
Search with Partially Informed Stopping Decisions

Wojciech Olszewski and Asher Wolinsky∗

October 2013 (First version December 2011)

Abstract

Search models commonly make the simplification that all the relevant information about a sampled

object is revealed once it is sampled. In this paper we present and analyze a search model in which

searchers have only partial information about the sampled objects at the point of decision. We show

that the combination of this imperfection with searchers discretion over which imperfect signal to

choose may have a qualitative effect on the equilibrium outcomes. In particular, it generates large

multiplicity of equilibria in an environment that would have a unique equilibrium otherwise, and gives

rise to equilibria in which stopping decisions might be non-montonic in the strength of the signal that

the searcher obtains. These insights owe to the negative search externality that agents exert on each

other and which in some form is familiar from other search contexts. But the way in which it plays

out here is novel and not immediately obvious.

∗Olszewski is at the Department of Economics, Northwestern University, Evanston, IL 60208, USA; email:

wo@northwestern.edu. Wolinsky is at the Department of Economics, Northwestern University, Evanston, IL 60208, USA,

email: a-wolinsky@northwestern.edu. The authors gratefully acknowledge support from the NSF under grants SES-0644930

and SES-1123595, respectively. We are grateful to Keiichi Kawai and Mikhail Safronov for their helpful research assistance.

Earlier drafts of the paper have been presented at Caltech; Harvard-MIT Theory Workshop, Toulouse School of Economics,

Purdue University; University of Pennsylvania; University of Texas at Austin; Washington University’s in St. Louis; 21st

Summer Festival on Game Theory at Stony; Second Spring Mini-Conference on Microeconomic Theory at Brown University,

III Hurwicz Workshop on Mechanism Design Theory in Warsaw (Poland), and the 4th World Congress of the Game Theory

Society. We thank the audiences, and especially Philip H. Dybvig, for comments, remarks, and suggestions

1



1 Introduction

Search models commonly make the simplification that all the relevant information about a sampled object

is revealed once it is sampled. In this paper we present and analyze a search model in which searchers

have only partial information about the sampled objects at the point of decision. We show that this

imperfection may have a qualitative effect on the equilibrium outcomes.

We consider a simple dynamic two-sided search process. On one side, there is a population of searchers;

on the other side, a population of objects. Searchers are strategic decision makers who are there to get

matched to an object, while objects have no preferences or decisions to make. Upon encountering an

object, a searcher observes an imperfect signal of its value. Based on this information, the searcher decides

whether to adopt the object and depart or to drop it and continue searching. The equilibrium is a steady

state in which each searcher’s decisions on adoption are optimal. The steady state means that the outflows

of agents and objects who formed a successful match or who "died" (at an exogenous rate) are exactly

matched by exogenous inflows of agents and objects.

More specifically, in the main model, an object is characterized by two attributes. Its value for a

searcher is the sum of the attributes. The imperfect signal observed by a searcher is the value of one of the

attributes. In the benchmark scenario the same attribute (say attribute 1) is observable to all searchers.

In this scenario the model has a unique equilibrium and it is of the reservation threshold variety. In a

second scenario searchers are free to choose which attribute to observe. In a third scenario searchers again

can get information only about a single attribute but they choose at a cost the precision of the signal they

observe. In both of these scenarios the model exhibits multiplicity of equilibria and, in the former, some

of the equilibria are non-monotonic in the sense that the adoption decision is not everywhere monotonic

in the signal observed by the searcher.

In all of these scenarios the equilibrium outcomes are inefficient — they involve too much search or too

much information acquisition. This is explained by a negative externality that the searchers exert on each

other, which they ignore in their decisions. These search externalities also explain the multiplicity and non-

monotonicity mentioned above. Search externalities and their welfare effects are of course familiar from

other search models. But the way in which they play out through the endogenous information acquisition

decisions in the present model is novel and not immediately obvious.

Our main objective is to expose some possible effects of imperfect information at the decision point in

a search environment (rather than to study any particular market). For this reason, we have opted for

a lean model that is not guided by the details of a specific application. Nevertheless, since it is useful

to have in mind some concrete situation, let us mention that the model captures some of the essential

features of competitive search for research and development ideas. The searchers stand for researchers

or research units (say, scientists) and the objects are the potential ideas that the researchers sample and

examine. The signal observed by a searcher in our model corresponds to preliminary tests conducted prior

to starting a research project. The fact that unsuccessful ideas remain available and may be re-examined
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by different researchers corresponds to the fact that researchers often do not advertise ideas that failed

preliminary tests. The "death" and "birth" of objects in our model capture the reality that some potential

research topics become obsolete over time, and new ones become relevant. While this model may not fit

the research scenario perfectly (e.g., researchers who had been matched to good ideas re-enter or even

continue searching), it does capture some of its main features like the one-sidedness, some commonality of

values and imperfect observation.

Although our analysis does not apply directly to two-sided with decision makers on both sides1, it is

tempting to speculate that its insights might be relevant in some form for such models as well. This is

because the one-sided nature of our model simplifies the calculations but does not seem to play a crucial

role in the arguments themselves.

We are not aware of work that bears a close relationship to our analysis. Yet different aspects of the

paper are related to different strands of the literature. In terms of its basic model, this paper belongs

to the search literature. The basic model (without the information acquisition features) can be thought

of as a simple variant of Burdett and Coles (1997). The idea of search with multi-attributes appears in

Neeman (1995) and Bar-Isaac, Caruana and Cunat (2011). The relation to our work is more through

the general motivation than through the specific analysis. In the former, a searcher faces a sequence of

i.i.d. two-attribute objects of which she can observe only one attribute. The main result is that if the

distribution of one of the attributes stochastically dominates the distribution of the other in the second

order sense, then the optimal search procedure under this limited observability constraint would examine

only the dominated attribute. In the latter the focus is on a monopolist’s choice of product quality in a

world in which consumers are constrained to observe only a subset of the products’ attributes.

2 Model

We consider a dynamic two-sided search process. On one side, there is a population of searchers; on the

other side, a population of objects. Searchers are strategic decision makers who are there to get matched

to an object, while objects have no preferences or decisions to make.

Each object is characterized by two attributes, (x1, x2) ∈ [0, 1]2, whose magnitudes are independent,
and differ across objects. The searcher’s payoff from adopting an object characterized by (x1, x2) is

u(x1, x2) = x1 + x2.

The attributes are not readily observable. Upon encountering an object, the searcher observes a

realization of a signal s = s(x1, x2). The set of possible signals is denoted S. We will consider two specific

forms for S, but for now we will state the model with S in its general form.

The matching of searchers to objects takes place over discrete time. In each period, searchers and

objects are matched randomly pairwise. We assume that the maximal number of pairs are formed each

1Such as labor markets.
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period, so everyone is matched if the populations are equally numerous. If a searcher accepts the object

he was matched to, this searcher and object depart; otherwise, the searcher and object return to the pools

of the unmatched.

