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Abstract

We generalize Chade and Smith’s (2006) simultaneous search problem to a class of discrete

optimization problems. More precisely, we study the problem of maximizing a weighted sum of

utilities of objects minus the sum of costs of acquiring these objects, given the constraint that

the sum of weights cannot exceed the value of some submodular function.

We show that the problem has a simple solutions in the particular case in which the sub-

modular function depends only on the number of objects. Namely, the optimal set of objects

can be found by the steepest ascent algorithm. We provide some economic applications of this

result. The particular case studied in the present paper, and the particular case studied by

Chade and Smith complement one another, but they do not exhaust all instances of our general

discrete optimization problem. We also show that in the general case the problem does not have

a simple solution.
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1 Introduction

Chade and Smith (2006) introduce an interesting discrete optimization problem involving a high-

school student applying to colleges. The student must choose a subset of colleges. Each application

costs a c > 0. Studying at different colleges gives different utilities, and the probability of being

admitted also varies across colleges. From the set of colleges to which the student gets admitted,

she chooses the one with highest utility. Chade and Smith point out that the threshold strategy of

applying to colleges which give more than a certain utility may not be optimal, and they show that

the optimum is attained by a simple steepest ascent algorithm.1

According to this algorithm, we first put on a list the college we would apply to, if we were

allowed to apply to one college only. Then, we add to this list the college that we would apply to, if

we were allowed to apply to one more college. We keep adding colleges to the list until the marginal

benefit of adding any other college falls below the cost c.

In this paper we are concerned with a more general problem of maximizing a weighted sum of

utilities of objects minus the sum of costs of acquiring these objects, given the constraint that the sum

of weights assigned to any subset of objects S cannot exceed f(S), where f is a non-decreasing, non-

negative submodular function. Call this more general problem the simultaneous selection problem,

or (SSP) in abbreviation.

This generalizes Chade and Smith’s problem in two ways. It allows for different objects having

different costs. In addition, in Chade and Smith’s problem f(S) has a very special form, which is

the probability of being admitted by at least one college from S. Both ways in which Chade and

Smith’s problem is generalized, allow for new applications. In searching for a job instead of applying

to colleges, the application process typically varies across employers. Other functions f also enlarge

the set of applications. For example, imagine an inventory planning problem, in which you must

order today some goods, which you will later be selling gradually, one per period. In this application,

assuming geometric discounting, f(S) is the present value of the stream of 1’s over |S| periods.

We show that the (SSP) can be solved by the steepest ascent algorithm in the case in which f(S)

depends on |S| only. In particular, steepest ascent selects an optimal set in some versions of the

applications described in the previous paragraph. Our result and that obtained by Chade and Smith

complement one another. Neither subsumes the other, and they also apply to somewhat different

settings.

1It should be noted that the optimality of steepest ascent for the college application problem is not the only result

in Chade and Smith (see Section 2.1).
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In the absence of additional assumptions on the function f , the (SSP) is NP-hard. An interesting

open question is the design of good approximation algorithms for the (SSP). We show by an example

that for any ε > 0, steepest ascent may select a set S that returns less than an ε share of the optimum.

2 Simultaneous selection problem

Let f be a nonnegative function defined on all subsets of a finite set N . The family of subsets of N

is partially ordered by inclusion. This ordering is a lattice with the union of sets being their join,

and the intersection being their meet. We will assume that f is non-decreasing, i.e.,

f(S) ≤ f(T ), ∀S⊂T⊂N ,

and submodular, i.e.,

f(S ∩ T ) + f(S ∪ T ) ≤ f(S) + f(T ), ∀S,T⊂N .

Given numbers (utilities) wi ≥ 0 , ∀i ∈ N , define the function g on each T ⊆ N by the following

discrete optimization problem:

g(T ) = max
∑

i∈T

wixi

∑

i∈S

xi ≤ f(S), ∀S ⊆ T

xi ≥ 0, ∀i ∈ T

This function can be interpreted the maximum utility that one can obtain by assigning weights

xi to the elements of T , subject to the “resource” constraint that the aggregate weight assigned to

any set S cannot exceed f(S).

