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Abstract

We provide empirical evidence that a positive shock to technology drives up per
capita hours worked, consumption, investment, average productivity and output. This
evidence contrasts sharply with the results reported in a large and growing literature
that argues, on the basis of aggregate data, that per capita hours worked fall after a pos-
itive technology shock. We argue that the difference in results primarily reflects specifi-
cation error in the way that the literature models the low-frequency component of hours
worked.
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1 Introduction

Standard real business cycle models imply that per capita hours worked rise after a perma-
nent shock to technology. Despite the a priori appeal of this prediction, there is a large and
growing literature that argues it is inconsistent with the data. This literature uses reduced
form time series methods in conjunction with minimal identifying assumptions that hold
across large classes of models to estimate the actual effects of a technology shock. The re-
sults reported in this literature are important because they call into question basic properties
of many structural business cycle models.
Consider, for example, the widely cited paper by Gali (1999). His basic identifying

assumption is that innovations to technology are the only shocks that have an effect on
the long run level of labor productivity. Gali (1999) reports that hours worked fall after a
positive technology shock. The fall is so long and protracted that, according to his estimates,
technology shocks are a source of negative correlation between output and hours worked.
Because hours worked are in fact strongly procyclical, Gali concludes that some other shock
or shocks must play the predominant role in business cycles with technology shocks at best
playing only a minor role. Moreover, he argues that standard real business cycle models
shed little light on whatever small role technology shocks do play because they imply that
hours worked rise after a positive technology shock. In effect, real business cycle models are
doubly damned: they address things that are unimportant, and they do it badly at that.
Other recent papers reach conclusions that complement Gali’s in various ways (see, e.g.,
Shea (1998), Basu, Kimball and Fernald (1999), and Francis and Ramey (2003)). In view of
the important role attributed to technology shocks in business cycle analyses of the past two
decades, Francis and Ramey perhaps do not overstate too much when they say (p.2) that
Gali’s argument is a ‘...potential paradigm shifter’.
Not surprisingly, the result that hours worked fall after a positive technology shock has

attracted a great deal of attention. Indeed, there is a growing literature aimed at constructing
general equilibrium business cycle models that can account for this result. Gali (1999) and
others have argued that the most natural explanation is based on sticky prices. Others, like
Francis and Ramey (2003) and Vigfusson (2004), argue that this finding is consistent with
real business cycle models modified to allow for richer sets of preferences and technology,
such as habit formation and investment adjustment costs.1

We do not build a model that can account for the result that hours fall after a technology
shock. Instead, we challenge the result itself. Using the same identifying assumption as Gali
(1999), Gali, Lopez-Salido, and Valles (2002), and Francis and Ramey (2003), we find that
a positive technology shock drives hours worked up, not down.2 In addition, it leads to a
rise in output, average productivity, investment, and consumption. That is, we find that a
permanent shock to technology has qualitative consequences that a student of real business
cycles would anticipate.3 At the same time, we find that permanent technology shocks play

1Other models that can account for the Gali (1999) finding are contained in Christiano and Todd (1996)
and Boldrin, Christiano and Fisher (2001).

2Chang and Hong (2003) obtain similar results using disaggregated data.
3That the consequences of a technology shock resemble those in a real business cycle model may well

reflect that the actual economy has various nominal frictions, and monetary policy has successfully mitigated
those frictions. See Altig, Christiano, Eichenbaum and Linde (2002) for empirical evidence in favor of this
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a very small role in business cycle fluctuations. Instead, they are quantitatively important
at frequencies of the data that a student of traditional growth models might anticipate.
Since we make the same fundamental identification assumption as Gali (1999), Gali,

Lopez-Salido, and Valles (2002) and Francis and Ramey (2003), the key questions is: What
accounts for the difference in our findings? By construction, the difference must be due
to different maintained assumptions. As it turns out, a key culprit is how we treat hours
worked. If we assume, as do Francis and Ramey, that per capita hours worked is a difference
stationary process and work with the growth rate of hours (the difference specification), then
we too find that hours worked falls after a positive technology shock. But if we assume that
per capita hours worked is a stationary process and work with the level of hours worked (the
level specification), then we find the opposite: hours worked rise after a positive technology
shock.
So we have two answers to the question, ‘what happens to hours worked after a positive

technology shock?’ Each answer is based on a different statistical model, depending on the
specification of hours worked. To judge between the competing specifications, we use classical
statistical methods as well as encompassing methods that quantify the relative plausibility
of the two specifications.
Our classical statistical analysis focuses on the question of whether per capita hours

have a unit root. As is well known, standard univariate unit root tests like the Augmented
Dickey Fuller (ADF) test have very poor power properties relative to the alternative that
the series in question is a persistent stationary stochastic process. However, Hansen (1995)
and Elliott and Jansson (2003) argue that large power gains can be achieved by including
correlated stationary covariates in the regression equation underlying the ADF test statistic.
Motivated by these results, we test the null hypothesis that per capita hours worked has a
unit root using a version of Hansen’s covariate augmented Dicky-Fuller (CADF) test. We
find strong evidence against this null hypothesis. Given the importance of this result for our
argument, we conduct our own Monte Carlo study to document that the CADF test has
much more power than the ADF test (see Appendix B).
To assess the relative plausibility of the level and difference specifications, we adopt an

encompassing approach. Specifically, we ask the question, ‘which specification has an easier
time explaining the observation that hours worked falls under the difference specification
and rises under the level specification?’ Consistent with our classical analysis, this criterion
also leads us to prefer the level specification.
We now discuss the results that lead to this conclusion. First, the level specification

encompasses the difference specification. We show this by calculating what an analyst who
adopts the difference specification would find if our estimated level specification were true.
For reasons discussed below, by differencing hours worked this analyst commits a specifi-
cation error. We find that such an analyst would, on average, infer that hours worked fall
after a positive technology shock even though they rise in the true data-generating process.
Indeed the extent of this fall is very close to the actual decline in hours worked implied by
the estimated difference specification. The level specification also easily encompasses the
impulse responses of the other relevant variables.
Second, the difference specification does not encompass the level specification. We calcu-

interpretation.
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late what an analyst who adopts the level specification would find if our estimated difference
specification were true. The mean prediction is that hours fall after a technology shock. So,
focusing on means alone, the difference specification cannot account for the actual estimates
associated with the level representation. However, the difference specification predicts that
the impulse responses based on the level representation vary a great deal across repeated
samples. This uncertainty is so great that the difference specification can account for the
level results as an artifact of sampling uncertainty. This result, however, is a Pyrrhic victory
for the difference specification. The prediction of large sampling uncertainty stems from the
difference specification’s prediction that an econometrician working with the level specifica-
tion encounters a version of the weak instrument problem analyzed in the literature (see, for
example, Staiger and Stock, 1997). A standard weak instrument test applied to the data
finds little evidence of such a problem. This result is not surprising because, in our context,
the weak instrument test is identical to Hansen’s CADF test for a unit root in per capita
hours work.
To quantify the relative plausibility of the level and difference specifications, we compute

the type of posterior odds ratio considered in Christiano and Ljungqvist (1988). The basic
idea is that the more plausible of the two specifications is the one that has the easiest
time explaining the facts: (i) the level specification implies that hours worked rises after a
technology shock, (ii) the difference specification implies that hours worked falls, and (iii)
the outcome of the weak instruments test. Focusing only on facts (i) and (ii), we find that
the odds are roughly 2 to 1 in favor of the level specification over the difference specification.
However, once (iii) is incorporated into the analysis, we find that the odds overwhelmingly
favor the level specification, by at least 58 to 1.
Finally, we assess the robustness of our results against alternative ways of modeling low

frequency movements in the variables entering our analysis. The basic issue is that in our
sample period per capita hours worked exhibit a U shaped pattern while other variables
like inflation and the federal funds rate display hump-shaped patterns. Accordingly we
test for the presence of a quadratic trend in these variables. After correcting for the small
sample distribution of the relevant t statistics, we do not reject the null hypothesis that the
coefficients on the time-squared terms in per capita hours, inflation and the federal fund are
equal to zero.
Although supportive of our level specification, this result may just reflect the possibility

that our tests suffer from low power. To this end, we redid our analysis with three types of
quadratic trend specifications to assess the robustness of inference. In case (i) we remove
quadratic trends from all the variables before estimating the VAR. In case (ii) we remove
quadratic trends from per capita hours worked, inflation and the federal funds rate before
estimating the VAR. Finally, in case (iii) we remove a quadratic trend only from per capita
hours worked before estimating the VAR. As it turns out, the only case in which inference
is not robust is case (iii), where hours worked fall in a persistent way after a positive shock
to technology. The problem with this case is that it treats hours worked differently from
the other variables in terms of allowing for a quadratic trend. We see no rationale for
this asymmetry. Consequently, we attach little importance to case (iii). To quantify the
relative plausibility of this case, we use a posterior odds ratio like the one discussed above.
Our analysis focuses on the models’ ability to account for (a) the t statistics associated with
standard classical tests for quadratic trends in per capita hours worked, inflation and the

3



federal funds rate, and (b) the sign of the response of per capita hours worked to a technology
shock in the different cases. We find that the preponderance of the evidence strongly favors
all of the alternatives to case (iii): the odds in favor of case (i), (ii) and the level specification
are 20, 8, and 4 to one, respectively. We conclude that inference about the response of per
capita hours is robust in all but the least plausible case.
The remainder of this paper is organized as follows. Section 2 discusses our strategy for

identifying the effects of a permanent shock to technology. Section 3 presents our empirical
results for the level and difference specifications. In Section 4 we discuss the results of classical
tests for assessing the different specifications. Section 5 discusses our encompassing method
and reports our results. Section 6 explores the robustness of inference to the possible presence
of deterministic trends. In addition, we examine the subsample stability of our time series
model. In Section 7 we report our findings regarding the overall importance of technology
shocks in cyclical fluctuations. Section 8 contains concluding remarks.

2 Identifying the Effects of a Permanent Technology

Shock

In this section, we discuss our strategy for identifying the effects of permanent shocks to
technology. We follow Gali (1999), Gali, Lopez-Salido, and Valles (2002) and Francis and
Ramey (2003) and adopt the identifying assumption that the only type of shock that affects
the long-run level of average labor productivity is a permanent shock to technology. This
assumption is satisfied by a large class of standard business cycle models. See, for example,
the real business cycle models in Christiano (1988), King, Plosser, Stock and Watson (1991)
and Christiano and Eichenbaum (1992) which assume that technology shocks are a difference
stationary process.4

As discussed below, we use reduced form time series methods in conjunction with our
identifying assumption to estimate the effects of a permanent shock to technology. An ad-
vantage of this approach is that we do not need to make all the usual assumptions required to
construct Solow-residual based measures of technology shocks. Examples of these assump-
tions include corrections for labor hoarding, capital utilization, and time-varying markups.5

Of course there exist models that do not satisfy our identifying assumption. For example, the
assumption is not true in an endogenous growth model where all shocks affect productivity
in the long run. Nor is it true in an otherwise standard model when there are permanent
shocks to the tax rate on capital income.6 These caveats notwithstanding, we proceed as in
the literature.