A mass m of new searchers and a mass m of new objects enter the market in the beginning of each

period. The quality of entering objects is distributed uniformly on [0, 1]2.2 Searchers and objects stay in

the market until they become a party to a successful match or "die". A fraction d of all participants die

each period. The payoff to a searcher who "dies" before adopting an object is 0.

A (Markov) strategy for a searcher is a choice of a signal s ∈ S and acceptance rule: A(s) ∈
{accept,reject}.
The state of the process is described by masses M of searchers and of objects present in the process,

and a distribution F of the quality of objects present in the process.

This configuration describes a steady state if the masses M , the distribution F and the distribution of

strategies across the searchers’ population remain constant over time.

An equilibrium is a steady state configuration in which each searcher’s behavior is optimal.

3 The benchmark case

Suppose that all searchers observe only x1. That is, S is a singleton containing only s(x1, x2) = x1.

Let V (A;F ) denote the expected utility of a searcher who in a steady state situation with distribution

F uses the acceptance rule A. The optimal acceptance/rejection decision satisfies

A(x1) = accept iff x1 +E(x2) ≥ (1− d)V (A;F ), (1)

Since E(x2) is independent of x1, it follows immediately that the searcher’s optimal acceptance rule is of

the threshold variety:

A(x1) = accept iff x1 ≥ x.

The distribution of the two attributes is independent F = F1×F2 and F2 is uniform. In a steady state in

which all searchers have the same threshold x, F1 has two steps:

F1(x) =

⎧⎪⎪⎨⎪⎪⎩
x/d

x/d+ 1− x
if x < x;

x/d+ x− x

x/d+ 1− x
if x > x.

The frequency of objects with quality x < x is m/d since they depart only through death, and hence the

equality of entry and exit flows in the steady state implies d×frequency = m. The frequency of objects

with quality x > x is m, since they are accepted and hence only the newly arrived ones are around.

2The uniformity is not required. Everything can be done with an arbitrary distribution. But the greater generality would

not contribute anything important to the message of this paper.
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The expected utility of a searcher who uses acceptance rule A, V (A;F ), satisfies

V (A;F ) = [1− F (x)](
1

2
+
1 + x

2
) + F (x)(1− d)V (A;F )

=
(1− x)

x/d+ (1− x)
(
1

2
+
1 + x

2
) +

x/d

x/d+ (1− x)
(1− d)V (A;F ).

This implies that

V (A;F ) = (1− x)
³
1 +

x

2

´
.

Let xe denote an equilibrium threshold. Since it is optimal to accept an object with x1 iff x1 +
1
2 ≥

(1− d)V (A;F ), the threshold xe + 1
2 must coincide with (1− d)V (A;F ). Using this observation and the

above expression for V (A;F ), it follows that, for d ≥ 1
2 , x

e = 0 and, for d < 1
2 , x

e solves the equation

xe +
1

2
= (1− d)(1− xe)(1 +

xe

2
). (2)

For d < 1
2 , this quadratic equation has a unique positive solution and, hence, there is a unique equilibrium

3.

It is immediate to observe that in this case xe > 0.

Welfare will be measured by the searcher’s expected payoffs. Since the number of objects equals the

number of searchers, welfare is maximized with threshold xw = 0. That is, every object that yields

positive value should be adopted. Thus, the equilibrium involves excessive search from social point of

view. Furthermore, the equilibrium expected utility of a searcher, (1−xe)(1+ xe

2 ), is smaller than 1, which

is the expected utility that searchers would get if all of them employ threshold xw. That is, the possibility

to examine the object decreases welfare. This is not surprising, since it owes to the negative externality

imposed by each searcher on the others. A searcher rejects an object and waits to be matched with a

better object, which would otherwise be matched with another searcher.

To sum up

Proposition 1 (i) For d < 1
2 , x

e > 0; for d ≥ 1
2 , x

e = 0. (ii) xw = 0.

4 Two attributes case

Consider now the case in which there are two possible signals: si(x1, x2) = xi, i = 1, 2. That is, each signal

exposes an attribute. As we mentioned before, the signals are exclusive. Each searcher has to choose one

signal and can observe only the realization of the chosen signal. The assumption that only one attribute

3This uniqueness is not an artifact of the uniformity assumption. The counterpart of equation (2) for arbitrary distributions

of attributes, Hi,

xe + x2dH2(x2) = (1− d) max x1 + x2dH2(x2), (1− d) xe + x2dH2(x2) dH1(x1) ,

has a unique xe solution since the slope of the LHS in xe is 1, and the slope of the RHS side is bounded away from 1 for any

Hi’s.

5



is examined can be viewed as implicitly capturing an underlying cost structure or a time constraint which

make the observation of two attributes too costly or impossible.

Recall that a strategy for a searcher is a choice of a signal (attribute) and a function A from [0, 1] to

{accept,reject} describing the acceptance decision; an equilibrium is a steady state in which each searcher’s

behavior is optimal.

Let Vi(A;F ) denote the expected utility of a searcher who in a steady state situation with distribution

F , examines only attribute i and uses the acceptance rule A. Let gi denote the fraction of the searchers

in presence who examine attribute i (g2 = 1− g1) and let Ai denote their acceptance strategy.

In equilibrium, the optimality of the searchers’ choice of a signal implies

if gi ∈ (0, 1), then V1(A1;F ) = V2(A2;F ),

if gi = 1, then Vi(Ai;F ) ≥ Vj(Aj ;F ),
(3)

and the optimality of searchers’ acceptance/rejection implies

if Ai(x) = accept, then x+E(xj | xi = x) ≥ (1− d)Vi(Ai;F ),

if Ai(x) = reject, then x+E(xj | xi = x) ≤ (1− d)Vi(Ai;F ),
(4)

where the expectation is with respect to the prevailing distribution of attributes F .

The acceptance behavior partitions [0, 1]2 into four product sets RR = {(x1, x2)|A1(x1) = A2(x2) =

reject}, AR = {(x1, x2)|A1(x1) = accept; A2(x2) = reject}, RA = {(x1, x2)|A1(x1) = reject; A2(x2) =

accept}, and AA = {(x1, x2)|A1(x1) = A2(x2) = accept} with different steady state frequencies of objects
(owing to the different rates of exit of objects across these rectangles). Let Mij , i, j = R,A, denote the

masses of objects in these four sets and let U(X) denote the probability of set X, given the uniform

distribution on [0, 1]2.

The steady state conditions require equality of the inflows and outflows:

dMRR = m× U(RR); [dg1 + g2]MRA = m× U(RA); (5)

[g1 + dg2]MAR = m× U(AR); MAA = m× U(AA).