The submodularity of f guarantees that the optimization problem that defines function g has

the following solution. Label the elements of T as {1, 2, . . . , |T |}, and order them so that w1 ≥ w2 ≥

. . . w|T |. Then, it is optimal to assign the highest possible weight, x1 = f(1), to the element with

the highest utility, that is, to element 1; and next, to assign the highest possible weight subject to

the resource constraint, x2 = f(1, 2)− f(1), to the element with the second-highest utility, that is,

to element 2; etc., until assigning weight x|T | = f(1, 2, . . . , |T |)− f(1, 2, . . . , |T | − 1) to element |T |.2

In what follows, we denote by x(T ) the vector of optimal weights assigned to set T ⊆ N . Hence,

g(T ) =
∑

i∈T

wixi(T ).

2Dunstan and Wels (1973)
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It is immediate that function g, defined on all subsets of N , is submodular.

Given numbers (costs) ci ≥ 0, ∀i ∈ N , we define a problem called the simultaneous selection

problem (in short, SSP) as

max
T⊆N

{

g(T )−
∑

i∈T

ci

}

. (SSP)

The number ci can be interpreted as the cost of including element i to set T . For convenience, set

H(T ) = g(T )−
∑

i∈T

ci.

In the following sections, we demonstrate that the (SSP) covers various, basic and seemingly

unrelated applications.

2.1 Chade and Smith’s college application problem

While we focus on high-school students deciding which colleges to apply to, one can imagine numer-

ous other application processes. Let wi be the utility of being admitted to college i ∈ N . Let αi be

the probability that one is admitted to college i, given one has applied to this college. Finally, let

ci be the cost of applying to college i. Suppose one has applied to the set S ⊂ N of colleges. Some

of these will admit you, and from these you select the one with largest utility. Denote by g(S) the

expected utility of applying to the colleges in S. Order the colleges in S by their decreasing utility

wi, i.e., w1 ≥ w2 ≥ . . . ≥ w|S|. Then, the probability of j being the highest-utility college that

admits you is

αjΠ
j−1
i=0 (1− αj),

where α0 = 0, and the expected utility of applying to the colleges in S (disregarding the application

costs) is

g(S) =

|S|
∑

j=1

wjαjΠ
j−1
i=0 (1− αj).

Chade and Smith (2006) are concerned with the solution to the following problem:

max
S⊆N

[

g(S)−
∑

i∈S

ci

]

.

To show that this problem is an instance of the (SSP), let

f(T ) = 1−Πj∈T (1− αj).

4
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It is easy to see that f is submodular; moreover, f satisfies, which is also easy to see, an additional

condition called by Chade and Smith downward recursive: For U,L ⊂ N , write U ≻ L when

min
i∈U

wi ≥ max
i∈L

wi.

Then, for any disjoint sets U and L such that U ≻ L, we have

f(U ∪ L) = f(U) + f(L)Πi∈U (1− αi).

It follows that

g(S) = max
∑

i∈S

wixi

∑

i∈T

xi ≤ f(T ) ∀T ⊆ S

The result in Chade and Smith is that this instance of the (SSP) can be solved by steepest ascent

when all ci’s are the same.

Remark It should be noted that the optimality of steepest ascent for the problem described

in this section is not the only result in Chade and Smith. They study a more general problem,

and establish several important properties of the optimal set. In particular, Chade and Smith are

motivated not only by solving the ‘high-school student problem,’ but also by comparing the sets S

chosen in simultaneous and in sequential search.

2.2 Inventory planning

This application concerns inventory planning. Let ci be the cost of ordering one unit of good i, and

δtwi be the discounted profit from holding that unit in inventory until period t and then selling it.

Suppose the demand is a constant of one unit per period, and one is to order at period t = 0 a set

of goods S ⊂ N , which will be sold one per period, in periods t = 1, 2, ..., |S|. Denote by g(S) the

utility of having the goods from set S.

Order the goods in S by decreasing profit, i.e., w1 ≥ w2 ≥ . . . ≥ w|S|. Of course, you prefer to

sell earlier goods that give you a higher profit. Thus,

g(S) =

|S|
∑

t=1

δtwt,

or equivalently,

g(S) = max
∑

i∈S

wixi

5
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∑

i∈T

xi ≤ f(T ), ∀T ⊆ S,

where

f(T ) =

|T |
∑

t=1

δt.

It is easy to see that f is submodular.

Then, the problem of determining an optimal order is an instance of the (SSP):

max
S⊆N

[

g(S)−
∑

i∈S

ci

]

.

Another interpretation of this instance of the (SSP) is in terms of purchasing at period t = 0 a

set of goods S ⊂ N , whose costs of purchasing are ci and the utilities of consuming then at time t

are δtwi. These goods are to be consumed one per period, in periods t = 1, 2, ..., |S|.

