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1 Introduction
These lectures examine situations in which dispersed information is aggregated
by prices. Particular attention will be paid to situations in which such aggre-
gation is sufficient to bring about the same outcomes that would arise if all the
information were public.

• Many participants with private signals about value fundamentals.

• A simple such environment is the sale of a good whose value is common.

• Question: To what extent prices formed in natural trading modes aggre-
gate the dispersed information?

• Fundamental question of economic theory.

• Part of the broader question of how well the price system performs the
allocation of resources.

• The focus is on information aggregation by certain price formation modes
that are interesting because they are "natural" or wide-spread.
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• It differs from the mechanism design question of how to aggregate the
information well, which in this environment should not be difficult.

• The information aggregation by price question was first investigated in
the context of competitive markets (by the REE literature).

• A subsequent step is its investigation in environments with strategic agents.
Milgrom (1979) & wilson (1977) addressed this question in the context of
auctions. Most likely, they did not have in mind a structured auction but
rather as a component of a market price formation.

• But there are of course other modes of price formation some of which
might give rise to different insights.

• The lectures cover mainly Milgrom (1979) and parts of Lauermann &
Wolinsky (2013a&b).
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2 Example of REE and bidding equilibrium
Unit mass of agents.
An indivisible good.

Agent i’s utility =
½

vi + t if owns unit + sum of money t
t if no unit + sum of money t

vi = v(xi, w)
w ∈ R = common component unknown to the agents.
xi ∈ R = private component and privately observed by i.
F (xi|w) = the distribution of xi conditional on w.
v is increasing in both arguments; F is stochastically increasing in w.
There is a mass 1

2 of goods. Initially 1
2 the agents own a unit each and

1
2

do not.

REE
Let xm(w) denote the median of F (xi|w)
P = v(xm(w), w) is a REE
P reveals all relevant uncertainty.
If xi > xm(w), Agent i demands a unit (or keeps it if she already owns it).
If xi < xm(w), Agent i "supplies" a unit (if she owns one and does not

demand if she does not own).
Since xm(w) is the median of xi over the population, the market clears:

demand=supply.

Thus, information is perfectly aggregated and allocation is efficient.
But how does information get into the price?
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A BIDDING MODEL—double auction

Each agent submits a bid.
A potential buyer submits bid b(xi)—the highest price they are willing to pay.
A potential seller submits bid s(xi)—the lowest price at which they are willing

to part with the good.

Given the realized bids, the allocation is determined as follows.
Let D(p) be the measure of {xi | b(xi) ≥ p}
Let S(p) be the measure of {xi | s(xi) ≤ p}

Let p∗ be a price such that D(p∗) = S(p∗) (if there are multiple employ some
selection).
Allocate a unit to each agent whose bid exceeds p∗.
A buyer (seller) who gets (sells) a unit pays (receives) p∗.

An equilibrium is such that each agent’s bid is optimal given the population’s
bidding behavior.

Assume that for any x there is w such that x = xm(w) (assume that the
range of x and w is the whole of R).

Let w(x) be the state in which the median is equal to x, i.e., xm(w(x)) = x
.

Following is an equilibrium
bi(x) = si(x) = v(x,w(x)).

s(x)=b(x)=v (x ,ω(x))

x

With these bids p∗ = v(xm(w), w)
The following figure proves that it is an equilibrium
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v(x,ω(x))

x

v(xi,ω(x))

v(xi,ω(x))

xi

If xi > xm, then v(xi, w(xi)) > v(xi, w) = v(xi, w(xm)) > v(xm, w(xm)) =
p∗. Agent i gets a unit at a price below her valuation (or keeps the unit rather
than sell it at a price below her valuation).

If xi < xm, then v(xi, w(xi)) < v(xi, w) = v(xi, w(xm)) < v(xm, w(xm)) =
p∗. Agent i does not get a unit at a price above her valuation (or sells the unit
rather than keep it at a price above her valuation).

This bidding equilibrium’s outcome coincides with the REE. But here it is
clear how the information was aggregated into the price.

More specific assumptions:
v(xi, w) = xi + w
F (xi|w) is uniform on [0, w]
P = (3/2)w is a REE
bi(x) = si(x) = v(xi, w(xi)) = 3xi
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3 Information aggregation in a CV auction
First price auction for a single object (in case of a tie the good is not awarded).

n bidders.

V = The unknown value of the object is in {v1, v2, ..., vm}, vi < vi+1.

xi = signal received by bidder i. xi ∈ R

Pn = Probability distribution on {v1, v2, ..., vm}×Rn, i.e., value and signals.

Commonly known prior Pn(V = vi) > 0 for all i.

Conditional independence: Pn(xi ∈ A|vk, xj) = Pn(xi ∈ A|vk) for all i, j ≤
n, A ⊆ R and vk ∈ {v1, v2, ..., vm}.

Symmetry and independence of n: Pn(xi ∈ A|B) = Pn(xj ∈ A|B) = P (A|B)
for all n, i, j ≤ n, A ⊆ R and B ⊆ {v1, v2, ..., vm}

Therefore, from now on we will omit the subscript n from the distribution
and write P (A|B).

The conditional distribution of (any) xi conditional on state vk is absolutely
continuous with continuous density function fvk .

bni(xi) bidder i’s equilibrium strategy.

Wn = maxi≤n bni(xi)

Let C, D ⊆ {v1, v2, ..., vm} and assume P (C) > 0.

Definition: C can be distinguished from D using signal x, if either P (D) =
0 or

inf
A

P (x ∈ A|D)
P (x ∈ A|C) = 0

Proposition: The following conditions are equivalent: (i) The event {V = vk}
can be distinguished from the event {V < vk} using x1; (ii) The sets AL =
{t|maxi<k fvi(t)/fvk(t) < 1/L} are non-empty for every L > 0; (iii) There is a
sequence {tc} such that for every i < k, limc→∞ fvi(tc)/fvk(tc) = 0

Proof: Straightforward.

6



Proposition: Wn → V in probability1 iff, for every k > 1, the event
{V = vk} can be distinguished from the event {V < vk} using x1.