That is, objects with attributes in RR exit only through death and hence the outflow is dMRR, while

objects with attributes in AA are adopted immediately and hence the outflow is MAA.

The expected utility of a searcher who examines attribute 1, V1 = V1(A;F ), can be expressed in terms

of masses Mij as follows:

V1 = Pr(AA)E(x1 + x2|(x1, x2) ∈ AA) + Pr(AR)E(x1 + x2|(x1, x2) ∈ AR) + Pr(RR ∪RA)(1− d)V1(6)

=
MAAE(x1 + x2|(x1, x2) ∈ AA) +MARE(x1 + x2|(x1, x2) ∈ AR) + (MRA +MRR)(1− d)V1

MAA +MAR +MRA +MRR

where, again, the expectations are with respect to the distribution F of attributes in the market. An

analogous expression can be obtained for V2 = V2(A;F ).
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Since the distribution F can be expressed in terms of the massesMij ’s (though it would be complicated

for arbitrary Ai’s), so are the Vi’s and the equilibrium conditions (3) and (4). Since by (5) theMij ’s can be

expressed in terms of the strategies and the parameters of the model, conditions (4) can be also expressed in

terms of the strategies and the parameters alone. This provides the system of inequalities that is necessary

and sufficient for strategies to be in equilibrium.

The first question is whether in equilibrium different searchers choose different signals or all choose to

employ the same signal. Intuitively, there are arguments in both directions. If all are checking attribute 1,

its steady state distribution will be worse than that of attribute 2. This means that it is more prudent to

check attribute 1, but at the same time it is more likely to find a good level of attribute 2 if this attribute

is being checked. Indeed, as will be shown later, in general both types of pattern might be consistent with

equilibrium. However, when the distribution of attributes is uniform, as assumed here, the only possible

equilibria are such that each attribute is examined by a strict subset of the searchers.

Proposition 2 : If the two attributes are distributed uniformly, then there is no equilibrium in which all

searchers examine the same attribute.

Proof: Suppose there is. Obviously, the equilibrium acceptance rule for attribute 1 has to be of the

threshold variety. Let x be that threshold and let V be the searchers’ equilibrium expected utility. Observe

that

V (1− d) = x+
1

2
.

The expected utility of a searcher who deviates to following behavior: check attribute 2 once and accept

the object if attribute 2 is greater equal than y; otherwise continue with the equilibrium. Consider now

this deviation with y = x. If both attributes of the first sampled object are below x or both are above x, it

would be rejected and accepted respectively with or without the deviation. So, the deviation differs from

the equilibrium behavior only when the attributes (x1, x2) of the first sampled object are such that x1 < x

and x2 ≥ x or x1 ≥ x and x2 < x. In the former case the object is rejected under the equilibrium behavior

but is accepted under the deviation, while in the latter case the reverse is true. However, the expected

value of the object in either of these cases is x + 1/2 which is exactly equal to V (1 − d). Therefore, the

searcher’s expected utility is not affected by the acceptance/rejection in those regions. So, the deviation

yields the same expected utility as the equilibrium behavior. But, the deviation with y = x is not the

optimal deviation. To verify this observe that the expected utility under the deviation is

(1− y)[xm/d
1 + x+ y

2
+ (1− x)m(1 +

x+ y

2
)]

xm/d+ (1− x)m
+ y(1− d)V

The derivative with respect to y evaluated at y = x is

(1− d)V − 3
2
x− 1

2
+
1

2

xm/d

xm/d+ (1− x)m

which upon substituting V (1− d) = x+ 1/2 is clearly positive.¥
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5 Threshold equilibria and payoff discontinuity

The simplest equilibrium in which each of the attributes is being examined by some subset of the searchers

is of the threshold variety. A fraction of searchers gi ∈ (0, 1) examine attribute i and accept the object
iff xi ≥ xi. The sets AA, AR, etc. are simple rectangles: RR = [0, x1] × [0, x2], RA = [0, x1] × [x2, 1],
AR = [x1, 1] × [0, x2] and AA = [x1, 1] × [x2, 1]. Therefore, it follows from (5) that the equilibrium

distribution is as shown in Figure 1 below.

1

MRA = mx1(1‐x2)/[g2+(1‐ g2)d]             

MAA = m(1‐x1)(1‐x2)

x2

MRR = mx1x2/d      MAR = m(1‐x1)x2/[g1+(1‐g1)d]

0                                    x1 1

Figure 1: Equilibrium distribution

Therefore (as shown in the proof of Proposition 3), the equilibrium condition (4) on the optimality of

the acceptance/rejection decisions of a searcher who examines attribute 1 can be expressed as4

x1 +E(x2|x1 > x1) ≡ x1 +
MAA

1+x2
2 +MAR

x2
2

MAA +MAR
≥ (1− d)V1 if x1 > 0, (7)

x1 +E(x2|x1 < x1) ≡ x1 +
MRR

x2
2 +MRA

1+x2
2

MRA +MRR
≤ (1− d)V1 if x1 < 1,

That is, acceptance of x1 just above x1 yields higher payoff than the value of continued search, while

acceptance of x1 just below x1 yields lower payoff. Analogous inequalities hold for a searcher who examines

attribute 2.

Proposition 3 A (symmetric) threshold equilibrium exists: (i) for d < 1/2, there is a non-degenerate

interval [x−, x+] such that x is a threshold of a symmetric threshold equilibrium iff x ∈ [x−, x+]; (ii) for
d > 1/2, the unique symmetric equilibrium threshold is x = 0.

4More precisely, the first inequality need not hold for x1 = 0 (x2 = 0, respectively), and the second inequality need not

hold for x1 = 1 (x2 = 1, respectively)
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This proof (as well as subsequent proofs that do not appear in the text) is relegated to Appendix A. The

multiplicity of equilibria is explained by the externality that searchers exert on each other. Externalities

often play an important role in search models. Here, since searchers sample from the same pool and values

are common, the externality is the effect of a searcher’s decisions on the distribution faced by others5. Its

special character is in that it involves cross effects from one attribute to another. Observe that the payoff

x1 + E(x2 | x1) of a searcher who examines attribute 1 and adopts an object with x1 is in general not

continuous at x1. This is because

E(x2 | x1 < x1) =
MRR

x2
2 +MRA

1+x2
2

MRA +MRR
<

<
MAR

x2
2 +MAA

1+x2
2

MAR +MAA
= E(x2 | x1 > x1).

This owes to
MRA

MRR
=

d(1− x2)

[d(1− g2) + g2]x2
<
[d(1− g1) + g1](1− x2)

x2
=

MAA

MRA
,

which in turn follows from d < [d(1 − g2) + g2][d(1 − g1) + g1] for any g1, g2 > 0 such that g1 + g2 = 1
6 .