4If these models were modified to incorporate permanent shocks to agents’ preferences for leisure or to
government spending, these shocks would have no long run impact on labor productivity, because labor
productivity is determined by the discount rate and the underlying growth rate of technology.

5See Basu, Fernald and Kimball (1999) for an interesting application of this alternative approach. Vig-
fusson (2004) combines these two approaches by using a constructed technology series in place of labor
productivity in a VAR with a long-run identification assumption.

6Uhlig (2004) and Gali and Rabanal (2004) argue on empirical grounds that the shocks estimated using the
identifying assumptions imposed in this papers and the relevant literature do not correspond to permanent
shocks to the tax rate on capital income.
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We estimate the dynamic effects of a technology shock using the method proposed in
Shapiro and Watson (1988). The starting point of the approach is the relationship:

∆ft = µ+ β(L)∆ft−1 + α̃(L)Xt + εzt . (1)

Here ft denotes the log of average labor productivity and α̃(L), β(L) are polynomials of
order q and q− 1 in the lag operator, L, respectively. Also, ∆ is the first difference operator
and we assume that ∆ft is covariance stationary. The white noise random variable, εzt ,
is the innovation to technology. Suppose that the response of Xt to an innovation in some
non-technology shock, εt, is characterized byXt = γ(L)εt, where γ(L) is a polynomial in non-
negative powers of L. We assume that each element of γ(1) is non-zero. The assumption that
non-technology shocks have no impact on ft in the long run implies the following restriction
on α̃(L) :

α̃(L) = α(L)(1− L), (2)

where α(L) is a polynomial of order q − 1 in the lag operator. To see this, note first that
the only way non-technology shocks can have an impact on ft is by their effect on Xt, while
the long-run impact of a shock to εt on ft is given by:

α̃(1)γ(1)

1− β(1)
.

The assumption that ∆ft is covariance stationary guarantees |1− β(1)| <∞. This assump-
tion, together with our assumption on γ(L), implies that for the long-run impact of εt on ft
to be zero it must be that α̃(1) = 0. This in turn is equivalent to (2).
Substituting (2) into (1) yields the relationship:

∆ft = µ+ β(L)∆ft−1 + α(L)∆Xt + εzt . (3)

We obtain an estimate of εzt by using (3) in conjunction with estimates of µ, β(L) and α(L).
If one of the shocks driving Xt is εzt , then Xt and εzt will be correlated. So, we cannot
estimate the parameters in β(L) and α(L) by ordinary least squares (OLS). Instead, we
apply the standard instrumental variables strategy used in the literature. In particular, we
use as instruments a constant, ∆ft−s and Xt−s, s = 1, 2, ...,q.
Given an estimate of the shocks in (3), we obtain an estimate of the dynamic response of ft

and Xt to ε
z
t as follows. We begin by estimating the following q

th order vector autoregression
(VAR):

Yt = α+B(L)Yt−1 + ut, Eutu0t = V, (4)

where

Yt =

µ
∆ft
Xt

¶
,

and ut is the one-step-ahead forecast error in Yt. Also, V is a positive definite matrix. The
parameters in this VAR, including V, can be estimated by OLS applied to each equation.
In practice, we set q = 4. The fundamental economic shocks, et, are related to ut by the
following relation:

ut = Cet, Eete
0
t = I.
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Without loss of generality, we suppose that εzt is the first element of et. To compute the
dynamic response of the variables in Yt to ε

z
t , we require the first column of C. We obtain this

column by regressing ut on εzt by ordinary least squares. Finally, we simulate the dynamic
response of Yt to εzt . For each lag in this response function, we computed the centered 95
percent Bayesian confidence interval using the approach for just-identified systems discussed
in Doan (1992).7

3 Empirical Results

In this section we present our benchmark empirical results. The first subsection reports
results based on a simple bivariate VAR. In the level specification of this VAR, ft is the log
of business labor productivity and Xt (the second element in Yt) is the log level of hours
worked in the business sector divided by a measure of the population, ht.

8 In the difference
specification, Xt is the growth rate of hours worked, ∆ht. To assess the robustness of our
results to alternative measures of productivity and hours worked, we re-did our analysis
using alternative measures of productivity and hours worked. In all cases our qualitative
findings were the same.9 In section (6.1) we consider the sensitivity of our analysis to the
possibility that ht is stationary about a quadratic trend.
In the second subsection we extend our analysis to allow for a richer set of variables. We

do so for two reasons. First, the responses of these other variables are interesting in their
own right. Second, there is no a priori reason to expect that the answers generated from
small bivariate systems will survive in larger dimensional systems. If variables other than
hours worked belong in the basic relationship governing the growth rate of productivity, and
these are omitted from (1), then simple bivariate analysis will not generally yield consistent
estimates of innovations to technology.
Our extended system allows for four additional macroeconomic variables: the federal

funds rate, the rate of inflation, the log of the ratio of nominal consumption expenditures to
nominal GDP, and the log of the ratio of nominal investment expenditures to nominal GDP.10

The last two variables correspond to the ratio of real investment and consumption, measured
in units of output, to total real output. Standard models, including those that allow for

7This approach requires drawing B(L) and V repeatedly from their posterior distributions. Our results
are based on 2, 500 draws.

8Our data were taken from the DRI Economics database. The mnemonic for business labor productivity is
LBOUT. The mnemonic for business hours worked is LBMN. The business hours worked data were converted
to per capita terms using a measure of the civilian population over the age of 16 (mnemonic, P16).

9The alternative measures of productivity and hours which we considered were (i) real GDP divided by
total business hours, business hours worked divided by civilian population over the age of 16), (ii) real GDP
divided by non-farm business hours worked, non-farm business hours worked divided by civilian population
over the age of 16, (iii) non - farm business output divided by non farm business hours worked, non farm
business hours worked divided by civilian population over the age of 16.
10Our measures of the growth rate of labor productivity and hours worked are the same as in the bivariate

system. We measured inflation using the growth rate of the GDP deflator, measured as the ratio of nominal
output to real output (GDP/GDPQ). Consumption is measured as consumption on nondurables and services
and government expenditures: (GCN+GCS+GGE). Investment is measured as expenditures on consumer
durables and private investment: (GCD+GPI). The federal funds series corresponds to FYFF. All mnemonics
refer to DRI’s BASIC economics database.
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investment-specific technical change, imply these two variables are covariance stationary.11

Data on our six variables are displayed in Figure 1.
We choose to work with per capita hours worked, rather than total hours worked, because

this is the object that appears in most general equilibrium business cycle models. There
are two additional reasons for this choice. First, for our short sample period, classical
statistical tests yield strong evidence against the difference stationary specification of log
total hours worked.12 Because the short sample plays an important role in our analysis,
we are uncomfortable adopting the difference stationary specification. Second, suppose we
assume, as in Gali (1999), that the log of hours is stationary about a linear trend. We find
this specification unappealing because it implies that permanent shocks, originating from
demographic factors, to total hours and total output are ruled out. By working with per
capita hours, we do not exclude the possibility that demographic shocks have permanent
effects on total hours worked and total output. In sum, it is clear that total hours worked
are not a stationary process. But we are uncomfortable modeling this non-stationarity by
either a simple unit root or a linear trend. Rather than adopt a non-standard model of the
low frequency component of total hours worked, we focus on per capita hours worked.

3.1 Bivariate Results

In this subsection we report results based on a bivariate VAR of labor productivity growth
and hours worked. We consider two sample periods. The longest period for which data are
available on the variables in our VAR is 1948Q1-2001Q4. We refer to this as the long sample.
The start of this sample period coincides with the one in Francis and Ramey (2003) and Gali
(1999). Francis and Ramey (2003) and Gali, Lopez-Salido, and Valles (2002) work, as we
do, with per capita hours worked, while Gali (1999) works with total hours worked. Since
much of the business cycle literature works with post-1959 data, we also consider a second
sample period given by 1959Q1-2001Q4. We refer to this as the short sample.
We now turn to our results. Panel A of Figure 2 displays the response of log output and

log hours to a positive technology shock, based on the long sample. A number of interesting
results emerge here. First, the impact effect of the shock on output and hours is positive
(1.17 percent and 0.34 percent, respectively) after which both rise in a hump shaped pattern.
The responses of output are statistically significantly different from zero over the 20 quarters
displayed. Second, in the long run, output rises by 1.33 percent. By construction the long

11See for example Altig, Christiano, Eichenbaum and Linde (2002). This paper posits that investment
specific technical change is trend stationary. See also Fisher (2003), which assumes investment specific
technical change is difference stationary. Both frameworks imply that the consumption and investment
ratios discussed in the text are stationary.
12Specifically, we regressed the growth rate of total hours worked on a constant, time, the lag level of log

total hours worked and four lags of the growth rate of total hours worked and 4 lags of productivity growth.
We then computed the F statistic for the null hypothesis that the coefficient on the lag level of log total hours
worked and the coefficient on time are jointly zero. This amounts to a test of the null hypothesis that log
total hours worked is difference stationary, against the alternative that it is stationary about a linear trend.
We reject this null hypothesis at the 1 percent significance value. We used the tabulated critical values in
‘Case 4’, Table B.7, of Hamilton (1994, p. 764). To check these, we also computed bootstrap critical values
by simulating a bivariate, 4-lag VAR fit to data on the growth rate of productivity and the growth rate of
total hours. The calculations were performed using the short and long sample periods.
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run effect on hours worked is zero. The response of hours worked is statistically significant
during the time period between two and ten quarters after the impact of the shock. Third,
since output rises by more than hours does, labor productivity also rises in response to a
positive technology shock.
Panel B of Figure 2 displays the analogous results for the short sample period. As

before, the impact effect of the shock on output and hours is positive (0.94 and 0.14 percent,
respectively), after which both rise in a hump-shaped pattern. The long run impact of the
shock is to raise output by 0.96 percent. Again, average productivity rises in response to the
shock and there is no long run effect on hours worked. So regardless of which sample period
we use, the same picture emerges: a permanent shock to technology drives hours, output
and average productivity up.
The previous results stand in sharp contrast to the literature according to which hours

worked fall after a positive technology shock. The difference cannot be attributed to our
identifying assumptions or the data that we use. We can reproduce the bivariate-based
results in the literature if we assume that Xt in (1) and (3) corresponds to the growth rate
of hours worked rather than the level of hours worked. The two panels in Figure 3 display
the analogous results to those in Figure 2 with this change in the definition of Xt.
According to the point estimates displayed in Panels A and B of Figure 3, a positive shock

to technology induces a rise in output, but a persistent decline in hours worked.13 Confidence
intervals are clearly very large. Still, the initial decline in hours worked is statistically
significant. This result is consistent with the bivariate analysis in Gali (1999) and Francis
and Ramey (2003).