Proof: (i) NECESSITY. Suppose Wn → V in probability. Fix k > 1 and
choose α = (vk−1 + vk)/2. By conditional independence of the signals, for any
i,

P (Bn < α|V = vi) =
nY
c=1

P (bnc(xc) < α|V = vi) =
nY
c=1

[1− P (bnc(xc) ≥ α|V = vi)]

≤ exp

Ã
−

nX
c=1

P (bnc(xc) ≥ α|V = vi)

!

where the last inequality follows from
nQ
c=1

[1− yc] = exp (
Pn

c=1 ln(1− yc))

and from ln(1− y) ≤ −y for y ∈ [0, 1).
Choose i < k. So, vi < α. Since Wn → V in probability, we have P (Wn <

α|V = vi)→ 1. This and the above equation together imply that for i < k,

nX
c=1

P (bnc(xc) ≥ α|V = vi)→ 0

Hence,

0 = lim
n→∞

k−1X
i=1

P (V = vi)
nX
c=1

P (bnc(xc) ≥ α|V = vi) = lim
n→∞

nX
c=1

P (bnc(xc) ≥ α|V < vk)

(@)
Since

1−
nX
c=1

P (bnc(xc) ≥ α|V = vk) ≤ P (Wn < α|V = vk)→ 0

where "→ 0" follows from convergence in probability and≤ follows from Pr(max bnc(xc) ≥
α|...) ≤

Pn
c=1 P (bnc(xc) ≥ α|...). It then follows that

lim inf
nX
c=1

P (bnc(xc) ≥ α|V = vk) ≥ 1 (@@)

Combining (@) and (@@) and replacing each xc by x1 yields

lim
n→∞

Pn
c=1 P (bnc(x1) ≥ α|V < vk)Pn
c=1 P (bnc(x1) ≥ α|V = vk)

= 0 (@@@)

Notice that there must be j(n) ∈ {1, 2, ..., n} such that

lim
n→∞

P (bnj(n)(x1) ≥ α|V < vk)

P (bnj(n)(x1) ≥ α|V = vk)
= 0 (@@@@)

1P (|Wn − V | > ε)→ 0 for all ε > 0.
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since o/w ∃ε > 0, such that for all n and all j ≤ n, P (bnj(x1)≥α|V <vk)P (bnj(x1)≥α|V=vk) ≥ ε hence
n
c=1 P (bnc(x1)≥α|V <vk)
n
c=1 P (bnc(x1)≥α|V=vk)

≥ ε contradicting (@@@).

Let An = b−1nj(n)[α,∞] and rewrite (@@@@) as

lim
n→∞

P (x1 ∈ An|V < vk)

P (x1 ∈ An|V = vk)
= 0

This establishes necessity, i.e., Wn → V in probability implies that {V = vk}
can be distinguished from the event {V < vk} using x1.

NOTE THAT THE NECESSITY PROOF ABOVE DOES NOT USE THE
EQUILIBRIUM.

(ii) SUFFICIENCY. Suppose that the event {V = vk} can be distinguished
from the event {V < vk} using x1. That is, for any k and any ε > 0, there exists
a set A(k, ε) such that

P (x1 ∈ A(k, ε)|V < vk)

P (x1 ∈ A(k, ε)|V = vk)
< ε (%)

Suppose that Wn does not converge to V in probability. Then, there is
k, δ > 0 and β > 0 such that

lim sup
n→∞

P (Wn < vk − δ|V = vk) > β (%%1)

or
lim sup

n→∞
P (Wn > vk + δ|V = vk) > β (%%2)

Suppose that (%%1) holds and choose the maximal k for which it does. Let

ε =
P (V = vk)βδ

2P (V < vk)(vk − δ)

Define the bidding strategy

b (x) =

½
vk − δ if x ∈ A(k, ε)
0 o/w

For sufficiently large n, the payoff of a bidder who uses b(x) when all else
use their equilibrium strategies is at least

P (x1 ∈ A(k, ε), V = vk)βδ + P (x1 ∈ A(k, ε), V < vk)(δ − vk)

where the first term is the δ that will be gained in the event that V = vk the
Wn is below vk − δ and the "distinguishing" signal occurs. The second term
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accounts for the maximal possible loss δ − vk in case that signal occurs but
V < vk. Rewrite this payoff as

P (x1 ∈ A(k, ε)|V = vk)P (V = vk)βδ + P (x1 ∈ A(k, ε)|V < vk)P (V < vk)(δ − vk) =

P (x1 ∈ A(k, ε)|V = vk)

∙
P (V = vk)βδ +

P (x1 ∈ A(k, ε)|V < vk)

P (x1 ∈ A(k, ε)|V = vk)
P (V < vk)(δ − vk)

¸
>

P (x1 ∈ A(k, ε)|V = vk) [P (V = vk)βδ + εP (V < vk)(δ − vk)]

P (x1 ∈ A(k, ε)|V = vk)P (V = vk)βδ/2

where the inequality follows from (%) and the last equality from the choice of
ε.

Thus, the payoff of the strategy b(x) is positive and bounded away from 0,
independently of n. Since the sum of all payoffs is bounded by vm, for large
enough n there must be a bidder who could profit from deviating to b(x) in
contradiction to the equilibrium assumption.
It follows that (%%1) does not hold for any k. Therefore, P (Wn < vk − δ|V = vk)→

0. This together with (%%2) imply that there are large enough n’s for which
the sum of payoffs is negative. This means that for large enough n’s there is
some bidder whose expected profit is negative and would benefit from deviating
to bidding 0.
Thus, neither (%%1) nor (%%2) hold contradicting the hypothesis that Wn

does not converge to V in probability. ¥
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3.1 Intuitive discussion of the m = 2 case

Suppose that V ∈ {vL, vH}, vL < vH , with prior ρV . Signals xi ∈ R are
conditionally independent with conditional distributions FV . The likelihood
ratio fH(x)

fL(x)
is increasing and limx→∞

fH(x)
fL(x)

= ∞. That is, large realizations of
the signals are more likely when the true value is vH than when it is vL and
there are signal values which make vL exceedingly more likely to any level.
Consider a monotone equilibrium of a first price auction with n bidders.
Let Pr(vL |winning, x) be the probability that a bidder assigns to value vL,

conditional on signal x and being the winner in that monotone equilibrium

Pr(vL | winning, x) =
ρLfL (x) [FL(x)]

n−1

ρLfL (x) [FL(x)]
n−1 + ρHfH (x) [FH(x)]

n−1 =
1

1 + ρH
ρL

fH(x)
fL(x)

[FH(x)]n−1

[FL(x)]n−1

.