This implies that the searcher’s utility at the equilibrium threshold, x1 + E(x2 | x1), does not coincide
with the value of continued search, (1 − d)V1. This discontinuity is what gives rise to the multiplicity

of equilibria described by the proposition. In contrast, if all searchers were constrained to examine only

attribute 1 (which would be equivalent to the benchmark case considered in the very beginning), then

x1+E(x2 | x1) would be continuous at the common threshold x1, and the searcher’s utility at the threshold
would coincide with the value of continued search. This difference is explained as follows. When attribute

2 is also examined by some fraction of the searchers, the distribution of x2 conditional on x1 depends on

whether or not x1 is accepted by the attribute 1 searchers. Specifically, if the attribute 1 searchers reject

x01 and accept x
00
1 , then E(x2 | x01) < E(x2 | x001). This is because the objects (x01, x2) such that x2 < x2

stay around for longer than objects (x001 , x2) such that x2 < x2, and "spoil" the distribution. In other

words, the attribute 1 searchers exert externalities on each other which manifest themselves through the

distribution of attribute 2.

5 In much of the search literature, values are private and the externality is through the meeting probabilities.

6 It may be interesting to note that MLH/MLL < MHH/MHL also for other, nonuniform distributions of attributes.

Indeed, consider independently distributed attributes x1 and x2 with cdfs Fi. Then,

MLH

MLL
=

m
d(1−g2)+g2 F1(x1)(1− F2(x2))

m
d
F1(x1)F2(x2)

=
d(1− F2(x2))

[d(1− g2) + g2]F2(x2)

and
MHH

MLH
=

m(1− F1(x1))(1− F2(x2))
m

d(1−g1)+g1 (1− F1(x1))F2(x2)
=
[d(1− g1) + g1](1− F2(x2))

F2(x2)
.

Therefore MLH/MLL < MHH/MHL follows from the fact that d < [d(1− g2) + g2][d(1− g1) + g1] for any g1, g2 > 0 such

that g1 + g2 = 1.

This observation is important, because it will follows that the structure equilibria described in the paper is quite general,

as opposed to being specific for uniform, or some slightly larger class of distributions.
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Non-symmetric threshold equilibria can be characterized in a similar manner to Proposition 3. The set

of possible threshold pairs (one threshold for each attribute) is determined by a set of nonlinear inequalities

that are not too instructive and hence are not brought here. Direct computations for different parameter

values show that equilibria in which more than half of the searchers examine one of the attributes coexist

with equilibria in which more than half examine the other attribute, and with symmetric equilibria in

which half of the searchers examine each attribute. Figure 4 in Appendix B depicts the sets of equilibrium

thresholds for certain parameter values.

6 Non-monotonicity

Another implication of the discontinuity of the payoff at the equilibrium threshold is non-monotonic

behavior (which did not arise in the single-attribute case). To see the non-monotonicity, consider a

symmetric threshold equilibrium, with threshold x, for which inequalities (7) hold with strict inequalities

and modify the acceptance rule as follows

A(x) =

⎧⎨⎩ reject if x < x or x+ ε ≤ x < x+ 2ε

accept otherwise

Figure 2 depicts the partition of [0, 1]2 induced by this acceptance rule. As before, the different regions

exhibit different frequencies of objects. The four corner rectangles have the same frequencies as before.

The newly created rectangles also display these same four frequencies as indicated by the arrows pointing

to them.

0   x1 x1+e  x1+2e 1

MRA = mx1(1‐x2)/[g2+1‐g2)d]
MAA = m(1‐x1)(1‐x2)

MAR = m(1‐x1)x2/[g1+(1‐g1)d]MRR = mx1x2

x2+2e

x2+e

x2

1

Figure 2: Non-monotonic equilibrium diustribution
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Observe that, if the width of these strips, ε, is small enough, this configuration is an equilibrium. First,

by symmetry, condition V1 = V2 holds. Second, since the inequalities in (7) hold strictly in the original

equilibrium, their appropriate versions for this case continue to hold. This is because Vi changes only by

a small amount while E[x2 | x1 < x] = E[x2 | x1 ∈ [x+ ε, x+ 2ε)] and E[x2 | x1 ≥ x+ 2ε] = E[x2 | x1 ∈
[x, x+ ε)] have values that are on the order of ε close to the values that E[x2 | x1 < x] and E[x2 | x1 ≥ x],

respectively, had in the original equilibrium.

The following proposition summarizes the above observations.

Proposition 4 For d < 1/2, there also exist equilibria that exhibit non-monotonic behavior. Specifically,

for any z ∈ (x−, x+), there exists an equilibrium in which some x < z is accepted and some x > z is

rejected7 .

Observe that in the same way we constructed a non-monotonic equilibrium above, we can construct

equilibria with an arbitrary finite number of alternating acceptance and rejection intervals. Moreover, the

acceptance and rejection regions may be fairly exotic sets rather than just unions of intervals. Simply

consider a symmetric equilibrium for which (7) hold with strict inequalities and modify the acceptance

rule to

A(x) =

⎧⎨⎩ reject if x < x or x ∈ C

accept otherwise

where C is a positive-measure subset of interval [x+ ε, x+ 2ε].

Remark: As is evident from the above discussion, what is crucial for the existence of non-monotonic

equilibria is not the discontinuity in the value, but rather the dependence of E(x2 | x1) on the acceptance
decisions at x1 of the searchers who examine attribute 1. Thus, it is possible to perturb the model by

introducing some heterogeneity into searchers’ preferences that smooths the discontinuity of the value, but

still preserves the non-monotonic equilibria. To see this, consider a perturbed version of the model in which

the preferences of searchers contain an idiosyncratic component. If a searcher is matched with an object

whose attribute is x, the value of this attribute for this particular searcher is x+ η, where the searcher’s

specific term η is distributed symmetrically around 0 across the population. The threshold equilibria still

exist. However, if the distribution of η is continuous, the distribution of attribute 2 contingent on attribute

1 is a continuous function of attribute 1. Indeed, the object with threshold value of attribute 1 is accepted

by the searchers whose idiosyncratic preference component η is positive, and rejected by searchers whose

idiosyncratic preference component η is negative. That is, a half of the searchers matched with this type

of object. While close to the threshold, the object is accepted or rejected by slightly less or more than a

7The range over which this proposition holds might extend beyond the interval [x−, x+], but its exact characterization

might not contribue a great deal to our discussion.
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half of searchers matched with this type of object. This implies the continuity of attribute 2 contingent

on attribute 1 as a function of attribute 1.

If the idiosyncratic component is sufficiently small, e.g., the support of η is contained in a sufficiently

small interval around zero, there will still exist non-monotonic equilibria (i.e., equilibria in which all

searchers matched with an object whose attribute 1 is slightly higher than some level x reject it, and all

searchers matched with an object whose attribute 1 is slightly lower than x accept it). This follows from an

argument analogous to that used to show the existence of non-monotonic equilibria in the original setting.