3.2 Moving Beyond Bivariate Systems

In this section we report empirical results on the six variable VAR discussed above. To
conserve on space we focus on the 1959 - 2001 sample period.14 Figure 4 reports the impulse
response functions corresponding to the level specification, i.e., the system in which the log
of per capita hours worked enters in levels. As can be seen, the basic qualitative results
from the bivariate analysis regarding hours worked and output are unaffected: both rise in
hump-shaped patterns after a positive shock to technology.15 Turning to the other variables
in the system, we see that the technology shock leads to a prolonged fall in inflation and a
rise in the federal funds rate. Both consumption and investment rise, with a long run impact

13For the long sample, the contemporaneous effect of the shock is to drive output up by 0.56 percent and
hours down by 0.31 percent. The long run effect of the shock is to raise output by 0.84 percent and hours
worked by 0.06 percent. For the short sample, the contemporaneous effect of the shock is to raise output
0.43 percent and reduce hours worked by 0.30 percent. The long run effect of the shock is to raise output
by 0.74 percent and hours worked by 0.05 percent.
14Data on the federal funds rate is available starting only in 1954. We focus on the post 1959 results so

that we can compare results to the bivariate analysis. We found that our 6 variable results were not sensitive
to using data that starts in 1954.
15The contemporaneous effect of the shock is to drive output and hours worked up by 0.51 percent and 0.11

percent, respectively. The long run effect of the shock is to raise output by 0.97 percent. By construction
the shock has no effect on hours worked in the long run.

8



that is, by construction, equal to the long run rise in output.16

Figure 5 reports the impulse response functions corresponding to the difference specifi-
cation, i.e. the system in which the log of per capita hours enters in first differences. Here
a permanent shock to technology induces a long lived decline in hours worked, and a rise in
output.17 In the long run, the shock induces a 0.55 percent rise in output and a 0.25 percent
decline in hours worked. Turning to the other variables, we see that the shock induces a
rise in consumption and declines in the inflation rate and the federal funds rate. Investment
initially falls but then starts to rise.
To conclude, the evidence in this section reports conflicting answers to the question:

how do hours worked respond to a positive technology shock? Each answer is based on
a different statistical model, corresponding to whether we assume that hours worked are
difference stationary or stationary in levels. To determine which answer is more plausible,
we need to select between the underlying statistical models. In the next section we address
the issue using standard classical diagnostic tests. Sections (5), (5.2) and (5.3) address the
issue using complementary encompassing methods.

4 Analyzing the Results: Classical Diagnostic Tests

We begin by testing the null hypothesis of a unit root in hours worked using the Augmented
Dickey Fuller (ADF) test. For both sample periods, this hypothesis cannot be rejected at
the 10 percent significance level.18 However, it is well known that the ADF test has very
poor power properties relative to the alternative that the series in question is a persistent
stationary stochastic process. Hansen (1995) and Elliott and Jansson (2003) argue that large
power gains can be achieved by including correlated stationary covariates in the regression
equation underlying the ADF test statistic. In the results reported below, we use a version
of the covariate augmented Dicky-Fuller (CADF) test proposed in Hansen (1995). Elliott
and Jansson (2003) propose a related but different test. We work with a version of Hansen’s
CADF test for two reasons. First, Elliott and Jansson show in simulations that the CADF
test can have better size properties but weaker power than their test. We are particularly
concerned that the size of our test is correct. Second, the CADF test is the same as the test
for weak instruments discussed below. So using the CADF test highlights the connection
between an important subset of the results in our paper.
In general it is difficult to know which stationary covariates to include in the CADF

test. But in our context the natural candidates are the stationary variables appearing in the
VAR. Recall that in the difference specification of the bivariate VAR, Xt corresponds to ∆ht.

16The contemporaneous effect of the shock is to drive consumption and investment up by 0.42 and 0.90
percent, respectively. The long run effect of the shock is to raise both consumption and investment by 0.97
percent.
17The contemporaneous effect of the shock is to drive output up by 0.12 percent and hours worked down

by −0.27 percent.
18For the long and short sample, the ADF test statistic, with three lags, is equal to −2.20 and −2.53,

respectively. The critical value corresponding to a 10 percent significance level is −2.57. In Appendix B, we
compute the critical values based on bootstrap simulations of the estimated difference model based on the
long and short samples. The 10 percent critical values are -2.82 and -2.76, respectively. These critical values
also result in a failure to reject at the 10 percent significance level.
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With this in mind, we regressed ∆ht on a constant, ht−1, and the predetermined variables
in the bivariate VAR instrumental variables regression, (5). These variables are ∆ht−s for
s = 1, 2, 3 and ∆ft−s, for s = 1, 2, 3, 4. We then compute the t statistic associated with the
coefficient on ht−1. In effect, this t statistic measures the incremental information in ht−1
about ∆ht, above and beyond lagged values of ∆ht and ∆ft. If the difference specification
were correct, the additional information would be zero.
To assess the significance of the t statistics in small samples, we proceeded using the

following bootstrap procedure. For each sample period, we simulated 2, 500 artificial data sets
using the corresponding estimated difference specification as the data-generating process. In
each data set we calculated the t statistic on the coefficient of ht−1 in the regression equation
discussed in the previous paragraph. We then calculated the first, fifth and tenth percentile of
these t statistics. These percentiles are reported in Table 1 in the columns labeled ‘Simulated
Critical Value’. Table 1 indicates that, for both the short and long sample period, we can
reject the null hypothesis of a unit root in ht at the 5 percent significance level, but not at
the 1 percent level level.
We also redid the CADF test using the covariates suggested by our six variable VAR.

Specifically, we regressed ∆ht on a constant, ht−1, ∆ht−s , for s = 1, 2, 3, and ∆ft−s, s =
1, 2, 3, 4 as well as four lagged values of the federal funds rate, the rate of inflation, the
log of the ratio of nominal consumption expenditures to nominal GDP, and the log of the
ratio of nominal investment expenditures to nominal GDP. We then computed the t statistic
associated with the coefficient on ht−1 and the ‘critical values’ of this t statistic based on
a bootstrap procedure in which the data generating process is the six variable difference
specification VAR, estimated over the post-1959 sample period. From Table 1 we see that
the null hypothesis of a unit root in ht can be rejected, in the short sample period, at the 1
percent significance level.
In sum, classical statistical tests reveal strong evidence against the hypothesis that per

capita hours worked is a difference stationary stochastic process. Our finding that the CADF
test provides much stronger evidence than the ADF test against the hypothesis of a unit root
in ht is consistent with the analysis of Hansen (1995) and Elliott and Jansson (2003). The
basic point is that incorporating additional variables into unit root tests can dramatically
raise their power. Monte Carlo studies presented in Appendix B make, in our context, this
power gain concrete.
We conclude this section by testing the null hypothesis that per capita hours is a sta-

tionary stochastic process (with no time trend) using the KPSS test (see Kwiatkowski et
al. (1992)).19 For the short sample period, we cannot reject, using standard asymptotic
distribution theory, this null hypothesis at the five percent significance level.20 For the long
sample period, we can reject the null hypothesis at this significance level. However, it is
well known that the KPSS test (and close variants like the Leybourne and McCabe (1994)
test) rejects the null hypothesis of stationarity too often if the data-generating process is a
persistent but stationary time series.21 It is common practice to use size-corrected critical

19In implementing this test we set the number of lags in our Newey-West estimator of the relevant covari-
ance matrix to eight.
20The value of the KPSS test statistic is 0.4. The asymptotic critical values corresponding to ten and five

percent significance levels are 0.347 and 0.46, respectively.
21See Table 3 in Kwiatkowski et al. (1992) and also Caner and Kilian (1999) who provide a careful
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values that are constructed using data simulated from a particular data-generating process.22

We did so using the level specification VAR estimated over the long sample. Specifically,
using this VAR as the data-generating process, we generated 1000 synthetic data sets, each
of length equal to the number of observations in the long sample period, 1948-2001.23 For
each synthetic data set we constructed the KPSS test statistic. In 90 and 95 percent of the
data sets, the KPSS test statistic was smaller than 1.89 and 2.06, respectively. The value
of this statistic computed using the actual data over the period 1948-2001 is equal to 1.24.
Thus we cannot reject the null hypothesis of stationarity at conventional significance levels.
Although consistent with the view that per capita hours are stationarity, this test cannot
be viewed as definitive, because the KPSS test may not have substantial power against the
alternative of a unit root.
Viewed overall, the classical tests discussed in this section are supportive of the hypothesis

that per capita hours worked are stationary. Results in Hansen (1995) and our own Monte
Carlo indicate that Hansen’s CADF test has good size and power properties. Recall that
this test rejects the null hypothesis of a unit root in ht.We take this rejection to be our most
compelling evidence in favor of the level specification versus the difference specification.
Later in section 6.1 we briefly consider the impact of deterministic trends in ht on inference
about the effect of a technology shock on hours worked.

5 Encompassing Tests

The preceding section used conventional classical methods to select between the level and
difference specifications of our VAR. An alternative and, at least to us, more compelling way,
of selecting between the competing specifications is to use an encompassing criterion. Under
this criterion, a model must not just be defensible on standard classical diagnostic grounds.
It must also be able to predict the results based on the opposing model. If one of the two
views fails this encompassing test, the one that passes is to be preferred.

5.1 A Priori Considerations

In what follows we review the impact of specification error and sampling uncertainty on the
ability of each specification to encompass the other. Other things equal, the specification
that will do best on the encompassing test is the one that predicts the other model is
misspecified. This consideration leads us to expect the level specification to do better. This
is because the level specification implies the first difference specification is misspecified,
while the difference specification implies the level specification is correctly specified.24 This

assessment of the size properties of the KPSS and Leybourne and McCabe tests.
22Caner and Kilian (1999) provide critical values relevant for the case in which the data generating process

is a stationary AR(1) with an autocorrelation coefficient of 0.95. Using this value we fail to reject, at the
five percent significance level, the null hypothesis of stationarity over the longer sample period.
23The maximal eigenvalue of the estimated level specification VAR is equal to 0.972. We also estimated

univariate AR(4) representations for hours worked using the synthetic data sets and calculated the maximal
roots for the estimated univariate representations of hours worked. In no case did the maximal root exceed
one. Furthermore, 95 percent of the simulations did not have a root greater than 0.982.
24By correctly specified, we mean that the econometrician could recover the true parameter values.
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consideration is not definitive because sampling considerations also enter. For example, the
difference specification implies that the level specification suffers from a weak instrument
problem. Weak instruments can lead to large sampling uncertainty as well as bias. These
considerations may help the difference specification.

5.1.1 Level Specification

Suppose the level specification is true. Then the difference specification is misspecified. To
see why, recall the two steps involved in estimating the dynamic response of a variable to
a technology shock. The first involves the instrumental variables equation used to estimate
the technology shock itself. The second involves the vector autoregression used to obtain the
actual impulse responses.
Suppose the econometrician estimates the instrumental variables equation under the mis-

taken assumption that hours worked is a difference stationary variable. In addition, assume
that the only variable in Xt is log hours worked. The econometrician would difference Xt
twice and estimate µ along with the coefficients in the finite-ordered polynomials, β(L) and
α(L), in the system:

∆ft = µ+ β(L)∆ft−1 + α(L)(1− L)∆Xt + εzt .