Our Theorem 1 implies that this instance of the (SSP) can also be solved by steepest ascent.

2.3 Project selection and sequencing

Here is another example of a problem that fits the Chade and Smith setting, and so is an instance of

the (SSP). This problem was studied by Aspvall et al. (1995). Suppose we have a set of N projects.

Project i has a duration ti. If project i is initiated you earn Vi at the start of the project.3 If

project i is initiated after ti time periods, the net present value (in short, NPV) of the project is

δiVi = (1 + r)−tiVi, where r is the discount rate. The cost of securing project i is ci. You can only

do one project at a time. Thus, your objective is to identify which subset of projects to secure and

how to sequence them to maximize profits.

Suppose one has acquired the set S ⊂ N . As shown by Aspvall et al. (1995), one will sequence

the projects by decreasing Vi/(1− δi). If we order the elements of S by decreasing Vi/(1− δi), the

NPV of revenues from securing the set S is

g(S) = V1 + δ1V2 + δ1δ2V3 + . . .+Πi<|S|δiV|S|.

We are concerned with the solution to the following problem:

max
S⊆N

[

g(S)−
∑

i∈S

ci

]

.

3It would not make any difference if the profit was realized at the end of the project.

6
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To show that this problem is an instance of the (SSP), let

f(T ) = 1−Πt∈T δt.

Then,

g(S) = max
∑

i∈S

Viyi

∑

i∈T

(1− δi)yi ≤ f(T ) ∀T ⊆ S

By changing variables: xi = (1− δi)yi, we obtain that

g(S) = max
∑

i∈S

Vi

1− δi
xi

∑

i∈T

xi ≤ f(T ) ∀T ⊆ S

Notice f is downward recursive for wi = Vi/(1− δi).

Here is another interpretation of the same problem. This version of the problem, for a given

set of jobs, was studied by Stadje (1995). We have one machine and a set N of jobs. Each job

has a processing time ti and upon completion generates a reward Vi, discounted off course from the

start. However, there is a possibility that when a job i is being processed, on the single machine,

the machine may fail. When it fails, it cannot be repaired. The probability of the machine failing

while processing job i is pi. As shown by Stadje, given any set of jobs to be processed, it is optimal

to process them by decreasing value of wi = piVi/(1− pie
−rti).

The result in Chade and Smith implies that this instance of the (SSP) can also be solved by

steepest ascent when all ci’s are the same.

2.4 Applying for jobs, and assigning time slots for tasks

The objective of this section is: (1) to provide other applications of our Theorem 1, and (2) to

emphasize the fact that our result and that from Chade and Smith’s complement one another.

Consider a version of the Chade and Smith problem from Section 2.1, in which an agent is

searching for a job. Suppose the agent has a personal ranking of jobs, and the application cost

varies across jobs. Suppose, in addition, that the agent assigns the same probability of any employer

having an opening, for example, because this depends on factors unobserved by an outsider.

This setting is a version of Chade and Smith problem with wi being the utility of being offered

a job by employer i ∈ N , αi = α for all i′s, being the probability of being offered a job by employer

i, and ci being the cost of applying to employer i.

7
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Due to the assumption that αi = α for all i′s, we have that

f(T ) = 1− (1− α)|T |

depends on |T | only. Thus, this instance of the (SSP) can be solved by steepest ascent by our

Theorem 1 for any configuration of ci’s.

Consider now a problem similar to that from Section 2.3, in which an agent has to schedule tasks.

Assume that the time required for the completion of each task is uncertain, and perhaps because of

the involvement of other parties, each task scheduled for completion has to receive a time slot of a

given (fixed) length. This actually happens in several industries.

If the time slot for each task is of length t, task i once initiated is earning Vi, and the cost of

securing task i is ci, then this instance of the (SSP) coincides with that studied in Section 2.2, where

f(T ) =

|T |
∑

t=1

δt, δ = (1 + r)−t.

Again, our Theorem 1 implies that this instance of the (SSP) can be solved by steepest ascent

for any configuration of ci’s. That is, our Theorem 1 assumes that all ti’s are the same, but allows

for arbitrary ci’s.

3 Optimality of steepest ascent in special cases

We demonstrate in this section that a broad class of instances of the (SSP) can be solved by a

polynomial-time algorithm; moreover, it can be solved by a particularly simple algorithm, called

steepest ascent :

According to this algorithm, we first choose an element i ∈ N that maximizes g(i)− ci, call it i1.