Observe that Pr(vL |winning, x) is jointly determined by the “signal effect”,
fH(x)
fL(x)

, and the “winner’s curse effect”, [FH(x)]
n−1

[FL(x)]n−1
. This is not universal termi-

nology but just terms that are used for this intuitive explanation. The sense in
which [FH(x)]

n−1

[FL(x)]n−1
is the winner’s curse effect is that it determines the conditional

probability of vL based on winning alone (e.g., if ρV = 1/2 and
fH(x)
fL(x)

= 1). The
signal effect goes to∞ as x→∞. For a fixed x, the winner’s curse term goes to
0 as n→∞. But the more relevant question is how it behaves for signals whose
receivers are more likely to win. If we focus on a sequence of signals xn at which
the probability of winning in a monotone equilibrium [FH(xn)]n−1 > ε, then the
winner’s curse effect is bounded away from 0 and the signal effect overwhelms
it, limn→∞

fH(xn)
fL(xn)

[FH(xn)]
n−1

[FL(xn)]n−1
=∞. It follows that, for large n, Pr(vL |winning

auction, xn)≈ 0. That is, after allowing for the winner’s curse, the winner is
almost certain that the good is of type vH .
In other words if Wn(vH) converges to a value below vH , bidders who get

a sufficiently high signal that still gives them a small probablity of winning in
equilibrium (higher than the fixed ε > 0), will feel very safe to beat limWn(vH)
slightly since their conditional probability of vH is almost 1.

Remarks:

1. This analysis based on Milgrom’s (Econometrica, 1979) paper which itself
is a generalization and deepening of Wilson (RES, 1977).

2. In different incomplete information environments, all the relevant infor-
mation is revealed in equilibrium. For example, in a separating equilibrium of
a signaling model, the information is revealed in equilibrium. But there the
equilibrium outcome is not the outcome that would arise in the absence of in-
complete information. When we speak about perfect information aggregation
(or revelation) we usually mean that, like in the above auction model, the out-
come is close to what it would be in under complete information.
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3. Coming up with a mechanism that will aggregate the information in any
of the above environments is not a problem. So, the question addressed by the
analysis is not whether such mechanism is possible, but whether such revelations
occurs through "natural" trading processes.
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4 Auction with endogenous solicitation

BASICS

• A single seller and N potential bidders

• State w ∈ {L,H}; prior(w) = ρw w = L,H

• Bidders have common values,

vw ∈ {vL, vH} , vL < vH

• Seller knows w; bidders do not.

GAME

• Seller solicits n ≤ N randomly drawn bidders at marginal cost s > 0.

• N ≥ vH
s

• Each solicited bidder privately observes signal x

• n unobservable to bidders.

• Solicited bidders submit bids simultaneously.

• Highest bidder wins; ties are broken randomly.

SIGNALS

• Bidders’ signals x ∼ Gw with support [x, x̄]

— conditional on state w, signals are i.i.d.

— Gw atomless with density gw strictly positive on [x, x̄]

• Likelihood ratio gH(x)
gL(x)

is weakly increasing — x̄ most/x least favorable
signal.

• Signals boundedly informative.

0 <
gH (x)

gL (x)
< 1 <

gH (x̄)

gL (x̄)
<∞

PAYOFFS:

Let p be the winning bid and n number of solicited bidders.

Payoffs:
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• Winning Bidder: vw − p;

• Other Bidders: 0;

• Seller: p− ns

STRATEGIES

Seller’s:

• A pure solicitation strategy is n = (nL, nH) ∈ {1, ...., N} × {1, ....,N}.

Bidders’:

• A bidding strategy β : [x, x̄]→ R

INTERIM BELIEFS

• Interim belief is

Pr [H| signal x, solicited;n] =
ρHgH (x)

nH
N

ρLgL (x)
nL
N + ρHgH (x)

nH
N

=

ρH
ρL

gH(x)
gL(x)

nH
nL

1 + ρH
ρL

gH(x)
gL(x)

nH
nL

Henceforth, the argument "solicited" will be omitted.

COMPOUND LR AND SOLICITATION EFFECT

• nH
nL

captures “solicitation effect”. Solicitation is bad news if nH
nL

< 1.

• Effective LR = ρH
ρL

gH(x)
gL(x)

nH
nL
= prior LR×signal LR×solicitationLR

BELIEFS CONDITIONAL ON WIN AND PAYOFFS

• Given common bidding strategy β,

πw (b|β, nw) , Pr(win with bid b at state w | β, nw) w = L,H

• Belief conditional on win with b

Pr [H| signal x, win with bid b;n,β] =

ρH
ρL

gH(x)
gL(x)

nH
nL

πH(b|β,nH)
πL(b|β,nL)

1 + ρH
ρL

gH(x)
gL(x)

nH
nL

πH(b|β,nH)
πL(b|β,nL)
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• Bidder’s interim (i.e., after x) expected payoff from bidding b, given β and
n =(nL, nH),

U(b|x, β,n) =
X

w=L,H

ρwgw (x)nwπw (b|β, nw) (vw − b)

ρLgL (x)nL + ρHgH (x)nH

BIDDING GAME AND EQUILIBRIUM

A symmetric pure bidding equilibrium given solicitation strategy n =(nL, nH)
is a bidding strategy β : [x, x̄]→ R such that for all x ∈ [x, x̄], b = β (x) maxi-
mizes bidder’s expected payoff U(b|x, β,n).
Equilibrium of standard common value auction is special case with nH =

nL = n

EXAMPLE OF A BIDDING EQUILIBRIUM

• Values vL = 0 and vH = 1.

• Uniform prior, ρH = ρL =
1
2 .

• Signals x ∈ [x, x̄] = [0, 1].

• gH (x) = 0.8 + 0.4x and gL (x) = 1.2− 0.4x

Claim: Let N = 10, n = (nL, nH) = (6, 2). For all b̄ ∈ [1/3, 0.4], there is a
bidding equilibrium in which

β (x) = b̄ ∀x ∈ [x, x̄] .

Proof: Expected profit at atom nonnegative.

• Expected value conditional on winning at b̄

E[ v | signal x, win at b̄;n, β]

=
1

1 + ρH
ρL

gH(x)
gL(x)

nH
nL

πH(b̄|β,nH)
πL(b̄|β,nL)

vL +

ρH
ρL

gH(x)
gL(x)

nH
nL

πH(b̄|β,nH)
πL(b̄|β,nL)

1 + ρH
ρL

gH(x)
gL(x)

nH
nL

πH(b̄|β,nH)
πL(b̄|β,nL)

vH

≥ 1

1 + ρH
ρL

gH(x)
gL(x)

nH
nL

πH(b̄|β,nH)
πL(b̄|β,nL)

vL +

ρH
ρL

gH(x)
gL(x)

nH
nL

πH(b̄|β,nH)
πL(b̄|β,nL)

1 + ρH
ρL

gH(x)
gL(x)

nH
nL

πH(b̄|β,nH)
πL(b̄|β,nL)

vH

=

2
3
2
6

1
2
1
6

1 + 2
3
2
6

1
2
1
6

1 = 0.4 ≥ b̄.
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• Recall πw (b|β, nw) = Pr[Win with b| w,β, nw]

• 2nd to 3rd line uses gH(x)
gL(x)

≤ gH(x)
gL(x)

• 3rd to 4th line uses vL = 0 and substitution of values.