7 Welfare

As before, welfare is identified with the searcher’s expected utility V . We have already observed in the

benchmark scenario in which the same attribute was observed by all searchers that the negative externality

among searchers gives rise to excessive search in equilibrium relative to the optimal levels. The same holds

true for the two-attribute case. Clearly, the equality of the number of objects and searchers and the fact

that all objects have positive value imply that welfare is maximized by the no-search scenario in which

searchers must take the objects that they are matched with8. For the same reason, if one symmetric

threshold equilibrium has lower thresholds than another, it would yield higher welfare.

The following propositions report two somewhat more subtle observations about welfare in the two-

attribute case. First, the fact that searchers spread themselves across the two attributes lessens the negative

externality, and hence improves welfare relative to a situation in which all searchers would examine the

same attribute.

Proposition 5 Any threshold equilibrium of the scenario in which each attribute is examined by a subset

of the searchers yields higher welfare than the unique equilibrium of the scenario in which only one attribute

can be examined.

This result is shaped by two opposing considerations. When all searchers examine one attribute, the

expected value of the other attribute is unaffected by adverse selection. This induces searchers to be

less choosey with respect to the observable attribute which translates to a lower negative externality and

hence a positive effect on welfare. But, since all are focusing on the same attribute, the acceptable objects

are relatively hard to find which increases the probability of failed search and affects welfare negatively.

These two considerations are more moderate when searchers spread themselves across the two attributes:

there is more adverse selection with respect to the hidden attribute but it is relatively easier to find an

8This is in the absence of an “adoption cost”. With such a cost, welfare is not maximized by the no search scenario but

still at a lower level of search than the level that prevails at the equilibria.
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object whose observable attribute clears the threshold. As the proposition establishes, this trade-off is

more conducive to welfare in the latter scenario.

Second, non-monotonic equilibria exhibit further welfare loss in the sense that any symmetric non-

monotonic equilibrium yields lower welfare than some threshold equilibrium. This result is not immediately

obvious. On the one hand, it is obvious that a symmetric threshold configuration with the same total

acceptance region would yield higher welfare, since it differs only in that it rejects inferior objects. But, on

the other hand, it is not obvious that for any non-monotonic equilibrium such a threshold configuration

can be sustained as an equilibrium, since, in principle, the non-monotonicity might make it possible to

sustain greater acceptance region in equilibrium.

Proposition 6 Any symmetric non-monotonic equilibrium yields lower welfare than some symmetric

threshold equilibrium.

Remark: We conjecture that Proposition 6 may not hold in the case of general, nonuniform distri-

butions. That is, non-monotonic equilibria may not be welfare-dominated by threshold equilibria in the

general case. However, Proposition 6 does hold under some, seemingly mild, regularity assumptions on

the distribution of attributes. Inspection of the proof (in Appendix A) shows, that it suffices to impose

assumptions which would guarantee that x+ Ex(x2 | x1 s.t. x1 > x) (i.e., the upper upward-sloping line

in Figure 3 in Appendix B) is increasing in x.

8 Choice of signal

It was shown in Section 4 above that there is no equilibrium in which all searchers choose to observe the

same attribute. We have already mentioned that this result might not hold in general. The following

simple case shows that different patterns may arise in equilibrium. Furthermore, there is a region of the

parameter space in which equilibria of all three forms (all checking attribute 1, all checking 2, and each

attribute being checked by some) coexist. Suppose that each attribute has two potential values, xi ∈ {0, 1},
and let pi = Pr(xi = 1) at the entry stage. As in the continuous two attributes case, there are two possible

signals: si(x1, x2) = xi, i = 1, 2

Proposition 7 Assume that pi is bounded away from 0 and 1, i.e., pi ∈ (ε, 1 − ε), for some constant

ε > 0, and that d is small enough (compared to ε). Then: (i) there is an equilibrium in which a fraction

gi ∈ (0, 1) of the searchers examine each of the attributes. (ii) There also exists an equilibrium in which

all searchers examine attribute i iff pi(1 + pj) >
1
1−d (i.e., if p1 and p2 are large enough).
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The steady state equilibrium distribution F is described by the fractions fjc = Pr(x1 = j, x2 = c),

j, c = 0, 1. The searcher’s payoff from examining attribute 1 depends both on the fraction of objects

with high attribute 1, f10 + f11, and on the probability of attribute 2 being high conditional on adopting,

f11/(f10 + f11). Obviously, these magnitudes go in opposite directions across the attributes. That is, if

there is a higher fraction of objects with high attribute 1, f10 + f11 > f01 + f11, then f11/(f01 + f11) >

f11/(f10 + f11), which means that basing the adoption decision on the value of attribute 2 delivers a

higher expected value of the hidden attribute 1. Thus, V1 = V2, which must hold at an equilibrium in

which each attribute is examined by some searchers, is achieved either when both attributes exhibit the

same distribution and the same conditional distribution of the hidden attribute, or when the two opposing

considerations exactly offset each other. The former occurs when f10 = f01, which is the case analyzed by

the proposition. It arises in equilibrium for any parameter configuration in the range under consideration.

The other case occurs when f11 = d/(1− d), which may hold for a non-empty subset of (p1, p2) values in

the range but not for all values in the range.9

Observe that there is a region of the parameters for which equilibria of the three possible forms (every-

body checking attribute 1, everybody checking attribute 2, and each attribute is examined by a subset)

coexist. This multiplicity arises if both pi, i = 1, 2, are sufficiently large to satisfy pi(1 + pj) > 1/(1− d).

However, there is also a region (i.e., pi(1+ pj) < 1/(1− d) for i = 1, 2) in which only equilibria where each

of the attributes is examined by a subset of the searchers exist.

Since all searchers share the same preferences, when there is multiplicity of equilibria, they will be

Pareto ranked for the searchers. Thus, when all three equilibria exist, the equilibrium in which all examine

attribute 1 is preferred by all searchers to the equilibrium in which all examine attribute 2 if p1 > p2. But

when all examine attribute 2, the steady state distribution of that attribute is sufficiently bad to make it

worthwhile for a searcher to focus on it rather than on attribute 1.

9 Costly information acquisition

In the scenarios of the previous sections the searcher could choose between different signals that provide in-

dependent information about different aspects of the object. This section introduces costly choice between

different signals that represent different amounts of information about a single attribute (as opposed to

information about different attributes as above). It is shown that the costly acquisition of information also

leads to multiplicity of equilibria (like in the previous scenarios), but it does not give rise to discontinuity

of the searcher’s value at the threshold levels and to non-monotonicity of the equilibrium behavior.