This is the element that we would choose, if we could pick only one element of N . Then, we choose

an element i ∈ N \ {i1} that maximizes g(i1, i) − g(i1) − ci and call it i2. This is the element we

would choose if we could add only one element to i1, or the element with the highest value added.

Next, we choose i ∈ N \ {i1, i2} that maximizes g(i1, i2, i)− g(i1, i2)− ci, and so on. We stop when

the maximum possible value added is negative.

We will now show that:

Theorem If f(S) depends on |S| only, then the (SSP) can be solved by steepest ascent.

The formal proof is somewhat involved. However, one can build some basic intuition by means

of a simple example. Consider the problem described in Section 2.2. Suppose steepest ascent selects

8
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just one element, call it 1. Let S∗ = {1}. By the definition of steepest ascent, H(S∗) is higher than

H(S) for any set S consisting either of a singleton or of two elements one of which being 1.

Consider any set S consisting of two elements none of which being 1. Call the two elements 2

and 3. Suppose that w2 ≥ w3. We will show that H(S) ≤ H(S′) for S′ = {1, 3}, which will imply

that H(S) ≤ H(S∗).

Case 1: w2 ≤ w1

In this case, w3 ≤ w2 ≤ w1, and so adding element 3 to each set {1} or {2} changes the objective

function by δ2w3 − c3. And since H({1}) ≥ H({2}), we have that H(S) ≤ H(S′).

Case 2: w2 > w1

If w3 ≤ w1, then the same argument as in Case 1 applies. Suppose therefore that w1 < w3 ≤ w2.

Then adding element 3 to each set {1} changes the objective function by δw3 − c3 − (δw1 − δ2w1),

while adding element 3 to each set {2} changes the objective function again by δ2w3− c3. However,

the latter expression is smaller than the former, because w1 < w3.

Proof. We will write f(S) as f(|S|) to emphasize the dependence on |S| only. The optimal set

of weights x(T ) assigned to set T is

xi(T ) = f(|{j ∈ T : wj > wi}|+ 1)− f(|{j ∈ T : wj > wi}|). (1)

For simplicity, we have assumed that wj 6= wi for i 6= j. Order the elements of N by the order

in which they are selected by steepest ascent. Suppose S is optimal for (SSP), and has i# elements.

Take S# = {1, 2, . . . , i#} comprising the first i# elements picked by steepest ascent.

Hence, by the definition of steepest ascent, if i# < i∗, that is, S# has fewer elements than the

set picked by steepest ascent, we have that H(S∗) ≥ H(S#). We also have that H(S∗) ≥ H(S#)

if i# > i∗ by the definition of steepest ascent, and the fact that function g is submodular. We will

show that H(S#) ≥ H(S).

If S 6= S#, then there exists a j with j ∈ S# \S. Choose the smallest j with this property. Next,

choose k > j such that k ∈ S and wk is the largest amongst all such numbers k. Let S′ = S∪{j}\{k}.

We will show that H(S′) ≥ H(S). By iterating the same argument, we obtain that H(S#) ≥ H(S).

We can represent set S as {1, ..., j−1, k}∪S′′, and set S′ as {1, ..., j}∪S′′, where S′′∩{1, ..., j, k} =

∅. We will be progressively adding the elements of S′′ to sets {1, ..., j − 1, k} and {1, ..., j}, and

simultaneously showing that the value of H at the former set is no higher than that at the latter set.

9
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By steepest ascent, we have thatH({1, ..., j−1, k}) ≤ H({1, ..., j}). SupposeH({1, ..., j−1, k}∪T ) ≤

H({1, ..., j} ∪ T ) for some proper subset T ⊂ S′′, and take an l ∈ S′′ \ T .

Case 1: wl ≤ wj

In this case, wl ≤ wj , wk, and so adding element l to set {1, ..., j − 1} ∪ {k} ∪ T and to set

{1, ..., j} ∪ T makes the same difference in the objective function, i.e.,

H({1, ..., j − 1, k} ∪ T ∪ {l})−H({1, ..., j − 1, k} ∪ T ) =

= H({1, ..., j} ∪ T ∪ {l})−H({1, ..., j} ∪ T ). (2)

Indeed, let i1, ..., iq be all elements i ∈ {1, ..., j − 1, k} ∪ T , and so all elements i ∈ {1, ..., j} ∪

T , such that wi < wl, ordered so that wi1 ≥ ... ≥ wiq . Let p be the number of elements i ∈

|{1, ..., j − 1, k} ∪ T |, and so the number of elements of i ∈ |{1, ..., j} ∪ T |, such that wi ≥ wl. Then,

by (1), both differences in (2) are equal to

−cl + [f(p+ 1)− f(p)]wl −

q
∑

λ=1

[2f(p+ λ)− f(p+ λ− 1)− f(p+ λ+ 1)]wiλ .