No Incentives to overbid atom at b̄.

• Expected value conditional on winning at b0 > b̄

E[ v | signal x, win at b0;n, β]

=
1

1 + ρH
ρL

gH(x)
gL(x)

nH
nL

πH(b0|β,nH)
πL(b0|β,nL)

vL +

ρH
ρL

gH(x)
gL(x)

nH
nL

πH(b0|β,nH)
πL(b0|β,nL)

1 + ρH
ρL

gH(x)
gL(x)

nH
nL

πH(b0|β,nH)
πL(b0|β,nL)

vH

≤ 1

1 + ρH
ρL

gH(x̄)
gL(x̄)

nH
nL

vL +

ρH
ρL

gH(x̄)
gL(x̄)

nH
nL

1 + ρH
ρL

gH(x̄)
gL(x̄)

nH
nL

vH

= 0 +
1
1
3
2
2
6

1 + 1
1
3
2
2
6

1 =
1

3
≤ b̄ < b0

• 2nd to 3rd line uses: πH (b0|β, nH) = πL (b
0|β, nL) = 1 and gH(x̄)

gL(x̄)
≥ gH(x)

gL(x)

• 3rd to 4th line uses vL = 0 and substitution of values.

• Since 1
3 ≤ b̄, profit from overbid < 0

No incentive to undercut the atom at b̄.

• since profit at b < b̄ = 0 ≤ E
¡
profit at b̄

¢
.

This completes the proof. ¥

Remark on equilibrium atom

• Equilibrium atom at b̄ requires:

— biding at b̄ is profitable even for x

— overbiding at b̄ is unprofitable even for x̄

• Sufficient condition is

E[ v | signal x̄;n] < b̄ < E[ v | signal x, win at b̄;n]
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• This is achieved by two elements:

— Winning at b̄ "insures" against L,

πH
¡
b̄|β, nH

¢
πL
¡
b̄|β, nL

¢ = 1
nH
1
nL

=
1
2
1
6

= 3

— The Solicitation Curse:

gH (x̄)

gL (x̄)

nH
nL

is small (in fact < 1)

that keeps E[ v | signal x̄;n] low.

• Note that gH(x̄)
gL(x̄)

nH
nL

< 1 implies that x̄ is more pessimistic than prior

E[ v | signal x̄;n] < ρLvL + ρHvH

Additional observations

• Whenever nH
nL

= 1
3 and nH ≥ 2 there is a bidding equilibrium where all

bidders bid b̄ ∈ [1/3, 0.4].

• In fact, it follows from subsequent results that, if nL = 3nH and nH is suf-
ficiently large, there exists no equilibrium in strictly increasing strategies.
Atoms are “unavoidable.”

• Construction is just a bidding equilibrium—not a full equilibrium: Seller’s
solicitation strategy not optimal.

Comparison: ordinary CV auction

• For comparison: Essentially no atoms in ordinary CV auction (nL = nH)
.
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PROPOSITION: Suppose that nH ≥ nL ≥ 2 and β is a bidding equilib-
rium.

(i) If gH(x)
gL(x)

is strictly increasing over [x, x̄], then β is strictly increasing.

(ii) If β has an atom, it must be over a bottom interval [x, x̂], gH(x)gL(x)
must be

constant over [x, x̂] and expected payoff of bidders with x ∈ [x, x̂] is zero.

Full Equilibrium

Γ (s) is the full (solicitation&bidding) game with N =
§
vH
s

¨
.

A symmetric (pure strategy) equilibrium of Γ (s) consists of a bidding
strategy β : [x, x̄]→ R and a solicitation strategy n = (nL, nH) such that

(i) β is a bidding equilibrium given solicitation strategy (nL, nH);

(ii) solicitation is optimal,

nw ∈ arg max
n∈{1,....,N}

[E [p|n,w, β]− ns] .

• Expected winning bid, E [p|w,β, n], non-decreasing, concave in n.

Equilibrium with Small Solicitation Costs

• A sequence {sk}∞k=1 such that sk → 0.

• A sequence of games {Γ(sk)}

• A sequence of equilibria {βk, ηk} of the games {Γ(sk)}.

• All associated equilibrium magitudes will be indexed by k.

• Small s — counterpart of many bidders in standard auction.

NO-AGGREGATION EQUILIBRIUM:

Pooling like in above example can arise with optimal solicitation.

• Special case: Good News / Bad News: x̂ ∈ (x, x̄)
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gH (x)

gL (x)
=

(
gH(x̄)
gL(x̄)

= constant > 1 if x > x̂,
gH(x)
gL(x)

= constant < 1 if x ≤ x̂.

• A continuum of signals but from information perspective only 2 signals.

• Also assume 1
GL(x̂)

< gH(x̄)
gL(x̄)

Let sk → 0 and Γ(sk) the corresponding sequence of games.

PROPOSITION.
There exists a sequence of equilibria {βk,nk} such that (nkL, nkH)→∞ and for
some b̄ and k large enough,

βk (x) = b̄ < ρLvL + ρHvH ∀x > x̂.

MAIN STEPS of PROOF:

• For sk small, let
βk (x) =

½
b̄ if x > x̂,

bk if x ≤ x̂.

where bk < b̄, and limk→∞ bk < b̄.

• b̄ and bk are not arbitrary: they have to be chosen appropriately.

Preliminary fact:

πw(b̄|β, nw) =
1−Gw (x̂)

nw

nw (1−Gw (x̂))
(1)

Step 0: nw →∞, w = L,H.

Step 1:
gH (x̄)

gL (x̄)
lim
k→∞

nkH
nkL

< 1.