Suppose that Xt has not been over differenced, so that its spectral density is different from
zero at frequency zero. Then, in the true relationship, the term involving Xt is actually
ᾱ(L)∆Xt, where ᾱ(L) is a finite ordered polynomial. In this case, the econometrician com-
mits a specification error because the parameter space does not include the true parameter
values. The only way α(L)(1−L) could ever be equal to ᾱ(L) is if α(L) has a unit pole, i.e.,
if α(L) = ᾱ(L)/(1 − L). But, this is impossible, since no finite lag polynomial, α(L), has
this property. So, incorrectly assuming that Xt has a unit root entails specification error.
We now turn to the VAR used to estimate the response to a shock. A stationary series

that is first differenced has a unit moving average root. It is well known that there does
not exist a finite-lag vector autoregressive representation of such a process. So here too,
proceeding as though the data are difference stationary entails a specification error.
Of course, it would be premature to conclude that the level specification is likely to

encompass the difference specification’s results. For this to occur, the level specification has
to predict not just that the difference specification entails specification error. It must be
that the specification error is enough to account quantitatively for the finding one obtains
when adopting the difference specification.

5.1.2 Difference Specification

Suppose the difference specification is true. What are the consequences of failing to assume
a unit root in hours worked, when there in fact is one? To answer this question, we must
address two sets of issues: specification error and sampling uncertainty. With respect to the
former, note that there is no specification error in failing to impose a unit root. To see this,
first consider the instrumental variables regression:

∆ft = µ+ β(L)∆ft−1 + α(L)∆Xt + εzt . (5)
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Here, the polynomials, β(L) and α(L), are of order q and q − 1, respectively. The econo-
metrician does not impose the restriction α(1) = 0 when it is, in fact, true. This is not a
specification error, because the parameter space does not rule out α(1) = 0. In estimating
the VAR, the econometrician also does not impose the restriction that hours worked is dif-
ference stationary. This also does not constitute a specification error because the level VAR
allows for a unit root (see Sims, Stock and Watson (1990)).
We now turn to sampling uncertainty. Recall that the econometrician who adopts the

level specification uses lagged values of Xt as instruments for ∆Xt. But if Xt actually has a
unit root, this entails a type of weak instrument problem. Lagged Xt’s are poor instruments
for ∆Xt because ∆Xt is driven by relatively recent shocks while Xt is heavily influenced by
shocks that occurred long ago. At least in large samples, there is little information in lagged
Xt’s for ∆Xt.

25

Results in the literature suggest that weak instruments can lead to substantial sampling
uncertainty. This uncertainty could help the difference specification encompass the level
results simply as a statistical artifact. In addition, weak instruments can lead to bias, which
could also help the difference specification.
The implications of the literature (see, for example, Staiger and Stock (1997)) for the

weak instrument problem are suggestive, though not definitive in our context.26 Since the
precise nature of the problem is somewhat different here, we now briefly discuss it.27 First,
we analyze the properties of the instrumental variables estimator. We then turn to the
impulse response functions.
Suppose the instrumental variables relation is given by (5) with µ = 0. Let the predeter-

mined variables in this relationship be written as:

z̄t = [∆ft−1, ...,∆ft−q,∆Xt−1, ...,∆Xt−q−1].

So, the right hand side variables in (5) are given by xt = [z̄t,∆Xt]. The econometrician who
adopts the level specification uses instruments composed of q lagged ∆ft’s and q lagged Xt’s.
This is equivalent to working with the instrument set zt = [z̄t,Xt−1]. Relation (5) can be
written as:

∆ft = xtδ + εzt .

The instrumental variables estimator, δIV , expressed as a deviation from the true parameter
value, δ, is

δIV − δ =

µ
1

T

X
z0txt

¶−1µ
1

T

X
z0tε

z
t

¶
. (6)

25To see this, consider the extreme case in which Xt is a random walk. In this case, Xt−1 is the sum of
shocks at date t − 1 and earlier, while ∆Xt is a function only of date t shocks. In this case, there is no
overlap between ∆Xt and Xt−1. More generally, when ∆Xt is covariance stationary, it is a square summable
function of current and past shocks, while Xt−1 is not. In this sense, the weight placed by Xt−1 on shocks
in the distant past is larger than the weight placed by ∆Xt on those shocks.
26For a discussion of this in the context of instrumental variables regressions of consumption growth on

income, see Christiano (1989) and Boldrin, Christiano and Fisher (1999).
27A similar weak instrument problem is studied in dynamic panel models. This literature considers the

case when the lagged level of a variable is used to instrument for its growth rate and the variable is nearly
a unit root process. The literature studies the consequences of the resulting weak instrument problem when
the panel size increases, holding the number of time periods fixed (see Blundell and Bond 1998, and Hahn,
Hausman, and Kuersteiner 2003.) Our focus is on what happens as the number of observations increases.
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Here
P
signifies summation over t = 1, ..., T. To simplify notation, we also do not index the

estimator, δIV , by T . Relation (6) implies

δIV − δ =

·
1
T

P
z̄0tz̄t

1
T

P
z̄0t∆Xt

1
T

P
Xt−1z̄t 1

T

P
Xt−1∆Xt

¸−1 · 1
T

P
z̄0tε

z
t

1
T

P
Xt−1εzt

¸
L→
·
Qz̄z̄ Qz̄∆X
ϕ ζ

¸−1µ
0
%

¶
,

where ‘
L→’ signifies ‘converges in distribution’. Here, ϕ, ζ and % are well defined random

variables, constructed as functions of integrals of Brownian motion (see, e.g., Proposition
18.1 in Hamilton, 1994, pages 547-548). According to the previous expression, δIV − δ has a
non-trivial asymptotic distribution.
By contrast, suppose that there were a ‘strong’ instrument that could be used instead.

Then, the asymptotic distribution of δIV − δ collapses onto a single point and there is no
sampling uncertainty.28 This is the sense in which our type of weak instruments lead to large
sampling uncertainty. See Appendix A for an analytic example.
Now consider the large sample distribution of our estimator of impulse response functions.

Denote the contemporaneous impact on ht of a one-standard deviation shock to technology
by Ψ0 = E(utε

z
t )/σεz . Here, ut denotes the disturbance in the VAR equation for ∆Xt. We

denote the estimator of Ψ0 by ΨIV0 :

ΨIV
0 = ρIV

·
1

T

X
û2t

¸1/2
,

ρIV =
1
T

P
ûtε

z,IV
t£

1
T

P
û2t
¤1/2 · 1

T

P³
εz,IVt

´2¸1/2 .
Here, ût is the fitted value of ut and εz,IVt is the instrumental variables estimator of the
technology shock:29

εz,IVt = ∆ft − xtδIV = xt
¡
δ − δIV

¢
+ εzt .

The formulas provided by Hamilton (1994, Theorem 18.1) can be used to show that the
asymptotic distribution of ΨIV

0 exists and is a function of the asymptotic distribution of

28It is unclear what would be a strong instrument. For example, when the difference specification is true,
lagged growth rates could also be a weak instruments for the level VAR.
Consider the case when the true dgp is a difference-specification VAR with q − 1 lags. Suppose that the

analyst uses a level specification with q lags. Because ∆ht−i (for i = 1 to q − 1) is already present in (3),
the most recent observation of ∆h that can be an instrument is ∆ht−q. Since the true dgp is the difference
specification with a VAR(q − 1) representation, the partial correlation between ∆ht and ∆ht−q is zero. It
follows that ∆ht−q is a weak instrument.
In practice, we also do not find support for using lagged hours growth as an instrument. In particular, for

the long-sample, the F-test of weak instruments for hours growth is 0.01 and for the short sample is 1.65.
These values are not statistically significant and are well below the value of ten recommended by Staiger
and Stock. This result indicates that ∆ht−q is a weak instrument.
29Here, ût is the fitted residual corresponding to u2t, the second disturbance in (4). We delete the subscript,

2, to keep from cluttering the notation.
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δ − δIV (see Appendix A for an illustration). This result follows from two observations.
First, the parameter estimates underlying ût converge in probability to their true value. So,
1
T

P
û2t converges in probability to σ

2
u, the variance of ut. This is true even when the VAR is

estimated using the level of Xt (see Sims, Stock and Watson, 1990). Second, by assumption
both xt and ε

z
t are stationary variables with well-defined first and second moments. It follows

that the asymptotic distribution of ΨIV
0 is non-trivial because the asymptotic distribution of

δIV is non-trivial. The exact asymptotic distribution ofΨIV
0 can be worked out by application

of the results in Hamilton (1994, theorem 18.1).
The previous reasoning establishes that the weak instrument problem leads to high sam-

pling uncertainty in ΨIV0 . In addition, there is no reason to think that the asymptotic
distribution of ΨIV

0 is even centered on Ψ0. Appendix A presents an example where Ψ
IV
0 is

centered at zero.
The previous analysis raises the possibility that the moments of estimators of interest to

us may not exist. In fact, it is not possible to guarantee that the asymptotic distribution
of δIV has well-defined first and second moments. For example, in numerical analysis of
a special case reported in Appendix A, we find that the asymptotic distribution of δIV

resembles a Cauchy distribution, which has a median, but no mean or variance. For the
simulation methodology that we use below, it is crucial that distributions of impulse response
estimators have first and second moments. Fortunately, all the moments of the asymptotic
distribution of ΨIV0 are well defined. This follows from the facts that ρIV is a correlation
and σ̂u converges in probability to σu. These two observations imply that the asymptotic
distribution of ΨIV

0 has compact support, being bounded above by σu and below by −σu.
To summarize, in this subsection we investigated what happens when an analyst estimates

an impulse response function using the level specification when the difference specification
is true. Our results can be summarized as follows. First and second moments of the esti-
mator are well defined. However, the estimator may be biased and may have large sampling
uncertainty.

5.2 Encompassing Results: Bivariate Systems

In this section we present the results of our encompassing analysis for the level and difference
specifications based on the two variable VARs.

5.2.1 Does the Level Specification Encompass the Difference Specification Re-
sults?

To assess the ability of the level specification to encompass the difference specification,
we generated two groups of one thousand artificial data sets from the estimated VAR in
which the second element of Yt is the log level of hours worked. In the first and second
group, the VAR corresponds to the one estimated using the long and short sample period,
respectively. So in each case the data generating mechanism corresponds to the estimated
level specification. The number of observations in each artificial data set of the two groups
is equal to the corresponding number of data points in the sample period.
In each artificial data sample, we proceeded under the (incorrect) assumption that the

difference specification was true, estimated a bivariate VAR in which hours worked appears
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in growth rates, and computed the impulse responses to a technology shock. The mean
impulse responses appear as the thin line with circles in Figure 6. These correspond to the
prediction of the level specification for the impulse responses that one would obtain with the
(misspecified) difference specification. The lines with triangles are reproduced from Figure
3 and correspond to our point estimate of the relevant impulse response function generated
from the difference specification. The gray area represents the 95 percent confidence interval
of the simulated impulse response functions.30

From Figure 6 we see that, for both sample periods, the average of the impulse response
functions emerging from the ‘misspecified’ growth rate VAR are very close to the actual
estimated impulse response generated using the difference specification. Notice in particular
that hours worked are predicted to fall after a positive technology shock even though they
rise in the actual data-generating process. Evidently the specification error associated with
imposing a unit root in hours worked is large enough to account for the estimated response of
hours that emerges from the difference specification. That is, our level specification attributes
the decline in hours in the estimated VAR with differenced hours to over-differencing. Note
also that in all cases the estimated impulse response functions associated with the differ-
ence specification lie well within the 95 percent confidence interval of the simulated impulse
response functions. We conclude that the level specification convincingly encompasses the
difference specification.