Since

H({1, ..., j − 1, k} ∪ T ) ≤ H({1, ..., j} ∪ T )

by inductive assumption, we have that

H({1, ..., j − 1, k} ∪ T ∪ {l}) ≤ H({1, ..., j} ∪ T ∪ {l}).

Case 2: wl > wj

In this case, wj < wl ≤ wk. Let i
1, ..., iq be all elements i ∈ {1, ..., j−1, k}∪T , and so all elements

i ∈ {1, ..., j} ∪ T , such that wj < wi ≤ wl, ordered so that wi1 ≥ ... ≥ wiq , and let iq+1, ..., ir be all

elements i ∈ {1, ..., j − 1, k} ∪ T , and so all elements i ∈ {1, ..., j} ∪ T , such that wi ≤ wj , ordered

so that wiq+1 ≥ ... ≥ wir . Recall that we assume that wi’s are different for different i’s. Finally, let

p be the number of elements i of {1, ..., j − 1, k} ∪ T such that wl < wi; it follows that p− 1 is the

number of elements i of {1, ..., j} ∪ T such that wl < wi, because k is in the former set but not in

the latter set.

Then

H({1, ..., j − 1, k} ∪ T ∪ {l})−H({1, ..., j − 1, k} ∪ T ) = −cl + [f(p+ 1)− f(p)]wl

10
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−

q
∑

λ=1

[2f(p+ λ)− f(p+ λ− 1)− f(p+ λ+ 1)]wiλ

−

r
∑

λ=q+1

[2f(p+ λ)− f(p+ λ− 1)− f(p+ λ+ 1)]wiλ .

In turn,

H({1, ..., j} ∪ T ∪ {l})−H({1, ..., j} ∪ T ) = −cl + [f(p)− f(p− 1)]wl

−

q
∑

λ=1

[2f(p+ λ− 1)− f(p+ λ− 2)− f(p+ λ)]wiλ

−[2f(p+ q)− f(p+ q − 1)− f(p+ q + 1)]wj

−

r
∑

λ=q+1

[2f(p+ λ)− f(p+ λ− 1)− f(p+ λ+ 1)]wiλ .

Thus, the difference between the two expressions is

+

q
∑

λ=1

[2f(p+ λ− 1)− f(p+ λ− 2)− f(p+ λ)]wiλ

+[2f(p+ q)− f(p+ q − 1)− f(p+ q + 1)]wj

−[2f(p)− f(p− 1)− f(p+ 1)]wl

−

q
∑

λ=1

[2f(p+ λ)− f(p+ λ− 1)− f(p+ λ+ 1)]wiλ .

We will show that this difference is nonpositive, which will complete the proof since H({1, ..., j −

1, k} ∪ T ) ≤ H({1, ..., j} ∪ T ) by inductive assumption.

Indeed,

[2f(p)− f(p− 1)− f(p+ 1)]wi1 ≤ [2f(p)− f(p− 1)− f(p+ 1)]wl,

because 2f(p)−f(p−1)−f(p+1) ≥ 0 by submodularity, and wi1 ≤ wl by assumption. That is, the

first component of the difference with ‘+’ sign is no higher than the first component of the difference

with ‘-’ sign. Similarly,

[2f(p+ 1)− f(p)− f(p+ 2)]wi2 ≤ [2f(p+ 1)− f(p)− f(p+ 2)]wi1 ,

11
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that is, the second component of the difference with ‘+’ sign is no higher than the second component

of the difference with ‘-’ sign. Continuing in this manner, we obtain that all subsequent components

with ‘+’ sign are no higher than the corresponding components with ‘-’ sign, until

[2f(p+ q)− f(p+ q − 1)− f(p+ q + 1)]wj ≤ [2f(p+ q)− f(p+ q − 1)− f(p+ q + 1)]wiq ,

which completes the proof.

Remark (a) Our proof yields the result also in the case when the cost c(T ) of acquiring set T

is a supermodular function that depends only on |T |, instead of being the sum of costs ci across all

elements of set T , which case has also been studied by Chade and Smith.