Proof of Step 1:
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• Ignoring integer problem, solicitation (nkH , nkL) optimality:

(GL (x̂))
nkL (1−GL (x̂))

³
b̄− bk

´
= sk

(GH (x̂))
nkH (1−GH (x̂))

³
b̄− bk

´
= sk

• Substituting out sk, making a logarithmic transformation, rearranging and
then taking limits we get

lim
k→∞

nkH
nkL

=
lnGL (x̂)

lnGH (x̂)

• The facts gH(x̄)
gL(x̄)

= 1−GH(x̂)
1−GL(x̂)

and 1−z
ln z decreasing in z imply the result. ¤

Step 2: Bidder x̄’s value conditional on winning at b̄ = ex-ante E(v).

lim
k→∞

E[v| signal x̄, win at b̄;β,n] = ρLvL + ρHvH

Proof of Step 2: Recall πw(p|β, nw) , Pr(win with bid p| w, β, nw).

E[ v | signal x, win at p;β,n] =
vL +

ρH
ρL

gH(x)
gL(x)

nH
nL

πH(p|β,nH)
πL(p|β,nL) vH

1 + ρH
ρL

gH(x)
gL(x)

nH
nL

πH(p|β,nH)
πL(p|β,nL)

(2)

Now, (1) together with gH(x̄)
gL(x̄)

= 1−GH(x̂)
1−GL(x̂)

imply the result. ¤

Step 3: For small s, bidder x̄’s value conditional on winning at b > b̄ is
bounded away below ex-ante E(v)

E[v|signal x̄,win at b > b̄;β,n] ≈
ρLvL + ρH

gH(x̄)
gL(x̄)

lim nH
nL

vH

ρL + ρH
gH(x̄)
gL(x̄)

lim nH
nL

< ρLvL + ρHvH

Proof of Step 3: Substitutte x = x̄ and πH(b|β,nH)
πL(b|β,nL) = 1 in (2) to get

E[ v | signal x̄,win at b > b̄;β,n] =
vL +

ρH
ρL

gH(x̄)
gL(x̄)

nH
nL

vH

1 + ρH
ρL

gH(x̄)
gL(x̄)

nH
nL

Apply lims→0 to both sides and recall from Step 2 that lim gH(x̄)
gL(x̄)

nH
nL

< 1 to get
the result. ¤.
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Step 4: ∃ b̄ s.t., for small s, winning at b̄ is profitable and overbidding is
not.

Proof of Step 4: Choose b̄ to satisfy

ρLvL + ρH
gH(x̄)
gL(x̄)

lim nH
nL

vH

ρL + ρH
gH(x̄)
gL(x̄)

lim nH
nL

< b̄ < ρLvL + ρHvH

Then Steps 2 and 3 imply the result. ¤
Step 5: No incentives to undercut b̄.

Proof of Step 5:

• Since b̄ < ρLvL + ρHvH , by Step 2 profit at b = b̄ (before the limit) > 0

• As k → ∞, prob(winning at b = b̄) >>> prob(winning at b < b̄) which
overwhelmes the difference in price.

— By (), for large nw, πw(b̄|β, nw) is on the order of 1
nw
, while πw(b|β, nw)

is on the order of Gw (x̂)
nw . Hence, πw(b|β,nw)

πw(b̄|β,nw) → 0. ¤

The next step concern the optimality of bidding bk by x ≤ x̂.

Let

bk = E[v|signal x,win at b = bk]

Step 6: We have to establish the following

• bk so defined < ρLvL + ρHvH so that we can have b̄ > bk.

• No incentives for x ≤ x̂ to overbid bk:

— with b ∈ (bk, b̄).
— with b = b̄

— with b > b̄

• The latter is obvious, since E[v| signal x, win at b > b̄] < E[v| signal x̄,
win at b > b̄] < b̄ by choice of b̄.

• Each of the other two requires a calculation resembling the one we per-
formed. The unprofitability of b = b̄ uses the special condition on G.

¥

Pooling Equilibrium—Summary
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• In the limit, price is b̄ in both states.

• Key: optimal sampling results in limk→∞
nkH
nkL

s.t. gH(x̄)
gL(x̄)

limk→∞
nkH
nkL

< 1.

• Argument almost did not use the two (effective) signal assumption. Can
be fairly straighforwardly extended to any FINITE number of (effective)
signals (which we do in the paper).

• Additional condition on Gw was used, though not "particularly strong."

• No information aggregation — auction does not become “competitive”

• GH (x̂) can be arbitrarily small and GL (x̂) arbitrarily large, i.e., signals
can be arbitrarily informative

• Based on Lauermann-Wolinsky (2013).
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5 Search with adverse selection

BASICS

• A single buyer and a continuum of identical potential sellers

• Buyer is looking to complete a single transaction.

• Buyer’s value of the transaction is u.

• State w ∈W = {L,H}. Prior(w)= ρw.

• A seller’s cost of providing the service cw, cH > cL.

• Buyer knows w; sellers do not.

GAME

• Buyer samples sellers sequentially (and randomly).

• Sampling (per draw) cost s > 0.

• Sampled seller observes signal x ∈ [x, x]

— x v Fw, w = L,H, continuous density fw
— increasing fH/fL: lower x’s more indicative of low cost.

— Conditional on w, signal is independent across sellers.

• Buyer-seller "bargain" over price:

— nature draws a price p from distribution G over [0, u].

∗ G: full support, strictly positive differentialble density g.
— Seller announces whether accepts p

— Then buyer annouces

— If both accept, transact at p — END

— If not, disengage and buyer continues search.

• Outcome

— A history of the process records the sequence of all encountered sell-
ers, signal realizations, prices, and acceptance decisions up to a cer-
tain point.

— A terminal history is a history that ends with a trade or an infinite
history with no trade.

— A finite terminal history determines a terminal outcome (nt, pt, xt, jt)
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• Payoffs

— Buyer type w’s payoff after a finite terminal history is

u− pt − nts;

the payoff after an infinite history is −∞.
— Seller jt’s payoff from transacting with buyer type w is

pt − cw.

Payoffs are zero for all other sellers.

STRATEGIES AND BELIEFS

• Information

— Seller: x and p. Nothing else.

— Buyer: w and entire history of search (does’nt matter whether ob-
serves x’s).

• Strategies

— Buyer’s: B = (BL, BH)

where Bw(ϕ) ⊂ [0, u] are prices accepted by w = L,H after history
ϕ.

— Seller j’s: Aj (x) ⊂ [0, u] set of accepted prices after signal x.
— Profile (B,A) = ((Bw)w∈W , (Aj)j∈[0,1]).

• Beliefs

— Π(w|x) ≡ Π(w|x;B,A) denote a seller’s belief that the buyer’s type
is w, conditional on being sampled and observing signal x, when the
strategy profile is (B,A)

PAYOFFS AS FUNCTION OF STRATEGIES AND BELIEFS
Profile (B,A) = ((Bw)w∈W , (Aj)j∈[0,1]) together with the prior over the set

of types W induce a distribution on the set of terminal histories and, hence,
over terminal outcomes.