5.2.2 Does the Difference Specification Encompass the Level Results?

To assess the ability of the difference specification to encompass the level specification, we
proceeded as above except now we take as the data-generating process the estimated VAR’s
in which hours appears in growth rates. Figure 7 reports the analogous results to those
displayed in Figure 4. The thick, solid lines, reproduced from Figure 2, are the impulse
responses associated with the estimated level specification. The thin lines with the triangles
are reproduced from Figure 3 and are the impulse responses associated with the difference
specification.
The thin lines with circles in Figure 7 are the mean impulse response functions that result

from estimating the level specification of the VAR using the artificial data. They represent
the difference specification’s prediction for the impulse responses that one would obtain
with the level specification. The gray area represents the 95 percent confidence interval of
the simulated impulse response functions. This area represents the difference specification’s
prediction for the degree of sampling uncertainty that an econometrician working with the
level specification would find.
Two results are worth noting. First, the thin line with triangles and the thin line with

circles are very close to each other. Evidently, the mean distortions associated with not
imposing a unit root in hours worked are not very large. In particular, the difference specifi-
cation predicts - counterfactually - that an econometrician who adopts the level specification
will find that average hours fall for a substantial period of time after a positive technology
shock. Notice, however, the wide confidence interval about the thin line, which includes the

30Confidence intervals were computed point wise as the average simulated response plus or minus 1.96
times the standard deviation of the simulated responses.
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thick, solid line. So, the difference specification can account for the point estimates based
on the level specification, but only as an accident of sampling uncertainty.
At the same time, the prediction of large sampling uncertainty poses important challenges

to the difference specification. The prediction of large sampling uncertainty rests fundamen-
tally on the difference specification’s implication that the econometrician working with the
level specification encounters a weak instrument problem. As we show below, when we apply
a standard test for weak instruments to the data, we find little evidence of this problem. It
turns out that this test is the same as the CADF test for a unit root in per capita hours
worked. The finding that we can reject the null hypothesis of a weak instrument problem
is the same as our result that we can reject the null hypothesis of a unit root in per capita
hours worked.
To assess whether there is evidence of a weak instrument problem we examined a standard

F test for weak instruments. We regressed ∆Xt on a constant, Xt−1, and the predetermined
variables in the instrumental variables regression, (5). These are ∆Xt−j, j = 1, 2 , 3 and
∆ft−s, s = 1, 2, 3, 4.31 Our weak instruments F statistic is the square of the t statistic
associated with the coefficient on Xt−1. In effect, our F statistic measures the incremental
information in Xt−1 about ∆Xt. If the difference specification is correct, the additional
information is zero. Notice that our test for weak instruments is equivalent to the covariate
ADF test (Hansen 1995) already discussed in Section (4). The only difference is that we are
using an F statistic rather than a t statistic. Here we use the F statistic to keep closer to
the weak instrument literature (see for example Staiger and Stock (1997)).
For the sample periods, 1948-2001 and 1959-2001, the value of our test statistic is 10.94

and 10.59, respectively. To assess the significance of these F statistics, we proceeded using
the following bootstrap procedure. For each sample period, we simulated 2,500 artificial
data sets using the corresponding estimated difference specification as the data-generating
process. For the 1948-2001 sample, we found that 2.3 percent of the simulated F statistics
exceed 10.94. For the shorter sample, the corresponding result is 0.84 percent. So, in the
short sample, the weak instrument hypothesis is strongly rejected. The evidence is somewhat
more mixed in the longer sample.

5.2.3 Quantifying the Relative Plausibility of the Two Specifications

The results of the previous two subsections indicate that the level specification can easily
account for the estimated impulse response functions obtained with the difference specifica-
tion. The difference specification has a harder time. Although it can account for the level
results, its ability to do so rests fundamentally on its implication that the level specification
is distorted by a weak instrument problem. In this section we quantify the relative plausi-
bility of the two specifications. We do so using the type of posterior odds ratio considered in
Christiano and Ljungqvist (1988) for a similar situation where differences and levels of data
lead to very different inferences.32 The basic idea is that the more plausible of the two VAR’s

31As discussed in Section 2, the lag polynomial α (L) is of order q − 1. Therefore, when q equals 4, then
only ∆Xt−1,∆Xt−2, and ∆Xt−3 are in the instrumental variables regression (5).
32Eichenbaum and Singleton (1988) found, in a VAR analysis, that when they worked with first differences

of variables, there was little evidence that monetary policy plays an important role in business cycles.
However, when they worked with a trend stationary specification, monetary policy seems to play an important
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is the one that has the easiest time explaining the facts: (i) the level specification implies
that hours worked rise after a technology shock, (ii) the difference specification implies that
hours worked falls, and (iii) the value of the weak instruments F statistic.
We use a scalar statistic - the average percentage change in hours in the first six periods

after a technology shock - to quantify our findings for hours worked. The level specification
estimates imply this change, µh,is equal to 0.89 and 0.55 for the long and short sample
period, respectively. The analogous statistic, µ∆h, for the difference is −0.13 and −0.17 in
the long and short sample period, respectively.
To evaluate the relative ability of the level and difference specification to simultaneously

account for µh and µ∆h, we proceed as follows. We simulated 5000 artificial data sets using
each of our two estimated VARs as the data generating mechanism. In each data set, we
calculated (µh, µ∆h) using the same method used to compute these statistics in the actual
data. To quantify the relative ability of the two specifications to account for the estimated
values of (µh, µ∆h), we computed the frequency of the joint event, µh > 0 and µ∆h < 0.
Table 2 reports the relative frequency of these events. For the long sample period, the level
and difference specifications imply that this frequency is 66.4 and 36.1, respectively. That
is,

P (Q|A) = 0.662

P (Q|B) = 0.358,

where Q denotes the event, µh > 0 and µ∆h < 0, A indicates the level specification, B
indicates the difference specification and P denotes the percent of the impulse response
functions in the artificial data sets in which µh > 0 and µ∆h < 0. We could describe the
odds in favor of the level specification relative to the difference specification as

P (A|Q)
P (B|Q) =

P (Q|A)P (A)
P (Q|B)P (B)

If our priors over A and B were equal, (i.e. P (A) = P (B) = 1/2), then the odds would be

P (A|Q)
P (B|Q) =

0.662

0.358
= 1.85

Given these observations, we conclude that the odds in favor of the level specification relative
to the difference specification are 1.85 to 1.
Similar results emerge for the short sample period. The estimated values of P (Q|A) and

P (Q|B) are 0.531 and 0.286. So, the odds in favor of the level specification relative to the
difference specification are again 1.86 to 1.
We now incorporate into our analysis information about the relative ability of the two

specifications to account for the weak instruments F statistic. We do this by redefining Q
to be the event, µ∆h < 0, µh > 0, and F > 10.94, for the long sample. Recall that 10.94
is the value of the F statistic obtained using the actual data from the long sample. We
find that P (Q|A) = 0.362 and P (Q|B) = 0.012. This implies that the odds in favor of the
role in business cycles. Christiano and Ljungqvist argued that the preponderance of the evidence supported
the trend stationary specification.
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level specification relative to the difference specification are 29.2 to one. The analogous odds
based on the short sample period are 58.7 to one.
Evidently, the odds ratio jumps enormously when the weak instruments F statistic is

incorporated into the analysis. Absent the F statistic, the difference specification has some
ability to account for the impulse response function emerging from the level specification.
But, this ability is predicated on the existence of a weak instrument problem associated with
hours worked. In fact, our F test indicates that there is not a weak instrument problem. As
indicated above, this result is equivalent to the result from the classical tests, presented in
section (4), that reject the null hypothesis of a unit root in per capital hours worked.

5.2.4 Relative Plausibility when allowing for Sampling Uncertainty

The conditional probabilities, reported above, are calculated using the estimated coefficients
of B (L) and V from the respective level and difference VARs. To incorporate information
about the sampling uncertainty associated with these coefficients, we proceed as follows.
Let M denote either the level or the difference specification of the VAR, i.e. M = {A,B}.
Also let θ denote the VAR coefficients B (L) and V . Given a specification for M and
a value for θ, we use the procedure discussed in the previous subsection to calculate, by
simulation, the conditional probability P (Q|θ, Y,M). Note that in constructing Bayesian
confidence intervals for impulse response functions, we estimated the conditional posterior
of the distribution of P (θ|Y,M).33 Therefore, for both the level and difference specification,
we can calculate

P (Q|Y,M) =
Z
P (Q|θ, Y,M)P (θ|Y,M)dθ.

We calculated this integral using simulation methods where we first drew 100 values of θ
from P (θ|Y,M). For each θ, we then simulated 200 artificial data sets. For each data set,
we calculated µ∆h , µh, and the test statistic associated with the weak instrument test. The
average value across all these draws is our estimate of P (Q|Y,M).
Our key result is that inference about the relative plausibility of the two specification

is robust to allowing for sampling uncertainty about the estimated values of θ. Specifically,
when Q is defined as the event, µ∆h negative and µh positive, then, for the long sample,
the posterior odds in favor of the level specification relative to the difference specification
are 1.57 to one.34 For the short sample, the odds are 1.81 to one.35 When we add the
test statistic associated with the weak instrument test to the event Q, the odds in favor of
the level relative to the difference specification are 23.83 and 48.77 for the short and long
samples, respectively.

5.2.5 Summary of the Section’s Results

Based on our encompassing analysis, we conclude that the level specification and its impli-
cations are more plausible than those of the difference specification. Of course the odds in

33In particular, under the assumption of a flat Jeffreys prior, V has an inverse wishart distribution and,
conditioning on V , B has a normal distribution.
34This conditional probabilities underlying these odds are P (Q|A) = 0.54 and P (Q|B) = 0.35.
35This conditional probabilities underlying these odds are P (Q|A) = 0.48 and P (Q|B) = 0.0.26.
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favor of the level specification would be even higher if we assigned more prior weight to the
level specification. For reasons discussed in the introduction this seems quite natural to us.
Our own prior is that the difference specification simply cannot be true because per capita
hours worked are bounded.

5.3 Encompassing Results for the Six Variable Systems

In this section we present the results of our encompassing analysis for the level and difference
specifications based on the six variable VAR systems. We begin by considering whether the
level specification can encompass the difference specification results. As with the bivariate
systems, we proceeded as follows. First, we generated five thousand artificial data sets
from the estimated six-variable level specification VAR. The number of observations in each
artificial data set is equal to the number of data points in the sample period, 1959 - 2001.
In each artificial data sample, we estimated a six-variable VAR in which hours worked

appears in growth rates and computed the impulse responses to a technology shock. The
mean impulse responses appear as the thin line with circles in Figure 8. These responses
correspond to the impulse responses that would result from the difference specification VAR
being estimated on data generated from the level specification VAR. The thin lines with
triangles are reproduced from Figure 5 and correspond to our point estimate of the relevant
impulse response function generated from the difference specification. The gray area repre-
sents the 95 percent confidence interval of the simulated impulse response functions.36 The
thick black line corresponds to the impulse response function from the estimated six-variable
level specification VAR.
The average impulse response function emerging from the ‘misspecified’ difference speci-

fication is very close to the actual estimated impulse response generated using the difference
specification. As in the bivariate analysis, hours worked are predicted to fall after a positive
technology shock even though they rise in the actual data-generating process. Also, in all
cases the estimated impulse response functions associated with the difference specification lie
well within the 95 percent confidence interval of the simulated impulse response functions.
So, as before, we conclude that the specification error associated with imposing a unit root
in hours worked is large enough to account for the estimated response of hours that emerges
from the difference specification.
We now consider whether the difference specification can encompass the level specification

results. To do this we proceed as above except that we now take as the data-generating
process the estimated VARs in which hours appears in growth rates. Figure 9 reports the
analogous results to those displayed in Figure 8. The thick, solid lines, reproduced from
Figure 4, are the impulse response functions associated with the estimated level specification.
The thin line with the triangles are reproduced from Figure 5 and correspond to our point
estimate of the impulse response function generated from the difference specification. The
gray area represents the 95 percent confidence interval of the simulated impulse response
functions.