(b) The proof of our result and that from Chade and Smith have a number of arguments in

common, but their proof cannot be easily modified to yield our result. For example, they mention

(in Section 3D of their paper) the application we study in Section 2.2. However, they were able to

solve this application only when c(T ) is a supermodular function that depends on |T |.4

(c) Our proof also applies to following cardinality constrained variant of SSP: max{g(S)|S ⊆

N, |S| ≤ K}.

4 NP-hardness of SSP

To show that SSP is NP-hard it suffices to show how to represent a known NP-hard problem as

an instance of SSP. The known NP-hard problem we use is maxS⊆N f(S) −
∑

i∈S ci where f is a

monotone submodular function (see Feige and Vondrak (2010)). Choose wi = 1 and ci = 0 for all

i = 1, ..., n and set for each T ⊆ N ,

g(T ) = max
∑

i∈T

xi

∑

i∈S

xi ≤ f(S) ∀S ⊆ T

xi ≥ 0 ∀i ∈ T

Obviously, we see that g(T ) = f(T ). Thus, the solution to the following instance of SSP

max
T⊆N

{

g(T )−
∑

i∈T

ci

}

.

is a solution to our original optimization problem.

4It is, however, important to emphasize that their general result allows f to depend on the composition of the set

S, not just the number of objects in S. Thus, our result is more general than theirs only in this particular instance

of the (SSP).
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5 Suboptimality of steepest ascent in general case

In this section, we provide an example of the (SSP) in which steepest ascent returns an extremely

poor solution. More precisely, for any ε > 0 steepest ascent selects a set S that gives less than an ε

share of the optimum. This will be a special case of Chade and Smith’s problem with costs varying

across colleges. Chade and Smith have announced in the working paper version of their article (see

Section 6B) that steepest ascent may be suboptimal for sufficiently disparate costs ci.

Suppose the set N = {1, 2, ..., n}, n ≥ 2, consists of:

• one college with α1 = 0.1, w1 = 10n, and c1 = (n− 1) + 0.9;

• one college with α2 = 0.5, w2 = 2n, and c2 = (n− 1) + 0.89;

• (n− 2) colleges with αi = (1/n) · 0.1, wi = 2n, and ci = 0.11, i = 3, ..., n.

The steepest ascent algorithm selects college 2 first, which yields the payoff of 0.11, and other

colleges yield the payoff of 0.1 and 0.09. Then, the algorithm stops, since the set of colleges {2, 1}

yields the payoff of

0.11− 0.1 · (n− 1) < 0.11,

and the set of colleges {2, i}, i > 2, yields the payoff of 0.1.

Consider now the sets of colleges of the form {1}∪{3, 4, ..., k+1}. Such a set yields the payoff of

0.1 +

k−1
∑

i=1

[

0.9 ·

(

1−
0.1

n

)i−1

· 0.2− 0.11

]

. (3)

Suppose that k satisfies the condition

0.9 ·

(

1−
0.1

n

)k−2

· 0.2− 0.11 ≥ 0.05,

i.e.,

k ≤ 2 +
ln 0.16

0.18

ln
(

1− 0.1
n

) . (4)

Then (3) exceeds 0.1 + 0.5 · (k − 1), which tends to ∞ for n tending to ∞ and k being the largest

integer satisfying inequality (4).

5.1 Approximation bounds

The example above shows that steepest ascent cannot approximate the optimal objective function

value of the (SSP) to within a constant factor. Steepest ascent, however, is known to deliver a
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constant factor approximation for certain cardinality constrained problems. For example, steepest

ascent applied to maximizing a monotone, nonnegative valued submodular function subject to a

cardinality constraint is guaranteed to deliver a solution with objective function value within (1−1/e)

of the optimal (see Cornuejols, Fisher and Nemhauser (1977)). For nonnegative valued submodular

functions (not necessarily monotone) Buchbinder, Feldman, Naor and Schwartz (2012) exhibit a

modification of the steepest ascent algorithm that yields a solution within a factor of half of the

optimal.5 This result does not apply to the (SSP) because the objective function, H(S), while

submodular can be negative. Finally, Cornuejols, Fisher and Nemhauser (1977) as well as Feige,

Immorlica, Mirrokni, and Nazerzadeh (2009), under a different notion of approximation, analyze the

accuracy of steepest ascent for a particular instance of the (SSP) called the Uncapacitated Facility

Location problem.
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