• Buyer’s expected payoff

Vw ≡ Vw (B,A) = u−E
£
pt|w;B,A

¤
− sE

£
nt|w;B,A

¤
,

where expectation is w.r.t the said distribution
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— ASSUMPTION: s is small enough such that

u ≥
Z u

cH

p
dG (p)

1−G (cH)
+

s

1−G (cH)
.

Thus, Vw > 0 even if the sellers accept only prices that are above cH .

• Seller’s expected payoff

— Trade at p after signal x yields

p−E [c|x, p is accepted by buyer;B,A]

where the expectation is w.r.t. to the belief over w conditional on x
and acceptance of p.

EQUILIBRIUM

An (perfect-Bayesian) equilibrium consists of a strategy profile, (B,A), and
belief Π such that: (i) after any history ϕ, Bw maximizes the expected payoff of
the buyer of type w given A. (ii) for any signal realization x, Aj(x) maximizes
seller j’s expected profit given B and Π(w|x). (iii) Π(w|x) is consistent with
Bayesian updating.

EQUILIBRIUM STRATEGIES AND BELIEFS

• Buyer’s

— Bw(ϕ) = [0, u− Vw], for all ϕ.

• Seller’s

— expected cost, given W 0 ⊆W

E [c|x,W 0] ≡ E [c|x,W 0;B,A] =

P
w∈W 0

Π(w|x)cwP
w∈W 0

Π(w|x) .

— LetW (p) = {w| p ∈ Bw}. For p ∈ ∪Bw, optimality of Aj(x) requires
that p ∈ Aj(x) iff p ≥ E [c|x,W (p)].

— Because E [c|x,W (p)] is independent of j, we will drop the subscript
j and write A (x).2 Consequently, the equilibrium strategy profile A
will be identified with the individual strategy A which will denote
the profile as well.

2For p /∈ ∪Bw, any acceptance decision is optimal. To simplify the exposition, we assume
for p /∈ ∪Bw that, if p < c1, then p /∈ Aj(x) for all x and, if p > cm, then p ∈ Aj(x) for all x.
This assumption has no consequences for the equilibrium outcome.
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• Additional notation

— Set of all signal-price pairs that result in trade given type w

Ωw ≡ Ωw(B,A) = {(x, p) : p ∈ Bw ∩A (x)} .

— Γw (Q) = (Fw ×G) (Q)= Probability (a meeting of a seller and buyer
w yields (x, p) ∈ Q).
Thus, Γw (Ωw) = Probability (a given meeting between a seller and
buyer w ends in trade).

— The expected number of sampled sellers is

nw = nw (B,A) = E
£
nt|w;B,A

¤
=

1

Γw (Ωw)
.

• Equilibrium Beliefs.

Claim: Using the an extension of Bayes formula that conditions on the
0-probability events,

Π(w|x) = ρwfw (x)nw
ρLfL (x)nL + ρHfH (x)nH

. (3)

• Intuitive explanation of beliefs formula: Suppose a finite number
N of sellers but that behavior is described by stationary and symmetric
acceptance strategies, B and A.3 If the buyer samples uniformly without
replacement from N sellers with success probability Γw = Γw (Ωw) and
Γw > 0, then

Pr [j sampled|w; N ] =
1

N
+

N − 1
N

1− Γw
N − 1 + · · ·+

N − 1
N

N − 2
N − 1 · · ·

1

2
(1− Γw)N−1

=
1− (1− Γw)N

NΓw
=

nw
N

³
1− (1− Γw)N

´
,

using nw = 1/Γw. Therefore,

Pr [w|j sampled, x; N ] =
ρwfw(x)

nw
N

³
1− (1− Γw)N

´
ρLfL (x)

nL
N

³
1− (1− Γw)N

´
+ ρHfH (x)

nH
N

³
1− (1− Γw)N

´
−→
N→∞

ρwfw (x)nw
ρLfL (x)nL + ρHfH (x)nH

.

which coincides with (3).

EQUILIBRIUM — Existence & Characterization

3 In the appendix, we also allow the sellers’ strategies to be not symmetric.
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• Fact: An equilibrium exists.

• Fact: If (B,A) an equilibrium, then VL (B,A) > VH (B,A)

EQUILIBRIUM BEHAVIOR

• Let E [c|x] ≡ E [c|x,W ]

• In equilibrium
Bw = [0, u− Vw] w = L,H

and since VL > VH ,

A (x) = [E(c|x), u− VL] ∪ [cH , u]

• Therefore, in equilibrium

ΩL = {(p, x) : p ∈ [E(c|x), u− VL]}
ΩH = ΩL ∪ [cH , u− VH ] .

hence
ΩL = ΩH if VH ≥ u− cH .

• Define ξ = ξ(B,A)½
EI(c|ξ) = u− VL if VL ≥ u−EI(c|x)

ξ = x if VL < u−EI(c|x)

• Equilibrium is of the form

— L searches to (x, p) s.t.

x ≤ x∗ and p ∈ [EI(c|x), EI(c|x∗)]

— H stops after same (x, p) and also after (x, p) s.t. p ∈ [cH , u− VH ]

INFORMATION AGGREGATION

• To what extent do prices aggregate information when s is small?
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— Maximal aggregation if price paid by buyer w is close to cw;

— Minimal when both buyer types pay the same price(s).

• In 1st price CV auction version of our model (Wilson(1977) and Mil-
grom(1979)):

pw → cw when #(bidders)→∞ iff limx→x
fL(x)
fH(x)

=∞.

• Here counterpart of increasing number of bidders is small s.

• Sequence sk → 0 & associated equilibrium sequence
¡
Bk , Ak

¢
• Ωkw, xk∗, V k

w , n
k
w, E

k
I (), etc. magnitudes associated with

¡
Bk , Ak

¢
• pkw = expected price paid by w in

¡
Bk , Ak

¢
; pw = limk→∞ pkw

• Skw = w’s expected search cost in
¡
Bk , Ak

¢
; Sw = limk→∞ Skw.

• Why expect information aggregation?

Intuitively, the good type L might search till it generates a low enough
signal that will enable trading at relatively low price. If it is too costly for H
to mimic this behavior, and it settles quickly for cH the prices might aggregate
information. If however H mimics L’s behavior prices may fail to aggregate
information.