36These confidence intervals are computed in the same manner as the intervals reported for the bivariate
encompassing tests. The interval is the average simulated impulse response plus or minus 1.96 times the
standard deviation of the simulated impulse responses.
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The thin line in Figure 9 with circles is the mean impulse response function associated
with estimating the level specification VAR on data simulated using, as the data-generating
process, the difference specification VAR. Notice that the lines with triangles and circles
are very similar. So, focusing on point estimates alone, the difference specification is not
able to account for the actual finding with our estimated level VAR that hours worked
rise. Still, in the end the difference specification is compatible with our level results only
because it predicts so much sampling uncertainty. As discussed earlier, this reflects the
difference specification’s implication that the level model has weak instruments. As in the
bivariate case, there is little empirical evidence for this. Since there are more predetermined
variables in the instrumental variables regression, the weak instrument F statistic now has
a different value, 21.68. This rejects the null hypothesis of weak instruments at the one
percent significance level.

5.3.1 The Relative Plausibility of the Two Specifications

As in the bivariate system, we first quantify the relative plausibility of the level and difference
specifications with a scalar statistic: the average percentage change in hours in the first six
periods after a technology shock. The estimated level specification implies this change,
µh, is equal to 0.31. The statistic for the difference specification, µ∆h, is −0.29. We then
incorporate the weak instrument F statistic into the analysis.
We simulated 2500 artificial data sets using each of our two estimated VARs as data

generating mechanisms. In each data set, we calculated (µh, µ∆h) using the same method
used to compute these statistics in the actual data. Using each of our two time series
representations, we computed the frequency of the joint event, µh > 0 and µ∆h < 0. This
frequency is 68.3 across artificial data sets generated by the level specification, while it is 36.5
in the case of the difference specification. The implied odds in favor of the level specification
over the difference specification are 1.869 to one.
Next, we incorporate the fact that the weak instrument F statistic takes on a value of

21.68. Incorporating this information into our analysis implies that the odds in favor of the
level specification relative to the difference specification jumps dramatically to a value of
321.0 to one. Adding sampling uncertainty results in similar odds. So as with our bivariate
systems, we conclude on these purely statistical grounds that the level specification and its
implications are more ‘plausible’ than those of the difference specification.

6 Sensitivity Analysis

In this section we investigate the sensitivity of our analysis along two dimensions: allowing
for deterministic trends and subsample stability.

6.1 Quadratic Trends

From Figure 1 we see that per capita hours worked display a U shaped pattern over the sam-
ple period while inflation and the federal funds rate exhibit hump-shaped patterns. Classical
statistical tests appear to be consistent with the presence of quadratic trends in all three
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variables. Specifically, we regressed the log of per capita hours worked, inflation and the
federal funds rate on a constant, time and time-squared using data over the sample period
1959q1-2001q4. We then computed the t statistics for the time-squared terms allowing for
serial correlation in the error term of the regressions using the standard Newey-West pro-
cedure.37 The resulting t statistics are equal to 8.12, −4.62 and −4.23 for per capita hours
worked, inflation and the federal funds rate, respectively. Using standard asymptotic distri-
bution theory, we can reject, at even the one percent significance level, the null hypothesis
that these quadratic time trend coefficients are equal to zero. So, on this basis, we would
reject our level specification. But, it is well-known that the asymptotic distribution theory
for this kind of t statistic is a poor approximation to the actual distribution in small samples.
The approximation is particularly poor when the error terms exhibit high degrees of serial
correlation, which is exactly the current situation according to our level model38

To address this concern, we adopt the following procedure. We simulate 2, 500 synthetic
time series on all the variables in the VAR using our estimated level model. The disturbances
used in these simulations were randomly drawn from the fitted residuals of our estimated
level model. The length of each synthetic time series is equal to the length of our sample
period. We found that for the quadratic trend terms (i) 12.2 percent of the t statistics
associated with per capita hours worked exceeded 8.12, (ii) 26.6 percent of the t statistics
associated with inflation were smaller than −4.62, and (iii) 29.8 percent of the t statistics
associated with the federal funds rate were smaller than −4.23. So, from the perspective of
the level model, the estimated t statistics are not particularly unusual. So once we correct for
the small sample distribution of the t statistics, we fail to reject the null hypothesis that the
coefficients on the time-squared terms in per capita hours worked, inflation and the federal
funds equal zero.
Of course, with these critical values, these tests may suffer from poor power. So it is

interesting to see how inference is affected by removing quadratic trends in the variables
from our VAR.39 To this end, we redid our analysis of the six-variable system with three
types of quadratic trends. In case (i) we remove quadratic trends from all variables before
estimating the VAR. In case (ii) we remove quadratic trends from per capita hours worked,
inflation and the federal funds rate before estimating the VAR. Finally, in case (iii) we remove
a quadratic trend from only per capita hours worked before estimating the VAR. In all cases,
variables not detrended enter into the VAR exactly as in the level specification.
Figure 10 reports our results. The dark, thick lines correspond to the impulse response

functions implied by the six-variable level specification. The lines indicated with dots, stars
and x’s correspond to the impulse response functions generated from the estimated versions of
case (i), (ii) and (iii). The grey area is the 95 percent confidence interval associated with case
(iii) where only hours have been detrended. We report only this confidence interval, rather
than all three, to give a sense of sampling uncertainty while keeping the figure relatively
simple.
Two things are worth noting. First, suppose we detrend all of the variables in the VAR

37We allow for serial correlation of order 12 in the Newey-West procedure.
38The two largest eigenvalues of the determinant of [I −B(L)] in (4) are 0.9903 and 0.9126.
39We redid our VAR analysis allowing for a linear trend in all equations of the six variable VAR. The re-

sulting impulse response functions are very similar to those associated with the six variable level specification
VAR.
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(case i), or we detrend just per capita hours worked, inflation and the federal funds rate (case
ii). Then after a small initial fall, hours worked rise in response to a positive technology
shock. In this sense, inference in the level specification is robust to allowing for quadratic
trends. Second, if we allow for a quadratic trend only in per capita hours worked (case iii),
then hours worked fall in a persistent way after a positive shock to technology. The problem
with this case is that it treats hours worked differently from the other variables in terms of
allowing for a quadratic trend. We see no rationale for this asymmetry. Consequently, we
attach little importance to this last result.
We conclude that inference regarding the effect of a technology shock on hours worked

is robust to allowing for quadratic trends in all the variables entering the analysis (case
i) or just the subset of variables where a quadratic trend appears to be significant on the
basis of standard classical tests (case ii). To overturn the key result emerging from the
level specification, it is necessary to treat hours worked asymmetrically from variables like
inflation and the federal funds rate that, over our sample, also exhibit quadratic-trend like
behavior.

6.1.1 Assessing the Relative Plausibility of the Different Models

We now briefly discuss the relative plausibility of the different models considered in the
previous subsection. Recall that when we only detrend hours worked (case (iii)), inference
is different than when we work with the level specification. Since this is the only case in
which inference is sensitive, we are particularly interest in the relative plausibility of case
(iii). We proceed using a posterior odds ratio like the one in section 5.2.3. We focus on the
models’ ability to account for (a) the t statistics associated with standard classical tests for
quadratic trends in per capita hours worked, inflation and the federal funds rate, and (b) the
sign of the response of per capita hours worked to a technology shock in the different cases.
Let µ1, µ2, µ3 and µ4 denote the average percentage change in per capita hours in the first

six periods after a technology shock in case (i), case (ii), case (iii) and the level specification
(case iv), respectively The values of µ1, µ 2, µ3 and µ4 are equal to 0.15, 0.15, −0.12 and 0.31,
respectively. Since µ1 and µ2 are the same, we do not include µ1 separately in calculating the
posterior odds for the different cases. To calculating these odds we simulated 2500 artificial
data sets using each of our the four estimated VARs as data generating mechanisms. In
each artificial data set, we calculated (µ2, µ3, µ4) using the same method used to compute
these statistics in the actual data. For each data generating mechanism, we computed the
frequency of the joint event (µ2, µ4 > 0, µ3 < 0). The resulting frequencies are equal to 94,
72 , 48 and 86 percent, for cases (i) - (iv), respectively. Using equally weighted priors over
the different cases, we then computed the posterior odds of case (i), (ii) and (iv) relative to
case (iii). The resulting odds are 1.97, 1.50 and 1.81 to one. So in every case - including
the level specification (case iv) - the preponderance of the data favors the alternative to the
specification where we only detrend per capita hours worked (case (iv)).
The weight of the evidence against case (iii) becomes overwhelming once we incorporate

the t statistics associated with the test of the quadratic trend terms in per capita hours,
inflation and the federal funds rate into our analysis. We denote these t statistics by tD1 , t

D
2

and tD3 , respectively. Recall these are equal to 8.12, −4.62 and −4.23, respectively.
Using the simulated data from the four VAR’s, we computed t statistics for the quadratic
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trend terms on per capita hours (tS1 ), inflation (t
S
2 ) and the federal funds rate (t

S
3 ). Then

using the simulated data from our four estimated VAR’s, we computed the frequency of the
joint event, (µ2, µ4 > 0, µ3 < 0, tSi > tDi , i = 1, 2, 3) for each case. These frequencies are
equal to 19, 8, 1 and 9 percent for cases (i) - (iv), respectively. Using equally weighted priors
over the different cases, we then computed the posterior odds of case (i), (ii) and (iv) relative
to case (iii). The resulting odds are 20.13, 7.92 and 3.79 to one. So in all cases - including
the level specification (case iv)- the odds are very much against the specification in which
we detrend only per capita hours worked (case (iii).
To summarize, in all cases but one inference about the response of per capita hours

worked to a technology shock is robust to allowing for quadratic trends. The exception is
the case where we detrend only per capita hours worked. But the weight of the data strongly
support the alternatives to that specification.