9The precise characterization of the set of (p1, p2) for which f11 = d/(1 − d) holds is somewhat messy. but it is easy to

see that this set is not empty. For example, if p1 = p2 = p, this condition will be satisfied for p ∈ [0.5 + o(d), 0.6 + o(d)],

where o (d) is a term on the order of d.
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Specifically, the value of an object is x ∈ [0, 1] and the distribution of entering objects is uniform10.
The set of signals is S whose elements sγ ∈ S are indexed by γ ∈ [0, 1)

sγ(x) =

⎧⎨⎩ x if x ≤ γ

1 if x > γ

That is, with signal sγ , if x ≤ γ, the searcher learns x; if x > γ, the searcher only learns that x ∈ (γ, 1].
Thus, γ is the strength of the signal. It can be thought of as the information acquisition effort or the

thoroughness of a test that the searcher uses to learn about x. A test of thoroughness γ is sufficient

to completely identify an object whose quality is lower than γ, whereas an object that passes that test

is just revealed to be better than γ. The cost of signal sγ is C(γ) assumed increasing and convex with

C(0) = C0(0) = 0 and C(γ) → ∞ as γ → 1. The overall payoff of a searcher who ends up adopting an

object of quality x after being matched to n objects and making efforts γ1, ..., γn in examining them is

x−
nX
i=1

C(γi).

A strategy for searchers specifies how much information to acquire at each match and whether to accept

an object given the information acquired. Since information acquisition is costly, an optimizing searcher

will choose sγ with γ > 0 only if she intends to reject x < γ and intends to accept x ≥ γ. We therefore

identify the acceptance decision with the signal choice decision, and a searcher’s strategy will just specify

the signal choice with the understanding that signal sγ implies acceptance iff x ≥ γ.

Other than the above changes, the model remains as before. In a steady state searchers’ behavior is

constant, and so are the masses M and the distribution F . An (symmetric) equilibrium is a steady state

configuration in which all searchers use the same Markov strategy and each searcher’s behavior maximizes

her expected payoff.

Let V (s;F ) denote the expected utility of a searcher who uses the strategy s in a steady state situation

characterized by F . We will denote by γ a Markov strategy that prescribes the constant choice of signal sγ

in all encounters and by y | γ a strategy that prescribes the choice of signal sy once followed by a constant
choice of signal sγ thereafter. Thus,

V (y | γ;F ) = −C(y) + [1− F (y)]E(x | x ≥ y) + F (y)(1− d)V (γ;F ),

where the expectation is with respect to the prevailing distribution of object quality F . Let F γ denote

the steady state distribution arising when all searchers employ the same Markov strategy γ. The strategy

γ constitutes a symmetric equilibrium if

V (γ;F γ) ≥ V (y | γ;F γ) for all y (8)

10For the purposes of this section we do not need the two-attribute structure. We can retain of course the two-attribute

structure, assume that informaton can be obtained only on one and have the other other attribute just hanging around like

in Section.
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To express this condition explicitly observe that, as before, F γ has two steps: the frequency of objects

with quality below γ is m/d, since they exit only through death and hence in a steady state entry rate

= m = d×frequency = exit rate; the frequency of objects with quality above γ ism, since they are accepted
immediately and hence only the newly arrived ones are around. Thus,

F γ(y) =

⎧⎪⎪⎨⎪⎪⎩
y/d

γ/d+ 1− γ
if y < γ,

γ/d+ y − γ

γ/d+ 1− γ
if y > γ.

Therefore,

V (y | γ;F γ) =
1− y

γ/d+ 1− γ

1 + y

2
+

γ/d+ y − γ

γ/d+ 1− γ
(1− d)V (γ;F γ)− C(y)

if y ≥ γ, and

V (y | γ;F γ) =

γ − y

d

y + γ

2
+ (1− γ)

1 + γ

2
γ/d+ 1− γ

+
y/d

γ/d+ 1− γ
(1− d)V (γ;F γ)− C(y) (9)

if y < γ.

A necessary and sufficient condition for (8) is

∂V (y | γ;F γ)

∂y

¯̄
y=γ+ ≤ 0 and

∂V (y | γ;F γ)

∂y
|y=γ− ≥ 0, (10)

where
¯̄
y=γ+ and |y=γ− denote the right and left derivative, respectively. Using (9) to write this condition

explicitly, we get that γe is a symmetric equilibrium strategy iff it satisfies

C0(γ)d ≤ (1− d)[
1− γ

γ/d+ 1− γ

1 + γ

2
− C(γ)]− γ

γ/d+ 1− γ
≤ C0(γ). (11)

The welfare maximizing effort γw = argmaxγ V (γ;M,F γ) satisfies the condition

dV (γ;F γ)

dγ
= −γ − C 0(γ)[γ/d+ 1− γ]− C(γ)(1− d)/d = 0. (12)

The following proposition characterizes the symmetric equilibria of this model. In particular, it points

out that the costly decision on information acquisition also produces multiplicity of equilibria.

Proposition 8 (i) There is an interval [γe, γe] of symmetric equilibrium strategies; (ii) γw < γe, i.e.,

every equilibrium exhibits more information acquisition than the welfare maximizing level.

Proof: (i) The middle part of (11) is decreasing over [0, 1], positive at 0 and negative at 1. Therefore,

there are γe < γe such that for γe the right inequality holds as equality and for γe the left inequality holds

as equality. Therefore, any γ ∈ [γe, γe] satisfies (11) and constitutes an equilibrium.
(ii) Using the first-order condition of welfare maximization (12) to evaluate the middle part of (11) at

γ = γw, we get

(1− d)[
1− γw

γw/d+ 1− γw
1 + γw

2
− C(γw)] + C0(γw) +

C(γw)(1− d)

d[γw/d+ 1− γw]

= (1− d)
1− γw

γw/d+ 1− γw
1 + γw

2
+
(1− d)(1/d− 1 + γw)

[γw/d+ 1− γw]
C(γw) + C 0(γw) > C 0(γw).
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Since the middle part of (11) is decreasing in γ, it follows that γw < γe. ¥

Without the costly decision on information acquisition, the model of this section is the same as that

of the benchmark model of Section 3 that has a unique equilibrium. Thus, the special effect of the costly

acquisition is the emergence of multiplicity of equilibria that did not arise in the benchmark case. The

key to this is that the frequency of objects with qualities below the equilibrium joint threshold is different

from the frequency of objects with higher quality. The former frequency is m/d while the latter is m.

This creates a "kink" in the value of information at the equilibrium level of information acquisition, which

explains the multiplicity. When the information is costless, the frequency still changes discontinuously

at the equilibrium threshold, but there is no marginal decision like that of information acquisition to be

affected by it.

The over-investment in information owes to the externality that searchers confer on each other. Since

searchers sample from the same pool, a selective searcher who searches for high quality takes it away from

others and imposes on them a longer search. Therefore, an individual searcher who ignores the externality

tends to be more selective than is socially optimal and this requires more information acquisition. The

difference between the equilibrium and the social optimum is not a consequence of the costly information

acquisition, but rather of the above mentioned externality that is already present in the benchmark case

in which the information was costlessly observable.