5.1 Information Aggregation with Boundedly Informative
Signals

In the case of boundedly informative signals,

lim
x→x

fL (x)

fH (x)
<∞ (4)

even the most favorable signal carries only limited information. The limit equi-
librium outcome, as sk → 0, is complete pooling: all types pay the same price
which is in turn equal to the ex-ante expected cost.

Proposition 1 Suppose that limx→x
fL(x)
fH(x)

<∞. Then:

1. pw = E [c] ∀w ∈W ,

2. Sw = 0 ∀w ∈W .
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The intuition behind the proof is most transparent when the set of possible
signal values is finite (with x the lowest such value and fw (x) > 0 its proba-
bility). Suppose to the contrary that S̄L > 0. Since Ek [c|x] is the lowest price
a seller will ever accept, sequential rationality implies that type L accepts any
p ∈ [Ek [c|x] , Ek [c|x] + S̄L

2 ] and hence sellers also accept such p’s after signal x,
i.e., {x}× [Ek [c|x] , Ek [c|x]+ S̄L

2 ] ⊂ ΩkL. Type L’s probability of realizing signal
x and such p is bounded away from 0, i.e., ΓL({x}× [Ek [c|x] , Ek [c|x] + S̄L

2 ]) ≥
γ > 0. Therefore, ΓL(ΩkL) ≥ γ > 0, implying S̄L ≡ lim sk

ΓL(ΩkL)
≤ lim sk

γ = 0.

A similar argument establishes that p̄L = limEk [c|x]: If p̄L > limEk [c|x],
it would be profitable for type L to wait for (x, p) s.t. p is between Ek [c|x]
and p̄L, which occur with strictly positive, non-vanshing probability and hence
involves negligible search cost as sk → 0.
It is then immediate from fL(x)

fH(x)
<∞ that every other type can mimick type

L at no cost. This is because MLRP implies that

sk

ΓH
¡
ΩkL
¢ = ΓL ¡ΩkL¢

ΓH
¡
ΩkL
¢ sk

ΓL
¡
ΩkL
¢ ≤ fL (x)

fH (x)

sk

ΓL
¡
ΩkL
¢ .

Therefore, lim sk

ΓH(ΩkL)
≤ fL(x)

fH(x)
S̄L = 0.

Since H can costlessly mimick type L, it follows that pH = pL = limEk [c|x].
Since both types trade after realizing signal x it follows that limEk [c|x] = E [c].
The formal proof presents the corresponding arguments for a continuum of

signals.

Proof of Proposition 1:

Step 1. For any δ > 0, there exists x(δ) > x s.t. for k sufficiently large

Ek[c|x(δ)]−Ek[c|x] < δ.

Proof. Follows immediately from Ek [c|x] =
cH+

ρL
ρH

fL(x)

fH (x)

nkL
nk
H

cL

1+
ρL
ρH

fL(x)

fH(x)

nk
L

nk
H

and limx→x
fL(x)
fH(x)

<

∞. ¤

Step 2.

S̄L ≡ lim
k→∞

sk

ΓkL
¡
ΩkL
¢ = 0.

Proof. Suppose S̄L > 0. By step 1, there is a signal x0 = x(S̄L/3) > x such
that

Ek[c|x0]−Ek[c|x] < S̄L/3

for all k. Since V k
L ≤ u − Ek[c|x] − 2S̄L/3 for all k large enough, V k

L ≤ u −
Ek[c|x0]− S̄L/3. Hence,

ΩkL ⊇ [x, x0]× [Ek[c|x0], Ek[c|x0] + S̄L/3].
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But then

ΓkL
¡
ΩkL
¢
≥ F (x0) (G(Ek[c|x0] + S̄L/3)−G(Ek[c|x0])).

Since the RHS stays strictly positive, limk→∞
sk

ΓkL(ΩkL)
= 0. ¤

Step 3.

p̄L = lim
k→∞

Ek[c|x].

Proof. Since Ek[c|x] is increasing in x, obviously p̄L ≥ limk→∞Ek[c|x]. Sup-
pose to the contrary that p̄L − limk→∞Ek[c|x] = δ > 0. By Step 1 there is
x00 = x( δ3) > x such that

Ek[c|x00]− Ek[c|x] < δ

3

for all k. Define

Ω̃k = [x, x00]× [Ek[c|x00], Ek[c|x00] + δ

3
].

and observe that, for k large enough, Ω̃k ⊂ ΩkL and limΓkL
³
Ω̃k
´
> 0. Therefore,

by the optimality L’s equilibrium stgrategy,

V k
L ≥ u−Ek[c|x00]− δ

3
− sk

ΓkL

³
Ω̃k
´ > u−Ek[c|x]− 2δ

3
− sk

ΓkL

³
Ω̃k
´ .

This and Step 2 together imply

u− p̄L = limV k
L ≥ u− limEk[c|x]− 2δ

3
− lim sk

ΓkL

³
Ω̃k
´ = u− limEk[c|x]− 2δ

3
.

where the last equality is due to lim sk

ΓkL(Ω̃k)
= 0. It follows that p̄L < limEk[c|x]+

δ — contradiction. ¤

Step 4.

lim
k→∞

sk

Γw
¡
ΩkL
¢ = 0 ∀w ∈W

and
limE[p| (p, x) ∈ ΩkL, w] = limEk [c|x] ∀w ∈W.

Proof. Rewriting,

lim
k→∞

sk

Γw
¡
ΩkL
¢ = lim

k→∞

ΓL
¡
ΩkL
¢

Γw
¡
ΩkL
¢ sk

ΓL
¡
ΩkL
¢ ≤ lim

k→∞

fL (x)

fw (x)

sk

ΓL
¡
ΩkL
¢ = fL (x)

fw (x)
S̄L = 0.
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Where the inequality stems from the MLRP and the final equality from Step 1.

Consider p s.t. (p, x) ∈ ΩkL for some x. From sellers’ optimality p ≥ Ek [c|x]
and from MLRP Ek [c|x] ≥ Ek [c|x]. By buyer’s optimality, p ≤ u−V k

L . Hence,

Ek [c|x] ≤ E[p| (p, x) ∈ ΩkL, w] ≤ u− V k
L for w ∈W.

From Steps 2 and 3, limEk [c|x] = u− limV k
L , which establishes the claim. ¤

Step 5.
p̄w = limEk [c|x] ∀w ∈W .

Proof. Lemma ?? and Steps 2 and 3 imply limV k
w ≤ limV k

L = u− limEk [c|x]
for all w. The optimality of type w’s equilibrium strategy and Step 4 imply

lim
k→∞

V k
w ≥ u− limE

£
p| (p, x) ∈ ΩkL, w

¤
− lim

k→∞

sk

Γw
¡
ΩkL
¢ = u− limEk [c|x] .