6.2 Subsample Stability

In this subsection we briefly discuss subsample stability, focusing on the six-variable level
specification. Authors such as Gali, Lopez-Salido, and Valles (2002), among others, have
argued that monetary policy may have changed after 1979, and that this resulted in a
structural change in VAR’s. Throughout our analysis, we have assumed implicitly that
there has been no structural change. This section assesses the robustness of our conclusions
to the possibility of subsample instability.
Figure 12 display the estimated impulse responses of the variables in our system to a

technology shock, for the pre-1979Q4 and post-1979Q3 sample periods. In addition, the full
sample impulse response and confidence intervals are reproduced from Figure 6.
The key results are as follows. First, according to the point estimates, in the early

period hours worked fall for roughly three quarters before rising sharply in a hump-shaped
pattern. In the late period, the estimated response of hours worked is similar to the estimates
based on the full sample period. Second, the point estimates for each sample period lie well
within the 95 percent confidence intervals. This is consistent with the responses in the
subperiods being the same as they are for the full sample. The evidence is also consistent
with there being no break in the response of consumption and output. Third, there is some
evidence of instability in the response of the interest rate and investment, in the early period.
In particular, the decline in investment and in the interest rate are sufficiently large that
portions of their impulse response functions lie outside their respective confidence intervals.
Likewise, in the late period, inflation falls much less than in the full sample. These initial
declines are sufficiently large that if one applies a conventional F test for the null hypothesis
of no sample break in the VAR, the hypothesis is rejected at the one percent significance
level. This rejection notwithstanding, the key result from our perspective is that inference
about the response of hours worked to a technology shock is not affected by subsample
stability issues.
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7 How Important Are Permanent Technology Shocks

for Aggregate Fluctuations?

In Section 4 and Section 5 we argued that the weight of the evidence favors the level specifi-
cation relative to the difference specification. Here, we use the level specification to assess the
role of technology shocks in aggregate fluctuations. We conclude that (i) technology shocks
are not particularly important at business cycle frequencies but they do play an important
role at relatively low frequencies of the data, and (ii) inference based on bivariate systems
greatly overstates the cyclical importance of technology shocks.

7.1 Bivariate System Results

We begin by discussing the role of technology shocks in the variability of output and hours
worked based on our level specification bivariate VAR. Table 3 reports the percentage of
forecast error variance due to technology shocks, at horizons of 1, 4, 8, 12, 20 and 50 quarters.
By construction, permanent technology shocks account for all of the forecast error variance
of output at the infinite horizon. Notice that technology shocks account for an important
fraction of the variance of output at all reported horizons. For example, they account for
roughly 80 percent of the one step ahead forecast error variance in output. In contrast, they
account for only a small percentage of the one step forecast error variance in hours worked
(4.5 percent). But they account for a larger percentage of the forecast error variance in hours
worked at longer horizons, exceeding forty percent at horizons greater than two years.
The first row of Table 5 reports the percentage of the variance in output and hours

worked at business cycle frequencies due to technology shocks. This statistic was computed
as follows. First we simulated the estimated level specification bivariate VAR driven only
by the estimated technology shocks. Next we computed the variance of the simulated data
after applying the Hodrick-Prescott (HP) filter. Finally we computed the variance of the
actual HP filtered output and hours worked. For any given variable, the ratio of the two
variances is our estimate of the fraction of business cycle variation in that variable due to
technology shocks. The results in Table 4 indicate that technology shocks appear to play a
significant role for both output and hours worked, accounting for roughly 64 and 33 percent
of the cyclical variance in these two variables, respectively.
A different way to assess the role of technology shocks is presented in Figure 13. The thick

line in this figure displays a simulation of the ‘detrended’ historical data. The detrending
is achieved using the following procedure. First, we simulated the estimated reduced form
representation (4) using the fitted disturbances, ût, but setting the constant term, α, and
the initial conditions of Yt to zero. In effect, this gives us a version of the data, Yt, in which
any dynamic effects from unusual initial conditions (relative to the VAR’s stochastic steady
state) have been removed, and in which the drift has been removed. Second, the resulting
‘detrended’ historical observations on Yt are then transformed appropriately to produce the
variables reported in the top panel of Figure 13. The high degree of persistence observed in
output reflects that our procedure for computing output makes it the realization of a random
walk with no drift.
The procedure used to compute the thick line in Figure 13 was then repeated, with one
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change, to produce the thin line. Rather than using the historical reduced form shocks, ût,
the simulations underlying the thin line use Cêt, allowing only the first element of êt to be
non-zero. This first element of êt is the estimated technology shock εzt , obtained from (3).
The results in the top panel of Figure 13 give a visual representation of what is evident in
Table 3 and the first row of Table 5. Technology shocks appear to play a very important role
in accounting for fluctuations in output and a smaller, but still substantial role with respect
to hours worked.
We conclude this section by briefly noting the sensitivity of inference to whether we adopt

the level or difference specification. The bottom panels of Tables 3 and 5 and the bottom
panel of Figure 13 report the analogous results for the bivariate difference specification.
Comparing across the Tables or the Figures the same picture emerges: with the difference
specification, technology shocks play a much smaller role with respect to output and hours
worked than they do in the level specification. For example, the percentage of the cyclical
variance in output and hours worked accounted for by technology shocks drops from 64 and
33 percent in the level specification to 11 and 4 percent in the difference specification. So
imposing a unit root in hours worked, not only affects qualitative inference about the effect
of technology shocks, it also affects inference about their overall importance.

7.2 Results Based on the Larger VAR

We now consider the importance of technology shocks when we incorporate additional vari-
ables into our analysis. Table 3 reports the variance decomposition results for the six-variable
level specification system. Comparing the first two rows of Table 3 and 4, we see that tech-
nology shocks account for a much smaller percent of the forecast error variance in both
hours and output in the six-variable system. For example, in the bivariate system, tech-
nology shocks account for roughly 78 and 24 percent of the 4 quarter ahead forecast error
variance in output and hours, respectively. In the six-variable system these percentages fall
to 40 and 15 percent respectively. Still technology shocks continue to play a major role in
the variability of output, accounting for over 40 percent of the forecast error variance at
horizons between four and twenty quarters. Technology shocks do play an important role
in accounting for the forecast error variance in hours worked at longer horizons, accounting
for nearly 30 percent of this variance at horizons greater than 4 quarters, and more than 40
percent of the unconditional variance.
The decline in the importance of technology shocks is much more pronounced when we

focus on cyclical frequencies. Recall from Table 5 that, based on the bivariate system,
technology shocks account for roughly 64 and 33 percent of the cyclical variation in output
and hours worked. In the six-variable systems, these percentages plummet to ten and four,
respectively.
Turning to the other variables, Table 4 indicates that technology shocks play a substantial

role in inflation, accounting for over 60 percent of the one step ahead forecast error variance
and almost 40 percent at even the 20 quarter horizon. Technology shocks also play a very
important role in the variance of consumption, accounting for over 60 percent of the one step
ahead forecast error variance and almost 90 percent of the unconditional variance. These
shocks also play a substantial, if smaller, role in accounting for variation in investment.
These shocks, however, do not play an important role in the forecast error variance for the
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federal funds rate.
Turning to business cycle frequencies, two results stand out in Table 5. First, technol-

ogy shocks account for a very small percentage of the cyclical variance in output, hours
worked, investment and the federal funds rate (10, 4, 1 and 7 percent respectively). Second,
technology shocks account for a moderately large percentage of the cyclical variation in con-
sumption (16.7 percent) and a surprisingly large amount of the cyclical variation in inflation
(32 percent).
Figure 14 presents the historical decompositions for the six-variable level specification

VAR. Technology shocks do relatively well at accounting for the data on output, hours,
consumption, inflation and to some extent investment at the lower frequencies. While not
reported here, the results are similar for the six-variable difference specification VAR.

8 Conclusions

A theme of this paper is that the treatment of the low frequency component of per capita
hours worked has an important impact on inference about the response of hours worked to
a technology shock. We explored the impact on inference of treating per capita hours as
difference stationary, stationary, or stationary about a deterministic trend. We conclude
that the evidence overwhelmingly favors specifications which imply that per capita hours
worked rises in response to a technology shock.
Throughout, we assume that only one shock affects productivity in the long run and

we refer to it as a ‘technology shock’. We do this because it is the standard interpretation
in the literature. But, other interpretations are possible. For example, the shock that we
identify could in principle be any permanent disturbance that affects the rate of return
on capital, such as the capital tax rate, the depreciation rate, or agents’ discount rate.
If some or all of these shocks are operative and have permanent effects on productivity,
then our inferences may be distorted. To explore this possibility requires making additional
identifying assumptions and incorporating new data into the analysis. Fisher (2002) does this
by considering two types of technology shocks. He argues that investment-specific shocks
play a relatively important role at cyclical frequencies in driving aggregate fluctuations.
Significantly, he finds that our key result is robust to the presence of a second shock: both
of the technology shocks that Fisher identifies lead to an increase in hours worked.
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A Asymptotic Distribution of Impulse Response Esti-

mators When Difference Specification is True, But

Level Specification is Adopted

This appendix analyzes a special case of our environment to illustrate the results in Section
5.1.2. We derive a closed-form representations of the asymptotic distribution of the instru-
mental variables estimator and of the estimator of a technology shock’s contemporaneous
impact on hours worked. We discuss the bias in these estimators.
We consider the case, µ = 0, β(L) = 0 and q = 2, and ∆Xt = θ∆Xt−1+ut, where |θ| < 1,

ut = ψεzt + εt and Eε
z
t εt = 0. Here, ψ is the contemporaneous impact of a one unit shock to

technology, εzt . The formulas in Hamilton (1994, Theorem 18.1) can be used to deduce:

δIV − δ
L→
"

ρ+ σv
σu
ω

−θ
³
ρ+ σv

σu
ω
´ # ≡ δ∗.

Here, δ∗ = (δ∗0, δ
∗
1) and δ∗0, δ

∗
1 correspond to the coefficients on ∆Xt and ∆Xt−1, respectively.

Also,

ρ =
ψσ2εz

σ2u
, ω = 2

R 1
0
W (r)dW̃ (r)

[W (1)]2 − 1 , σ2v = σ2εz − ρ2σ2u,

and W (r) and W̃ (r), 0 ≤ r ≤ 1, are independent Brownian motions.
Using graphical analysis, we found that the cumulative distribution function of ω resem-

bles that of the zero-median Cauchy distribution, with cumulative density,

P (ω) = 0.5 +
arctan

¡
ω

0.835

¢
π

.

We simulated 100 artificial sets of observations, each of length 11,000, on ω. We computed
the median in each and found that the mean of the 100 medians was −0.0015. The standard
deviation across the 100 artificial data sets is 0.0138. So, under the null hypothesis that the
true median is zero, the mean of −0.0015 is a realization from a normal distribution with
standard deviation, 0.0138/

√
100 = 0.00138. The probability of a mean less than −0.0015

under the null hypothesis exceeds 10 percent. So, we fail to reject. This, taken together with
our graphical analysis, is consistent with the notion that the above zero-median Cauchy
distribution is a good approximation of the distribution of ω.
Regarding the large sample distribution of the estimator of the contemporaneous response

of hours to technology, Ψ0, we find, after tedious algebra

ΨIV
0

L→ σu × ρ− δ∗0h
(δ∗0)

2 − 2δ∗0ρ+ ρ
ψ

i1/2 .
This illustrates the observation in the text, that the asymptotic distribution of ΨIV

0 is a
function of the asymptotic distribution of δIV − δ.
The median of the asymptotic distribution of ΨIV0 is obtained by setting δ∗0 to its median

value, which we argued above is ρ. Hence, the median of the asymptotic distribution of
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ΨIV
0 is zero, regardless of the true value of Ψ0. The intuition for this result is simple.