10 Concluding comments

Our objective in this paper has been to expose some effects arising in a common values search environment

in which only partial information on the quality of a sampled object is available to searchers at the point

of decision. It was shown that, if searchers face an information acquisition decision, be it choice between

different signals or a decision on the quantity of information, the model exhibits a large multiplicity of

equilibria some of which may be non-monotonic.

We chose to do so with the simplest equilibrium search model that would allow to derive the main

insights without dealing with modeling complications that do not seem to be of direct relevance to those

points. It would be of course interesting to enrich the basic model and there are several obvious directions.

First, a two-sided model search with decision makers on both sides. That is, "objects" also have preferences

over searchers and decide whether to accept a match. Second, endogenous decisions of searchers and

objects regarding participation in the process. Third, a richer model with heterogeneity across agents and

asymmetry across attributes. It would probably make sense to pursue such extensions only in the context

of a specific application that would also guide the modeling choices, rather than in the abstract.
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12 Appendix A

Proposition 3: A (symmetric) threshold equilibrium exists: (i) for d < 1/2, there is a non-degenerate

interval [x−, x+] such that x is a threshold of a symmetric threshold equilibrium iff x ∈ [x−, x+]; (ii) for
d > 1/2, the unique symmetric equilibrium threshold is x = 0.

Proof of Proposition : Given the simple rectangular form of the sets AA, AR, etc., the steady state

conditions (5) become

dMRR = mx1x2; [d(1− g2) + g2]MRA = mx1(1− x2); (13)

[d(1− g1) + g1]MAR = mx2(1− x1); MAA = m(1− x1)(1− x2),

V1 = V1(A;F ) from (6) becomes:

V1 = Pr([x1, 1]× [x2, 1])
2 + x1 + x2

2
+ Pr([x1, 1]× [0, x2])

1 + x1 + x2
2

(14)

+Pr([0, x1]× [0, x2] ∪ [0, x1]× [x2, 1])(1− d)V1

=
MAA

2 + x1 + x2
2

+MAR
1 + x1 + x2

2
+ (MRA +MRR)(1− d)V1

MAA +MAR +MRA +MRR
;

and of course V2 = V2(A;F ) is analogous.

It follows that the equilibrium condition (4) on the optimality of the acceptance/rejection decisions of

a searcher who examines attribute 1 can be expressed as

x1 +
MAA

1+x2
2 +MAR

x2
2

MAA +MAR
≥ (1− d)V1 if x1 > 0, (15)

x1 +
MRR

x2
2 +MRA

1+x2
2

MRA +MRR
≤ (1− d)V1 if x1 < 1,

Using (13), Vi and (15) can be expressed in terms of the thresholds xi and the fractions gi. At a symmetric

configuration with g1 = g2 = 1/2 and x1 = x2 = x, both V1 and (15) can be expressed in terms of x alone

and thus simplify to

V x = (1− x)2(1 + x) +
1

d+ 1
x(1− x)(2x+ 1) (16)
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and

3x

2
+

(1 + d)(1− x)

2(1 + d)(1− x) + 4x
≥ (1− d)V x if x > 0, (17)

3x

2
+

d(1− x)

(1 + d)x+ 2d(1− x)
≤ (1− d)V x if x < 1.

(i) The following argument is summarized in Figure 3 in Appendix B below. In words, V x as given by

(16) is decreasing in x, which takes value V x = 1 at x = 0 and value V x = 0 at x = 1. The expressions

on the left-hand sides of (17) are equal to 1/2 at x = 0 and to 3/2 at x = 1, respectively. In addition,

the first of these two expressions is increasing in x and exceeds the second for any value of x; the second

expression is convex, so its upward sloping part is monotonic. Therefore, for d < 1/2, both inequalities

in (17) have interior x solutions when holding as equations. Let x− and x+ be these solutions of the first

and second equations, respectively11. Thus, any x ∈ [x−, x+] is the threshold of some symmetric threshold
equilibrium, since by construction of [x−, x+] it satisfies the equilibrium conditions. Conversely, in any

symmetric threshold equilibrium, the threshold x is in [x−, x+]. (ii) for d > 1/2 there is no solution for

those equations. Condition (17) is satisfied only at x = 0. ¥

Proposition5Any threshold equilibrium of the scenario in which each attribute is examined by a

subset of the searchers yields higher welfare than the unique equilibrium of the scenario in which only one

attribute can be examined.

Proof: In the scenario in which each attribute is examined by a subset of the searchers, the worst

(welfare-wise) threshold equilibrium has the threshold x = x+ (see Proposition 3 above). Recall that x+

and V x+ are jointly determined by the following two equations:

V x+ = (1− x+)2(1 + x+) +
1

d+ 1
x+(1− x+)(2x+ + 1); (18)

3x+

2
+

d(1− x+)

(1 + d)x+ + 2d(1− x+)
= (1− d)V x+ .

Similarly, the threshold and welfare of the unique equilibrium of the scenario in which only one attribute

can be examined are jointly determined by

V =
(1− x)

x/d+ (1− x)

2 + x

2
+

x/d

x/d+ (1− x)
(1− d)V ,

or equivalently,

V =
(1− x)(2 + x)

2
(19)

and

x+
1

2
= (1− d)V .

Direct solution of these polynomial equations yields V x+ > V for any d ∈ (0, 1/2). The graphs of these
two functions are exhibited in Figure 5 in Appendix B below.¥

11Figure 2 in the appendix illustrates how x− and x+ are determined for d = 0.1.
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Proposition 6 Any symmetric non-monotonic equilibrium yields lower welfare than some symmetric

threshold equilibrium.

Proof: Let Anm = A1 = A2 be the acceptance decision functions of the (symmetric) non-monotonic

equilibrium and let

x = measure of {x : Anm(x) = reject}.

Observe that x = y + z, where

y = inf{x : Anm(x) = accept},

and

z = measure of {x ≥ y : Anm(x) = reject}.

Consider a symmetric threshold configuration in which objects are accepted iff the examined attribute

exceeds x. If there is a threshold equilibrium whose threshold is smaller than or equal to x, i.e., when

x− ≤ x, then it obviously yields higher welfare than the original non-monotonic equilibrium. So, the

non-monotonic equilibrium can yield higher welfare only when x < x−. Consider this case.