Thus, limV k
w = u− limEk [c|x]. Now, Ωkw ⊇ ΩkL and Step 4 imply Sw = 0 and

hence limV k
w = u− p̄w. Therefore, u− p̄w = u− limEk [c|x] implying the result.

¤

Step 6.
limEk [c|x] = E [c] .

Proof. Recall W k (p) =
©
w| (p, x) ∈ Ωkw for some x

ª
. From the law of iterated

expectations,

E [c] = Ek [c| trade ] = ρLE
£
Ek
£
c|x,w ∈W k (p)

¤
| ΩkL

¤
+ρHE

£
Ek
£
c|x,w ∈W k (p)

¤
| ΩkH

¤
.

(5)
Since by Lemma ?? and the definition of Ωkw, W

k (p) is of the form {L,H} or
{H}, MLRP implies Ek

£
c|x,W k (p)

¤
≥ Ek

£
c|x,W k (p)

¤
≥ Ek [c|x]. This and

the definition of Ωkw imply that, if (p, x) ∈ Ωkw, then u−V k
w ≥ Ek

£
c|x,Wk (p)

¤
≥

Ek [c|x]. By Steps 4 and 5, u− limV k
w = limEk [c|x]. Hence,

limE
£
Ek
£
c|x,w ∈W k (p)

¤
| Ωki

¤
= limEk [c|x] .

Therefore, taking the limit of RHS(5) gives the result. ¤

This concludes the proof of Proposition 1: Steps 5 and 6 establish Part 1.
Step 4 and Ωkw ⊇ ΩkL establish Part 2. ¥
An alternative argument uses two facts about the equilibrium that seem

intuitively obvious but require further work to prove formally. First, when k is
large enough, type H mimics L in the sense that ΩkL = Ω

k
H . Second, the cutoff

ξk → x. These two observations together imply that

lim
k→∞

nkL
nkH

= lim
k→∞

ΓH
¡
ΩkL
¢

ΓL
¡
ΩkL
¢ = fH (x)

fL (x)
.
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So, the relative probability of being sampled is inversely related to the relative
probability of the signals. Therefore

lim
k→∞

ρL
ρH

fL

³
ξk
´

fH

³
ξk
´ nkL
nkH

=
ρL
ρH

,

the posterior likelihood ratio conditional on x ∈
h
x, ξk

i
and conditional on

being sampled is equal to the prior likelihood ratio. Thus, when sk is small,
Ek [c|x] ∼= E [c] for all x ∈

h
x, ξk

i
.

BOUNDEDLY INFORMATIVE SIGNALS

Proposition: Suppose limx→x
fL(x)
fH(x)

<∞. Consider sk → 0 and an associ-

ated sequence of equilibria
©
Bk, Ak

ª
. Then,

p̄L = ρLcL + ρHcH = p̄H

SH = SL = 0

• No information aggregation: price = EX-ANTE expected cost.

• As we know L searches for a signal below xk∗. Here, H mimics L and both
end up trading after the same low signals and in the limit at the same low
price.

• Different from outcome of CV auction with many bidders.

Proof: From observations above

lim
k→∞

¡
u− V k

L −Ek
I [c|x]

¢
= 0.

Since V k
H < V k

L , limV k
H ≤ limV k

L . Also,

V k
H ≥ E(p,x)

£
u− p| (p, x) ∈ ΩkL,H

¤
− sk

ΠH
¡
ΩkL
¢

≥ V k
L −

ΠL
¡
ΩkL
¢

ΠH
¡
ΩkL
¢ sk

ΠL
¡
ΩkL
¢

≥ V k
L −

fL (x)

fH (x)

sk

ΠL
¡
ΩkL
¢ → limV k

L

where 2nd inequality owes to u − p ≥ V k
L for all (p, x) ∈ ΩkL, and final

step owes to previous observation lim sk

ΠL(ΩkL)
= 0. Therefore, limV k

H ≥ limV k
L

and the previous observation limV k
L = u − limEk

I [c|x] implies limV k
H = u −

limEk
I (c|x) as well.

Since in the limit BOTH H and L trade after x, it must be that limEk
I (c|x)

is equal to the ex-ante cost ρLcL + ρHcH .¥
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Intuitive Explanation

• When signals are boundedly informative and sk is small, both types search
for (x, p) ∈ ΩkL.

• Hence, nkL
nkH

=
ΠL(ΩkL)
ΠH(ΩkL)

.

• Πw
¡
ΩkL
¢
is roughly Fw(x∗) (times some factor that depends on some av-

erage of g(p) for p ∈ (Ek [c|x] , Ek [c|x∗]))

• Therefore ΠL(Ω
k
L)

ΠH(ΩkL)
≈ FH(xk∗)

FL(xk∗)
→ limk→∞

fH(xk∗)
fL(xk∗)

= fH(x)
fL(x)

• This implies

lim
k→∞

Ek [c|x∗] = lim
k→∞

Ek [c|x]

=
cH + cL

ρL
ρH

fL(x)
fH(x)

fH(x)
fL(x)

1 + ρL
ρH

fL(x)
fH(x)

fH(x)
fL(x)

= ρLcL + ρHcH

• Hence,
p̄L = p̄H = ρLcL + ρHcH

Remarks.

1. Result holds for any finite number of states.

2. Extension to limx→x
fL(x)
fH(x)

=∞

3. Based on Lauermann-Wolinsky (2013)

32



6 Other literature connections
1. We know from traditional demand-supply analysis that replication of the
Myerson-Satterthwaite problem essentially removes the inefficiency (Gresik and
Satterthwaite [1987] show this in the context of mechanism design framework
and inquire about the rate of convergence).

2. The analysis of information aggregation in the CV auction, established
that under certain conditions on the signal, a large auction also aggregates the
information well.

3. Akerlof’s problem is already presented in the context of a large market
and the inefficiency is present there (one can show that it would not be removed
by other mechanisms as well). So, it is not the market size alone or the private vs
common values distinction alone that make the difference. What distinguishes
Akerlof from the other scenarios is that in them, there are many "small" agents
who jointly have "most" of the relevant information. This is not the case in
Akerlof in which only the owner has the relevant information and is therefore
not "small" with respect to her own car.

4.Gul and Postlewaite[Econometrica, 1992] look at a hybrid problem and
point out that, when the commonality of values is “localized,“ replication of
the problem may diminish their effect, so that such markets may become nearly
efficient as the number of participants grow.
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