It is easily verified that the median of an instrumental variables regression’s estimators
corresponds to the probability limit of the corresponding OLS estimators. But in minimizing
residual variance, ordinary least squares chooses the residuals to be uncorrelated with the
right hand variables. These residuals are the OLS estimates of the technology shocks. The
disturbance in the VAR equation for ∆Xt is a linear function of the right hand variables in
the instrumental variables equation. As a result, it is not surprising that the OLS estimate
of the technology shock is uncorrelated with the disturbance in the VAR equation for ∆Xt.
This lack of correlation is what underlies ΨIV

0 being centered on zero.

B Impact of Covariates on the Power of Unit Root

Tests

A key factor driving our finding that level specifications are more plausible than difference
specifications is the large value of our weak instruments F statistics. Though the level
specifications have little difficulty accounting for a large F , the difference specifications
have considerable difficulty doing this. Our finding is consistent with recent findings in the
literature on testing for unit roots. In particular, the weak instruments F statistic turns out
to be a variant of the multivariate extension to the ADF test proposed by Hansen (1995)
(see also and Elliott and Jansson, 2003). Because this test introduces additional variables,
i.e., ‘covariates’, into the analysis, Hansen refers to it as the covariates ADF (CADF) test.
An important finding in the literature is that the CADF test has considerably greater power
than the ADF test. This appendix reports the power gain from using the CADF rather than
the ADF test in our context.
We compute critical values for sizes 0.01, 0.05 and 0.10 using each of our three difference

specifications (the bivariate models based on the short and long sample, and the six-variable
model based on the short sample). Critical values are computed based on the type of
bootstrap simulations used throughout our analysis, with 5000 simulations. The critical
values are for t statistics used to test the null hypothesis that the coefficient on lagged, log
per capita hours worked is zero in a particular ordinary least squares regression. In the case
of the ADF test, the regression is of hours growth on the lagged level of log, per capita hours
and three lags of hours growth. Three sets of critical values are computed for the ADF
t statistic, one for each our three difference specifications. Corresponding to each critical
value, we compute power using bootstrap simulations of the relevant estimated level VAR.
The results are reported in Table A1.
To understand the table, note, for example, that the difference specification estimated

using the long sample has the property that the ADF t statistic is less than −3.8 in 1 percent
of the artificial samples. When we simulated the bivariate level specification estimated using
the long sample, we found that 5.5 percent of the time the simulated t statistics are smaller
than −3.8. Thus, the power of the 1 percent ADF t statistic is 5.5 percent based on the long
sample bivariate VAR. Interestingly, power improves in the short sample relative to the long
sample. Conditional on the long sample, there is little difference between the bivariate and
six-variable results.
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We turn now to an assessment of the impact on power of adding covariates. Our CADF t
statistic resembles the ADF t statistic, except that the underlying regression also includes all
the predetermined variables in the instrumental variables regression, (3). Since the number
of predetermined variables is different in the bivariate and six-variable systems, we have two
CADF t statistics. The first corresponds to our bivariate analysis. It is based on a regression
like the one underlying the ADF test, except that it also includes four lags of productivity
growth. The second corresponds to our six-variable analysis. In particular, it adds four
lags of each of the federal funds rate, the rate of inflation, the log of the ratio of nominal
consumption expenditures to nominal GDP, and the log of the ratio of nominal investment
expenditures to nominal GDP.
We compute critical values for our two CADF t statistics in the same way as for the ADF

statistic. In particular, we compute two sets of critical values for our bivariate CADF statis-
tic, one corresponding to each of the short and long sample estimated difference specifications.
The critical values for the six-variable CADF t statistic are based on bootstrap simulations of
the estimated six-variable difference VAR. Corresponding to each critical value, we compute
power using bootstrap simulations of the relevant estimated level difference VAR.
Corresponding to each critical value, we also computed the power of the statistic when

the level specification is true. This was done by bootstrap simulation of the relevant level
specification VAR. Results are reported in Table A2. Comparing Tables A1 and A2, power
increases substantially with the introduction of covariates. With a 1 percent size, power
jumps by an order of magnitude in the short sample.
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Figure 1: Data Used in VAR
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Figure 2: Response of Log-output and Log-hours to a Positive Technology Shock
Level Specification

Panel A: Sample Period 1948Q1-2001Q4
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Figure 3: Response of Log-output and Log-hours to a Positive Technology Shock
Difference Specification

Panel A: Sample Period 1948Q1-2001Q4
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Figure 4: Six-variable System, Level Specification,Sample Period 1959-2001
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Figure 5: Six-variable System, Difference Specification, Sample Period 1959-2001
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Figure 6: Encompassing with Level Specification as the DGP
Panel A: Sample Period, 1948Q1-2001Q4

0 5 10 15

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Output     

0 5 10 15
-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

Hours      

Panel B: Sample Period, 1959Q1-2001Q4

0 5 10 15

0.2

0.4

0.6

0.8

1

1.2

1.4

Output     

0 5 10 15

-0.4

-0.2

0

0.2

0.4

0.6

0.8

Hours      

Thick Line: Impulse Responses from Level Specification
Line with Triangles: Impulse Responses from Difference Specification
Circles: Average Impulse Response for Simulations from given DGP
Gray Area: 95 percent Confidence Intervals For Simulations for given DGP



Figure 7: Encompassing with Difference Specification as the DGP
Panel A: Sample Period,1948Q1-2001Q4
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Figure 8: Encompassing Test with the Level Specification as the DGP, 1959-2001
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Figure 9: Encompassing Test with the Difference Specification as the DGP, 1959-2001
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Figure 10: The Effect of Adding A Quadratic Trend
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Figure 11 Encompassing Analysis for Level and Quadratic Trend Models
Panel A: DGP Levels
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Figure 12: Allowing For Structural Change
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Figure 13: Historical Decomposition: Bivariate System,
Level Specification
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Figure 14: Historical Decomposition: Six-Variable System , Level Specification
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Table 1: Unit Root Test Statistics and Critical Values

Critical Values
Test-Statistic 1% 5% 10%

ADF Test 1948-2001 -2.2007 -3.8031 -3.1724 -2.8246
CADF Test 1948-2001 -3.3072 -3.5840 -2.8877 -2.5554
ADF Test 1959-2001 -2.5287 -3.8421 -3.1188 -2.7607
CADF Test 1959-2001 -3.2550 -3.3017 -2.7217 -2.3846
CADF Test 6 Variables1959-2001 -4.6566 -4.1382 -3.2916 -2.8451

Table 2: Probabilities and Odds of Encompassing Events

Event 48 59 2 Variables 59 6 Variables
Level Diff Odds Level Diff Odds Level Diff Odds

Difference VAR Negative 0.682 0.718 0.950 0.592 0.753 0.787 0.811 0.802 1.011
Level VAR Positive 0.970 0.497 1.950 0.907 0.387 2.344 0.855 0.471 1.813
Both Events 0.662 0.358 1.851 0.531 0.286 1.857 0.683 0.365 1.869
F-test > Empirical Value 0.538 0.022 24.91 0.574 0.011 54.13 0.517 0.002 215.5
All Three Events 0.362 0.012 29.21 0.317 0.005 58.66 0.385 0.001 321.0

Allowing For Sampling Uncertainty
Event 48 59 2 Variables 59 6 Variables

Level Diff Odds Level Diff Odds Level Diff Odds
Difference VAR Negative 0.614 0.609 1.007 0.567 0.661 0.859 0.615 0.610 1.009
Level VAR Positive 0.941 0.524 1.794 0.851 0.460 1.849 0.762 0.521 1.463
Both Events 0.575 0.315 1.822 0.473 0.295 1.603 0.442 0.284 1.556
F-test > Empirical Value 0.570 0.015 37.229 0.611 0.012 53.157 0.491 0.001 363.59
All Three Events 0.334 0.008 43.608 0.312 0.006 55.643 0.232 0.001 330.86



Table 3: Contribution of Technology Shocks to Variance, Bivariate System
Level Specification

Forecast Variance at Indicated Horizon
Variable 1 4 8 12 20 50
Output 81.1 78.1 86.0 89.1 91.8 96
Hours 4.5 23.5 40.7 45.4 47.4 48.3

Difference Specification

Forecast Variance at Indicated Horizon
Variable 1 4 8 12 20 50
Output 16.5 11.7 17.9 20.7 22.3 23.8
Hours 21.3 6.4 2.3 1.6 1.0 0.5

Table 4: Contribution of Technology Shocks to Variance, Six-variable System
Level Specification

Forecast Variance at Indicated Horizon
Variable 1 4 8 12 20 50
Output 31.2 40.3 44.6 41.5 44.8 70
Hours 3.6 15.4 28.8 28.4 28.8 43.9
Inflation 60.2 47.0 43.2 41.1 39.5 47.7
Fed Funds 1.6 1.4 1.7 1.7 3.7 23.3
Consumption 61.6 64.2 67.3 66.8 71.8 88.4
Investment 10.3 20.1 24.1 20.9 20.4 25.3

Difference Specification

Forecast Variance at Indicated Horizon
Variable 1 4 8 12 20 50
Output 1.7 0.6 2.6 6.4 17.2 35.5
Hours 20.8 11.9 8.0 7.1 5.7 2.3
Inflation 58.5 54.7 55.6 52.4 47.4 33.8
Fed Funds 0.0 7.5 10.5 13.7 17.2 16.9
Consumption 7.9 4.1 8.7 14.3 25.3 34.3
Investment 1.1 2.0 1.1 1.3 3.7 13.8



Table 5: Contribution of Technology Shocks to Cyclical Variance (HP Filtered Results)
Level Specification

Variables in VAR Output Hours Inflation Federal Funds Consumption Investment
Y,H 63.8 33.4
Y,H,∆P,R 17.8 17.9 53.2 11.2
Y,H,C, I 19.9 18.5 20.1 20.7
Y,H,∆P,R,C, I 10.2 4.1 32.4 1.3 16.8 6.7

Difference Specification

Variables in VAR Output Hours Inflation Federal Funds Consumption Investment
Y,∆H 10.6 7.0
Y,∆H,∆P,R 6.8 8.5 48.4 8.1
Y,∆H,C, I 1.3 6.3 0.32 5.5
Y,∆H,∆P,R,C, I 1.6 6.1 35.2 4.9 3.7 2.6

Table A1: Power of Standard ADF t Test
Bivariate Specification Six-Variable Specification

Long Sample Short Sample Short Sample
Size Critical Value Power Critical Value Power Critical Value Power

0.01 -3.803 0.055 -3.842 0.074 -4.108 0.062
0.05 -3.172 0.210 -3.119 0.329 -3.452 0.332
0.10 -2.825 0.374 -2.761 0.550 -3.065 0.489

Table A2: Power of CADF t Test
Bivariate Specification Six-Variable Specification

Long Sample Short Sample Short Sample
Size Critical Value Power Critical Value Power Critical Value Power

0.01 -3.584 0.394 -3.302 0.562 -4.138 0.717
0.05 -2.888 0.784 -2.722 0.849 -3.292 0.965
0.10 -2.555 0.906 -2.385 0.937 -2.845 0.980


