algorithm was somewhat simplified in our

paper, which was possible due to the specific structure of Reiter’s problem. Finally, the paper performs

a comparative statics exercise concerning the optimal portfolio, and shows that for the case of general

correlations the problem is NP-hard.
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