By the definition of y,

y +Enm(x2 | x1 s.t. Anm(x1) = accept) ≥ (1− d)V nm, (20)

where as above nm indexes magnitudes corresponding to the non-monotonic equilibrium. Since x+Ex(x2 |
x1 s.t. x1 > x) is increasing in x (see Figure 3 in Appendix B), and x− + Ex−(x2 | x1 s.t. x1 > x−) =

(1− d)V x− by the definition of x−, we have

x+Ex(x2 | x1 s.t. x1 > x) ≤ (1− d)V x− . (21)

(Recall that we have assumed that x < x−.) It follows from (20) and (21) that in order to establish that

V nm ≤ V x− , it suffices to show that

Enm(x2 | x1 s.t. Anm(x1) = accept)−Ex(x2 | x1 s.t. x1 > x) ≤ z.

Consider a symmetric non-monotonic configuration in which an object is accepted iff the examined

attribute belongs to [y, 1−z]. Let E[y,1−z](x2 | x1 s.t. y ≤ x1 ≤ 1−z) denote the expectation corresponding
to that configuration. Observe that E[y,1−z](x2 | x1 s.t. y ≤ x1 ≤ 1 − z) ≥ Enm(x2 | x1 s.t. Anm(x1) =

accept). This is because, like in the nm−configuration, the rejection region of the [y, 1− z]−configuration
consists of [0, y]∪ region of measure z. But in the [y, 1− z]−configuration, the rejection region of measure
z is located at the upper end, which means that the distribution of the unobserved attribute stochastically

dominates the corresponding distribution in the nm−configuration. Therefore, it suffices to show that

E[y,1−z](x2 | x1 s.t. y ≤ x1 ≤ 1− z)−Ex(x2 | x1 s.t. x1 > x) ≤ z.

Direct calculations show that indeed

E[y,1−z](x2 | x1 s.t. y ≤ x1 ≤ 1− z)−Ex(x2 | x1 s.t. x1 > x) =
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where the last inequality follows from 0 ≤ y + z ≤ 1. ¥

Proposition 7 Assume that pi is bounded away from 0 and 1, i.e., pi ∈ (ε, 1− ε), for some constant

ε > 0, and that d is small enough (compared to ε). Then: (i) there is an equilibrium in which a fraction

gi ∈ (0, 1) of the searchers examine each of the attributes. (ii) There also exists an equilibrium in which

all searchers examine attribute i iff pi(1 + pj) >
1
1−d (i.e., if p1 and p2 are large enough).

Proof: The steady state equilibrium distribution F is described by the fractions fjc = Pr(x1 = j, x2 =

c), j, c = 0, 1. Since the equilibrium acceptance policy always has Ai(1) = accept, we may write Vi(A;F )

as Vi(Ai(0);F ). We have that

V1(A1(0);F ) =

⎧⎨⎩ (f10 + f11)(1 +
f11

f10+f11
) + (f00 + f01)(1− d)Vi(A1(0);F ) if A1(0) = reject

(f10 + f11)(1 +
f11

f10+f11
) + (f00 + f01)

f01
f00+f01

if A1(0) = accept
,

which yields

V1(reject; f1, f2) =
f10 + 2f11

f10 + f11 + d(f00 + f01)
and V1(accept; f1, f2) = 1 + f11 − f00

Since
f10 + 2f11
f10 + f11

> 1 + f11 − f00,

V1(reject; f1, f2) > V1(accept; f1, f2) if d is small. Therefore, in the sequel, we can focus on configurations

with Ai(0) = reject, and use Vi as a shorthand for Vi(reject; f1, f2). Observe that V1 ≷ V2 iff

f10 + 2f11
f10 + f11 + d(f00 + f01)

≷ f01 + 2f11
f01 + f11 + d(f00 + f10)

iff

[d− (1− d)f11][f10 − f01] ≷ 0.

(i) An equilibrium with gi ∈ (0, 1), i = 1, 2, requires V1 = V2 which in turn requires f10 = f01 or

f11 = d/(1 − d). That is, if there are gi ∈ (0, 1), i = 1, 2, such that either of these equalities holds, then
there is an equilibrium in which each attribute is being checked by some fraction of the population. To

find out when such gi ∈ (0, 1) might exist, express fjc explicitly in terms of the parameters. Let Mjc,

j, c ∈ {0, 1} denote the mass of objects with attributes 1 and 2 equal to j and c respectively, and recall that
m denotes the masses of searchers and objects entering each period. The steady state conditions require

equality of the inflows and outflows

dM00 = m(1− p1)(1− p2), M11 = mp1p2, (22)

M10g1 +M10g2d = mp1(1− p2), M01g2 +M01g1d = m(1− p1)p2.
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That is, objects with attributes (0, 0) exit only through death and hence the outflow is dM00, while objects

with attributes (1, 1) are adopted immediately and hence the outflow is M11. Therefore,

f10 =
M10

M00 +M10 +M01 +M11
=

m
p1(1− p2)

g1 + g2d
m(1− p1)(1− p2)

d
+m

p1(1− p2)

g1 + g2d
+m

(1− p1)p2
g2 + g1d

+mp1p2

,

and f00, f01and f00 are calculated similarly from (22).

Now, f10 = f01 is equivalent to
p1(1− p2)

g1 + g2d
=

p2(1− p1)

g2 + g1d
, (23)

and together with g2 = 1− g1 yields

gi =
pi(1− pj)− pj(1− pi)d

[pi(1− pj) + pj(1− pi)](1− d)
.

The assumptions that pi is bounded away from the boundaries and that d is small imply that pi(1− pj) >

dpj(1−pi). Therefore, gi ∈ (0, 1), i = 1, 2, and equilibrium of this form in which each attribute is examined
by some subset exists for all the parameter configurations in the range we are considering.

(ii) Consider now the possibility of an equilibrium in which all searchers examine the same attribute. If

they examine attribute 1, then g1 = 1 and g2 = 0. By the assumption that both pi, i = 1, 2, are bounded

away from 0 and 1 and the assumption that d is small, it follows from (23) that f10 < f01. Therefore,

V1 ≥ V2 requires f11 ≥ d/(1− d). Since the explicit expression for f11 is

p1p2
(1− p1)(1− p2)

d
+

p1(1− p2)

g1 + g2d
+
(1− p1)p2
g2 + g1d

+ p1p2

,

f11 ≥ d/(1− d) is equivalent to

p1(1 + p2) >
1

1− d

Analogously, V1 ≤ V2 is equivalent to p2(1 + p1) > 1
1−d . Thus, if pi(1 + pj) > 1

1−d , there exists an

equilibrium in which all searchers examine attribute i.¥
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13 Appendix B

This appendix contains three diagrams that complement the derivations in the text.

Figure 3 illustrates how x− and x+ (from the proof of Proposition 3) are determined for d = 0.1.

Figure 3

23



Figure 4 depicts the sets of non-symmetric equilibrium threshold pairs for d = 0.1 and d = 0.3.

Figure 4(a)

Figure 4(b)
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Figure 5 depicts the graphs of the two functions from the end of Proposition 5

Figure 5
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